

HYDERABAD | DELHI | PUNE | BANGALORE | LUCKNOW | CHENNAI | VISAKHAPATNAM | VIJAYAWADA | TIRUPATHI | KOLKATA | AHMEDABAD

ESE-2020 (MAINS)

QUESTIONS WITH DETAILED SOLUTIONS

ELECTRONICS &

TELECOMMUNICATION ENGINEERING

PAPER-I

ACE Engineering Academy has taken utmost care in preparing the ESE-2020 MAINS Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to ESE - 2020 MAINS Solutions are to be sent to the following email address hyderabad@aceenggacademy.com Contact Us : 040-23234418,19,20

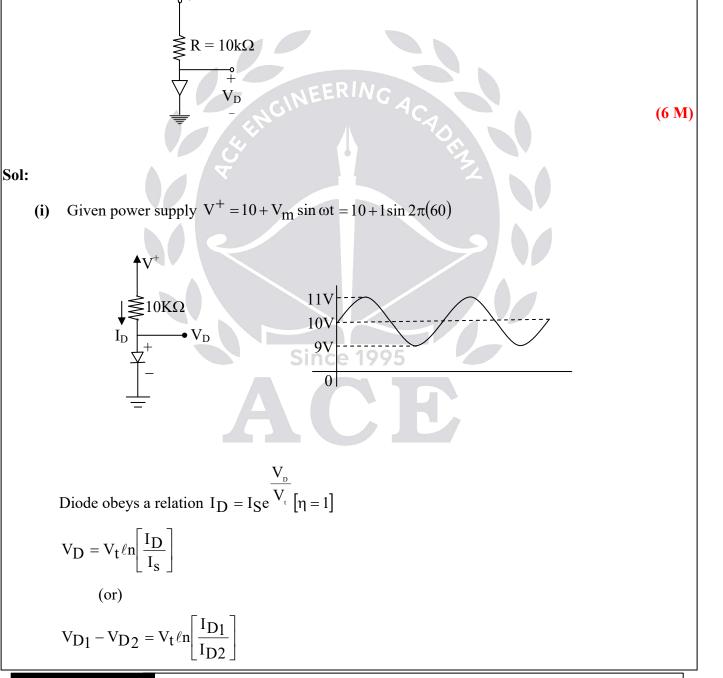
www.aceenggacademy.com

ELECTRONICS & TELECOMMUNICATION ENGINEERING

ESE_MAINS_2020_PAPER - I

Questions with Detailed Solutions

SUBJECT WISE WEIGHTAGE

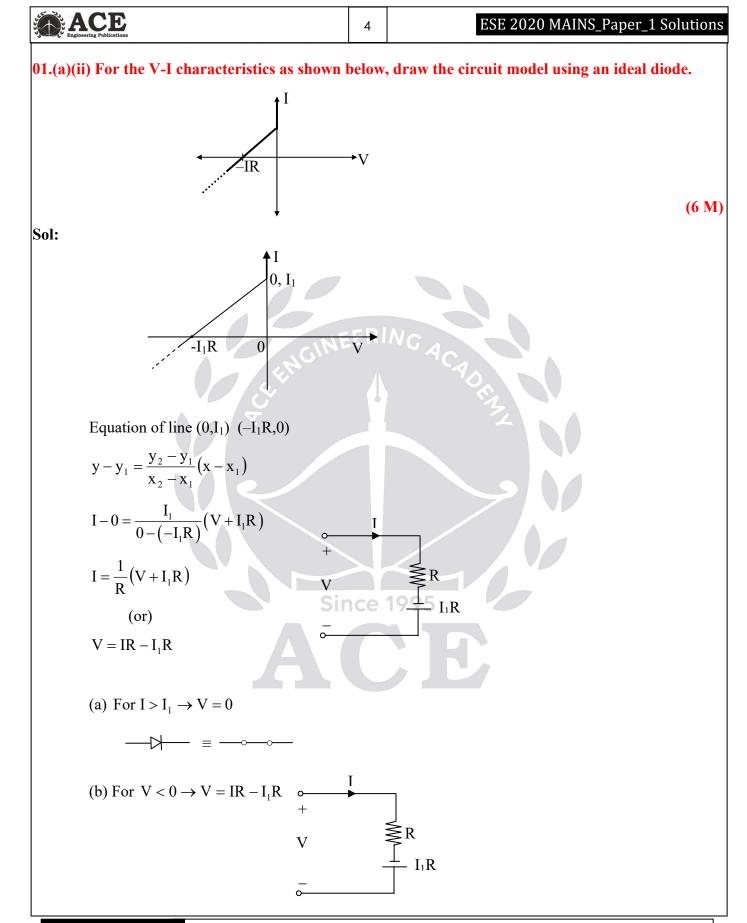

S.No	NAME OF THE SUBJECT	Marks
01	Basic Electrical Engineering	40
02	Basic Electronics Engineering	60
03	Materials Science	84
04	Electronic Measurements & Instrumentation	60
05	Network Theorgince 1995	128
06	Analog Electronics	56
07	Digital Electronics	52

ESE 2020 MAINS_Paper_1 Solutions

SECTION - A

2

01.(a)(i) Consider the circuit shown below. The power supply V⁺ has a dc value of 10V on which is superimposed a 60 Hz sinusoid of 1V peak amplitude, i.e. has a power supply ripple. Calculate both the dc voltage of the diode and the amplitude of the sine-wave signal appearing across it, assuming a 0.7 V drop across it at 1mA current.


ACE Engineering Publications

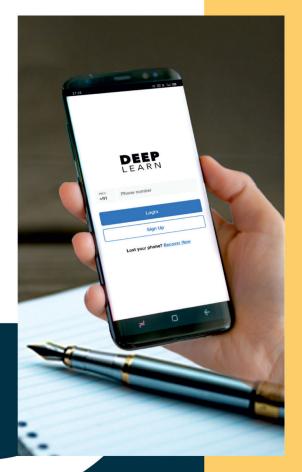
Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Electronics & Telecommunication Eng.

ACE Given $V_D = 0.7V$ when $I_D = 1mA$ $V_{D1} - 0.7 = 26mV\ell n \left[\frac{I_{D1}}{1m}\right]$ Let as consider $V^+ = 10V, 11V, 9V$ **Case1** V⁺ = 10V \rightarrow I_{D1} $\approx \frac{10 - 0.7}{10K} = 0.93$ mA $V_{D1} = 0.7 + 26mV\ell n \left[\frac{0.93m}{1m}\right] = 0.698V$ **Case2** V⁺ = 11V \rightarrow I_{D1} $\approx \frac{11 - 0.7}{10K} = 1.03m$ $V_{D1} = 0.7 + 26mV\ell n \left[\frac{1.03m}{1m}\right] = 0.70076V$ **Case3:** $V^+ = 9V \rightarrow I_{D_1} \approx \frac{9 - 0.7}{10K} = 0.83m$ $V_{D1} = 0.7 + 26mV\ell n \left[\frac{0.83m}{1m} \right] = 0.6951V$ V^+ V_D 0.7007 10V 0.698V 0.698 0.70076 11V 0.6951 9V 0.6951 0

3

ONLINE COURSES


for **ESE | GATE | PSUs** curated by India's best minds. Access courses through Mobile App only from anywhere.

EXCITING ANNOUNCEMENT!!

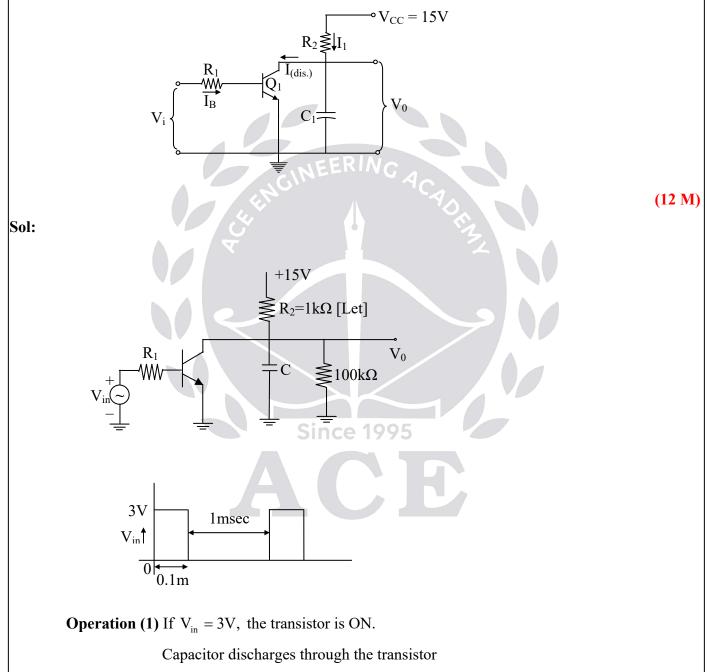
We have launched **3 months subscription for GATE 2021,** Streams: ECE | EEE | ME | CE | CS | IN | PI* **on Deep-Learn**. Online recorded classes, Fee: Rs. 16,000/- only (without Material).

RECORDED VIDEO LECTURES for **GATE + PSUs - 2021/2022**, **ESE + GATE + PSUs - 2021/2022**, **ESE : General Studies**, **SSC-JE** Streams: ECE | EEE | ME | CE | CS | IN | PI*

SALIENT FEATURES:

- Dynamic & Experienced Faculty.
- Subscription options 3 months, 6 months, 12 months, 18 months & 24 months.
- Covers Exam Preparation Strategy and Live Doubt clearing sessions.
- Facilitates Enhanced learning by incorporating 2d & 3d animations.
- Free Online Test Series (Total 118 tests, subject wise, sectional wise, and full length mock tests.
- Compose online study notes and save it for future reference.
- Comprises of weekly self assessment tests.
- Free Interview Guidance & Post GATE Guidance for subscribers.
- ASK AN EXPERT feature for doubt clarifications via emails/video (services to be availed within 12 hrs.)
- Procure Full set of Study Material (Optional)*
- ▶ EMI option available.

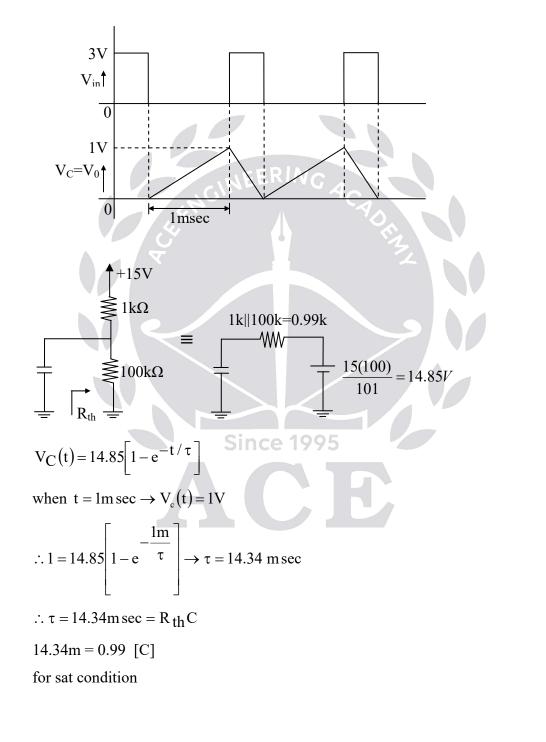
Scan QR Code to Download DEEP-LEARN Android Platform App



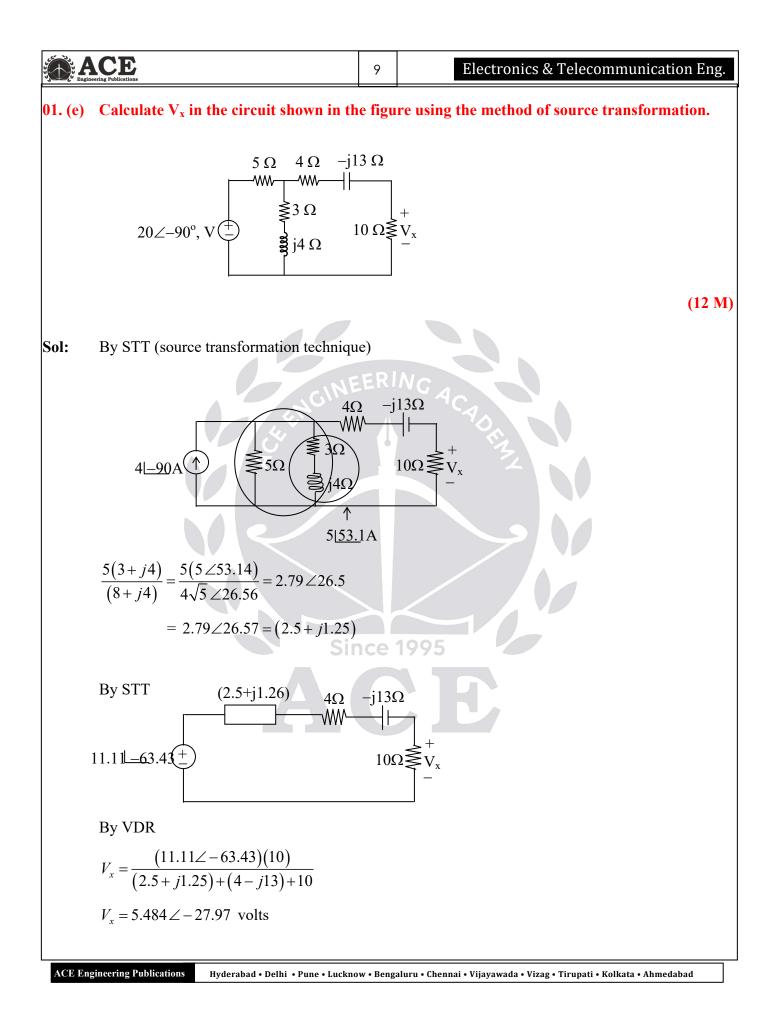
www.deep-learn.in www.aceenggacademy.com Help: support@frostinteractive.com Email: hyderabad@aceenggacademy.com Call: 040-23234418/19/20

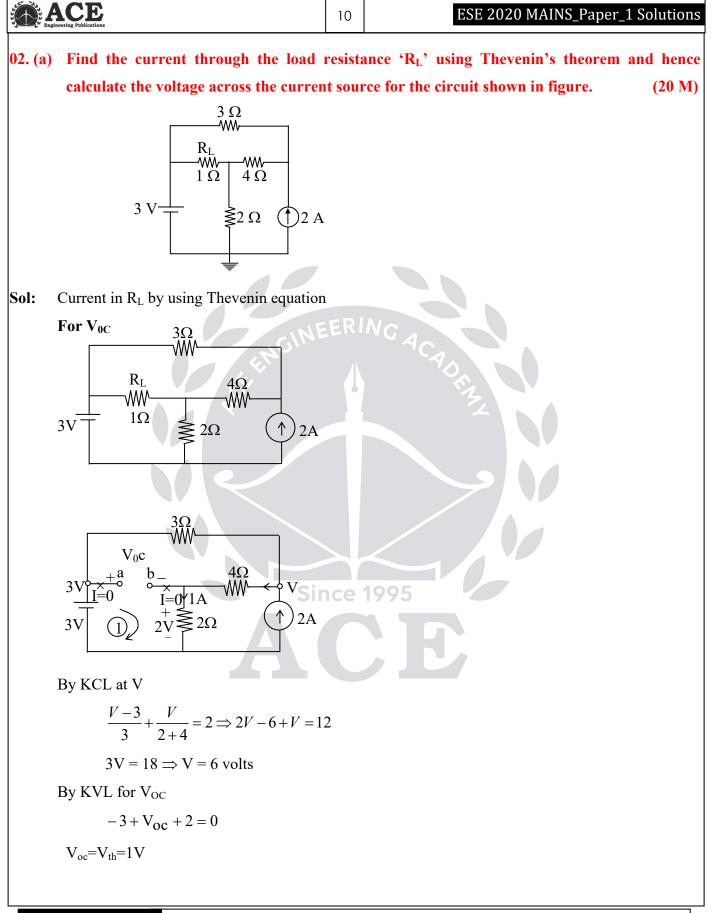
Electronics &	Telecommu	nication	Eng.
---------------	-----------	----------	------

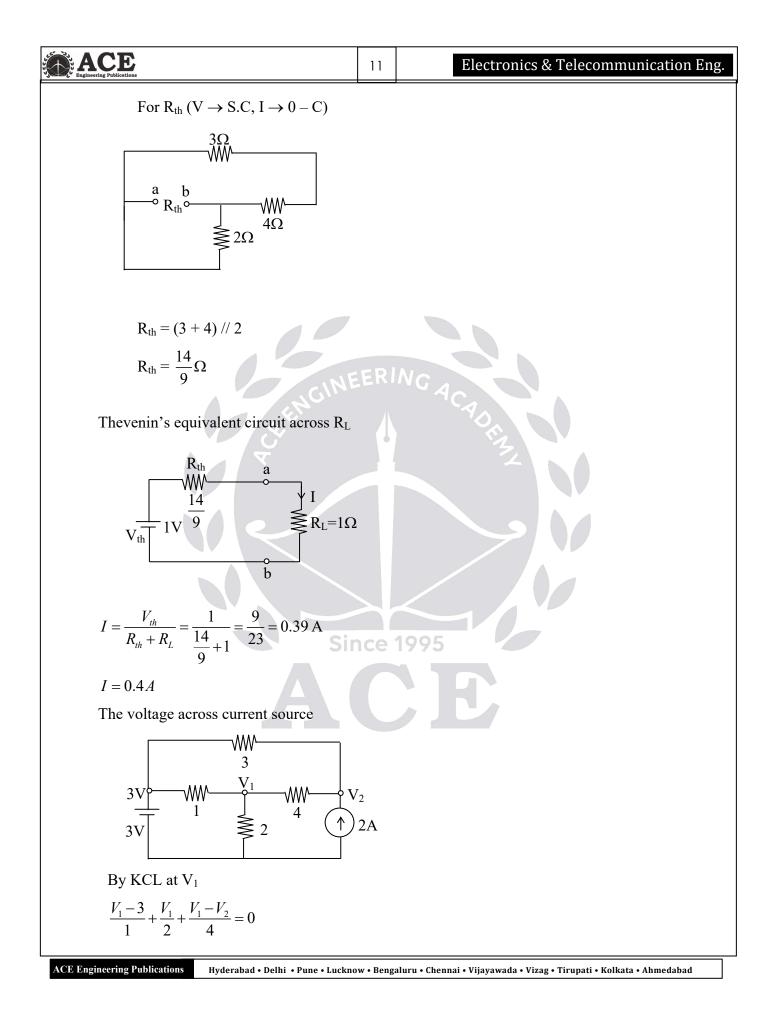
01. (b) The circuit shown below is to be used as ramp generator to produce a 1V ramp output when the input is 3V, 0.1ms pulse with a 1ms interval between pulses. The supply voltage is 15V and a load resistance of $100k\Omega$ is connected at the output terminals. Assume Q₁ has $h_{FE(min)} = 50$. Determine values of R₁, R₂ and C₁.


5

 $V_0 = V_C = V_{CE(sat)} \approx 0V$


ACE Engineering Publications	6	ESE 2020 MAINS_Paper_1 Solutions
J Dugmooning i ushcauona		


2. If $V_{in} = 0V$, the transistor is off. capacitor charges. The final value of capacitor is almost 15V. The wave form looks almost linear when it charges to 1V in 1msec duration (through the path is exponential)



ACE Electronics & Telecommunication Eng. 7 $\left| I_{B} \right| > \left| \frac{I_{C}}{B} \right|$ $I_{C} \max = \frac{(15-1)/1k}{200}$ +15V $I_{\rm B} = \frac{3 - 0.7}{R_{\rm B}}$ lkΩ $I_{\rm B} > I_{\rm cmax} / \beta$ 1V 100kΩ $\frac{3-0.7}{R_{\rm B}} > \frac{14m}{200}$ $R_{B} < 32.857 k\Omega$ A 40 µF capacitance is charged to store 0.2J of energy. An uncharged, 60 µF capacitance is 01. (c) then connected in parallel with the first one through perfectly conducting leads. What is the final energy of the system? (12 M) Sol: A 40µF charged to 0.2 J $Wc_1 = \frac{1}{2}c_1v_1^2 \Longrightarrow 0.2 = \frac{1}{2}40\mu v_1^2$ $0.4 = 40 \times 10^{-6} \left(v_1^2 \right)$ **Since 1995** $10^4 = v_1^2 \Longrightarrow v_1 = 100$ volts It is connected in parallel with 60µF uncharged capacitor 40µF Capacitor combination voltage v_C - 60μF V_{c} $V_C = \frac{V_1 C_1 + V_2 C_2}{C_1 + C_2} = \frac{100 \times 40 + 60 \times 0}{(40 + 60)} = 40V$ 100V Total energy = $W_{C_T} = \frac{1}{2}C_T V_C^2$ $W_{C_T} = \frac{1}{2} (40 + 60) \times 10^{-6} \times (40)^2 = 0.08 \text{J}$

A Engine	aring Publications	8	ESE 2020 MAINS_Paper_1 Solution
01. (d)	Identify magnitude of the Burgers vec	tor fo	r a material having cubic crystal structure, if the
	density, atomic weight and lattice con	stant a	are 7870 kg/m ³ , 55.85 g/mol and 2.86 \mathring{A} ,
	respectively.		(12 M
Sol:	Given data:		
	Cubic crystal structure		
	Density = 7870 kg/m^3		
	Atomic weight = $A = 55.85$ g/mol		
	Lattice constant = 2.86 Å		
	Theoretical density = $\frac{n \times AW}{AN \times V_{VC}}$ GNVF	ERI	NGACAA
	$7870 = \frac{n \times 55.85}{6.023 \times 10^{23} \times (2.86 \times 10^{-10})^3}$		ET AN A
	n ≃ 2		
	From the above, the crystal structure of	metal	n body centered cubic (BCC) structure
	This slip direction in BCC structure is [1	11]	
	Burgers vector $=\frac{a}{2}[111]$		
	$=\frac{a}{2}[1^2+1^2+1^2]^{1/2}$ Sin		
	$=\frac{a}{2}\times\sqrt{3}=\frac{2.86\times\sqrt{3}}{2}=3$	3.502	Å

Note that the second se		12	ESE 2020 MAINS_Paper_1 Solution
$4V_1 - 12 + 2V_1 + 1$	$V_1 - V_2 = 0$		
$7V_1 - V_2 = 12$	(1)		
By KCL at V ₂			
$\frac{V_2 - V_1}{4} + \frac{V_2 - 3}{3} = 2$	2		
$3V_2 - 3V_1 + 4V_2 -$	- 12 = 24		
$7V_2 - 3V_1 = 36$			
$3V_1 = 7V_2 - 36 \Longrightarrow$	$V_1 = \left(\frac{7V_2 - 36}{3}\right)$		
From (1)			
$7V_1 - V_2 = 12$	GINE	ERI	NGAC
$7\left[\frac{7V_2 - 36}{3}\right] - V_2 = 1$	12 CH EN	4	TO EL
$\frac{49}{3}V_2 - 7 \times 12 - V_2 =$	12		2
3 2			
$\frac{3}{46}V_2 = 8 \times 12 \Longrightarrow V_2$			
$\frac{46}{3}V_2 = 8 \times 12 \Longrightarrow V_2$			
$\frac{46}{3}V_2 = 8 \times 12 \Longrightarrow V_2$ $V_2 = 6.26 \text{ Volts}$	$=\frac{8\times12\times3}{46}$	²) has	the following properties at 300 K:
$\frac{46}{3}V_2 = 8 \times 12 \Longrightarrow V_2$ $V_2 = 6.26 \text{ Volts}$	$=\frac{8\times12\times3}{46}$ nction (A = 10 ⁻⁴ cm		the following properties at 300 K: 1995
$\frac{46}{3}V_2 = 8 \times 12 \Rightarrow V_2$ $V_2 = 6.26 \text{ Volts}$ An abrupt Si p-n ju $p\text{-side}$ $N_a = 10^{17} \text{ cm}^{-3}$	$=\frac{8 \times 12 \times 3}{46}$ nction (A = 10 ⁻⁴ cm <u>n-side</u> N _d = 10 ¹⁵ cm ⁻³		
$\frac{46}{3}V_2 = 8 \times 12 \Rightarrow V_2$ $V_2 = 6.26 \text{ Volts}$ An abrupt Si p-n ju $p\text{-side}$ $N_a = 10^{17} \text{ cm}^{-3}$	$=\frac{8 \times 12 \times 3}{46}$ nction (A = 10 ⁻⁴ cm <u>n-side</u> N _d = 10 ¹⁵ cm ⁻³		
$\frac{46}{3}V_2 = 8 \times 12 \Rightarrow V_2$ $V_2 = 6.26 \text{ Volts}$ An abrupt Si p-n ju $p\text{-side}$ $N_a = 10^{17} \text{ cm}^{-3}$	$=\frac{8 \times 12 \times 3}{46}$ nction (A = 10 ⁻⁴ cm <u>n-side</u> N _d = 10 ¹⁵ cm ⁻³		
$\frac{46}{3}V_2 = 8 \times 12 \Rightarrow V_2$ $V_2 = 6.26 \text{ Volts}$ An abrupt Si p-n ju $p\text{-side}$ $N_a = 10^{17} \text{ cm}^{-3}$	$=\frac{8 \times 12 \times 3}{46}$ nction (A = 10 ⁻⁴ cm <u>n-side</u> N _d = 10 ¹⁵ cm ⁻³		
$\frac{46}{3}V_2 = 8 \times 12 \Longrightarrow V_2$ $V_2 = 6.26 \text{ Volts}$ An abrupt Si p-n jup-side	$=\frac{8 \times 12 \times 3}{46}$ nction (A = 10 ⁻⁴ cm <u>n-side</u> N _d = 10 ¹⁵ cm ⁻³		
$\frac{46}{3}V_2 = 8 \times 12 \Rightarrow V_2$ $V_2 = 6.26 \text{ Volts}$ An abrupt Si p-n ju $p\text{-side}$ $N_a = 10^{17} \text{ cm}^{-3}$	$= \frac{8 \times 12 \times 3}{46}$ nction (A = 10 ⁻⁴ cm n-side N _d = 10 ¹⁵ cm ⁻³ $\tau_n = 10 \ \mu s$ $\mu_n = 300 \ cm^2/v-s$ $\mu_p = 450 \ cm^2/v-s$		
$\frac{46}{3}V_2 = 8 \times 12 \Rightarrow V_2$ $V_2 = 6.26 \text{ Volts}$ An abrupt Si p-n ju $p\text{-side}$ $N_a = 10^{17} \text{ cm}^{-3}$ $\tau_n = 0.1 \mu \text{s}$ $\mu_p = 200 \text{ cm}^2/\text{v-s}$ $\mu_n = 700 \text{ cm}^2/\text{v-s}$	$= \frac{8 \times 12 \times 3}{46}$ nction (A = 10 ⁻⁴ cm n-side N _d = 10 ¹⁵ cm ⁻³ $\tau_n = 10 \ \mu s$ $\mu_n = 300 \ cm^2/v-s$ $\mu_p = 450 \ cm^2/v-s$ cm ⁻³		
$\frac{46}{3}V_2 = 8 \times 12 \Rightarrow V_2$ $V_2 = 6.26 \text{ Volts}$ An abrupt Si p-n ju $\boxed{p\text{-side}}$ $N_a = 10^{17} \text{ cm}^{-3}$ $\tau_n = 0.1 \mu\text{s}$ $\mu_p = 200 \text{ cm}^2/\text{v-s}$ $\mu_n = 700 \text{ cm}^2/\text{v-s}$ $Faken n_i = 1.5 \times 10^{10}$	$= \frac{8 \times 12 \times 3}{46}$ nction (A = 10 ⁻⁴ cm n-side N _d = 10 ¹⁵ cm ⁻³ $\tau_n = 10 \ \mu s$ $\mu_n = 300 \ cm^2/v-s$ $\mu_p = 450 \ cm^2/v-s$ cm ⁻³ vard biased by 0.5V		

	ACE Ingineering Publications	Electronics & Telecommunication Eng.
Sol:	$I = qA \left[\frac{D_{P}}{L_{P}} P_{n} + \frac{D_{n}}{L_{n}} n_{P} \right] \left[e^{\frac{qv}{KT}} - 1 \right]$	
	$I = I_{o} \left[e^{\frac{qv}{KT}} - 1 \right]$	
	$P_n = \frac{n_i^2}{n_n} = \frac{(1.5 \times 10^{10})^2}{10^{15}} = 2.25 \times 10^5 cm^{-3}$	
	$n_{p} = \frac{n_{i}^{2}}{P_{p}} = \frac{(1.5 \times 10^{10})^{2}}{10^{17}} = 2.25 \times 10^{3} cm^{-3}$	
	For minority carriers	
	$D_P = \frac{KT}{q} \mu_p = 0.0259 \times 450 = 11.66 \frac{cm^2}{s}$ on the	en side
	$D_n = \frac{KT}{q} \mu_n = 0.0259 \times 700 = 18.13 \frac{cm^2}{s}$ on the	
	$L_{P} = \sqrt{D_{P}\tau_{P}} = \sqrt{11.66 \times 10 \times 10^{-4}} = 1.08 \times 10^{-2} c_{P}$	m
	$L_n = \sqrt{D_n \tau_n} = \sqrt{18.13 \times 0.1 \times 10^{-6}} = 1.35 \times 10^{-3} cm^{-3}$	
	$I_{o} = qA\left[\frac{D_{P}}{L_{P}}P_{n} + \frac{D_{n}}{L_{n}}n_{P}\right]$	
	$= 1.6 \times 10^{-19} \times 0.0001 \left[\frac{11.66}{0.0108} \times 2.25 \times 10^5 + \frac{10}{2} \right]$	$\frac{18.13}{0.00135} \times 2.25 \times 10^3$
	$I_o = 4.37 \times 10^{-15} A$	
	i) Forward current at a forward bias of O.S.V	
	$I = I_o \left[e^{\frac{0.5}{0.0259}} - 1 \right]_{\approx} 1.058 \times 10-6 \text{ A}$	
	ii) Reverse current at a reverse bias of -O.S.V	
	$I = I_o \left[e^{\frac{-0.5}{0.0259}} - 1 \right]_{\approx -Io}$	
	$= -4.37 \times 10^{-15}$ A	

EXCLUSIVE

ONLINE CLASSES

ENGLISH

ESE | GATE | PSUs – 2022

COURSE DETAILS

• For ESE+GATE+PSUs Students

- 1. Online Live Classes Technical Subjects Only.
- 2. Recorded Classes General Studies Subjects (on ACE Deep Learn Platform)
- Recorded version of the online live class will be made available through out the course (with 3 times view).
- Doubt clearing sessions and tests to be conducted regularly.
- 3 to 4 hours of live lectures per day in week days (Timing 5 pm to 9 pm) On Sundays 5-6 Hours Live Online Lectures (6 days a week).
- Access the lectures from any where.

BATCH DATE

7th NOVEMBER 2020

DISCOUNTS

- **Rs. 5,000 OFF for ACE Old Students**
- Pay Full fee & Get 5% Additional Discount.
- 20% off for IIT / NIT, Students.
- 15% off for IIIT / Govt. College students.

FEE

ESE + GATE + PSUs : Rs. 70,000/-GATE + PSUs : Rs. 55,000/-(Fee can be paid in two installments)

	ACE gineering Publications	14	ESE 2020 MAINS_Paper_1 Solution
0 2. (c)	An InGaAs pin photodiode has the follo	owing	parameters at a wavelength of 1300 nm:
	$I_D = 4nA; \eta = 0.90; R_L = 1k\Omega; P_{in} = 300$	nW	
	Where P _{in} is incident optical power. Th	e rece	iver bandwidth is 20 MHz.
	Assume surface leakage current is negl	igible.	
	Determine		
	(i) mean-square shot noise current,		
	(ii) mean-square dark current and		
	(iii) mean-square thermal noise current	t.	
	Which noise is more severe and why?		(20 M)
Sol:	Primary photocurrent (I _p)	ER	NC
	$I_p = \frac{\eta q}{hf} P_{in} = \frac{\eta q \lambda}{hc} P_{in}$		ACAD
	ng ne		E.
	$I_{P} = \frac{(0.9) \times (1.6 \times 10^{-19} C) \times (1.3 \times 10^{-6} m)}{(6.625 \times 10^{-34} J - s) \times (3 \times 10^{8} m/s)}$	×3×1	$0^{-7}W$
	$I_{\rm P} = 0.282 \ \mu {\rm A}$		
	i) Mean square shot noise current (i ² ,	shot):	
	$i_{shot}^2 = 2qI_PB_e$		
	$= 2 \times (1.6 \times 10^{-19} \text{ C}) (0.282 \times 10^{-19} \text{ C})$		$20 \times 10^6 \text{ Hz}$)
	$= 1.8 \times 10^{-18} \text{ A}^2$	nce	1995
	or $[i_{shot}^2]^{1/2} = 1.34$ nA		
	ii) Mean-square dark current (i ² _{DB}):		
	$i_{DB}^2 = 2qI_DB_e$		
	$= 2 \times (1.6 \times 10^{-19} \mathrm{C}) (4 \times 10^{-9} \mathrm{A})$) (20 ×	10 ⁶ Hz)
	$= 2.56 \times 10^{-20} \text{ A}^2$		
	or $[i^2_{DB}]^{1/2} = 0.16nA$		
	iii) Mean square thermal noise curren	nt (i² _T)	:
	$i_{\rm T}^2 = \frac{4K_{\rm B}T}{R_{\rm L}}B_{\rm e}$		
ACE F	L	ow • Beng	aluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

(20 M)

Sol:

15

 $=\frac{4(1.38\times10^{-23}J/K)(293K)}{1K\Omega}B_e = 323\times10^{1-8}A^2$

or $[i_T^2]^{1/2} = 18 \text{ nA}$ Thus for this receiver the rms thermal noise current is about 14 times greater than the rms shot noise current and about 100 times greater than the rms dark current 03. (a) The entry point and exit point of X-rays on a power pattern taken from a cubic crystal material could not be distinguished. Assuming one of the points to be the exit point, the following S values were obtained: S values: 311.95 mm, 319.10 mm and 335.05 mm. The camera radius is 57.3 mm and Molybdenum K_{α} radiation of wavelength 0.7 A was used. Determine the structure and the lattice parameter of the material Given Data: X-Ray distraction method S values $S_1 = 311.95 \text{ mm}$ $S_2 = 319.10 \text{ mm}$ $S_3 = 335.05 \text{ mm}$ Since 1995 The camera radius = 57.3 mm

Wave length $\lambda = 0.7 \text{ Å}^{\circ}$

From the Brag's law,

The Brag's angle of each characteristic line on the film follows the ratio, $\frac{S_i}{S_n} = \frac{\theta_i}{\theta_n}$

 S_i = distance from the exit to the line of interest = 57.3 mm

 S_n = distance from the exit to the entrance ($\theta_n = 90^\circ$)

$$S_{n} = \frac{2\pi R}{4} = \frac{2\pi \times 57.3}{4} = 89.961$$
$$\theta_{1} = \frac{89.961}{311.95} \times 90 = 25.95$$

ACE Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

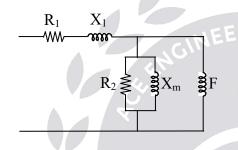
LCE eering Publications				16	ESE	2020 MAINS_Paper_1 S
01	$\frac{.961}{9.10} \times 90$ $\frac{.961}{5.05} \times 90$ $+ k^{2} + l^{2}$					
$\lambda = \frac{1}{\sqrt{h^2}}$	$\frac{2a\sin\theta}{^2+k^2+\ell^2}$	2				
$\lambda^2 = \frac{4a}{2}$	$\frac{2\sin^2\theta}{\Omega^2}$					
		calculations on	assumpti	on of FCC		
Qi	$sin\theta_i$	$\frac{4\sin^2\theta}{\lambda^2}(1)$	Q ²	$\mathbf{h}^2 + \mathbf{k}^2 + \mathbf{l}^2$	hk <i>l</i>	a
25.95	0.437	1.5589	1.142	≈ 3(1.142)	10 F.M. 111	1.48
25.37	0.428	1.495	1.09	3(1.09)	.111	1.48
4.16	0.409	1.365	1	3(1.00)	111	1.48
$a = \frac{\lambda \sqrt{h}}{\lambda \sqrt{h}}$	$\frac{1}{2\sin\theta}$	$\frac{1}{\sqrt{2}} = 1.48 \text{ Å}$ is 1.48 Å	Sin	ce 1995	T,	

- 03. (b) (i) Obtain the exact equivalent circuit (per phase) of three-phase induction motor.
 - (ii) A 6-pole, 3-phase, 50 Hz induction motor takes 50 kW power at 940 rpm. The stator copper loss is 1.4kW, stator core loss is 1.6 kW, and rotor mechanical losses are 1kW. Find the motor efficiency.
 (20 M)

ACE Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

17

Electronics & Telecommunication Eng.

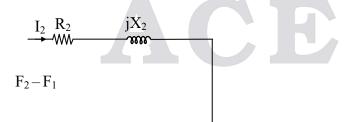

Sol: (i) Equivalent circuit Analysis:

Equivalent circuit

A 3-phase wound rotor induction is very similar in construction to a 3-phase transformer. Thus, the motor has 3 identical primary windings and 3 identical secondary windings-one set for each phase. On account of the perfect symmetry, we can consider a single primary winding and single secondary winding in analysing the behaviour of the motor.

When the motor is at standstill, it acts exactly like a conventional transformer, and so its equivalent circuit is the same as that of a transformer.

Equivalent Circuit of Stator:



R₁ : Resistance of the stator winding/ph

X₁ : Leakage reactance of the stator/ph

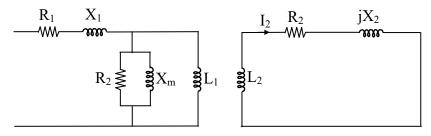
R_n : Iron loss component

 X_m : Magnetizing component E_C induced emf stator winding N_w : Effective turns stator Equivalent circuit of rotor

R₂: Rotor resistance/ph

X₂: Leakage reactance of the rotor/ph

F₂: EMF induced in the rotor/ph


I₂: Rotor current/ph

 F_2 : $8F_{20}$; $X_2 = 5X_{20}$

ACE Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

18

Exact equivalent circuit of the induction motor

The secondary side loop is excited by a voltage SF_2 . Which is also at a frequency sf1. This is the reason why the rotor

$$I_2 = \frac{SF_{22}}{\sqrt{R_2^2 + (SX_{22})^2}}$$

This expression can be modified as follows (diving numerator and denominator by S)

$$\frac{V_1 - V_2}{V_1} \times 100 = 22.86\%$$

$$R_1 \quad jX_1$$

$$R_2 \quad K_2 \quad K_2 \quad jX_2$$

$$R_2 \quad K_2 \quad K_2$$

Now the resistance $\frac{R_2}{s}$ can be written as R_2 , $R_2\left(\frac{1}{s}-1\right)$. It consists of two points

- (i) The first part R_2 is the rotor resistance itself and represents the rotor copper loss
- (ii) The second part is $R_2\left(\frac{1}{s}-1\right)$.

 $R_2\left(\frac{1}{s}-1\right)$ is known as the load resistance R_1 and is the electrical equivalent at the mechanical load placed on the motor shaft. In other words. The mechanical load on an induction motor can be represented by a non-inductive resistance of the value.

$$R_2\left(\frac{1}{s}-1\right)$$

ACE Engineering Publications	19	Electronics & Telecommunication Eng.

Equivalent circuit of the induction motor referred to stator side

As in the case of transformer, in this case also, the secondary values may be transferred to the primary values may be transferred to the primary and vice versa. As before, it should be remembered that when shifting impedance on resistance from secondary to primary, it should be divided by K2 whereas current should be multiplied by K. The equivalent circuit at an induction motor all values have been referred to stator side is shown in the following figure.

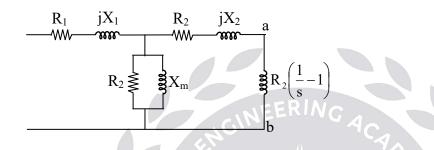


Fig: Equivalent circuit of induction motor referred to stator side with load impedance

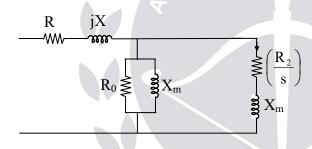


Fig: Equivalent circuit of induction motor referred to stator side with load impedance

Since 1995

This is then the per-phase equivalent circuit of the induction machine, also called as exact equivalent circuit, note that the voltage coming across the magnetizing branch is the applied stator voltage, reduced by the stator impedance drop. Generally the stator impedance drop is any a small fraction of the applied voltage.

From the equivalent circuit, one can see that the dissipation in R. represents the stator loss, and dissipation in R_o , represents the iron loss. Therefore the power absorption indicated by the inner part at the circuit must represent all other means at power consumption the actual mechanical output, friction and windage loss components and the rotor copper loss components. Since the dissipation in R'_2 is rotor copper loss. The power dissipation in $R'_2(1 - s)/s$ is the sum total of the

remaining in standard terminology, dissipation in $I_2^2 \frac{R'_2}{s}$ is called the air gap power

	Engineering Publications	20	ESE 2020 MAINS_Paper_1 Solution				
ii)	Given data:						
,	P = 6; f = 50 Hz, I/P = 50 kW						
	$N_r = 940 \text{ rpm}$						
	Stator Copper loss = 1.4 kW						
	Stator Iron loss = 1.6 kW						
	rotor mechanical loss = 1 kW						
	$\eta = ?$						
	$N_s = \frac{120 \times f}{P} = \frac{120 \times 50}{6} = 1000 rpm$						
	$S = \frac{N_s - N_r}{N_s} = \frac{1000 - 940}{1000} = 0.06$						
	\Rightarrow Stator O/P = Rotor I/P = Motor I/P - stator losses						
	= 50 kW - (1.4 + 1.6) kW						
	= 47 kW						
	\Rightarrow Rotor copper loss = 5× Rotor I/P						
	$= 0.006 \times 47 \mathrm{kW}$						
	= 2.82 kW						
	\Rightarrow Gross Rotor O/P = Rotor I/P - Rotor los	s					
	= 47 kW - 2.82 kW						
	= 44.18 kW Sir	nce	1995				
	\Rightarrow Net Rotor O/P = 44.18 kW – Rotor mechanical loss						
	= 44.18 kW		kW				
	= 43.18 kW						
	$\therefore \text{ Efficiency, } \eta = \frac{O/P}{I/P} = \frac{43.18}{50} \times 100 =$	= 86.3	6%				

 03. (c) An industrial consumer is operating a 50 kW induction motor at a lagging p.f. of 0.8. The source voltage is 230V rms. In order to obtain lower electrical rates, the customer wishes to raise the p.f. to 0.95 lagging. Specify a suitable solution.
 (20 M)

ACE Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Electronics & Te	lecommuni	cation	Eng.
------------------	-----------	--------	------

ACE Engineering Publications

21

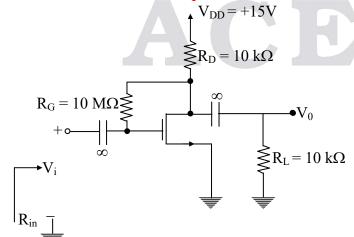
Sol: $P_{I/P} = 50 \text{ kW}$

 $\begin{aligned} \cos \phi_1 &= 0.8 \text{ lag} \quad \Rightarrow \quad \tan \phi_1 &= 0.75 \\ V_s &= 230 \text{ V} \\ \cos \phi_2 &= 0.9 \text{ lag} \quad \Rightarrow \quad \tan \phi_2 &= 0.48 \end{aligned}$

In order to improve the power factor capacitor bank must be connected across the machine.

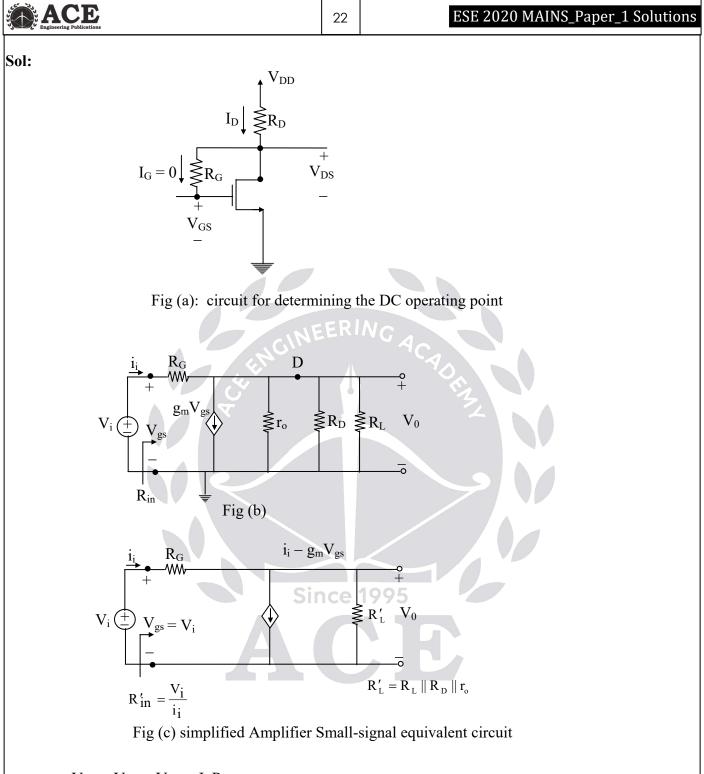
The VAR supplied by the capacitor bank is

$$= P[\tan\phi_1 - \tan\phi_2]$$


$$= 50 \times 10^{3} [0.75 - 0.48]$$

Reactive power, Q = 13.7 kVAR = $\frac{V^2}{X_c}$

$$X_{\rm c} = \frac{V^2}{Q} = \frac{230 \times 230}{137 \times 10^3} = 3.86\Omega$$

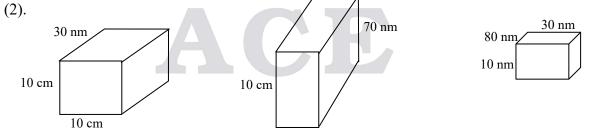

The capacitor of reactance 3.86 Ω is to be connected to increase the p.f from 0.8 to 0.95.

04. (a) Figure below shows a discrete MOSFET amplifier utilizing a drain-to-gate resistance R_G . The input signal V_i is coupled to the gate via a large capacitor, and the output signal at the drain is coupled to load resistance R_L via another large capacitor. Analyze this amplifier circuit to determine its small signal voltage gain, its input resistance, and the largest allowable input signal. Assume $V_t = 1.5 V$, K'_n (W/L) (process transconductance parameter) = 0.25 mA/V², and $V_A = 50V$, where V_A is the intercept on the V_{DS} axis of the $i_D - V_{DS}$ characteristics when extrapolated. Assume that coupling capacitors are sufficiently large so as to act as short circuit at the frequencies of interest.

The effect of channel length modulation on the dc operating point can be neglected (20 M)

ACE Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

$$V_{GS} = V_{DS} = V_{DD} - I_D R_D$$


with $V_{DS} = V_{GS}$, the NMOS transistor will be operating in saturation. Thus

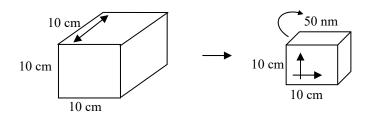
$$I_D = \frac{1}{2} K_n [V_{GS} - V_T]^2$$

Engineering Publications	23	Electronics & Telecommunication Eng.
$I_D = \frac{1}{2} \times 0.25 \times 10^{-3} (V_{DD} - I_D R_D - V_T)^2$		
$8I_{\rm D} = [15 - 10 I_{\rm D} - 1.5]^2$		
$8I_D = (13.5 - 10 I_D)^2$		
\Rightarrow I _D = 1.06 mA		
which corresponds to: $V_{GS} = V_{DS} = 15$	- 1.06	$5 \text{ mA} \times 10 \text{ k}$
= 4.4	ł V	
and $V_{OV} = V_{GS} - V_T = 4.4 - 1.5 = 2.9$ V	V	
$g_m = K_n[V_{GS} - V_T) = K_n^1 \frac{W}{L} \cdot V_{ov} = 0.25$	×2.9	= 0.725 mA/V
$r_o = \frac{V_A}{I_D} = \frac{50}{1.06} = 47K\Omega$	ERI	NGACAD
$\mathbf{R}^{1}_{L} = \mathbf{R}_{L} \ \mathbf{R}_{D}\ \mathbf{r}_{o} = 10 \ 10 \ 47 = 4.52$	K	The second se
$V_{o} = (i_{i} = g_{m}V_{gs})R^{1}L \dots \dots \dots (1)$		
$i_i = \frac{V_{gs} - V_o}{R_G} \dots \dots$		
Substituting equation (2) in (1)		
$A_{v} = \frac{V_{o}}{V_{i}} = \frac{V_{o}}{V_{gs}} = -g_{m}R_{L}^{1} \left[\frac{1 - \frac{1}{g_{m}R_{G}}}{1 + \frac{R_{L}^{1}}{R_{G}}} \right]$		1995
since R_G is very large $g_m R_G >> 1 \& \frac{R}{R}$	<u>-</u> 	
Voltage gain (Av): AV = gm R1L		
$A_v = -0.7$	25 mA	$A/V \times 4.52 \text{ k} = -3.3$
Input resistance (R _{in}): $R_{in} = \frac{R_G}{1 - A_v}$	$r = \frac{1}{1+1}$	$\frac{R_G}{g_m R_L^1} = \frac{10M\Omega}{1+3.3} = 2.33M\Omega$
Largest allowable input signal (\hat{V}_i) :		

The largest allowable i/p signal (\hat{V}_i) is considered by the need to keep the transistor in saturation at all times, that is

ACE Engineering Publications	24	ESE 2020 MAINS_Paper_1 Solutions
$V_{DS} \geq V_{GS} - V_t$		
Enforcing this condition with equ we write	uality at the p	point V_{GS} is maximum and V_{DS} is minimum,
$\mathbf{V}_{\mathrm{DS}_{\mathrm{min}}} = \mathbf{V}_{\mathrm{GS}_{\mathrm{max}}} - \mathbf{V}_{\mathrm{t}}$		
$\mathbf{V}_{\mathrm{DS}} \! - \! \mid \mathbf{A}_{\mathrm{V}} \mid \hat{\mathbf{V}}_{\mathrm{i}} = \mathbf{V}_{\mathrm{GS}} + \hat{\mathbf{V}}_{\mathrm{i}} - \mathbf{V}_{\mathrm{t}}$		
since $V_{DS} = V_{GS}$, we obtain		
$\hat{\mathbf{V}}_{i} = \frac{\mathbf{V}_{t}}{ \mathbf{A}_{v} + 1}$		
$\hat{V}_i = \frac{1.5}{3.3+1} = 0.35V$	NEERING	
04.(b)(i) Define nanomaterials and classif	y nanomater	ials on the basis of number of dimensions.
What are the different approache	es for the pre	paration of nanomaterials? Discuss any one
method of preparation of nanomat	erials from e	ach approach. (10 M)
(ii)Explain how dislocation density in	creases on col	ld working. (10 M)
Sol:		
(i) * At least one dimension of material is		that is varying from 1 nm - 100 nm.
Ex: (1). $\frac{\text{DNA \& virus} = 40 \text{nm}}{\text{Transistor} = 30 \text{nm}}$ Nano r	material	
	Since 199	50 nm

Types of Nano Materials:

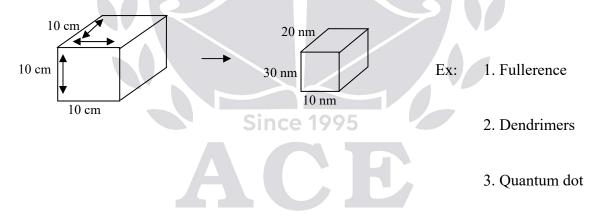

Quantum Well: (One dimensional nanomaterial) (Two dimensional bulk material)
 Reduction of size of bulk material upto the nano range in only one dimension and other two dimensions are in normal range (or) bulk form and hence this material is known as one dimensional nanomaterial.

ACE Engineering Publications Hyderabad • Delhi • Pu

Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

* In Quantum well electron flow takes place in two dimension & in nano direction electron flow is restricted.

25



* Graphene:

ACE

Graphene is a carbon made nanomaterial and graphene is a single layer of graphite.

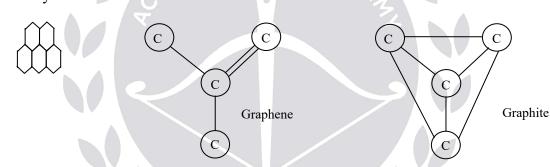
- * In graphene every carbon atom is covalently bonded with three carbon atoms and forms "two single covalent bonds & double covalent bonds". It is also called SP² hybridization. To break the double covalent bond requires more energy and hence it is the hardest, strongest, thinnest nanomaterial.
 - 2. Quantum Dot: (Three dimensional nanomaterial) (Zero dimensional material)

- * Reduction of size of bulk material upto the nanorange in all directions.
- * Electron flow is completely restricted in all directions.
- * Fullerenes:

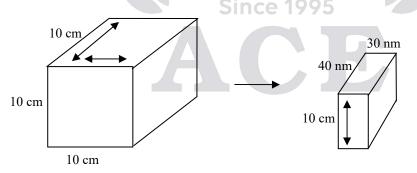
Fullerenes are produced by folding single layer of graphite (or) graphene into spherical form.

* In Fullerenes both hexagon & pentagons present in the shape of soccer ball. In C₆₀ fullerence,
12 pentagons & 20 Hexagons are present.

ESE 2020 MA	AINS_Paper_1	Solutions
-------------	--------------	-----------


Applications:

- 1. Drug delivery
- 2. Gene therapy



Quantum Dot:

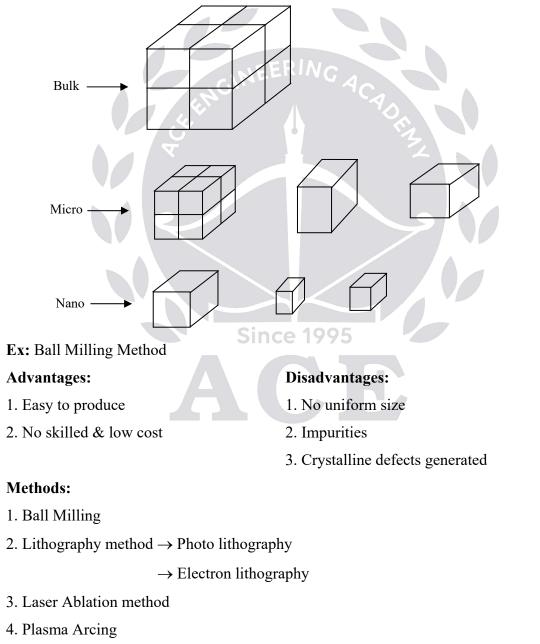
- * It is a smallest size zero dimensional material and the size of quantum dot is less than (< 10 nm)
- * In quantum dot, the surface atoms are having high energy levels with low wave length and inner core atoms are having low energy and high wave length.
- * By changing wavelength of the atom conduction of electron takes place and hence, these materials are used in electronic industry as semi conductors.
- * The structure of graphene is honey comb structure.
- * The graphene is the highest electrical conductively material with -ve temperature coefficient of resistivity.

3. Quantum Wire: (Two dimensional nanomaterial) (One dimensional material)

- * Reduction of size of bulk material upto nano range in two dimensions and in third dimension the size is in normal range.
- * In Quantum wire electron flow takes place in only one direction

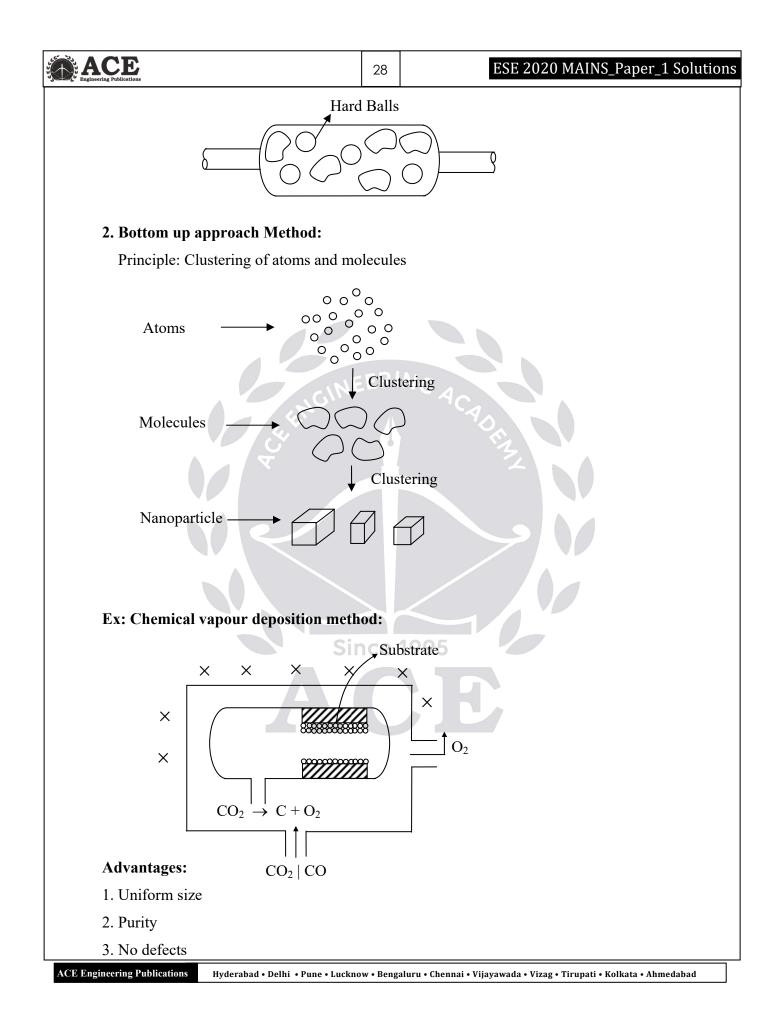
Ex: Carbon Nano Tube, Nano wire, Nano rod, Whiskers.

26


ACE Engineering Publications	27	Electronics & Telecommunication Eng.
---------------------------------	----	--------------------------------------

a) Carbon NanoTube:

- * Carbon Nano Tubes are produced by folding single layer of graphite (or) graphene into a cylindrical form and capped with hemispherical fullerene on both sides of material.
- * The electrical conductivity of Nano material also depends on shape.
- * The electrical conductivity of single wall nanotube different form the multi wall carbon nanotube.


1. Top-Down Approach Method:

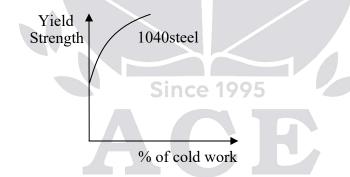
Principle: Cutting/Slicing of material

ACE Engineering Publications

Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications

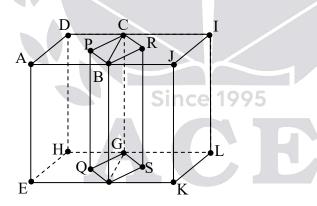
Disadvantages:


- 1. More cost
- 2. Skilled

Methods:

- 1. Chemical vapour deposition method
- 2. Physical vapour deposition method
- 3. Sol gel Technique
- 4. Molecular self assembly method
- (ii) Cold working is one of the strengthening mechanisms of applying mechanical force and deformed permanently below re-crystallization temperature.

Dislocation Density =
$$\frac{\text{Total dislocation length}}{\text{Volume}}$$


In cold working process, number of point defects, line defects are increased by applying stresses on the material. So dislocation density increased in cold working and there dislocations arrest the dislocation motion so strength and hardness of material increased.

04.(c)(i) The Burgers vector of a mixed dislocation line is $\frac{1}{2}$ [1 1 0]. The dislocation line lies along the [1 1 2] direction. Find the slip plane on which this dislocation lies. (10 M) (ii)Explain, why end centered tetragonal geometry does not exist. (10 M)

29

Engineering Publications	30	ESE 2020 MAINS_Paper_1 Solutions
Sol: (i) The Burger's vector of a mixed dislocation	on line	is $\frac{1}{2}[1\ 1\ 0]$
Crystallographic direction = [1 1 2]		
Consider the slip plane tube to be: (h k l)		
From Wies zone law:		
$\vec{b} \rightarrow h + k = 0 \text{ [on [110]]} \rightarrow (1)$		
$\overline{t} \rightarrow h + k + 2\ell = 0 \text{ [on [112]]} \rightarrow (2)$		
from equation (1)		
h = -k		
$-\mathbf{k} + \mathbf{k} + 2l = 0$	ER	NG
l=0		ACA
Slip plane = $(1 T 0)$		Ort.
V V		2
(ii) To prove that a Base Centered Tetragonal 1	lattice	does not exist:
ABCDEFGH and BJICFKLG are two Bas	se cent	ered tetragonal unit cells joined together (see figure
below).		

In addition to the corner lattice points, top and bottom bases of the two unit cells have lattice points at their center (P, Q, R and S). Consider the unit cell formed by joining the points B, P, C, R in the top and Q, G, S, F in the bottom face. The side BP, PC, CR and RB are all equal and form the sides of a square. Similarly the sides QG, GS, SF & FQ form the sides of a square. The side surfaces of this cell are identical rectangle.

Hence it is a simple tetragonal lattice.

Hence a base centered tetragonal does not exist.

ONLINE + OFFLINE CLASSES

ENGLISH

ESE | GATE | PSUs – 2022

Morning / Evening / Weekend Baches for College Going Students

OELHI HYDERABAD PUNE VIJAYAWADA VIZAG TIRUPATI

COURSE DETAILS

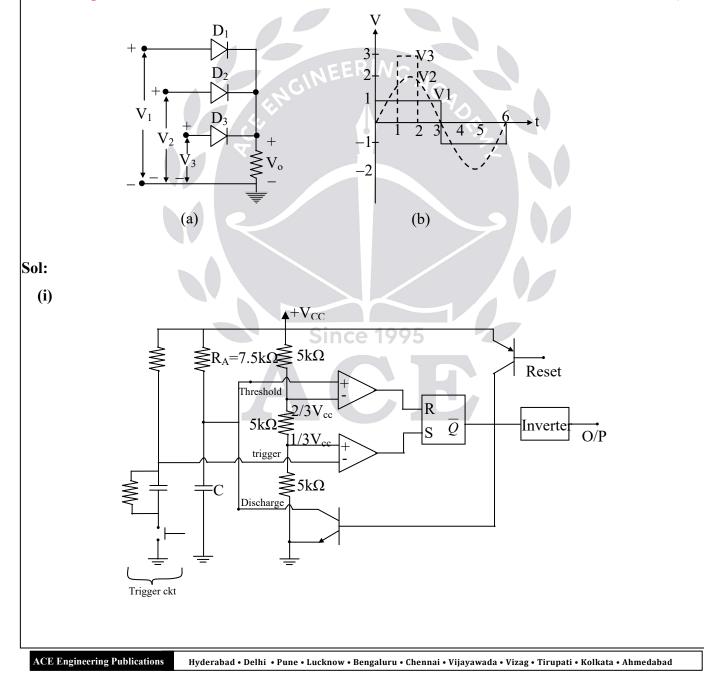
- Classes will be planned & conducted as per Government Regulations - partially online and offline (classroom coaching).
- Payment options Available -Partial Payment/ Full Payment.
- After the payment of II
 Installment Get access to
 complete study material and
 Online Test Series.
- Recorded version of the online live class will be made available through out the course (with 3 times view).
- Doubt clearing sessions and tests to be conducted regularly.

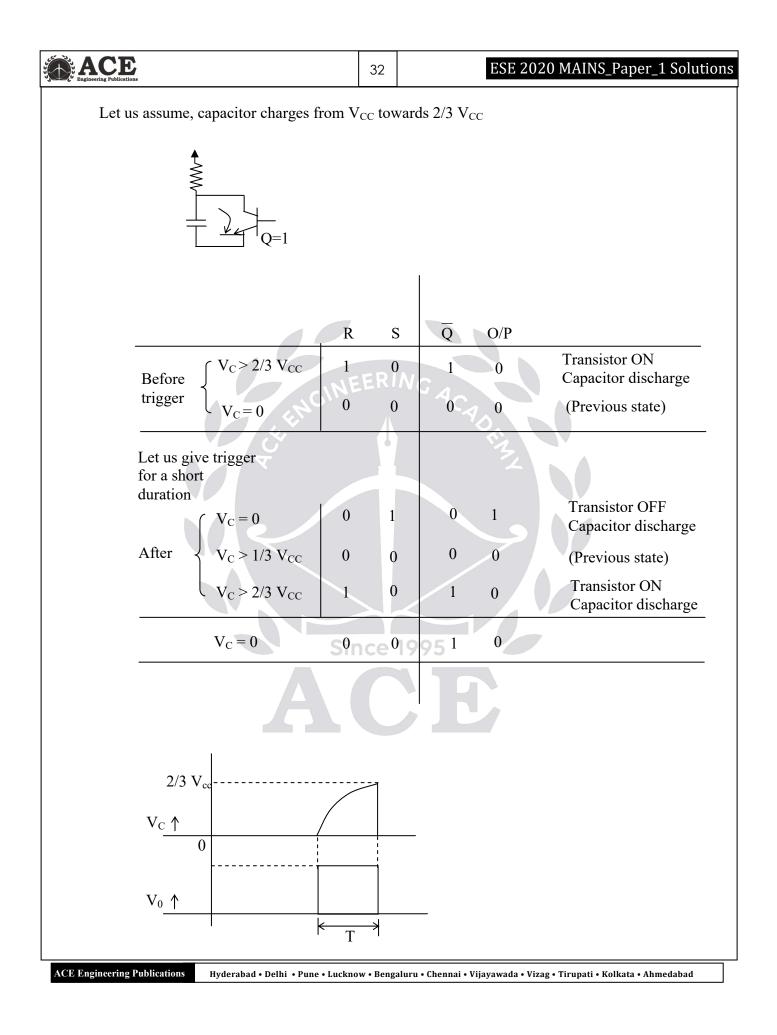
BATCH DATE

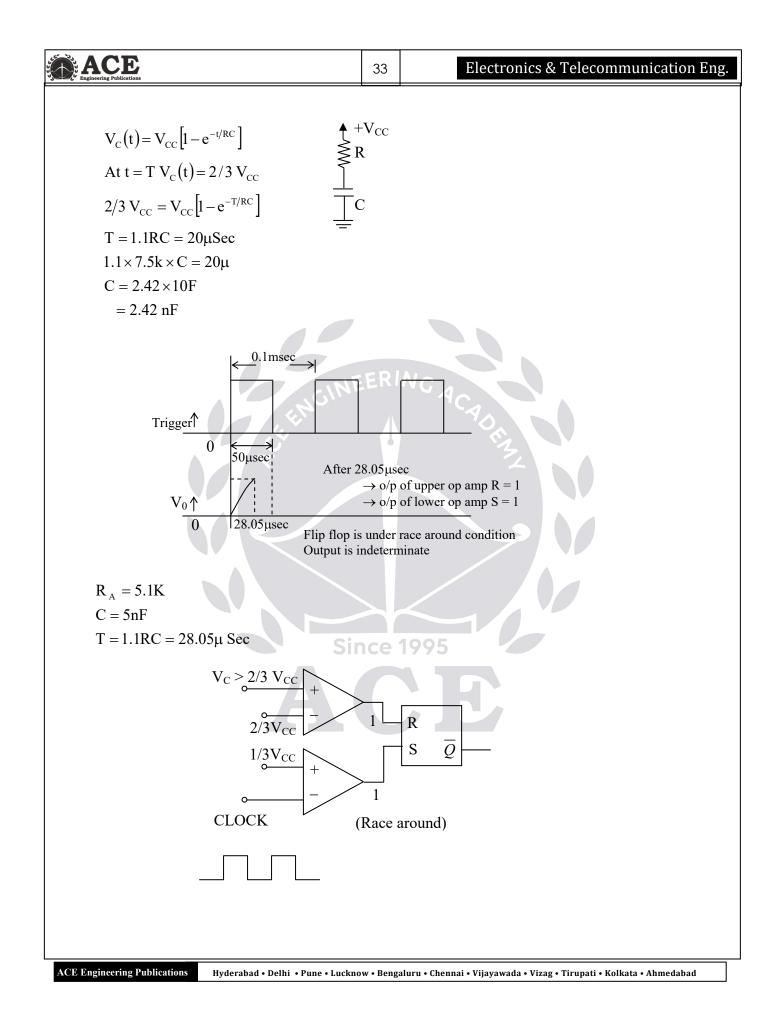
7th NOVEMBER 2020

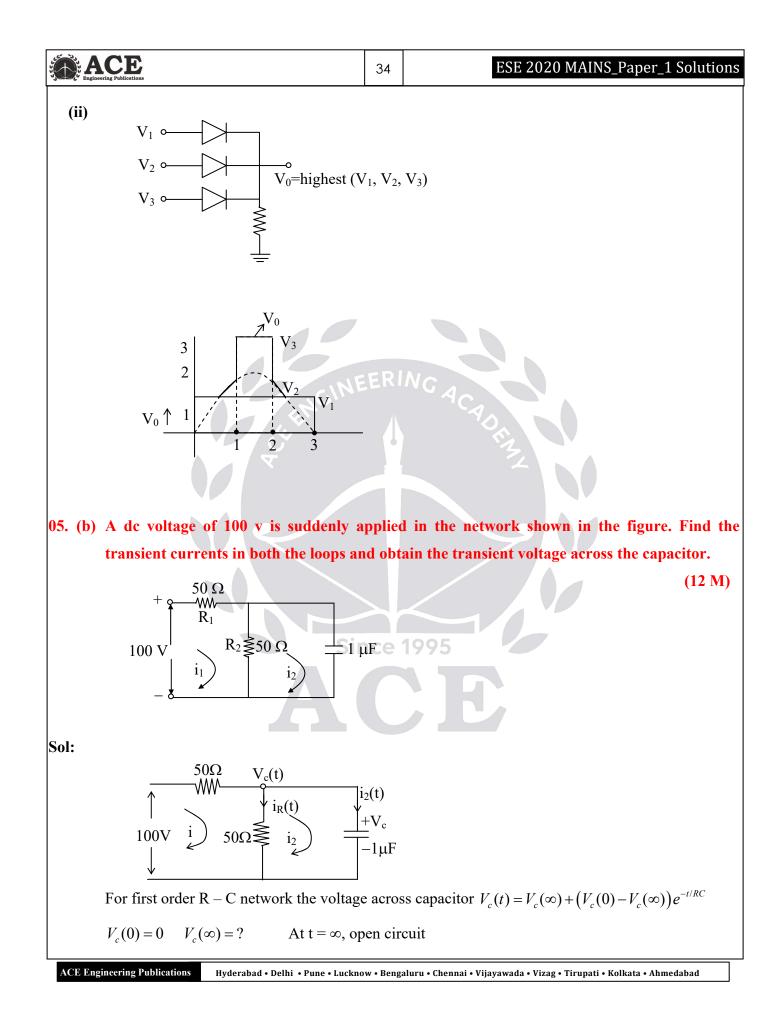
Scan QR Code for more info.

Email: hyderabad@aceenggacademy.com | www.aceenggacademy.com


Electronics & Telecommunication	Eng.
--	------


31


ACE


SECTION - B

- 05.(a)(i) Sketch the circuit of a one-shot using a 555 timer to provide one time period of 20 μ s. If $R_A = 7.5 \text{ k}\Omega$, what value of C is needed? Also sketch the input and output waveforms, when triggered by a 10 kHz clock for $R_A = 5.1$ k Ω and C = 5nF. (6 M)
 - (ii) The logic OR gate can be used to fabricate composite waveforms. Sketch the output V₀ of the gate of figure (a) shown below if the three signals as shown below in (b) are impressed on the input terminals. Assume the diodes are ideal.
 (6 M)

Engineering Publications	35	Electronics & Telecommunication Eng.
$ \begin{array}{c} 50\Omega \\ \uparrow \\ 100V \\ \downarrow \\ \end{array} \xrightarrow{50\Omega} ^{\bullet} V_{c}(\infty) = 50V \\ \downarrow \\ \downarrow \\ \end{array} $		
Time constant $\tau = R_{eq} C = (50 / /50).1 \mu L$	F	
= 25µSec		
$V_c(t) = V_c(\infty) + (V_c(0) - V_c(\infty))e^{-t/RC}$		
$= 50 + (0 - 50)e^{-t/25\mu}$	ERI	NGA
$V_{c}(t) = 50(1 - e^{-t/25\mu}) Volts t \ge 0$	А	CAD.
$\frac{1}{50} = (i_1 - i_2)$ $i_1 = 1 - e^{-t/25\mu} + 2e^{-t/25\mu}$ $i_1(t) = (1 + e^{-t/25\mu}) \text{ amps } t \ge 0$		
Voltage across capacitor $V_{4} = -4 \times 10^{4} t_{10} + t_{10}$		
$V_{c}(t) = 50(1 - e^{-4 \times 10^{4} t}) \text{ volts}$		
Transient loop currents $i_1(t) = (1 + e^{-4 \times 10^4 t})$ amps $t \ge 0$		
$i_2(t) = (2e^{-4 \times 10^4 t}) \text{ amps } t \ge 0$		

	ering Publications	36	ESE 2020 MAINS_Paper_1 Solutions
05. (c)	Predict and draw the crystal stru	icture	of MgO and compute its theoretical density.
	(Give Ionic radius of Mg^{++} ion, $r_{Mg^{++}}$	= 0.7	72 $\stackrel{\circ}{A}$ and ionic radius of $O^{}$ ion, $r_{O^{}} = 1.40$ $\stackrel{\circ}{A}$;
	atomic masses of 'Mg' and 'O' are 2	24.31	g/mol and 16.00 g/mol, respectively, Avogadro's
	Number = 6.023×10^{23} g/mol)		(12 M)
Sol:	Given data:		
	$rMg^{++} = 0.72 \overset{o}{A}$		
	$r_{o} = 1.40 \text{ Å}$		
	Atomic masses of ions		
	Amg = 24,31 g/mol	ERI	NC
	$A_o = 16 \text{ g/mol}$		ACA
	Avogadro's number (AN) = 6.023×10^{22}	³ g/mo	
	Theoretical Density = $\frac{n_{mg} \times A_{mg} + n_{o} \times N_{vc}}{V_{vc} \times AN}$	A _o	12
	Mgo is a rocksalt structure with effective	e num	ber of cations and anions $= 4$
	$n_{Mg} = 4, n_o = 4$		
	Relationship between lattice parameters	and ic	onic radius
	$2(\mathbf{r}_{\mathrm{Mg}} + \mathbf{r}_{\mathrm{o}}) = \mathbf{a}$		
	$a = 2 (0.72 + 1.4) = 4.24 \stackrel{\circ}{A} = 4.25 \times 10$	⁻¹⁰ m	1005
	Volume of unit cell = $V_{UC} = a^3 = 76.22$		m^3
	Theoretical Density = $\frac{4 \times 24.31 + 4}{76.22 \times 10^{-30} \times 6}$		$\overline{10^{23}}$
	$= 0.3512 \times 10^7 \text{ g/m}^2$	3	
	$= 0.3512 \times 10^4 \text{ kg/m}$	n ³	
	$= 3512 \text{ kg/m}^3$		

THE BIG FESTIVAL OFFER

Flat 20% off

From 20th to 26th October

Call: 040-48539866, 4013 6222 Email: testseries@aceenggacademy.com

www.aceenggacademy.com

	CEE ring Publications	37	Electronics & Telecommunication Eng.				
05. (d)	A digital ramp A/D converter has the	follow	wing values:				
	Clock frequency, f _c = 1MHz						
	Threshold voltage, $V_T = 100 \ \mu V$						
	$D/A-V_{ref.} = 10.24 V$ and number of inp	out bit	its = 10				
	Determine:						
	(i) Digital/equivalent representation f	or V _{in}	$i_{\rm in} = 4.872 \ { m V}$				
	(ii) Resolution of the A/D converters a	nd					
	(iii) Conversion time required by this	digita	al ramp A/D converter. (12 M)				
Sol:	A digital ramp ADC has the following v	alues	3				
	Clock frequency = 1MHz	ERI	INGAC				
	Threshold voltage = $100 \mu V$.	А	AD.				
	$DAC_{ref} = 10.24 V$, number of input bits	= 10.	TZ I				
	(i) Digital equivalent representation for	$V_{in} = 4$	4.872 V				
	Stepsize $=\frac{V_R}{2^N} = \frac{10.24}{2^{10}} = 0.01V = 10$	mV					
	Given threshold value $V_T = 100 \ \mu V =$	= 0.1 n	mV = 0.0001 V				
	i.e., DAC output 'V _d ' has to reach 4.8	872V -	Y + 0.1 mV before the comparator switch to 0.				
	Digital output $\frac{4.872V + 0.0001V}{10mV} = \frac{4.8721V}{10mV} = 487.21 = 488$						
	i.e., Digital output = $488_{10} = 1E 8_{16} =$	0111	1101000.				
	(ii) ADC resolution = $10mV + V_T = 10$.	1 mV					
	(iii) Conversion time = $488 \times 1T = 488 \times 1T$	× 1µs =	$s = 488 \mu s$				
05. (e)	For the lattice two port network of	the fig	figure shown, find the image impedance and the				
	image transfer constant.		(12 M)				
		/	<u> </u> 2				
	$1' \circ \underbrace{Z_2 \times Z_2}_{Z_1} \times Z_1$	\mathcal{X}_2	••2′				
ACE Eng	incering Publications Hyderabad • Delhi • Pune • Luckno	w • Beng	ngaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad				

ACE Engineering Publications		38	ESE 2020 MAINS_Paper_1 Solutions
Sol:	The given network is symmetrical and re	cal network.	

The given network is symmetrical and reciprocal network.

The $z-\ensuremath{\text{parameter}}$ of the lattice network can be determined directly

$$z_{11} = z_{22} = \frac{z_1 + z_2}{2} \Omega$$
$$z_{12} = z_{21} = \frac{z_2 - z_1}{2} \Omega$$

The two part lattice network image impedances interms of ABCD parameters.

$$z_{i1} = \sqrt{\frac{AB}{CD}}, \ z_{i2} = \sqrt{\frac{BD}{AC}}$$

And the image transfer constant

$$\theta = \mathrm{Tan}^{-1} \left[\sqrt{\frac{BC}{AD}} \right]$$

The ABCD parameters interms of z – parameter

$$A = \frac{z_{11}}{z_{21}} = D \text{ is } \rightarrow \text{Symmetry}$$

$$B = \frac{\Delta z}{z_{21}}, C = \frac{1}{z_{21}}$$

$$A = \left(\frac{z_2 + z_1}{z_2 - z_1}\right) = D \text{ and } C = \frac{2}{(z_2 - z_1)} \text{ mho}$$

$$B = \frac{\left(\frac{z_2 + z_1}{2}\right)^2 - \left(\frac{z_2 - z_1}{2}\right)^2}{\left(\frac{z_2 - z_1}{2}\right)} = \frac{2z_1 z_2}{(z_2 - z_1)} \Omega$$

Image impedance

$$z_{11} = \sqrt{\frac{AB}{CD}}$$

$$z_{i1} = \sqrt{\frac{2z_1 z_2 (z_2 - z_1)}{2}} = \sqrt{z_1 z_2} = z_{i2}$$

$$z_{i1} = z_{i2} = \sqrt{z_1 z_2} \Omega$$

ACE Engineering Publications

Image transfer constant $\theta = \text{Tan}^{-1} \sqrt{\frac{BC}{AD}}$

$$\theta = \operatorname{Tan}^{-1} \sqrt{\frac{\frac{2z_1z_2}{(z_2 - z_1)} \frac{2}{(z_2 - z_1)}}{\left(\frac{z_2 + z_1}{z_2 - z_1}\right)^2}}}$$

$$\theta = \operatorname{Tan}^{-1}\left[\frac{2\sqrt{z_1 z_2}}{(z_2 + z_1)}\right]$$

ACE

06. (a) A first-order thermometer was dipped in a temperature-controlled water bath maintained at 100°C and the following time-temperature readings were obtained:

Time (s)	0 4	8	12	16	20
Temperature (°C)	15 50	70	85	90	95

Estimate the time constant of the thermometer. Determine the steady state error when the thermometer is required to measure the temperature of a liquid which is being heated at a constant rate of 0.1°C/s. (20 M)

Sol: A time constant is equal to time taken to reach 0.632 of the difference between old & new value. So temperature corresponding to the time constant is

 $T = 0.632 (100 - 15) + 15^{\circ}C = 53.72^{\circ}C + 15^{\circ}C = 68.72^{\circ}C$

From given chart time corresponding to temperature $68.72^{\circ}C$ ($\approx 70^{\circ}C$) is 8 sec.

So time constant $\tau = 8$ sec

The steady state error (e_{ss}) when the thermometer is required to measure the temperature of a liquid which is being heated at a constant rate 0.1°C/sec is

$$e_{ss} = A\tau$$

Here A = 0.1 °C/sec

 $\tau = 8 \text{ sec}$

 $e_{ss} = 0.1 \times 8 = 0.8$ °C

	CEE rring Publications	40	ESE 2020 MAINS_Paper_1 Solut	tions
06. (b)	Thickness = 2mm; Young's modulus permittivity = 5 and Resistivity = 10 ¹ connected in parallel across the elect applied, determine (i) the peak-to-peak voltage generated	= 9× ¹² Ω-c trodes l acro		ative : are N is
Sol:(i).	(ii) the maximum change in crystal this The rms value of voltage under open circle $e_o = \frac{F}{A} \times \frac{dt}{\varepsilon_o \varepsilon_r}$ The maximum value of voltage) M)
	$e_{omax} = \sqrt{2} \frac{dt}{\varepsilon_o \varepsilon_r} \times \frac{F}{A} = \frac{dt}{\varepsilon_o \varepsilon_r} \times \frac{F_{max}}{A} (F_{max})$ Peak to peak value of voltage under ope			
	$e_{o(pp)} = 2e_{omax} = 2 \times \frac{dt}{\varepsilon_{o}\varepsilon_{r}} \times \frac{F_{max}}{A}$ $= \frac{2 \times 2 \times 10^{-12} \times 2 \times 10^{-3}}{8.85 \times 10^{-12} \times 5} \times \frac{0.02}{10^{-4}} = 0.$ $= 36 \mathrm{mV}$	0036>	5×10	
	The leakage resistance of crystal $R_{p} = \frac{\rho t}{A} = \frac{10^{12} \times 10^{-2} \times 2 \times 10^{-3}}{10^{-4}} = 2 \times 10^{11}$ Load resistance $R_{L} = 100 \text{ M}\Omega$		1995	
	Conclusion is $R_p >> R_L$ so that we can n $C_p = \frac{\varepsilon_o \varepsilon_r A}{t}$	eglect	et R _P	
	$= \frac{8.85 \times 10^{-12} \times 5 \times 10^{-4}}{2 \times 10^{-3}}$ $= 22.125 \times 10^{-13}$ $C_{p} = 2.21 \times 10^{-12} \text{ F}$			

L'É	ACE
V. S. S. C.	Engineering Publications

Electronics & Telecommunication Eng.

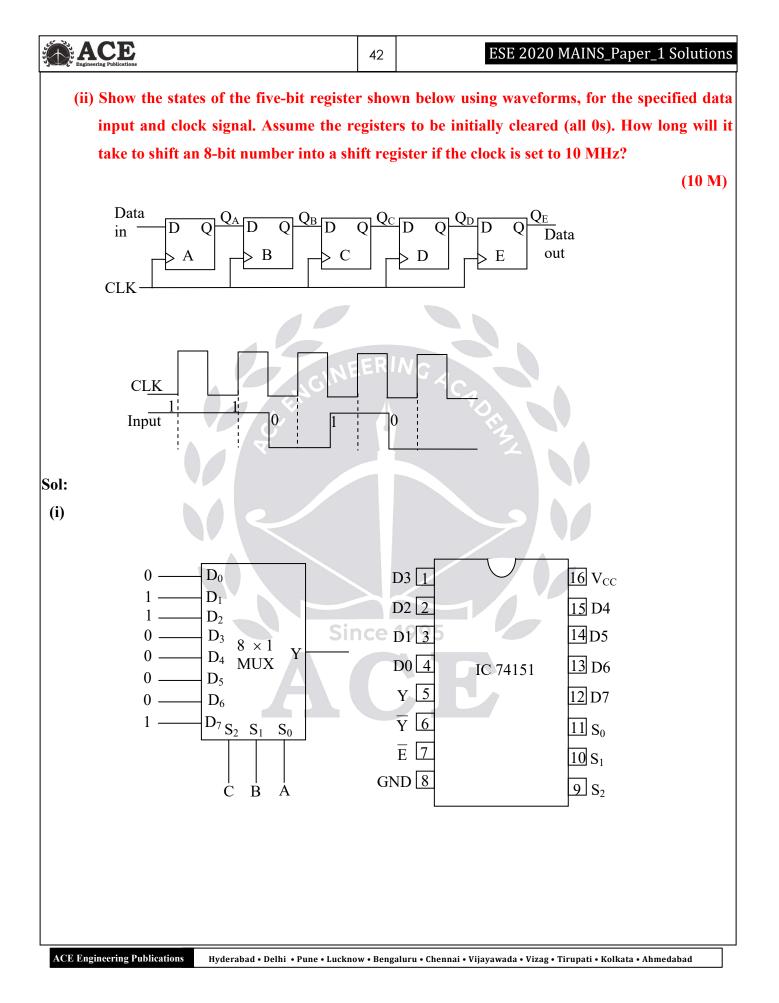
The peak to peak output voltage under load conditions is

$$C_{p} = \frac{2dF_{max}t}{\varepsilon_{o}\varepsilon_{r}A} \left[\frac{\omega C_{p}R_{L}}{\sqrt{1 + \omega^{2}(C_{p} + C_{L})^{2}R_{L}^{2}}} \right]$$
$$e_{OPP} = \frac{2 \times 2 \times 10^{-12} \times 0.02 \times 2 \times 10^{-3}}{8.85 \times 10^{-12} \times 5 \times 10^{-4}} \times \left[\frac{1000 \times 2.21 \times 10^{-12} \times 100 \times 10^{6}}{\sqrt{1 + \left[1000 \times (2.21 + 10) \times 10^{-12} \times 100 \times 10^{6}\right]^{2}}} \right]$$

 $= 36.15 \!\times\! 10^{\scriptscriptstyle -3} \!\times\! 0.634 \!\times\! 2.21 \!\times\! 10^{\scriptscriptstyle -1}$

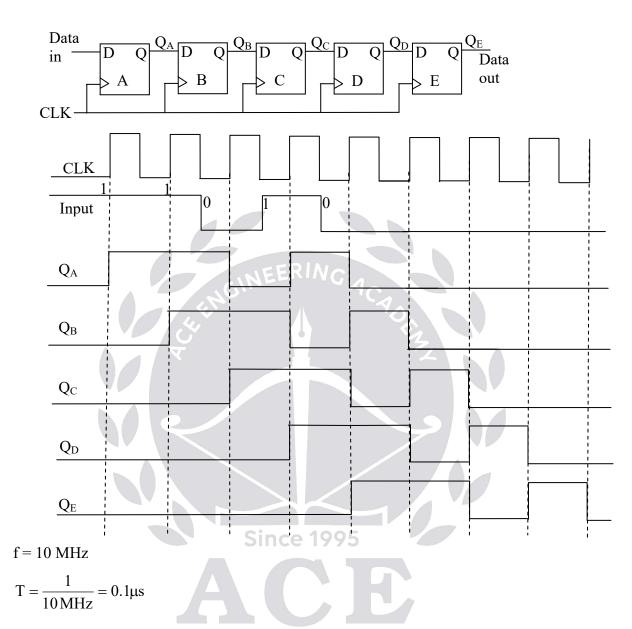
 $=50.65 \times 10^{-4}$

$$e_{OPP} = 5.065 \,\mathrm{mV}$$

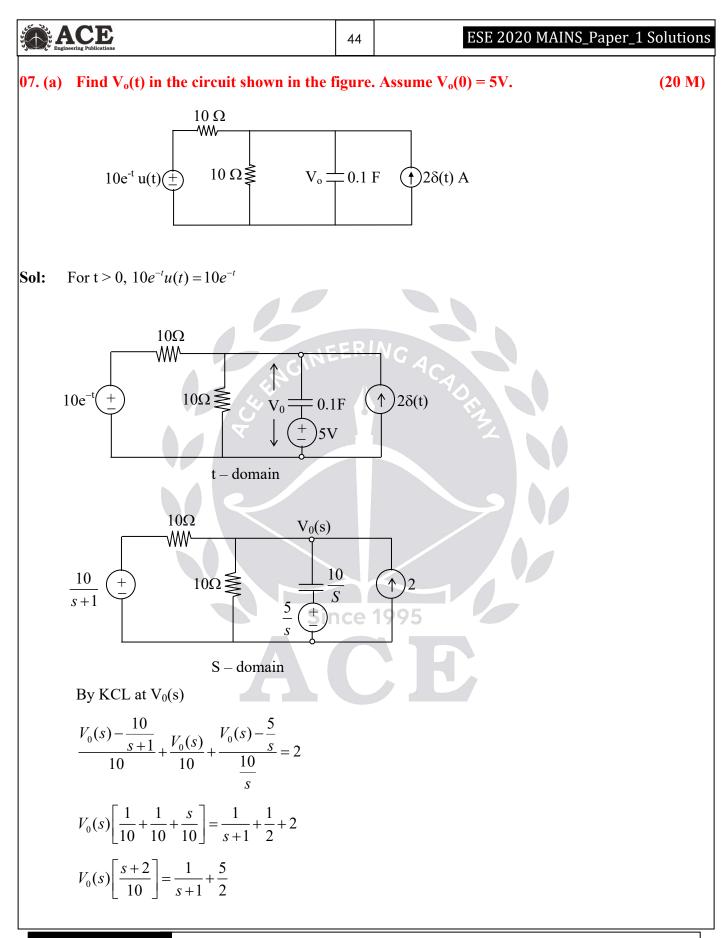

(ii) The maximum value of change in thickness is

$$\Delta t = \frac{F_{max}t}{YA} = \frac{0.02 \times 2 \times 10^{-3}}{9 \times 10^{10} \times 10^{-4}} = 0.0044 \times 10^{-10}$$
$$(\Delta t)_{pp} = 4.4 \times 10^{-12} \text{ m}$$

06.(c)(i) Generate the logic function given in the table below using IC74151 8-to-1 MUX.


(10M)

Inputs		Inputs Output		
С	B	Α	Y	
0	0	0	0 S	ince 1
0	0	1	1	
0	1	0	-1	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	



ACE Engineering Publications

(ii)

The number of clock cycles to read 8-bit data 8T and the time is $= 8 \times 0.1 \ \mu s = 0.8 \ \mu s$.

ACE Engineering Publications

Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

 $(10 \mathrm{M})$

$$V_{0}(s)\left[\frac{s+2}{10}\right] = \frac{2+5(s+1)}{(s+1)2}$$

$$V_{0}(s)\left[\frac{s+2}{10}\right] = \frac{5s+7}{2(s+1)}$$

$$V_{0}(s) = \frac{25s+35}{(s+1)(s+2)} = \frac{25s+25+10}{(s+1)(s+2)}$$

$$V_{0}(s) = \frac{25}{(s+2)} + \frac{10}{(s+1)(s+2)}$$

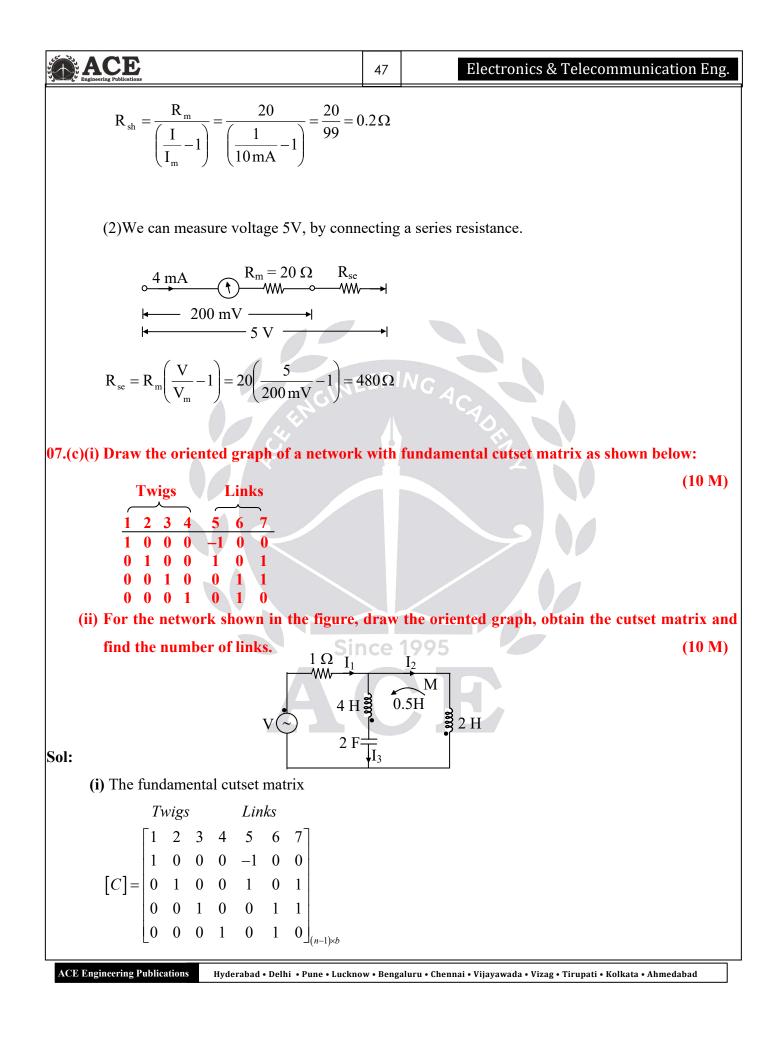
$$V_{0}(s) = \frac{25}{s+2} + \frac{10}{s+1} - \frac{10}{s+2} = \frac{15}{s+2} + \frac{10}{s+1}$$
By I.L.T
$$V_{0}(t) = \left(15e^{-2t} + 10e^{-t}\right) Volts \ t \ge 0$$

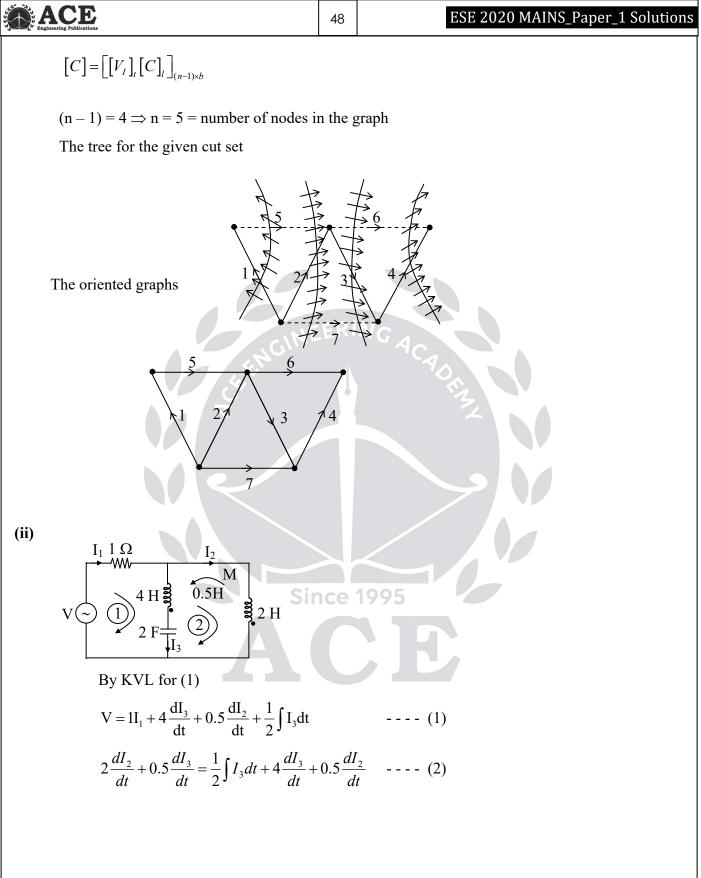
07.(b)(i) In a cathode-ray tube, the electron beam is displaced vertically by a magnetic field of flux density 2×10⁻⁴ Wb/m². The length of the magnetic field along the tube axis is same as that of electrostatic deflection plates. The final anode voltage is 1kV. Determine the voltage which should be applied to the y-deflection plates 10mm apart to return the spot back to the centre of the screen. Take

Mass of electron = 9.107×10^{-31} kg and

Charge on electron = 1.6×10^{-19} C. ince 1995

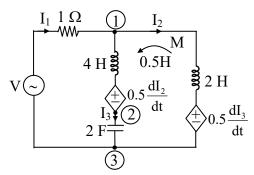
(ii) A moving coil milli-ammeter having a resistance of 20 Ω gives full scale deflection when a current of 10 mA is passed through it. Describe how this instrument can be used for measurement of current up to 1 A and voltage up to 5V.


Sol:


(i) The magnetostatic deflection,

ACE	46	ESE 2020 MAINS_Paper_1 Solutions
The electrostatic deflection,		
$D = \frac{lLV_d}{2dV_a} \qquad \qquad$)	
For returning the beam back	to the centre, the	e electrostatic deflection & the magnetostatic
deflection must be equal from ((1) & (2)	
$\frac{lBL}{\sqrt{V_a}}\sqrt{\frac{q}{2m}} = \frac{lLV_d}{2dV_a}$		
$V_d = dB \times \sqrt{\frac{2V_a q}{m}}$		
Here d = 10 mm	INEERING	
$B = 2 \times 10^{-4} Wb/m^2$	<i>4CV</i>	ACA
$V_a = 1 kV$		The second se
$q = 1.6 \times 10^{-19} C$		
$m = 9.107 \times 10^{-31} kg$		
$V_{\rm d} = 10 \times 10^{-3} \times 2 \times 10^{-4} \times \sqrt{\frac{2 \times 10^{-4}}{2}}$	$\frac{000 \times 1.6 \times 10^{-19}}{9.107 \times 10^{-31}}$	
$= 2 \times 10^{-6} \sqrt{351.4 \times 10^{12}}$		
$V_{d} = 37.49 V$	Since 199	25
$\overset{I_m}{\longrightarrow} \overset{M.C}{\longrightarrow} \overset{20 \Omega}{\longrightarrow} \overset{\Omega}{\longrightarrow} \overset{\Omega}{\to} \overset{\Omega}{\longrightarrow} \overset{\Omega}{\to} \overset{\Omega}{\longrightarrow} \overset{\Omega}{\to} \overset{\Omega}{\to} \overset{\Omega}{\to} \overset{\Omega}{\to} \overset{\Omega}{$	AC	E
$I_{m} = 10 m A; R_{m} = 20 \Omega$		
$V_m = I_m R_m = 200 mV$		

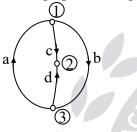
(1) By using this basic instrument, we can measure current 1 A by connecting shunt resistance



ACE Engineering Publications

49

The circuit can be drawn without dots



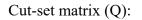
The oriented graph, of the given coupled circuit

 C_1

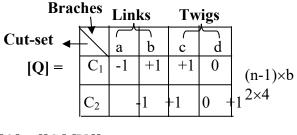
b

 C_2

Cut-set matrix (Q):


а

For cut-set matrix select any one of the tree form the obtained oriented graph


Since 1995

Number of twigs = N - 1 = 2

Number of links = 2

3)

 $[\mathbf{Q}] = [[\mathbf{C}_l] [\mathbf{V}_t]]_{2 \times 4}$

ACE POSTAL COACHING

POSTAL COACHING

ESE / GATE / PSUs

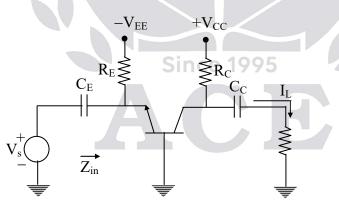
PSCs

ACE Engineering Academy, the leading institute for GATE, ESE and PSUs offers postal coaching (Distance learning programme) for engineering students.

Scan **QR Code** for more info.

ACE PUBLICATIONS

Limited Period Offer UPTO 25% DISCOUNT*

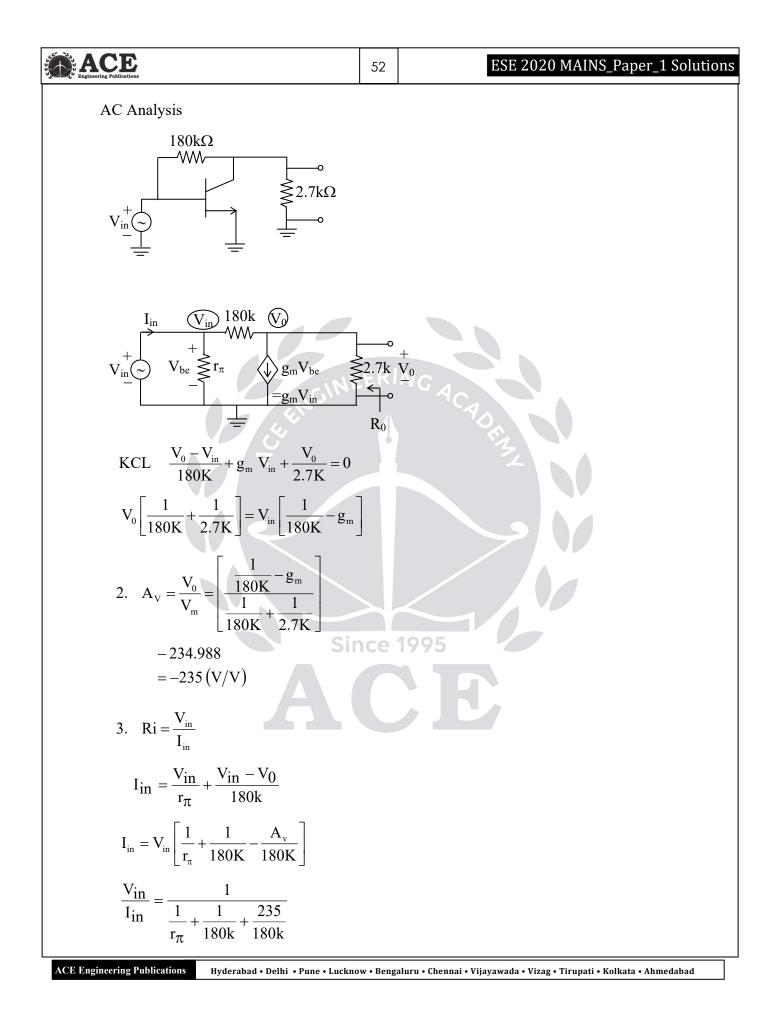

Call: 040-40044403, 040-23234420 | Email: acepostalcoaching@gmail.com | www.aceenggacademy.com

Engineering Publications	50	ESE 2020 MAINS_Paper_1 Solutions
08.(a)(i) For the network in the figure s	hown below, deter	mine
I. r _e		
II. Z _i		
III. Z _o		
$IV A_V$		
Repeat parts II, III and IV with	h r _o = $20k\Omega$ and co	ompare results. (10 M)
180 kg		•V ₀

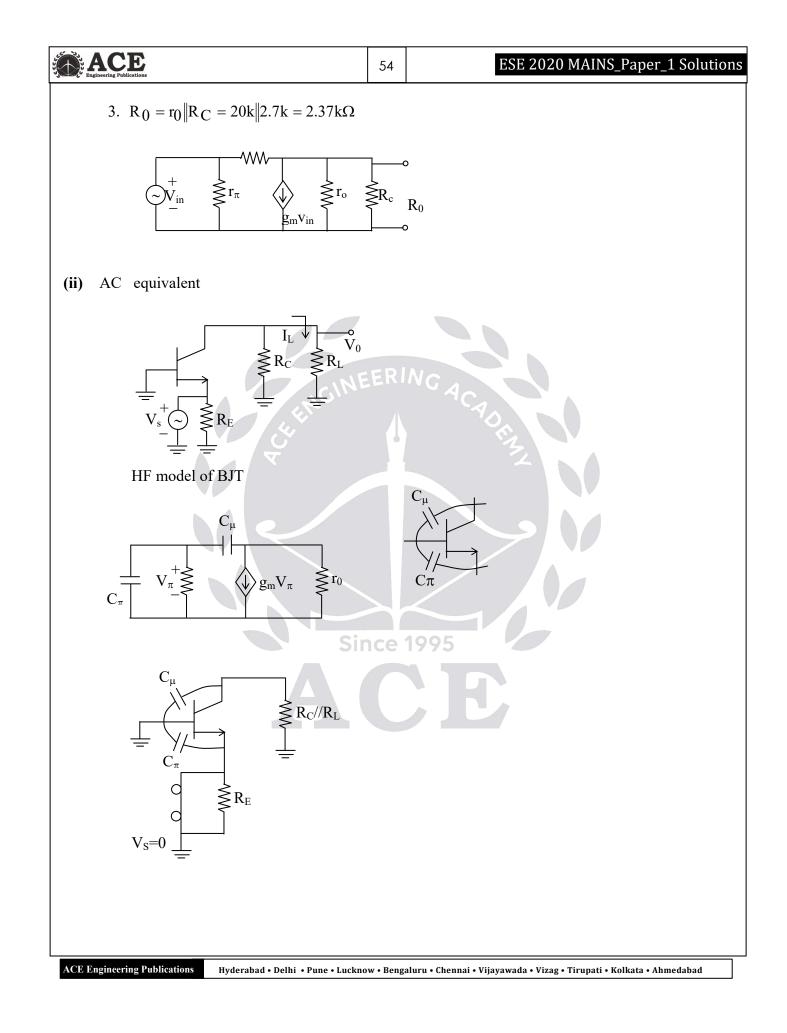
(ii) Draw the equivalent circuit (hybrid- π high frequency model) of the CB amplifier shown below. Find an expression for the high-frequency voltage-gain ratio. Also describe the highfrequency behaviour of this amplifier. (10 M)

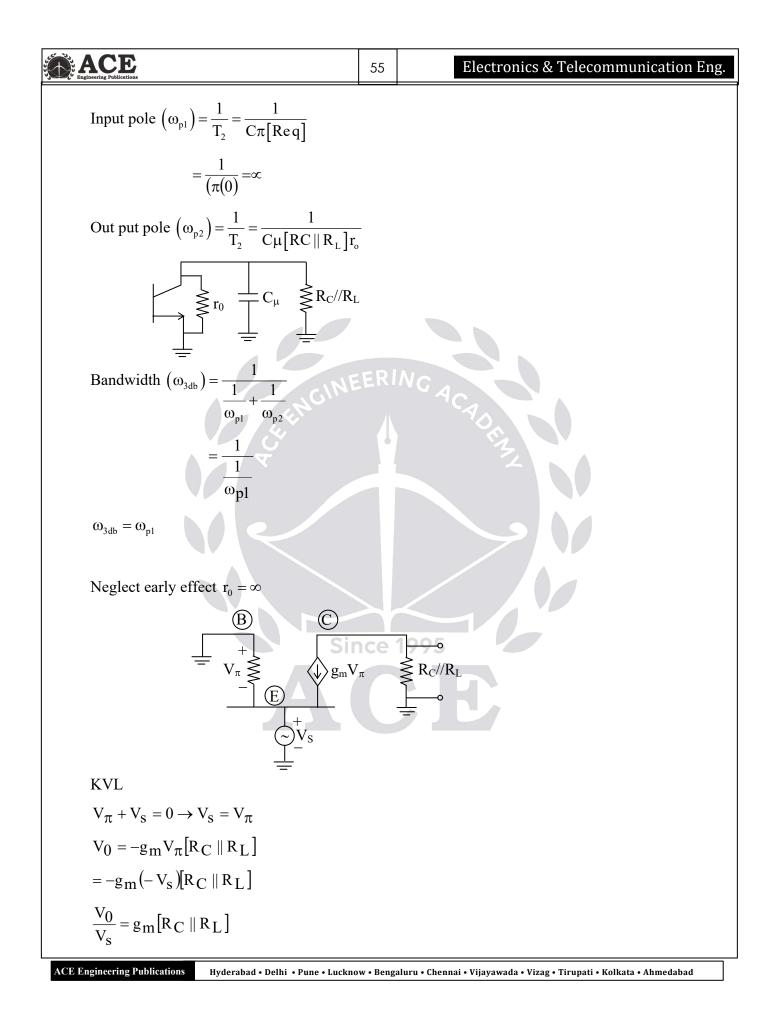
 $\beta = 200, r_o = \infty \Omega$

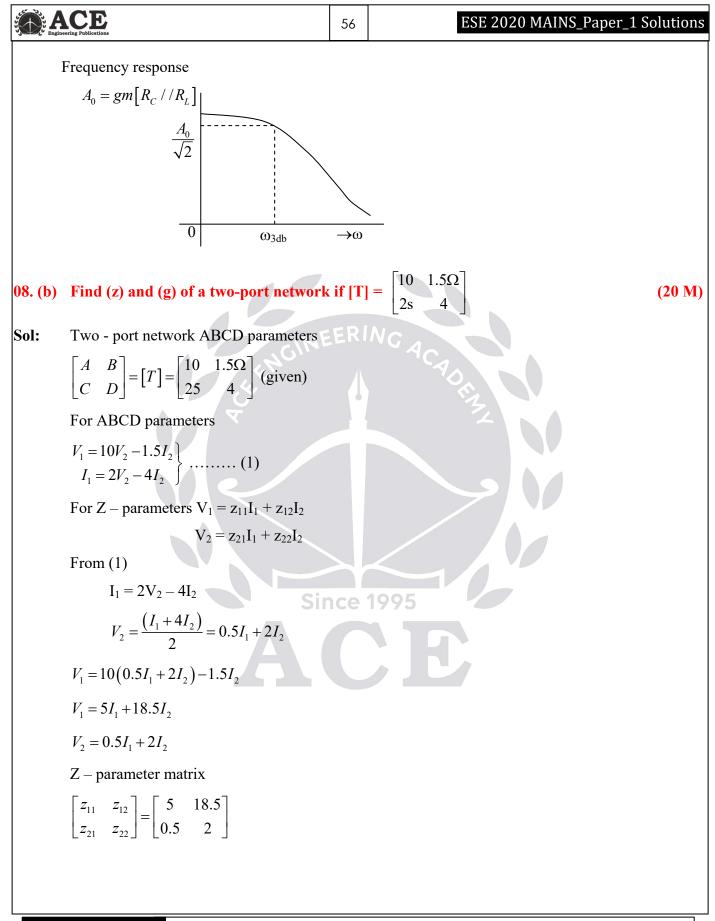
· Zo

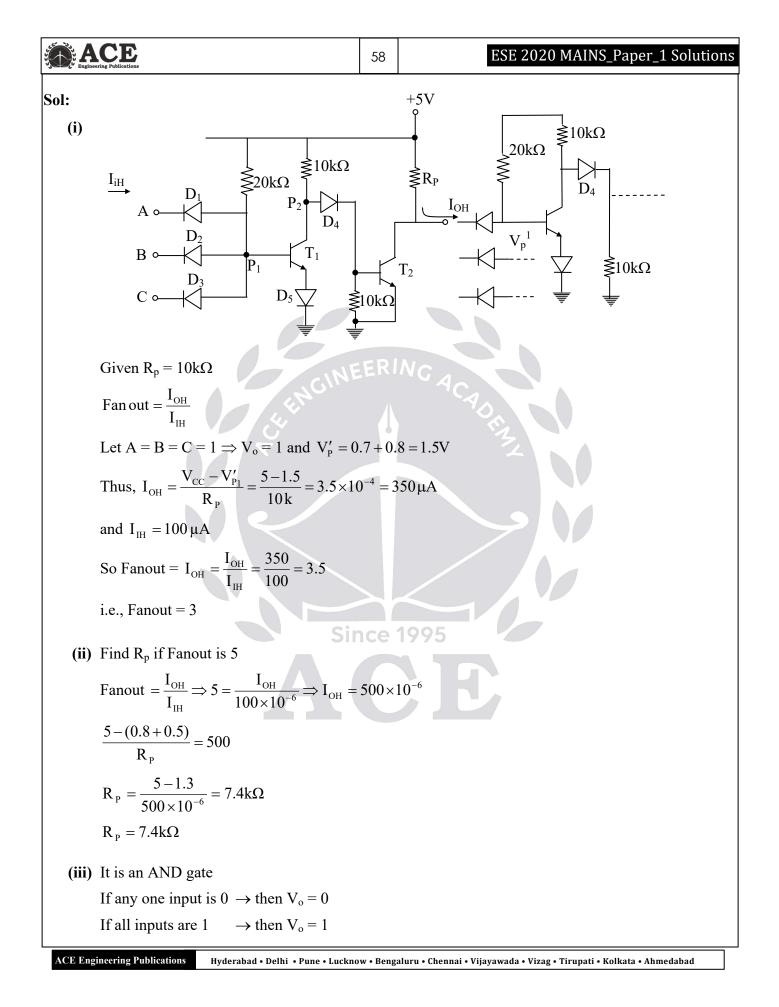

10 µF

R_F


10 µF


Zi


Engineering Publications	51	Electronics & Telecommunication Eng.
Sol:		
(i) DC Analysis 180k = 2.7k $IB0k = 100$ $I = 100$	$ m V I_C + I_B$	
KVL		
$9 = (I_{C} + I_{B})2.7k + I_{B}(180k) + 0.000k$.7	
$I_{C} = \frac{9 - 0.7}{2.7K + \frac{182.7k}{\beta}} = \frac{9 - 0.7}{2.7k + \frac{182}{2}}$	2.7k 00 EER//	NG AC
= 2.29694 mA		NOT IN
$1.r_{\rm e} = \frac{\alpha}{g_{\rm m}}$		32 V
where $g_m = \frac{I_C}{V_t}$		
$=\frac{2.2969\mathrm{m}}{26\mathrm{m}}$		
= 0.08834 (A/V)	Since 1	995
$=\frac{\left(\frac{\beta}{\beta+1}\right)}{g_{m}}$		E
$=\frac{[200/201]}{0.08834}$		
=11.263Ω		
$r_{\pi} = \frac{\beta}{g_{m}} = \frac{200}{0.08834}$		
= 2.2638k		
ACE Engineering Publications Hyderabad • Delhi • Pune	• Lucknow • Bengal	uru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad


LE Engineering Publications	53	Electronics & Telecommunication Eng.
$=\frac{1}{\frac{1}{2.2638\mathrm{K}}+\frac{1}{180\mathrm{K}}+\frac{235}{180\mathrm{K}}}$		
$= 0.57 \mathrm{k}\Omega = 570 \Omega$		
(or)		
$R_{in} = r_{\pi} \left[\frac{180K}{10Av} \right] = 2.2638k \parallel \frac{180k}{236}$		
$= 0.57 \mathrm{k}\Omega$		
Output resistance		
$ \begin{array}{c c} \mathbf{R}_{0} \\ \mathbf{V}_{in} = 0 \end{array} = \begin{array}{c} \mathbf{R}_{0} \\ \mathbf{V}_{be} = 0 \end{array} $		
$= 2.7 \mathrm{k}\Omega$		
With $r_0 = 20k\Omega$ $(V_{in}) 180k\Omega$ (V_0) $(V_{in}) 180k\Omega$ (V_0) $(V_0) 180k\Omega$ (V_0) $($	-• -• 1	995
2. $A_V = \frac{V_0}{V_m} = \frac{\frac{1}{180k} - gm}{\frac{1}{180k} + \frac{1}{2.7k} + \frac{1}{20k}}$		
= (2.347 k) [-0.08833]		
= -207.33		
3. $R_{in} = r\pi \left\ \frac{180K}{1 + A_V} = 2.2638K \right\ \frac{180K}{1 + 207.3}$ = 2.2638k 0.864k		
$= 625.33\Omega$		
ACE Engineering Publications Hyderabad • Delhi • Pune • Luckno	ow • Benga	luru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	57	Electronics & Telecommunication Eng.		
In g – parameters				
$I_1 = g_{11}V_1 + g_{12}I_2$				
$V_2 = g_{21}V_1 + g_{22}I_2$				
From (1)				
$I_1 = 2V_2 - 4I_2$				
$I_{1} = 2 \left[\frac{\frac{V_{2}}{V_{1} + 1.5I_{2}}}{10} \right] - 4I_{2}$				
$I_1 = 0.2V_1 - 3.7I_2$				
$V_2 = 0.1V_1 + 0.15 I_2$				
g – parameters		A D		
$\begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} = \begin{bmatrix} 0.2 & -3.7 \\ 0.1 & 0.15 \end{bmatrix}$		Z		
08. (c) For the circuit shown below, identify the logic function performed by it. Also determine the				
high level fan-out, if R_P (pull-up resistor) = 10 k Ω . Compute the maximum value of R_P for a				
fan-out of 5. Assume that input diode has a leakage current of 100 µA.				
Given: $V_T = 0.7 V$, V_D (forward voltage drop) = 0.8 V, $V_{BE(cut-in)} = 0.5 V$, $V_{CE(sat)} = 0.2 V$.Transistor leakage current is negligible.(20 M)				
I ransistor leakage current is negligib	le.			
		+5V		
$A \circ D_{1}$ P_{2} D_{2}	$10k\Omega$ D_4			
$C \sim \begin{array}{c} D_{3} \\ \hline \\ D_{5} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		T_2		

GATEway to Government JOBS...

COURSE DETAILS

- Experienced and erudite faculty from ACE Hyd.
- o Focussed and relevant
- Structured online practice tests (FREE)
- Scheduled live doubt clearing sessions (FREE)
- Access lectures from anywhere.
- Recorded version of the online live class will be made available throughout the course (with 3 times view).
- 5 to 6 Hours live online
 lectures per day (5-7 Days a week)

KPSC / KPWD

Starts from 22nd OCT. 2020

SSC JE (GS)

Starts from 14th OCT. 2020

APPSC / TSPSC

Starts from 22nd OCT. 2020

BPSC