

HYDERABAD | DELHI | PUNE | BANGALORE | LUCKNOW | CHENNAI | VISAKHAPATNAM | VIJAYAWADA | TIRUPATHI | KOLKATA | AHMEDABAD

ESE-2020 (MAINS)

QUESTIONS WITH DETAILED SOLUTIONS

ELECTRICAL ENGINEERING

PAPER-I

ACE Engineering Academy has taken utmost care in preparing the ESE-2020 MAINS Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to ESE - 2020 MAINS Solutions are to be sent to the following email address hyderabad@aceenggacademy.com Contact Us : 040-23234418,19,20

www.aceenggacademy.com

ELECTRICAL ENGINEERING

ESE_MAINS_2020_PAPER - I

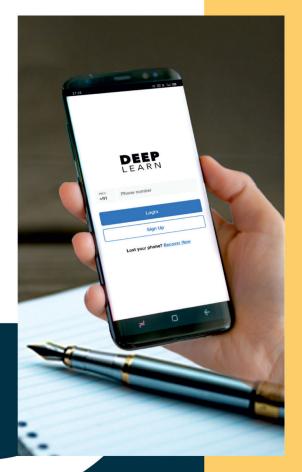
Questions with Detailed Solutions

SUBJECT WISE WEIGHTAGE

S.No	NAME OF THE SUBJECT	Marks
01	Engineering Mathematic	72
02	Electrical Materials	72
03	Electric Circuits and Fields	52 + 44
04	Electrical and Electronic Measurements	84
05	Computer Fundamentals	72
06	Basic Electronics Engineering	84

	generiting Publications 2 ESE 2	2020 MAINS_Paper_1 Solutions
	SECTION - A	
l (a)(i)	Obtain the partial differential equation governing the equations	
	f(u, v) = 0, u = x + yz, v = x + y + z	[8M]
Sol:	f(u,v) = 0, where $u = x + y z$	
	$\mathbf{v} = \mathbf{x} + \mathbf{y} + \mathbf{z}$	
	Now, we can also write	
	u = f(v)	
	$\mathbf{x} + \mathbf{y}\mathbf{z} = \mathbf{f}(\mathbf{x} + \mathbf{y} + \mathbf{z})$	
	Differentiating wrt x partially	
	$1 + yp = f'(x + y + z)(1 + p)$ where $p = \frac{\partial z}{\partial x} \in \mathbb{R}$	
	NELINING	
	Differentiating wrt y partially	
	$yq + z = f'(x + y + z)(1 + q)$, where $q = \frac{\partial z}{\partial y}$	
	$\frac{1+yp}{yq+z} = \frac{\dot{f}'(x+y+z)(1+p)}{f'(x+y+z)(1+q)}$	
	(1 + yp)(1 + q) = (1 + p)(yq + z) 1 + a + py + pay = ay + a + pay + pz	
	1 + q + py + pqy = qy + z + pqy + pz $pz + z + qy - py - q - 1 = 0$	
	pz + z + qy - py - q - 1 = 0	
l(a)(ii)Construct a partial differential equation of all surfaces of rev	olution having z-axis as the ax
	of rotation.	[4 M
Sol:	Surface of revolution about z-axis is	
	$z = f(x^2 + y^2)$	
	$p = 2xf'(x^2 + y^2),$ where $p = \frac{\partial z}{\partial y}$	
	$q = 2yf'(x^2 + y^2)$ where $q = \frac{\partial z}{\partial y}$	
	$\frac{p}{q} = \frac{2xf'(x^2 + y^2)}{2yf'(x^2 + y^2)}$	
	py = qx	
	py - qx = 0	

ONLINE COURSES


for **ESE | GATE | PSUs** curated by India's best minds. Access courses through Mobile App only from anywhere.

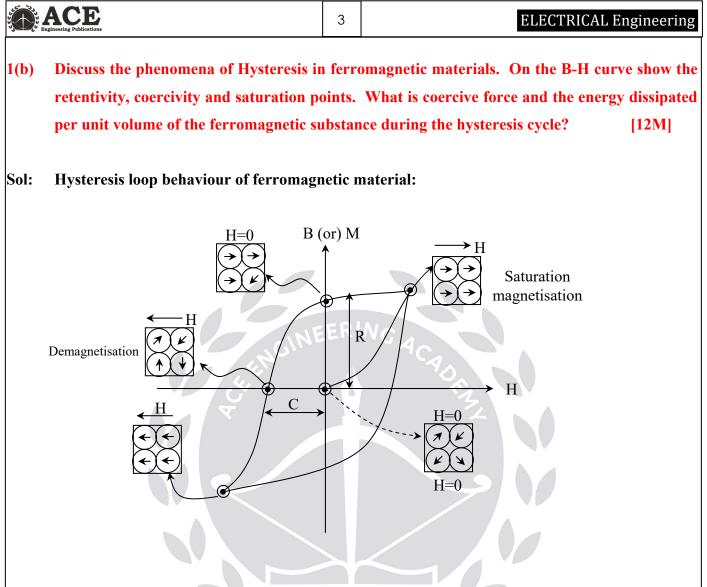
EXCITING ANNOUNCEMENT!!

We have launched **3 months subscription for GATE 2021,** Streams: ECE | EEE | ME | CE | CS | IN | PI* **on Deep-Learn**. Online recorded classes, Fee: Rs. 16,000/- only (without Material).

RECORDED VIDEO LECTURES for **GATE + PSUs - 2021/2022**, **ESE + GATE + PSUs - 2021/2022**, **ESE : General Studies**, **SSC-JE** Streams: ECE | EEE | ME | CE | CS | IN | PI*

SALIENT FEATURES:

- Dynamic & Experienced Faculty.
- Subscription options 3 months, 6 months, 12 months, 18 months & 24 months.
- Covers Exam Preparation Strategy and Live Doubt clearing sessions.
- Facilitates Enhanced learning by incorporating 2d & 3d animations.
- Free Online Test Series (Total 118 tests, subject wise, sectional wise, and full length mock tests.
- Compose online study notes and save it for future reference.
- Comprises of weekly self assessment tests.
- Free Interview Guidance & Post GATE Guidance for subscribers.
- ASK AN EXPERT feature for doubt clarifications via emails/video (services to be availed within 12 hrs.)
- Procure Full set of Study Material (Optional)*
- ▶ EMI option available.



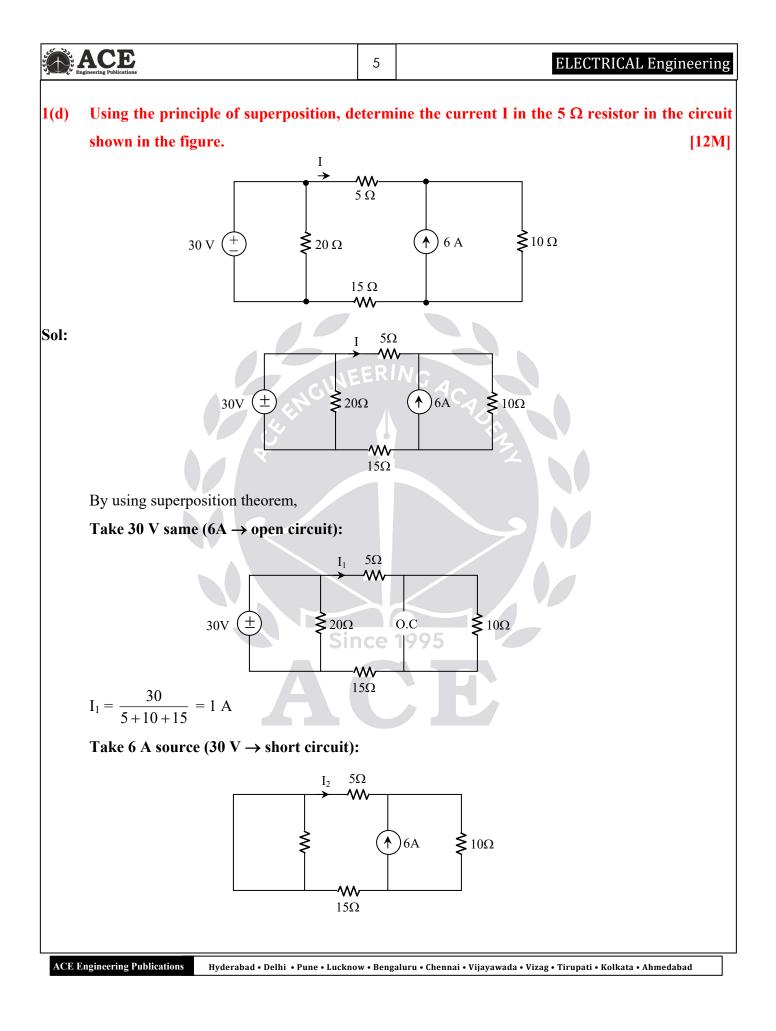
Scan QR Code to Download DEEP-LEARN Android Platform App

www.deep-learn.in www.aceenggacademy.com Help: support@frostinteractive.com Email: hyderabad@aceenggacademy.com Call: 040-23234418/19/20

The ferromagnetic materials generates hysteresis losses and the area of hysteresis loop represent hysteresis losses (J/m³)

Retentivity (or) Ramnet Induction: It is the retained magnetization (or) magnetic flux density present in material without applied magnetic field (At H = 0, B = ?)

Coercivity (or) Coercive force: It is the required applied magnetic field in opposite direction to demagnetize the material


For $B = 0 \Rightarrow H = ?$

I(c) Explain and derive continuity of current equation using the principle of conservation of charge. [12M]
Sol: Continuity equation for time varying fields:
Current is nothing but charge in motion. Consider some volume. The total current flowing OUT of some volume must be equal to the rate of decrease of charge
$$\left(-\frac{dq}{dt}\right)$$
 within the volume (law of conservation of charge)
 $I_{out} = -\frac{dq}{dt}$
 $q = charge within the volume $q = \int \rho_v dv$
 $\land I_{out} = -\frac{d}{dt} \int \rho_v dv$
 $\int J_{cl} d\bar{s} = I_{out}$ From current density concept
 $\therefore \oint \bar{J} d\bar{s} = -\frac{d}{dt} \int \rho_v dv$
 $\Rightarrow \oint \bar{J} d\bar{s} = -\int \frac{\partial \rho_v}{\partial t} dv$
 $from the divergence theorem $from q = \int \frac{\partial \rho_v}{\partial t} dv$
 $\oint \bar{J} d\bar{s} = \int \nabla \bar{J} dv$
 $from (1) and (2)$
 $\therefore \int \nabla \bar{J} dv = -\int \frac{\partial \rho_v}{\partial t} dv$
 $\nabla \bar{J} = -\frac{\partial \rho_v}{\partial t}$
This is called continuity equation for time varying fields.$$

4

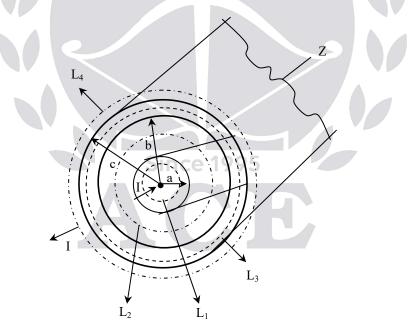
Where as $\nabla . \overline{J} = 0$ for static fields

ACE Engineering Publications

From current division rule,

ACE

$$I_2 = \frac{-6 \times 10}{30} = -2$$
 Amps


By Superposition theorem $I = I_1 + I_2$

I = 1 - 2 = -1 Amps

- 1(e) State Ampere's circuital law. A hollow conducting cylinder has inner radius a and outer radius b and carries current I along the positive z-direction. Find H
 everywhere. [12M]
- **Sol:** Infinity long co-axial transmission line consider infinitely by co-axial transmission line with inner conductor of radius 'a' and outer conductor of radius 'b' and thickness 't' outer conductors outer radius is c.

 \therefore c – b = t.

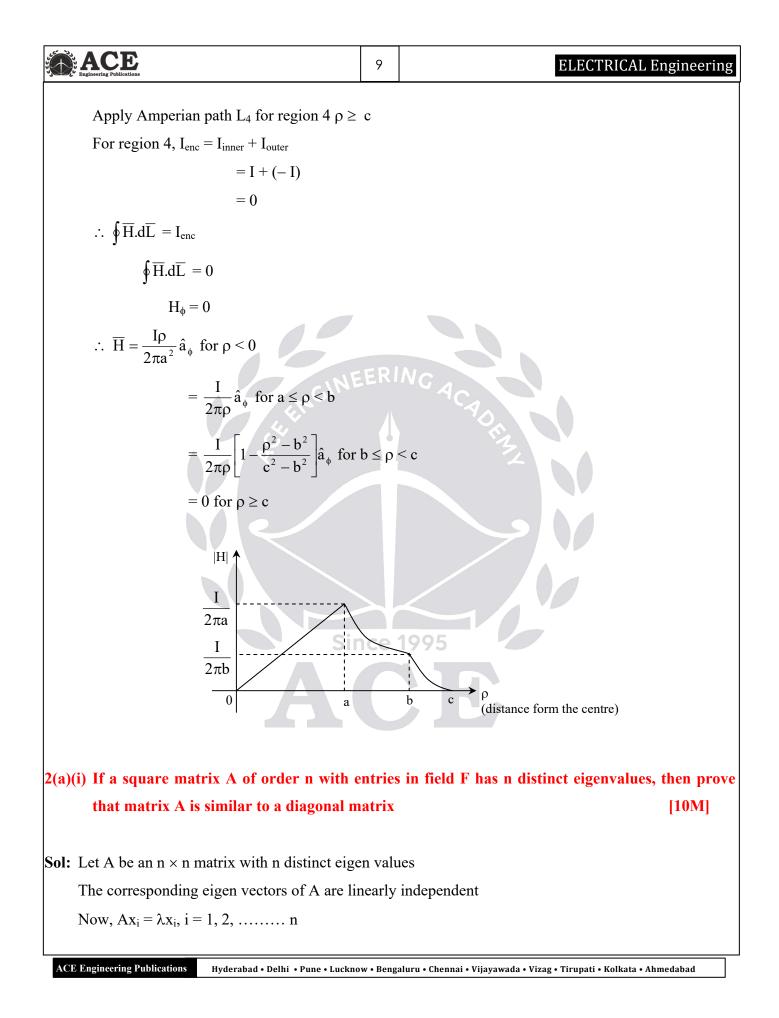
Let the inner conductor carries I current and outer conductor carries -I current.

To determine \overline{H} every where, four possible regions are to be taken.

- $(i) \ 0 \le \rho < a$
- (ii) $a \le \rho \le b$
- (iii) $b \le \rho < c$
- (iv) $\rho \ge c$

ACE Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

6


	7	ELECTRICAL Engineerin
V Engineering Publications	/	ELEC I KICAL E

Apply Ampere's law for the region (i) take the amperian path L_1 whose radius is less than a

$$\begin{split} & \oint_{L_{1}} \overline{H}.d\overline{L} = I_{enc} = \int \overline{J}.d\overline{S} \\ & \text{Area of the cylinder} = \pi a^{2} \\ & \overline{J} = \frac{1}{\pi a^{2}} \, \hat{a}z \\ & d\overline{s} = \rho \, d\rho \, d\phi \, \hat{a}z \\ & I_{enc} = \int \overline{J}.d\overline{S} = \int_{0}^{a} \int_{0}^{2\pi} \frac{1}{\pi a^{2}} \, \hat{a}z \rho \, d\rho \, d\phi \, \hat{a}z \\ & = \frac{1}{\pi a^{2}} \int_{0}^{2\pi} \int_{0}^{2\pi} \rho \, d\rho \, d\phi \, d\rho \, d\phi \, eff(\cdot; \rho < a) \\ & = \frac{1}{\pi a^{2}} \left[\frac{\rho^{2}}{2} \right]_{0}^{a} \left[\phi \right]_{0}^{2\pi} = \frac{1}{\pi a^{2}} \pi a^{2} \\ & \text{For the region } 0 \le \rho < a \\ & I_{enc} = \frac{1}{\pi a^{2}} \frac{\rho^{2}}{2} [2\pi] \\ & I_{enc} = \frac{1\rho^{2}}{a^{2}} \\ & \oint \overline{H}.d\overline{L} = I_{enc} = \frac{1\rho^{2}}{a^{2}} \\ & H_{\phi} \left[\frac{1\rho^{2}}{\rho 2\pi a^{2}} = \frac{1\rho}{2\pi a^{2}} \\ & H_{\phi} \left[\frac{1\rho^{2}}{\rho 2\pi a^{2}} = \frac{1\rho}{2\pi a^{2}} \\ & \overline{H} = \frac{1\rho}{2\pi a^{2}} \, \hat{a}_{\phi} \text{ or } 0 \le \rho < a \\ & \text{Apply Amperian path } L_{2} \text{ for region (ii) } a \le \rho < b \\ & \oint \overline{H}.d\overline{L} = I_{enc} = I \\ & \text{Since } L_{2} \text{ contains only current } I \\ & \int H_{\phi} \hat{a}_{\phi}.\rho d\phi \hat{a}_{\phi} = I \end{split}$$

ACE Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	8	ESE 2020 MAINS_Paper_1 Solutions				
2π						
$\int_{0} H_{\phi} \rho d\phi = I$						
$ ho H_{\phi}(2\pi) = I$						
$H_{\phi} = \frac{1}{2\pi\rho}$						
$\overline{H} = \frac{I}{2\pi\rho} \hat{a}_{\phi} \text{ for } a \le \rho \le b$						
Apply Amperian path L_3 for region (3) b	≤ p < 0					
$\oint \overline{\mathbf{H}}.\mathbf{d}\overline{\mathbf{L}} = \mathbf{I}_{enc}$	ED					
$\int_{0}^{2\pi} H_{\phi} \hat{a}_{\phi} \cdot \rho d\phi \hat{a}_{\phi} = I_{enc}$		NG ACAD				
$H_{\phi}(2\pi\rho) = I_{enc}$	$H_{\phi}(2\pi\rho) = I_{enc}$					
$H_{\phi}(2\pi\rho) = I_{\text{of inner conductor}} + I_{\text{of outer condcutor}}$						
For $\rho < c$, the current enclosed is less than $c = -$	1 — I.	That is given by JJ.dS				
$H_{\phi}(2\pi\rho) = I + \int \overline{J}.d\overline{S}$						
\overline{J} = current density of outer conductor \overline{J}	is in -	$-\hat{a}_{z}$ direction.				
$\overline{J} = \frac{-I}{\pi (c^2 - b^2)} \hat{a}_z$	nce	1995				
$\therefore H_{\phi}(2\pi\rho) = I + \left[\int \frac{-I}{\pi(c^2 - b^2)} \hat{a}_z \cdot \rho d\rho d\phi \hat{a}_z\right]$	_					
$= I + \left(\frac{-I}{\pi(c^2 - b^2)}\right) \int_{\rho=b}^{\rho} \int_{0}^{2\pi} \rho d\rho$	οdφ					
$= I - \frac{I}{\pi(c^2 - b^2)} \left[\frac{\rho^2}{2} \right]_b^{\rho} \times \left[\phi \right]_b^{\rho}$	$\int_{0}^{2\pi}$					
$= I - \frac{I}{\pi(c^2 - b^2)} \frac{\rho^2 - b^2}{2} \times \frac{1}{2}$	2π					
$= I - \frac{I(\rho^{2} - b^{2})}{c^{2} - b^{2}} = I \left[1 - \frac{(\rho^{2} - b^{2})}{c^{2}} \right]$	$\left(\frac{b^2}{b^2}\right)$]				
ACE Engineering Publications Hyderabad • Delhi • Pune • Luckno	w • Beng	aluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad				

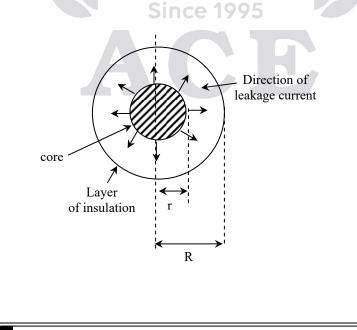
Engineering Publications	10	ESE 2020 MAINS_Paper_1 Solutions		
Let $P = [x_1 \ x_2 \ \dots \ x_n]$				
$\therefore [\mathbf{A}\mathbf{x}_1 \ \mathbf{A}\mathbf{x}_2 \ \dots \ \mathbf{A}\mathbf{x}_n] = [\lambda \mathbf{x}_1 \ \lambda \mathbf{x}_2 \ \dots \ \mathbf{A}\mathbf{x}_n]$				
		$\begin{bmatrix} \lambda_{1} & 0 & \dots & \dots & 0 \\ 0 & \lambda_{2} & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \lambda_{n} \end{bmatrix}$		
$\therefore AP = PD \qquad \text{where } D = \begin{bmatrix} \lambda_1 & 0 \dots & 0 \\ 0 & \lambda_2 \dots & 0 \\ 0 & 0 \dots & 0 \end{bmatrix}$ $P^{-1}AP = P^{-1}PD$	$\begin{bmatrix} 0 \\ 0 \\ .\lambda_n \end{bmatrix}$	NGA		
$P^{-1}AP = ID$		C.A.		
		ET L		
$p^{-1}AP = D$	• D ia			
[:: columns of P are linearly independent s	0 P 15	non- singular		
\therefore A is similar to diagonal matrix D				
∴ A is diagonalizable.				
2(a)(ii) Find the matrix P which diagonalizes tl	he ma	trix associated with the quadratic form		
$3x^2 + 5y^2 + 3z^2 - 2yz + 2zx - 2xy$		[10M]		
Sol: Given quadtratic form is $3x^2 + 5y^2 + 3z^2 - 2$ Matrix of quadratic form is , A = $\begin{bmatrix} 3 & -1 \\ -1 & 5 \\ 1 & -1 \end{bmatrix}$		1995 2zx – 2xy		
The characteristic eqn of A is, $\lambda^3 - S_1 \lambda^2$	$+ S_2 \lambda$	$-S_3 = 0$		
Where $S_1 = [tr(A)] = 3 + 5 + 3 = 11$				
$S_2 = sum of minors of principal diagonal$	eleme	nts		
$S_2 = \begin{vmatrix} 5 & -1 \\ -1 & 3 \end{vmatrix} + \begin{vmatrix} 3 & 1 \\ 1 & 3 \end{vmatrix} + \begin{vmatrix} 3 & -1 \\ -1 & 5 \end{vmatrix}$				
=(14)+(8)+(14)				
= 36				
ACE Engineering Publications Hyderabad • Delhi • Pune • Luckno	w • Beng	aluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad		

Engineering Publications	11	ELECTRICAL Engineering
$S_3 = det(A) = 3(15 - 1) + (-3 + 1) + (1 - 5)$)	
$S_3 = 36$	/	
Hence $\lambda^3 - 11\lambda^2 + 36\lambda - 36 = 0$		
On solving we get, $\lambda = 2, 3, 6$		
The eigen vectors are given by $(A - \lambda I)x$	= 0	
$\begin{vmatrix} 3-\lambda & -1 & 1 \\ -1 & 5-\lambda & -1 \\ 1 & -1 & 3-\lambda \end{vmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$		
When $\lambda = 2$, $\begin{bmatrix} 1 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	$= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	NGACA
That is $x_1 - x_2 + x_3 = 0$		
$-x_1 + 3x_2 - x_3 = 0$		2
$x_1 - x_2 + x_3 = 0$		
On solving, we get $X_1 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$		
When $\lambda = 3$, $\begin{bmatrix} 0 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$	$\begin{bmatrix} 0\\0\\0\end{bmatrix}$	1995
That is $-x_2 + x_3 = 0$		
$-x_1 + 2x_2 - x_3 = 0$		
$x_1 - x_2 = 0$		
We get, $X_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$		
When $\lambda = 6$, $\begin{bmatrix} -3 & -1 & 1 \\ -1 & -1 & -1 \\ 1 & -1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	0 0 0	
ACE Engineering Publications Hyderabad • Delhi • Pune • Luckn	ow • Beng	aluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE	12	ESE 2020 MAINS_Paper_1 Solutions
3626	That is $-3x_1 - x_2 + x_3 = 0$		
	$-x_1 - x_2 - x_3 = 0$		
	$x_1 - x_2 - 3x_3 = 0$		
	We get, $X_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$		
	Hence $P = \begin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix}$		
	$\mathbf{P} = \begin{bmatrix} -1 & 1 & 1 \\ 0 & 1 & -2 \\ 1 & 1 & 1 \end{bmatrix}$	ERI	INGAC
2(b)(i	i) On the basis of specific resistance p	o, dis	scuss the difference between conductors, semi-
	conductors and insulators.		[8M]
Sol:		o thre	ee groups: conductors, semiconductors and imperfect
	insulators.	, .	
	Specific resistance is also known as resisti		
			lucting material is very low. Specific resistance of
	conducting materials increases with inc	reasin	ng temperature and hence these materials are also
	known as positive temperature coefficient	of res	esistance materials.
	Ex; All metals		

Metal	Specific resistance (ρ)
Cu	0.034×10^{-5}
Fe	32.54×10^{-5}
Al	0.03×10 ⁻⁵
Ni	0.046×10^{-5}

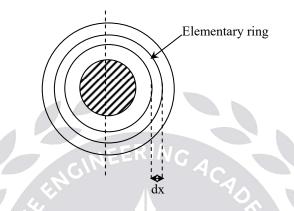
Semiconductors: The specific resistance of semi conductor is high. Specific resistance of semiconductor decreases with increasing temperature and adding impurities and hence these materials are also known as negative temperature coefficient of resistance materials.


Ex; Si, Ge

Semiconductor	Specific resistivity	$\rho \uparrow$ Con	ductor
Ge	4.6×10^{-1}		
Si	6.4×10^2		
			emiconductor
		+	► T

Insulator G	Specific resistivity
Glass	10 ¹²
Mica	9×10 ¹³
Quartz	5×10^{16}

²b(ii) Prove that insulation resistance of a cable is inversely proportional to its length. Define insulation resistance. [12M]


Sol: Insulation resistance: The resistance offered by cable to path of the leakage current.

ESE 2020	MAINS	Paper_1	Solutions
----------	-------	---------	-----------

The above figure shows the section of a single core cable which is insulated with the help of layer of an insulating material.

The leakage current flows radially from ccentre towards the surface. Hence the cross section of the path of such current is not constant but changes with its length.

Consider an elementary section of a cylindrical cable of radius x and thickness dx as shown in fig. d = distance of conductor core (2r)

D = diameter with sheath

ACE

Cross section area = $2\pi x \times l$

The resistance of this elementary cylindrical shell is $dR_i = \frac{\rho dx}{2}$

 ρ = Resistivity of the insulating material

The total insulation resistance of the cable can be obtained by integrating the resistance of an elementary ring from inner radius (r) upto outer radius (R)

$$R_{i} = \int_{r}^{R} dR_{i} = \int_{r}^{R} \rho \left(\frac{dx}{2\pi x \ell} \right) = \frac{\rho}{2\pi \ell} \int_{r}^{R} \left(\frac{dx}{x} \right) = \frac{\rho}{2\pi \ell} \ln x \Big|_{r}^{R}$$
$$R_{i} = \frac{\rho}{2\pi \ell} \ln \frac{R}{r}$$

The value of insulation resistance (R_i) is always high. The expression shows that the insulation resistance is inversely proportional to its length.

14

EXCLUSIVE

ONLINE CLASSES

ENGLISH

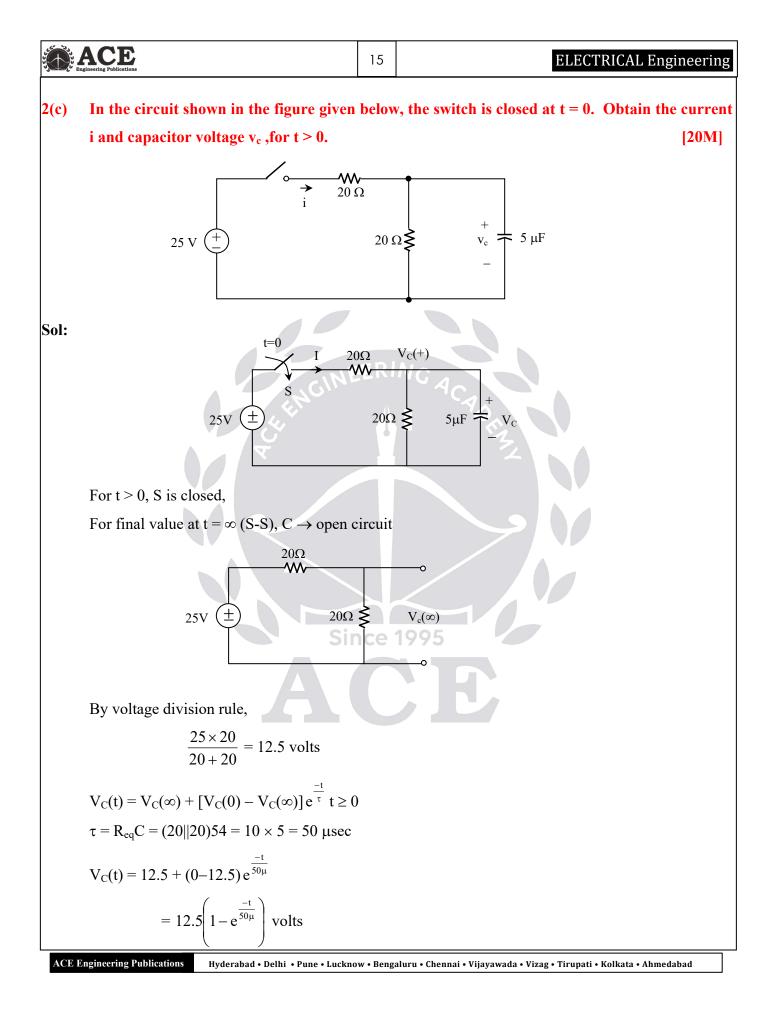
ESE | GATE | PSUs – 2022

COURSE DETAILS

• For ESE+GATE+PSUs Students

- 1. Online Live Classes Technical Subjects Only.
- 2. Recorded Classes General Studies Subjects (on ACE Deep Learn Platform)
- Recorded version of the online live class will be made available through out the course (with 3 times view).
- Doubt clearing sessions and tests to be conducted regularly.
- 3 to 4 hours of live lectures per day in week days (Timing 5 pm to 9 pm) On Sundays 5-6 Hours Live Online Lectures (6 days a week).
- Access the lectures from any where.

BATCH DATE

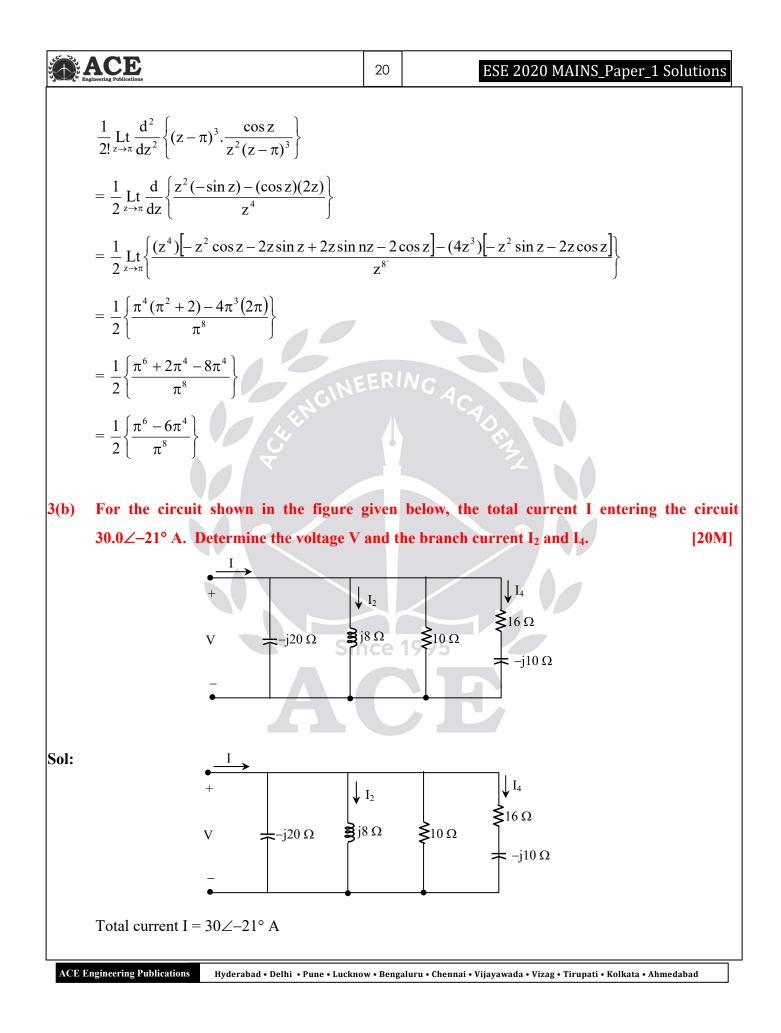

7th NOVEMBER 2020

DISCOUNTS

- **Rs. 5,000 OFF for ACE Old Students**
- Pay Full fee & Get 5% Additional Discount.
- 20% off for IIT / NIT, Students.
- 15% off for IIIT / Govt. College students.

FEE

ESE + GATE + PSUs : Rs. 70,000/-GATE + PSUs : Rs. 55,000/-(Fee can be paid in two installments)



$i(t) = \left(\frac{25 - V_{c}(1)}{20}\right)$ $= \frac{25 - 12.5 \left(1 - e^{\frac{-1}{30_{1}}}\right)}{20}$ $= \frac{12.5 + 12.5 e^{\frac{-1}{30_{1}}}}{20}$ $= \frac{12.5 + 12.5 e^{\frac{-1}{30_{1}}}}{16 + 20}$ $= \frac{12.5 + 12.5 + 12}{16 + 20}$ $= \frac{12.5 + 12}{16 + 20}$	ACE Engineering Publicatio	й Р па	16 ESI	E 2020 MAINS_Paper	_1 Solutions
$= \frac{12.5 + 12.5e^{\frac{-1}{30\mu}}}{20}$ $= \frac{12.5}{20} \left(1 + e^{\frac{-1}{30\mu}}\right)$ $i(t) = 0.625 \left(1 + e^{\frac{-1}{30\mu}}\right) \text{ amps}$ $G(MEERINC)$ $i(t) = 0.625 \left(1 + e^{\frac{-1}{30\mu}}\right) \text{ amps}$ $G(MEERINC)$ $G(x) = \begin{cases} 0 & x < 0 \\ ax, & 0 \le x \le 2 \\ (4 - x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) Find value of a (q) Find the cumulative distribution function (cdf) (r) Find P(X > 2.5) Sol: Given, $f(x) = \begin{cases} 0, & x < 0 \\ ax, & 0 \le x \le 2 \\ (4 - x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) To find 'a', we have	i(t) = ($\left(\frac{25 - V_{\rm c}(t)}{20}\right)$			
$= \frac{12.5}{20} \left(1 + e^{\frac{-1}{50\mu}} \right)$ $i(t) = 0.625 \left(1 + e^{\frac{-1}{50\mu}} \right) \text{ amps}$ $f(x) = \begin{cases} 0 & x < 0 \\ ax, & 0 \le x \le 2 \\ (4 - x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) Find value of a (q) Find the cumulative distribution function (cdf) (r) Find P(X > 2.5) [10M] Sol: Given, $f(x) = \begin{cases} 0, & x < 0 \\ ax, & 0 \le x \le 2 \\ (4 - x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) To find 'a', we have		$=\frac{25-12.5\left(1-e^{\frac{-t}{50\mu}}\right)}{20}$			
$i(t) = 0.625 \left(1 + e^{\frac{-1}{504}}\right) \text{ amps}$ $B(a)(i) \text{ If the density function of a continuous random variable is given by}$ $f(x) = \begin{cases} 0 & x < 0 \\ ax, & 0 \le x \le 2 \\ (4 - x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) Find value of a (q) Find the cumulative distribution function (cdf) (r) Find P(X > 2.5) Sol: Given, $f(x) = \begin{cases} 0, & x < 0 \\ ax, & 0 \le x \le 2 \\ (4 - x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) To find 'a', we have		$=\frac{12.5+12.5e^{\frac{-t}{50\mu}}}{20}$			
$\mathbf{f}(\mathbf{x}) = \begin{cases} 0 & x < 0 \\ ax, & 0 \le x \le 2 \\ (4-x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) Find value of a (q) Find the cumulative distribution function (cdf) (r) Find P(X > 2.5) Sol: Given, $f(\mathbf{x}) = \begin{cases} 0, & x < 0 \\ ax, & 0 \le x \le 2 \\ (4-x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) To find 'a', we have		· · ·	FRINC		
$f(\mathbf{x}) = \begin{cases} 0 & x < 0 \\ ax, & 0 \le x \le 2 \\ (4-x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) Find value of a (q) Find the cumulative distribution function (cdf) (r) Find P(X > 2.5) Sol: Given, $f(\mathbf{x}) = \begin{cases} 0, & x < 0 \\ ax, & 0 \le x \le 2 \\ (4-x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) To find 'a', we have	i(t) = 0.6	$25\left(1+e^{\frac{-t}{50\mu}}\right)$ amps	ACADA Se		
$f(\mathbf{x}) = \begin{cases} 0 & x < 0 \\ ax, & 0 \le x \le 2 \\ (4-x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) Find value of a (q) Find the cumulative distribution function (cdf) (r) Find P(X > 2.5) (10M) Sol: Given, $f(\mathbf{x}) = \begin{cases} 0, & x < 0 \\ ax, & 0 \le x \le 2 \\ (4-x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) To find 'a', we have	(a)(i) If the	density function of a continuous i	andom variable is gi	ven hv	
(p) Find value of a (q) Find the cumulative distribution function (cdf) (r) Find P(X > 2.5) [10M] Sol: Given, $f(x) = \begin{cases} 0, & x < 0 \\ ax, & 0 \le x \le 2 \\ (4-x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) To find 'a', we have					
(r) Find P(X > 2.5) [10M] Sol: Given, $f(x) = \begin{cases} 0, & x < 0 \\ ax, & 0 \le x \le 2 \\ (4-x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) To find 'a', we have	(p)	Find value of a			
Sol: Given, $f(x) = \begin{cases} 0, & x < 0 \\ ax, & 0 \le x \le 2 \\ (4-x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) To find 'a', we have	(q)	Find the cumulative distribution	function (cdf)		
$f(x) = \begin{cases} 0, & x < 0 \\ ax, & 0 \le x \le 2 \\ (4-x)a, & 2 \le x \le 4 \\ 0 & x > 4 \end{cases}$ (p) To find 'a', we have			CE		[10M]
(p) To find 'a', we have		[0, x < 0]			
(p) To find 'a', we have	$f(\mathbf{x}) =$	$\int ax, \qquad 0 \le x \le 2$			
(p) To find 'a', we have	1(11)	$(4-x)a, \qquad 2 \le x \le 4$			
$\int f(x)dx = 1$	(p) To				
		$\int f(x)dx = 1$			
$-\infty$		-∞			

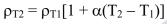
Experimentary Publications	17	ELECTRICAL Engineering
$\Rightarrow \int_{0}^{2} axdx + \int_{2}^{4} (4-x)adx = 1$		
$\Rightarrow \left(\frac{ax^2}{2}\right)_0^2 + \left(4ax - \frac{ax^2}{2}\right)_2^4 = 1$		
$\Rightarrow (2a) + \{(16a - 8a) - (8a - 2a)\}$	= 1	
$\Rightarrow (2a) + (2a) = 1$		
$\Rightarrow a = \frac{1}{4}$		
(q) The cumulative distribution functi	on (C	DF) is
$F(x) = P(X \le x) = \int_{-\infty}^{x} f(x) dx$	ERI	NGACAD
For any x such that $-\infty < x \le 0$		TZ .
$F(x) = \int_{-\infty}^{0} 0 dx = 0$		
For any x, where $0 < x \le 2$;		
$F(x) = \int_{-\infty}^{0} f(x) dx + \int_{0}^{x} f(x) dx$		
$= \int_{-\infty}^{0} 0 dx + \int_{0}^{x} a x dx$	ice	1995
$=\left(\frac{ax^2}{2}\right)_0^x$		
$=\frac{\mathrm{ax}^2}{2}$		
$=\frac{\mathbf{x}^2}{8} \qquad (\because \mathbf{a}$	$=\frac{1}{4})$	
For any x, where $2 < x \le 4$		
$F(x) = \int_{-\infty}^{0} f(x) dx + \int_{0}^{2} f(x) dx + \int_{2}^{x} f(x) dx + \int_{0}^{x} f(x) d$)dx	

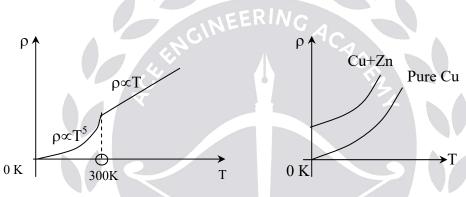
Eggineering Publications	18 ESE 2020 MAINS_Paper_1 Solutions
$= \int_{-\infty}^{0} 0 dx + \int_{0}^{2} ax dx + \int_{2}^{x} (4 - bx) dx + \int_{0}^{x} (4 -$	– x)adx
$= \int_{0}^{2} \frac{x}{4} dx + \int_{2}^{x} \frac{1}{4} (4-x) dx$	
$= \left(\frac{x^{2}}{8}\right)_{0}^{2} + \frac{1}{4}\left(4x - \frac{x^{2}}{2}\right)_{2}^{x}$	x 2
$= \frac{1}{2} + \frac{1}{4} \left\{ \left(4x - \frac{x^2}{2} \right) - \left(8 - \frac{x^2}{2} \right) \right\}$	(3-2)
$= \frac{1}{2} + \frac{1}{4} \left\{ 4x - \frac{x^2}{2} - 6 \right\}$	NEERINGAC
$= \frac{1}{2} + \left(x - \frac{x^2}{8} - \frac{3}{2}\right)$ $= \frac{4 + 8x - x^2 - 12}{8}$	NO FR
$=\frac{-x^2+8x-8}{8}$	
For any x, where $4 < x < \infty$ $F(x) = \int_{0}^{0} f(x) dx + \int_{0}^{2} f(x) dx + \int_{0}^{4} f(x) dx + \int_{0}^{$	$f(x)dx + \int_{0}^{x} f(x)dx$
$= \int_{0}^{2} ax dx + \int_{2}^{4} (4-x) a dx +$	4
$= \int_{0}^{2} \frac{x}{4} dx + \int_{2}^{4} \frac{1}{4} (4-x) dx$	
$= \left(\frac{x^{2}}{8}\right)_{0}^{2} + \frac{1}{4}\left(4x - \frac{x^{2}}{2}\right)_{2}^{4}$	4 2
$= \frac{1}{2} + \frac{1}{4} \{ (16 - 8) - (8 - 2) \}$	2)}
$= \frac{1}{2} + \frac{1}{4} \{ 8 - 6 \} = 1$ ACE Engineering Publications Hyderabad • Delhi • Pune • Luck	

ACE Engineering Publications	19	ELECTRICAL Engineering
Hence the distribution function is $F(x) == \begin{cases} 0, & -\infty < x \le \frac{x^2}{8}, & 0 < x \le \frac{-x^2 + 8x - 8}{8}, & 2 < x \le \frac{-x^2 + 8x - 8}{8}, & 2 < x \le \frac{1}{1}, & 4 < x < x < x < x < x < x < x < x < x <$	0 ≤ 2 ≤ 4 ∞ $3(2.5) - 3(2.5) -$	-8} NGACADRIA
$= \operatorname{Lt}_{z \to 0} \frac{\mathrm{d}z}{\mathrm{d}z} \left\{ \frac{\cos z}{(z - \pi)^3} \right\}$	((0, -4)
$= \lim_{z \to 0} \left\{ \frac{(z - \pi)^3 (-\sin z) - (\cos z)(3)(z - \pi)^2}{(z - \pi)^6} \right\}$	$\left\{ \begin{array}{c} \frac{1}{2} \\ -\end{array} \right\} = 0$	$\frac{-3}{\pi^4}$
Now, residue of $f(z)$ at $z = \pi$ is		

Engineering Publications	21	ELECTRICAL Engineering
Total admittance		
$Y = Y_1 + Y_2 + Y_3 + Y_4$		
$Y = \frac{1}{-j20} + \frac{1}{j8} + \frac{1}{10} + \frac{1}{16-j10}$		
$Y = \frac{j}{20} - \frac{j}{8} + \frac{1}{10} + \frac{16 + j10}{356}$		
$Y = \left(0.1 + \frac{16}{356}\right) + j\left(\frac{1}{20} - \frac{1}{8} + \frac{10}{356}\right)$		
Y = (0.145 - j0.05)		
$V = IY = (30 \angle -21^{\circ})(0.153 - \angle 19.0)$	FD	
$V = 4.59 \angle -40^\circ$ volts	ERI	NGAC
$I_2 = \frac{V}{j8} = \frac{4.59 \angle -40^{\circ}}{8 \angle 90} = 0.574 \angle -130$)° A	TOR
$I_4 = \frac{V}{16 - j10} = \frac{4.59 \angle -40^{\circ}}{18.8 \angle -32}$		
$I_4 = 0.243 \angle -8^\circ \text{ Amps}$		
3(c)(i) Discuss the factors affecting electrical r	esista	nce of conductors. [10M]
Sol: Factor affecting resistivity of metals:	nce	1995
		ncrease in defects in a material, the electrical
conductivity decreases and resistivity	increa	uses because of collision of electrons at defect region
← E		$\leftarrow E$ $\checkmark \text{ Collision } e^-$
	-	
Perfect material		Defect material
ACE Engineering Publications Hyderahad - Dalbi - Duna - Luckno		

Ragineering Publications	22	ESE 2020 MAINS_Paper_1 Solutions


ii) Temperature: With increase in temperature of material the resistivity increases and conductivity decreases because with increase in temperature atomic vibrations (or) lattice vibrations are generated due to that scattering of electrons (or) collisions of electrons takes place. At low temperature (Temp < room temp), Resistivity drastically increases with increase in temperature.</p>

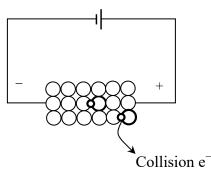

 $\rho \propto T^5 \rightarrow At$ low temperature (T < Room temp)

 $\rho \propto T \rightarrow At$ high temperature (T > Room temperature)

At all high temperatures, the resistivity linearly increases with increase in temperature.

$$R_{T2} = R_{T1}[1 + \alpha(T_2 - T_1)]$$

iii) Alloying (or) Solid Solution:


Alloy is a homogeneous mixture of solvent and Solute. Solvent is a higher concentration material in solid solution (or) alloy. Solute is a lowest concentration material in alloy.

Ex:
$$Brass = Cu + Zn$$

1 kg = 90% + 10%

$$\downarrow \downarrow \downarrow$$

Solid solution Solvent Solute

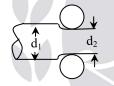
ELECTRICAL Engineering

1) Electrical conductivity of an alloy < pure material: with increase in alloy concentration conductivity decreases because at solute atom location, localized collision of electrons takes place this is because of

(a) Difference in no. of valince electrons in solvent and solute

(b) Difference in size of host material atom and foreign atom

(c) Difference in Fermi energies of electrons of host material atom and impure atoms


23

Note:

The electrical conductivity of an alloy of 95% Cu + 5% silver is lower than pure copper even though the silver material is highest conductivity material added to copper.

iv) Cold working (or) plastic deformation (or) Hard drawn:

Cold working is a mechanical process of deforming the material by applying mechanical forces. By doing cold working operation on a material the crystallographic defects are generated and due to that electrical conductivity of material decreases.

3(c)(ii) Find the diffusion co-efficients of electrons and holes of a single silicon crystal at 27°C, if the mobilities of electrons and holes are 0.17 and 0.025 m²/volt-sec respectively at 27°C.

(Boltzmann's constant $k = 1.38 \times 10^{-23}$ jouls/degrees)

[10M]

Sol: Given data:

Single silicon crystal

$$T = 27^{\circ} C = 300 K$$

$$\mu_{e} = 0.17 m^{2}/V\text{-sec}$$

$$\mu_{h} = 0.025 m^{2}/V\text{-sec}$$

$$K = 1.38 \times 10^{-23} J/^{\circ}C$$

$$T = 1.00 m D_{p}$$

Formula = $\frac{D_n}{\mu_n} = \frac{D_P}{\mu_P} = \frac{kT}{e}$

Engineering Publications		24	ESE 2020 MAINS_Paper_1 Solutions
(i) $D_n = Dif$	fusion coefficient of electron		
$D_n = \frac{KT}{k}$	$\frac{\Gamma\mu_{\rm n}}{\rm e} = \frac{1.33 \times 10^{-23} \times 27 \times 0.17}{1.6 \times 10^{-19}}$		
	$= 3.95 \times 10^{-4}$		
(ii) $D_P = Dif$	fusion coefficient of holes		
$D_P = \frac{K}{M}$	$\frac{\Gamma\mu_{\rm P}}{e} = \frac{1.38 \times 10^{-23} \times 27 \times 0.023}{1.6 \times 10^{-19}}$	5	
	$= 0.582 \times 10^{-4}$		
4(a)(i) State Diric	hlet's conditions for existen	ce of	Fourier series of a function Determine the hal
range Four	ier cosine series of GINE	EN	INGAC [10M]
f(x) :	$= \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, & \frac{\pi}{2} \le x < \pi \end{cases}$	1	OF STATE
Sol: (i) Dirchlet's c	onditions		
\rightarrow f(x)	s periodic in the given interva	1	
\rightarrow f(x)	is piece wise continuous in the	give	n interval
\rightarrow f(x)	nas finite number of maxima a	nd m	inima in the given interval
Now half-ra	nge cosine series of $f(x)$ in the	give	n interval is
$f(x) = \frac{a_0}{2} + \frac{a_0}{2}$	$\sum_{n=1}^{\infty} a_n \cos(nx)$		
Where $a_0 =$	$\frac{2}{\pi}\int_{0}^{\pi}f(x)dx$		
$=\frac{2}{\pi}$	$\left\{\int_{0}^{\frac{\pi}{2}} x dx + \int_{\frac{\pi}{2}}^{\pi} (\pi - x) dx\right\}$		

$$= \frac{2}{\pi} \left\{ \left(\frac{x^2}{2} \right)_0^{\pi} + \left(\pi x - x^2 \right)_{\frac{\pi}{2}}^{\pi} \right\}$$

Engineering Publications	25	ELECTRIC	AL Engineering
$=rac{2}{\pi}\left[rac{\pi^2}{2}+\left\{\left(\pi^2-\pi^2 ight)- ight. ight.$	$\left(\frac{\pi^2}{2}-\frac{\pi^2}{4}\right)\bigg\}\Bigg]$		
$\mathbf{a}_0 = \frac{2}{\pi} \left\{ \frac{\pi^2}{2} - \frac{\pi^2}{4} \right\}$			
$a_0 = \frac{\pi}{2}$			
$a_{n} = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos(nx) dx$ $= \frac{2}{\pi} \begin{cases} \frac{\pi}{2} \\ \int_{0}^{\frac{\pi}{2}} x \cos(nx) dx + \int_{\frac{\pi}{2}}^{\pi} \frac{\pi}{2} \end{cases}$	$(\pi - x)\cos(nx)dx$		
$\pi \begin{bmatrix} J & J \\ 0 & \frac{\pi}{2} \end{bmatrix}$ $= \frac{2}{\pi} \left\{ \frac{x \sin(nx)}{n} + \frac{\cos(nx)}{n} \right\}$		$\frac{1}{2} - \frac{\cos(nx)}{2} \right]^{\pi}$	
$\pi \left[\left(\begin{array}{c} n \\ \end{array} \right)^{n} + \left(\begin{array}{c} n \\ \end{array} \right)^{n} \right]^{n} = \frac{2}{\pi} \left\{ \frac{2}{n^{2}} \cos\left(\frac{n\pi}{2}\right) - \frac{1}{n^{2}} \right\}$		$n^2 \left(j \frac{\pi}{2} \right)$	
\therefore Half range cosine series is			
$f(x) = \frac{\pi}{4} + \sum_{n=1}^{\infty} \left\{ \frac{2}{\pi} \left(\frac{2}{n^2} \cos\left(\frac{n\pi}{2}\right) \right) \right\}$	$-\frac{1}{n^2}\left(1+(-1)^n\right)\right)\right\}\cos(nx)$	x)	
$f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\frac{\cos(2x)}{1^2} + \frac{\cos(6x)}{3^2} \right]$	$\frac{x}{10^2} + \frac{\cos(10x)}{10^2} + \dots$	R	
4(a)(ii) By converting into a line int	egral, evaluate $\iint_{s} (\nabla \times \mathbb{I})$	\overline{F}). $\hat{n}dS$, where $\overline{F} = (x^2 + y)$	$(-4)\hat{i} + 3xy\hat{j} +$
$(2xy + z^2)\hat{k}$ and S is the surface	ace of paraboloid x ² + y	$z^2 + z = 4$ above xy-plane.	[10M]
Sol: Given: $\vec{F} = (x^2 + y - 4)\vec{i} + 3xy\vec{j}$	\vec{j} + (2xy+z ²) \vec{k}		
Using Stoke's theorem, we have			
$\iint_{S} \left(\nabla \times \vec{F} \right) \hat{n} ds = \int_{C} \vec{F} d\vec{r}$			
ACE Engineering Publications Hyderabad • Delhi	• Pune • Lucknow • Bengaluru • Che	nnai • Vijayawada • Vizag • Tirupati • Kolkat	ta • Ahmedabad

$\int_{C} \vec{F} d\vec{r} = \int_{C} (x^2 + y - 4) dx + 3xy dy + (2xy + z) dx$ On the xy-plane, $z = 0 \Rightarrow dz = 0$ $x^2 + y^2 = 4$	z²)dz	
$x^2 + y^2 - 4$		
x + y = 4		
The parametric eqns of a circle are		
$x = 2\cos\theta, y = 2\sin\theta$		
$dx = -2sin\theta d\theta$		
$dy = 2\cos\theta d\theta$	7	
$\int \vec{F} d\vec{r} = \int (x^2 + y - 4) dx + 3xy dy$		
С	EERI	NC
$= \int_{-\infty}^{2\pi} \left\{ \left(4\cos^2\theta + 2\sin\theta - 4\right) \left(-2\sin\theta \right) \right\} \right\}$	$(\theta d\theta) +$	$3(2\cos\theta)(2\sin\theta)(2\cos\theta)d\theta$
$= \int_{0}^{2\pi} \left\{ -8\sin\theta\cos^2\theta - 4\sin^2\theta + 8\sin^2\theta \right\}$	$\sin \theta + 2$	$4\sin\theta\cos^2\theta$
$= \int_{0}^{2\pi} 16\cos^2\theta\sin\theta d\theta - \int_{0}^{2\pi} 4\sin^2\theta d\theta$	$\theta + \int_{0}^{2\pi} 8s$	$\sin \theta d\theta$ (1)
Put $\cos\theta = t$		
$\sin\theta d\theta = -dt$		
θ t	0 1	$\frac{2\pi}{1}$
$(1) \Rightarrow$		
$\int_{C} \vec{F} \cdot d\vec{r} = \int_{t=1}^{1} -16t^{2} dt - \int_{0}^{2\pi} 4 \left(\frac{1 - \cos(2\theta)}{2} \right) d\theta$	+ 8{- cc	$\left\{ \mathbf{\Theta}(\mathbf{\theta}) \right\}_{0}^{2\pi}$
$= 2 \left\{ \theta - \frac{\sin(2\theta)}{2} \right\}_{0}^{2\pi} + 8 \left\{ (-\cos(2\pi)) \right\}_{0$	c) - (- co	os(0))}
$= 2\left\{2\pi - \frac{\sin(4\pi)}{2}\right\} + 8\left\{-1 + 1\right\}$		
$=4\pi$		

ACE Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

4(b) Discuss photoelectricity and photoemissive effect along with laws of photoemissive effect. [20M]

- **Sol:** A device used to convert light energy into electrical energy is called Photo Electric Cell. Photocell is based on the phenomenon of Photoelectric effect. Photo cell are of three types.
 - 1. Photo-Emissive Cell
 - 2. Photo-Voltaic Cell
 - 3. Photo-Conductive Cell

Photo-Emissive Cell: There are two types of photo-emissive cells; Vacuum type or gas filled type cells. Generally, it consists of two electrodes i.e., cathode (K) and anode (A). The cathode is in the form of semi-cylindrical plate coated with photo-sensitive material like sodium potassium or cesium i.e., alkali metals. To have large current, it is usually coated with antimony cesium alloy or combination of bismuth, silver, oxygen and cesium. The anode (A) is in the form of a straight wire made of nickel or platinum. The anode (A) faces the cathode (K). These electrodes are sealed in an evacuated glass or quartz bulb according to weather it is to be used with visible or ultra-violet light. As the current due to vacuum is small, so to increase the current, the bulb of the cells is filled with an inert gas like helium, neon, argon etc. at pressure of 1 mm of mercury.

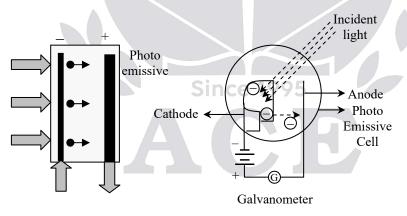
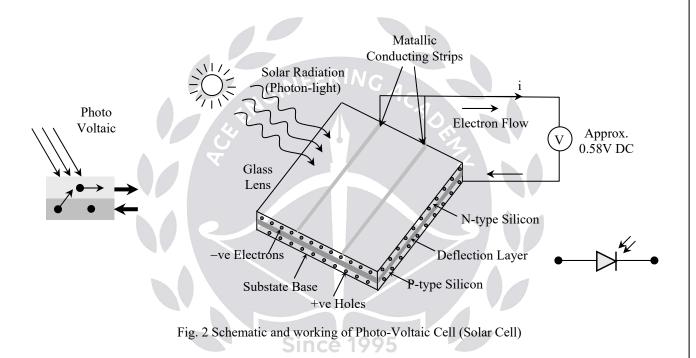


Fig. 1 Schematic and working of photo emissive cell

When photo-electrons flow from cathode to anode, they ionize the gas filled and hence the current gets modified. The main drawback of this type of cell (i.e., gas filled cell) is that the photo-electric current does not vary linearly with the intensity of the light.


Since there is no time lag between the incident light and the flow of electrons and hence current, therefore such a cell is used in television, photometry, fire alarm etc.

ACE Engineering Publications	28	ESE 2020 MAINS_Paper_1 Solution

Photo-Voltaic Cell:

Photo-voltaic Cell is based on the principle of inner photo electric cell. This is called true cell because it generates emf without the application of any external potential difference but by only the light incident on it. It consists of a semi conductor layer formed on the surface of the metal plate by either heat treatment or cathode sputting. A film of semi-transparent metal is coated over the semi-conductor. This film maintains the electrical contact with the semi-conductor and simultaneously allows the incident light to fall on the semi-conductor.

ons

When light is incident on the semi-conductor, electrons are emitted which flow in a direction opposite to the light rays. If the circuit is completed between the surface transparent film and metal base through a low resistance galvanometer (G), the current can be measured. If the resistance of the circuit is very small, the current is proportional to the intensity of incident light. The main advantage of this cell is that it requires no external voltage for its operation. This type of cell is widely used in photographic exposure meters, photometers and illumination meters etc.

Engineering Publications	29	ELECTRICAL Engineering
--------------------------	----	------------------------

Photo-conductive Cells:

Photo-conductive Cell is also based on the principle of inner photoelectric effect. It consists of a thin film of semi-conductor like Selenium or Thallium sulphide placed below a thin film of semi-transparent metal. The combination is place over the block of iron. The iron base and the transparent metal film is connected through battery and resistance. When light falls on the cell, its resistance decrease and hence the current starts flowing in the external circuit.

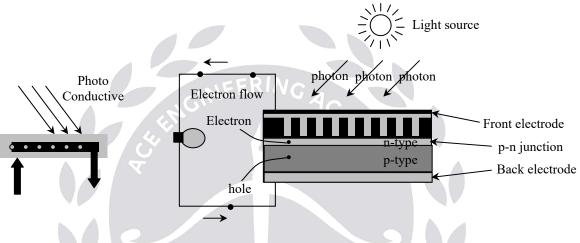


Fig. 3 Schematic and working of Photo Conductive cell

Let 'I' be the luminous intensity of an electric lamp and 'E' be the illuminance at a point distance 'd' from it. According to the inverse square law;

$$E = \frac{1}{d^2}$$
 Since 1995

If light from the lamp be incident on the photovoltaic cell placed at a distance 'd' from it, then the photo current given out is proportional to E and if θ be the corresponding deflection shown by the microammeter then,

$$\theta \propto E$$

Or

Or

$$\theta \times d^2 = \text{constant}.$$

 d^2

ONLINE + OFFLINE CLASSES

ENGLISH

ESE | GATE | PSUs – 2022

Morning / Evening / Weekend Baches for College Going Students

OELHI HYDERABAD PUNE VIJAYAWADA VIZAG TIRUPATI

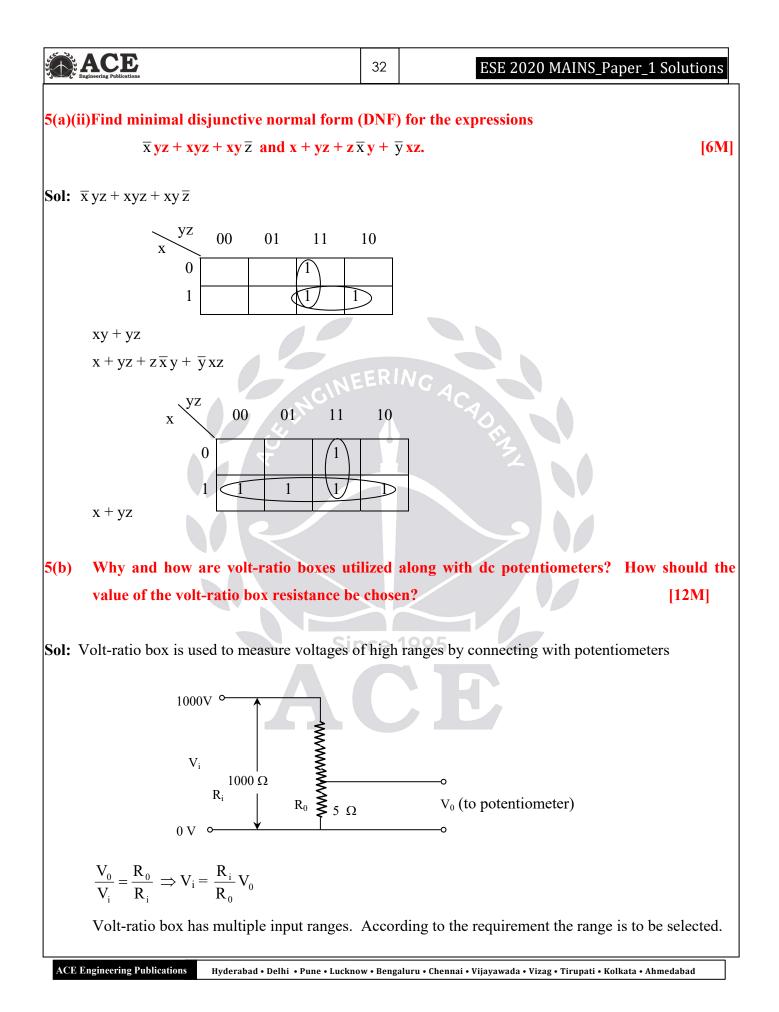
COURSE DETAILS

- Classes will be planned & conducted as per Government Regulations - partially online and offline (classroom coaching).
- Payment options Available -Partial Payment/ Full Payment.
- After the payment of II
 Installment Get access to
 complete study material and
 Online Test Series.
- Recorded version of the online live class will be made available through out the course (with 3 times view).
- Doubt clearing sessions and tests to be conducted regularly.

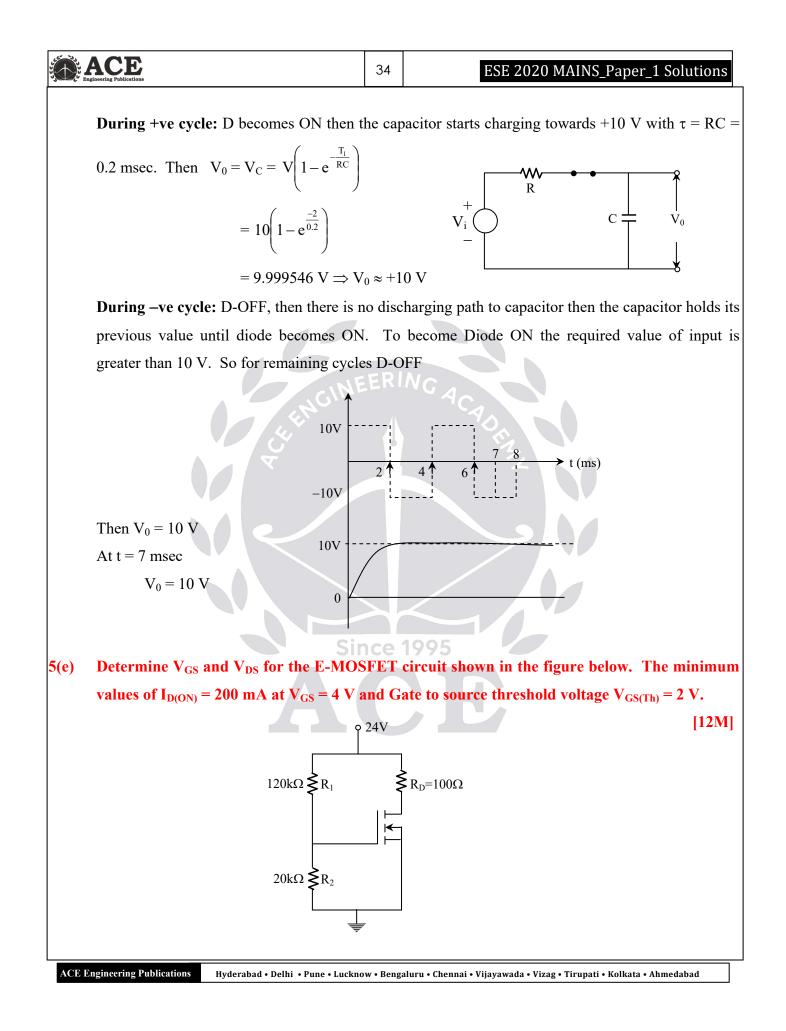
BATCH DATE

7th NOVEMBER 2020

Scan QR Code for more info.


Email: hyderabad@aceenggacademy.com | www.aceenggacademy.com

	ACE agineering Publications	30	ESE 2020 MAINS_Paper_1	l Solutions
4(c)	Show that the ratio of the amplitudes density is $\frac{\sigma}{\sigma \sigma}$ for the applied field E =			nent curren [10M]
	ωε What is the amplitude ratio if the appl	ied field	i is $\mathbf{E} = \mathbf{E}_{m} \mathbf{e}^{\frac{-t}{\tau}}$, where t is real ?	[10M]
Sol:	Conduction current density $\overline{J}_{c} = \sigma \vec{E}$ $\vec{J}_{c} = \sigma \vec{D}$	∂Ē		
	Displacement current density $\vec{J}_{D} = \frac{\partial \vec{D}}{\partial t} =$	$\varepsilon \frac{\partial L}{\partial t}$		
	(i) In phasor form $\vec{J}_{CS} = \sigma \vec{E}_{S}$			
	And $\vec{J}_{DS} = j\omega\epsilon\vec{E}_{S}$ When the given field is sinusoidal os	cillatory	$E = E_{m} sin\omega t$	
	The ratio of conduction current densi		placement current density is given by	
	$\frac{ \vec{J}_{CS} }{ \vec{J}_{DS} } = \frac{ \sigma\vec{E}_{s} }{ j\omega\epsilon\vec{E}_{s} } = \frac{\sigma}{\omega\epsilon}$		EZ .	
	(ii) Given electric field, $E = E e^{\frac{-t}{\tau}}$			
	$J_{\rm C} = \sigma E_{\rm m} e^{\frac{-t}{\tau}}$			
	$J_{\rm D} = \epsilon E_{\rm m} \left(\frac{-1}{-1} \right) e^{\frac{-t}{\tau}}$			
	$\frac{ \mathbf{J}_{\rm C} }{ \mathbf{J}_{\rm D} } = \frac{\sigma \mathbf{E}_{\rm m} \mathbf{e}^{\frac{-t}{\tau}}}{\epsilon \mathbf{E}_{\rm m} \left(\frac{1}{\tau}\right) \mathbf{e}^{\frac{-t}{\tau}}} = \frac{\sigma \tau}{\epsilon}$	nce 1	995	
		rent den	sity to displacement current density is	
	If τ (or) T _r relaxation time (time cons	stant T _r =	$=\frac{\varepsilon}{\sigma}$) then, the ratio: $\frac{ J_{C} }{ J_{D} } = \frac{\sigma}{\varepsilon} \times \frac{\varepsilon}{J} = 1$	


ACE Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

abaa bonni rano baonnon bongarara ononnar rijajawada vibag rirapaa non

	31 ELECTRICAL Engineering				
	SECTION - B				
5(a)(i)	Using an iterative method, write C program segment to generate first n ($n \ge 8$) Fibonacc				
	numbers. [6M]				
Sol:	#include <stdio.h></stdio.h>				
	int main()				
	{				
	int n;				
	printf("Enter the number of terms\n");				
	scanf("%d", &n);				
	if(n < 8)				
	printf("Sorry, Atleast 8 terms are required");				
	return;				
	}				
	int first = 0, second = 1, next, c;				
	printf("First %d terms of Fibonacci series are:\n", n);				
	for $(c = 0; c < n; c++)$				
	$\{i \\ if (a < -1)\}$				
	if (c <= 1) Since 1995 next = c;				
	else				
	{				
	next = first + second;				
	first = second;				
	second = next;				
	}				
	printf("%d\n", next);				
	}				
	return 0;				
	}				

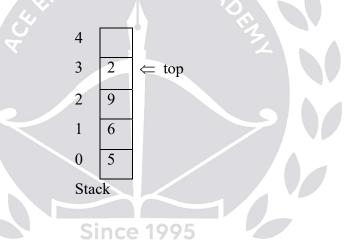
	Signature 33
5(c) T	The self-capacitance or distributed capacitance of a coil is measured using Q meter. The first
	measurement is carried out at 2.5 MHz, when the tuning capacitor is set at 425 pF. The
	second measurement is carried out by increasing the frequency to 6 MHz, when the tuning
	capacitor is set at 60 pF. Determine the distributed capacitance of the coil. [12M]
Sol:	$f_1 = 2.5 \text{ MHz}; C_1 = 425 \text{ pF}$
	$f_2 = 6 \text{ MHz}; C_2 = 60 \text{ pF}$
	C _d = ?
	$C_{d} = ?$ $\Rightarrow n = \frac{f_{2}}{f_{1}} = \frac{6}{2.5} = 2.4$ $C_{d} = n^{2}C$
	$C_{d} = \frac{C_{1} - n^{2}C_{2}}{n^{2} - 1}$
	$=\frac{425-(2.4)^2(60)}{(2.4)^2-1}=\frac{79.4}{4.76}=16.6 \text{ pF}$
5(d)	Calculate the output voltage V_0 at 7 ms in the figure shown below if a ±10V square wave of
	250 Hz source is applied to R = 10 Ω , C = 20 μ F. The diode is ideal and capacitor is initially
	uncharged. [12M]
Sol:	f = 250 Hz, T = 4 msec
	Given that the capacitor is initially uncharged
	$V_{\rm C} = V_0 = 0 \ {\rm V}$
	$10V \qquad \qquad \qquad 10V \qquad \qquad$
ACE E	ngineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE Engineering Publications	35	ELECTRICAL Engineering
Sol:	The Thevenin's equivalent circuit is		
	$I_{\rm Th} = 24 \left(\frac{20}{140} \right)$		<u> </u>
	$V_{\rm th} = 3.428 \text{ V}$		$I_{\rm D} \downarrow \overset{ }{\gtrless} 100\Omega$
	$R_{th} = 20k 120k$		
	$= 17.143 \text{ k}\Omega$		
	As $I_G = 0$, $V_G = V_{th} \approx 3.428$ V	V	
	$V_{S} = 0$	V _t	h T ↓ I _D
	\Rightarrow V _{GS} = 3.428 V		↓ ↓ ↓
	$V_{GS} > V_{GS(th)}$	ER	No
	NGING		ACA
	Then conducting parameter is		On the second se
	$K = \frac{I_{D(ON)}}{\left[V_{GS(ON)} - V_{GS(th)}\right]^2} = \frac{200 \times 10}{(4-2)}$	$\frac{)^{-3}}{2}$	2
	$\left[V_{\rm GS(ON)} - V_{\rm GS(th)}\right]^2 \qquad (4-2)$	2	
	$K = 50 \text{ mA/V}^2$		
	Then the drain current is, $I_D = K[V_{GS} - V_{SS}]$		
			$3.428 - 2]^2$
	= 101.9	6 mA	
	Then $V_{DS} = 24 - I_D R_D$		1995
	$= 24 - 101.96 \times 10^{-3} \times 100$		
	= 24 - 10.196		
	= 13.804 V		
	$\therefore V_{\rm GS} = 3.428 \text{ V}$		
	$V_{DS} = 13.804 V$		

	ACE
3-1-CV	Engineering Publications

ESE 2020 MAINS_Paper_1 Solutions

6(a)(i) Explain in brief the following and differentiate between them: I. Stack and Queue

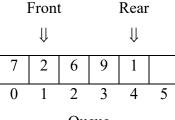

[12M]

II. Sort and Search

Sol: I. Stack

A stack is a linear data structure in which elements can be inserted and deleted only from one side of the list, called the top. A stack follows the LIFO (Last In First Out) principle, i.e., the element inserted at the last is the first element to come out. The insertion of an element into stack is called push operation, and deletion of an element from the stack is called pop operation. In stack we always keep track of the last element present in the list with a pointer called top.

The diagrammatic representation of stack is given below:



Oueue:

A queue is a linear data structure in which elements can be inserted only from one side of the list called rear, and the elements can be deleted only from the other side called the front. The queue data structure follows the FIFO (First In First Out) principle, i.e. the element inserted at first in the list, is the first element to be removed from the list. The insertion of an element in a queue is called an enqueue operation and the deletion of an element is called a dequeue operation. In queue we always maintain two pointers, one pointing to the element which was inserted at the first and still present in the list with the front pointer and the second pointer pointing to the element inserted at the last with the rear pointer.

	37	ELECTRICAL Engineering
--	----	------------------------

The diagrammatic representation of queue is given below:

Queue

Difference between Stack and Queue Data Structures

STACKS	QUEUES		
Stacks are based on the LIFO principle,	Queues are based on the FIFO principle, i.e., the		
i.e., the element inserted at the last, is the	element inserted at the first, is the first element to		
first element to come out of the list.	come out of the list.		
Insertion and deletion in stacks takes	Insertion and deletion in queues takes place from		
place only from one end of the list called	the opposite ends of the list. The insertion takes		
the top.	place at the rear of the list and the deletion takes		
	place from the front of the list.		
Insert operation is called push operation.	Insert operation is called enqueue operation.		
Delete operation is called pop operation.	Delete operation is called dequeue operation.		
In stacks we maintain only one pointer to	In queues we maintain two pointers to access the		
access the list, called the top, which	list. The front pointer always points to the first		
always points to the last element present	element inserted in the list and is still present, and		
in the list.	the rear pointer always points to the last inserted		
	element.		
Stack is used in solving problems works	Queue is used in solving problems having		
on recursion.	sequential processing.		

II. Searching:

Searching is the process of finding a particular item in a collection of items. A search typically answers whether the item is present in the collection or not. Searching requires a key field such as name, ID, code which is related to the target item. When the key field of a target item is found, a

ESE 2020 MAINS Paper 1 Solutions

pointer to the target item is returned. The pointer may be an address, an index into a vector or array, or some other indication of where to find the target. If a matching key field isn't found, the user is informed.

The most common searching algorithms are:

- Linear search
- Binary search
- Interpolation search
- Hash table

Sorting:

Sorting is the process of placing elements from a collection in some kind of order. For example, a list of words could be sorted alphabetically or by length. Efficient sorting is important to optimize the use of other algorithms that require sorted lists to work correctly. The importance of sorting is To represent data in more readable format and Optimize data searching to high level.

The most common sorting algorithms are:

- **Bubble Sort**
- Insertion Sort
- Selection Sort
- Quick Sort
- Merge Sort

6(a)(ii) Write a pseudo code or in any standard programming language for interchanging the values

of two variables: [**8M**] I. Using a third variable II. Not using any extra variable. Sol: I. Using a third variable: #include<stdio.h> int main() { double first, second, temp; printf("Enter first number: "); scanf("%lf", &first); ACE Engineering Publications

Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ELECTRICAL	Engineering

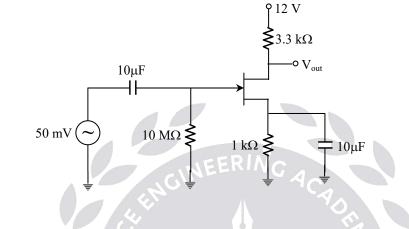
Engineering Publications	39	ELECTRICAL Engineering
<pre>printf("Enter second number: ");</pre>		
scanf("%lf", &second);		
temp = first;		
first = second;		
second = temp;		
printf("\nAfter swapping, firstNumber	= % 2	1f\n" first).
printf("After swapping, secondNumber		
return 0;	/ 0.2	
}		
II. Not using any extra variable:		
#include <stdio.h></stdio.h>	ERI	NGA
int main()	А	
		TZ I
double a, b;		
<pre>printf("Enter a: ");</pre>		
scanf("%lf", &a);		
printf("Enter b: ");		
scanf("%lf", &b);		
// Swapping		
// a = (initial_a - initial_b)	ice	1995
a = a - b;		
// b = (initial_a - initial_b) + initial_b) = init	tial_a
b = a + b;		
<pre>// a = initial_a - (initial_a - initial_b)</pre>	= initi	al_b
$\mathbf{a}=\mathbf{b}-\mathbf{a};$		
printf("After swapping, a = %.2lf\n", a	a);	
printf("After swapping, b = %.2lf", b));	
return 0;		
}		

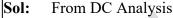
THE BIG FESTIVAL OFFER

Flat 20% off

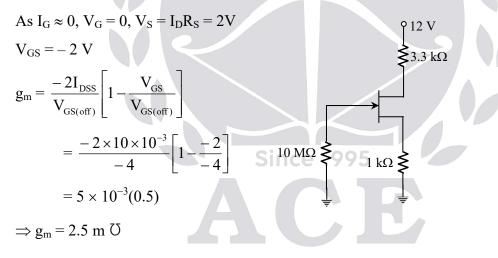
From 20th to 26th October

Call: 040-48539866, 4013 6222 Email: testseries@aceenggacademy.com

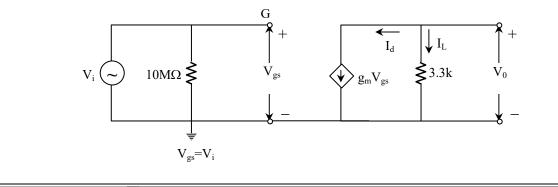

www.aceenggacademy.com


	40 ESE 2020 MAINS_Paper_1 Solutions
	230 V, single phase, watt hour meter has a constant load of 5A passing through it for 8 hours at unity power factor. If the meter constant is 460 revolutions per kWh, how many revolutions does the meter disc make during this period? If the same meter makes 1638 revolutions when operating at 230 V and a constant load of 6 A passing through it for certain duration at a power factor of 0.86, determine the duration of operation of the meter in hours. [20M]
6(b)	
	Given data: $V_L = 230 \text{ V}, I_L = 5 \text{ A}, t = 8 \text{ hrs}$ $\cos\phi = 1, \text{ M.C} = 460 \text{ rev/kWh}, \text{ No. of rev} = ?$ Energy consumption = kWh × t $= \frac{V_L I_L \cos \phi}{1000} \times t$ $= \frac{230 \times 5 \times 1}{1000} \times 8 = 9.2 \text{ kWh}$
	Meter constant = $\frac{\text{rev}}{\text{kWh}}$
	\Rightarrow Rev = M.C × kWh = 460 × 9.2 = 4232 rev
	If meter makes 1635 rev $I_L = 6 A$ $cos\phi = 0.86$ t = ? $MC = \frac{rev}{kWh}$
	$460 = \frac{1638}{\frac{230 \times 6 \times 0.86}{1000} \times h}$ $460 = \frac{1638}{\frac{1638}{1000}}$
	$1.1868 \times h$ Time = 3 hrs

ELECTRICAL Engineering

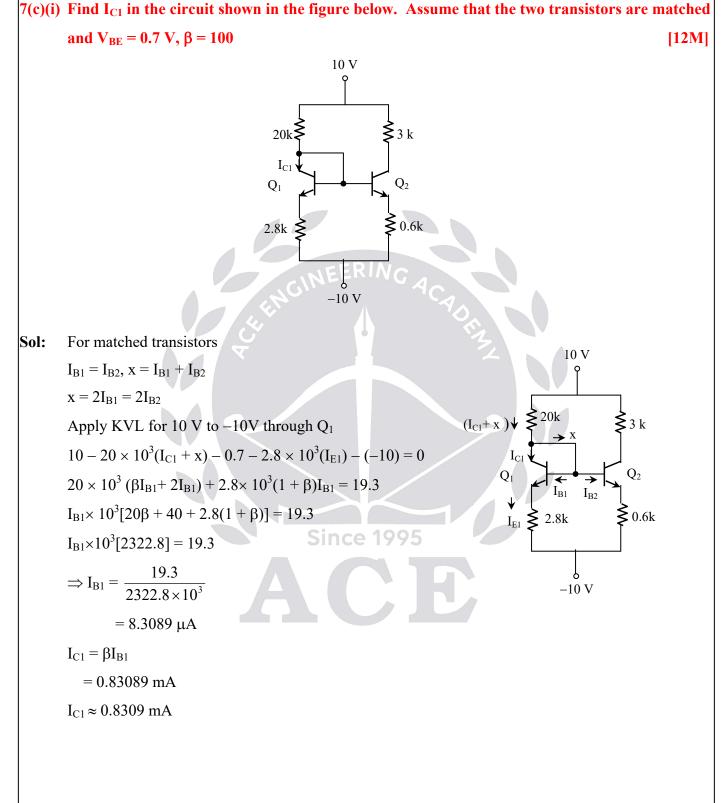

6(c)(i) Find the voltage gain of JFET amplifier shown in the figure below for the drain to source current with gate shorted, $I_{DSS} = 10$ mA, cut-off voltage $V_{GS(OFF)} = -4$ V and $I_D = 2$ mA. If a load resistance of 4.7 k Ω is a.c coupled to the output of this amplifier, calculate the percentage change in voltage gain. [10M]

41



ACE

ACE Engineering Publications	42	ESE 2020 MAINS_Paper_1 Solutions
$V_{gs} = V_i$ $V_0 = I_L(3300)$		
$= -g_m V_{gs}(3300)$		
$\frac{V_0}{V_{gs}} = A_V = \frac{V_0}{V_i} = -g_m \times 3300$		
$= -2.5 \times 10^{-3} (3300)$	0)	
= -8.25		
For a load resistance of 4.7 k Ω ,	ER	NGACACA +
$V_i \sim 10M\Omega $		$V_{\rm gs}$ $3.3K$ $4.7k\Omega$ V_0
$R'_{L} = 3.3k \parallel 4.7k$		
$= 1.93375 \text{ k}\Omega$		
$A_{\rm V} = -g_{\rm m}(3.3\rm{k} 4.7\rm{k})$ $= -2.5(1.93875)$		
	nce	1995
The percentage change in voltage gain		
$A_{V1} = -8.25, A_{V1} = 8.25$		
$A_{V2} = -4.8468, A_{V2} = 4.8468$		
$A = \frac{ A_{V1} - A_{V2} }{ A_{V1} } \times 100 = \frac{8.25 - 4.84}{8.25}$	468 =	41.25%
The gain reduced by 41.25%		


Engineering Publications	43	ELECTRIC	CAL Engineering
6(c)(ii) Find R _B in the figure shown belo current, if V _{CC} = 20 V, V _{EE=} = 5 V,			egligible leakage [10M]
Sol: Given $\beta = 100$, $I_{CO} = 0$, $I_C = 6$ mA Let transistor in active region $I_B = \frac{I_C}{\beta} = 60 \ \mu\text{A}$, $I_E = (1 + \beta)I_B$ $= 6.06 \ \text{mA}$ Then $V_{CE} = 20 - I_CR_C - I_ER_E - (-5)$ = 25 - 6(2) - 6.06(0.1) $= 12.394 \ \text{V}$ As $V_{CE} > 0.2 \ \text{V} \rightarrow \text{Si}$ transistor in a Then apply KVL to BE loop $0 - I_BR_B - 0.7 - I_ER_E - (-5) = 0$ $R_B = \frac{4.3 - 6.06(0.1)}{I_B}$ $= \frac{3.694}{60 \times 10^{-6}}$ $\Rightarrow R_B = 61.566 \ \text{k}\Omega$			

	ACE Engineering Publications	44	ESE 2020 MAINS_Paper_1 Solutions		
7(a)(i	100 memory operand read operations,	and	program involves 200 instruction fetch operations, 80 memory operand write operations. Find the		
	time is 2 ns for a read operation with a	a hit i	his sequence of instructions if the memory access in cache, 5 ns for a read operation with a miss in cache and 10 ns for a write operation with a miss		
			er the time taken for fetch operation to be equal to		
	that of read operation.	iisiuc	[10M]		
Sol:	Total fetch instruction – 200, read – 100 a	nd wr	rite $-80 \rightarrow \text{Total} = 380$		
	As, fetch and read is same, we consider 300 for read for calculation				
	Read access time = $0.9 * 2 + 0.1 * 7 = 2.5$	nsec	NGAC		
	Write access time = $0.9 * 3 + 0.1 * 13 = 4$	nsec	40		
	So, total average = $(300 * 2.5 + 80 * 4) / 3$	380	3		
	= 750 + 320 / 380				
	= 1070 / 380				
	= 2.815 nsec				
7(a)(i	ii) Derive the expression for the number o	f com	parisons required in the worst case for sorting ar		
	array of 'n' elements using Bubble sort	. Cal	lculate it for an array of 100 elements. When will		
	such maximum number comparisons of	cur i	n Bubble sort? [10M]		
Sol:	In bubble sort, we normally try to compare	·e eve	ry consecutive elements and if first element is larger		
	than second one, then we swap the first and second element, else we keep the first and second				
	element as it is, and continue comparison for second and third element.				
	In this way, we assure that in first pass, the highest element of the list is bring down to the bottom of				
	the list. Similarly, we then continue the same process from the elements left out and in such way,				
	•	-	down to the bottom of the list. The algorithm would		
		-	on of any element in any pass as compared to its		
	previous pass.				

Engineering Publications	45	ELECTRICAL Engineering
The worst number of comparisons wo	uld be re	equired whenever the entire given array of elements
are sorted in descending order, so w	ve need t	to scan every element with every other remaining
element in each pass.		
Consider the following example:		
Given Array (Completely sorted in des	cending	order)
5, 4, 3, 2, 1		
Here, we need to compare in following	order fo	r pass 1 for entire list
1. 5 and $4-5$ is higher so it becomes 4	, 5, 3, 2,	1 after swapping
2. 5 and $3 - 5$ is higher so it becomes 4	, 3, 5, 2,	1 after swapping
3. 5 and $2 - 5$ is higher so it becomes 4	, 3, 2, 5,	1 after swapping
4. 5 and $1 - 5$ is higher so it becomes 4	, 3, 2, 1,	5 after swapping
So, total 4 comparisons would be requi	red.	
Result of Pass $1 \rightarrow 4, 3, 2, 1, 5$	•	13
Similarly, we need to scan for the first	4 elemen	nts of the list in pass 2, where the comparison would
happen from 1 to 4, as 5 now is already	sorted a	s follows:
1. 4 and $3 - 4$ is higher so it becomes 3	, 4, 2, 1,	5 after swapping
2. 4 and $2 - 4$ is higher so it becomes 3	, 2, 4, 1,	5 after swapping
3. 4 and $1 - 4$ is higher so it becomes 3	, 2, 1, 4,	5 after swapping
So, total 3 comparisons would be requi	red.	
Result of pass $2 \rightarrow 3, 2, 1, 4, 5$	Since	1995
Similarly, for pass $3 \rightarrow 2$ comparison a		
So, in total $4 + 3 + 2 + 1 = 10$ comparis	sons wou	ld be required in worst case.
If we take this scenario for any larger v	value n, it	would give as follows:
Total comparisons for $n = (n - 1) + (n - 1)$	(n − 2) +	$(n-3) + \dots + 1 = (n * (n-1)) / 2$ by generic
mathematical formula.		
If we take $n = 100$, then total comparison	ons = 100	0(99) / 2 = 99 * 50 = 4950 comparisons.
Ideally this is the worst case scenario,	and wou	ld happen when the given array is completely sorted
in descending order or reversely sorted	•	

ţ Ţ	ACE 46 ESE 2020 MAINS_Paper_1 Solutions
7(b)	A spring controlled, electrodynamic voltmeter has a range of 100 V, has a square law scale response, and it takes 0.08 A on dc for full scale deflection of 120°. The control constant is 1×10^{-6} N-m/degree. The true potential difference across the instrument is 100.42 V, when is reads 100 V at 50 Hz. Determine the initial mutual inductance of the instrument. [20M]
Sol:	Given, V = 100 V, $\theta \propto I^2 \propto V^2$ $\theta \propto V^2$ I = 0.08 A DC, $\theta_{max} = 120^\circ$, $K_C = 1 \times 10^{-6}$ N-m/deg $(V_m)_t = 100.42$ V, when reads 100 V f = 50 Hz, M = ? $\theta = \frac{V^2}{K_C} \frac{dM}{d\theta}$ (1) $\frac{\theta_2}{\theta_1} = \left(\frac{V_2}{V_1}\right)^2$ $\frac{\theta_2}{120} = \left(\frac{100.42}{100}\right)^2$ $\theta_2 = 121.01^\circ$
	From (1) $120 \times \frac{\pi}{180} = \frac{(100)^2}{1 \times 10^{-6}} \frac{dM}{d\theta}$ $\frac{dM}{d\theta} = 0.209 \text{ nH/deg}$ $dM = 0.209 \times 10^{-9} \times (121.01 - 120^\circ)$ = 0.211 nH Mutual inductance at 121.01° is $M = 0.209 \times 10^{-9} \times 121.01 = 25.29 \text{ nH}.$ So that the initial mutual inductance is (25.291 - 0.211) = 25.08 nH

ACE Engineering Fablications	47	ELECTRICAL Engineering

ACE POSTAL COACHING

POSTAL COACHING

ESE / GATE / PSUs

PSCs

ACE Engineering Academy, the leading institute for GATE, ESE and PSUs offers postal coaching (Distance learning programme) for engineering students.

Scan **QR Code** for more info.

ACE PUBLICATIONS

Limited Period Offer UPTO 25% DISCOUNT*

Call: 040-40044403, 040-23234420 | Email: acepostalcoaching@gmail.com | www.aceenggacademy.com

Jack Engineering Publications

7(c)(ii) Find the feedback factor β of the negative feedback network required for an amplifier with open loop gain $A_0 = 2000 \pm 200$ to reduce the variation to less than $\pm 0.2\%$. Find the overall gain of the system with feedback. [8M]

Sol: Given: $A_0 = 2000 \pm 200$,

$$\frac{\mathrm{dA}_{\mathrm{f}}}{\mathrm{A}_{\mathrm{f}}} = 0.2\%$$

 $A_0 = 2000, dA_0 = 200$

 $\frac{\mathrm{dA}_0}{\mathrm{A}_0} = \frac{200}{2000} \times 100 = 10\%$

Then
$$\frac{dA_{f}}{A_{f}} = \frac{1}{1 + \beta A_{0}} \left(\frac{dA_{0}}{A_{0}} \right)$$

$$0.2 = \frac{1}{1 + \beta A_0} (10) \implies 1 + \beta A_0 = \frac{10}{0.2} = 50$$
$$\beta = \frac{49}{A_0} = \frac{49}{2000}$$

$$\beta = \frac{49}{2000}$$
 or 0.0245

The overall gain of the system $A_f = \frac{A_0}{1 + \beta A_0}$ 1995

$$\Rightarrow A_{\rm f} = \frac{2000}{50} = 40$$

- 8(a) Name the layers of Open Systems Interconnection (OSI) model created by the International Organisation for Standardisation for different computer systems to communicate with each other using standard protocols. Mention the important functions of each of these layers in brief. [20M]
- **Sol:** The Open Systems Interconnection (OSI) model describes seven layers that computer systems use to communicate over a network. It was the first standard model for network communications, adopted by all major computer and telecommunication companies in the early 1980s

ACE Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Regineering Publications	49	ELECTRICAL Engineering
--------------------------	----	------------------------

The modern Internet is not based on OSI, but on the simpler TCP/IP model. However, the OSI 7-layer model is still widely used, as it helps visualize and communicate how networks operate, and helps isolate and troubleshoot networking problems.

OSI was introduced in 1983 by representatives of the major computer and telecom companies, and was adopted by ISO as an international standard in 1984.

The OSI model has 7 layers are as follows

1. Physical Layer

The physical layer is responsible for the physical cable or wireless connection between network nodes. It defines the connector, the electrical cable or wireless technology connecting the devices, and is responsible for transmission of the raw data, which is simply a series of 0s and 1s, while taking care of bit rate control.

2. Data Link Layer

The data link layer establishes and terminates a connection between two physically-connected nodes on a network. It breaks up packets into frames and sends them from source to destination. This layer is composed of two parts—Logical Link Control (LLC), which identifies network protocols, performs error checking and synchronizes frames, and Media Access Control (MAC) which uses MAC addresses to connect devices and define permissions to transmit and receive data.

3. Network Layer:

The network layer has two main functions. One is breaking up segments into network packets, and reassembling the packets on the receiving end. The other is routing packets by discovering the best path across a physical network. The network layer uses network addresses (typically Internet Protocol addresses) to route packets to a destination node.

4. Transport Layer:

The transport layer takes data transferred in the session layer and breaks it into "segments" on the transmitting end. It is responsible for reassembling the segments on the receiving end, turning it back into data that can be used by the session layer. The transport layer carries out flow control, sending data at a rate that matches the connection speed of the receiving device, and error control, checking if data was received incorrectly and if not, requesting it again.

5. Session Layer:

The session layer creates communication channels, called sessions, between devices. It is responsible for opening sessions, ensuring they remain open and functional while data is being transferred, and closing them when communication ends. The session layer can also set checkpoints during a data transfer—if the session is interrupted, devices can resume data transfer from the last checkpoint.

6. Presentation Layer:

The presentation layer prepares data for the application layer. It defines how two devices should encode, encrypt, and compress data so it is received correctly on the other end. The presentation layer takes any data transmitted by the application layer and prepares it for transmission over the session layer.

7. Application Layer:

The application layer is used by end-user software such as web browsers and email clients. It provides protocols that allow software to send and receive information and present meaningful data to users. A few examples of application layer protocols are the Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Post Office Protocol (POP), Simple Mail Transfer Protocol (SMTP), and Domain Name System (DNS).

V. allo Sol: $G =$ Acc De: l = L = d = D =	an oscilloscope, the deflection factor of CRT is 80 V/cm and the accelerating voltage is 250 What is the minimum distance required from center of deflection plates to screen that ows full deflection of 4 cm on the oscilloscope screen? [20M] = 80 V/Cm celerating voltage, $V_a = 2500 V$ flection of the electron beam on the screen, $D = 4 \text{ cm}$ Length of the deflection plates. = Distance between the screen and the mid of the deflection plates = Distance between the deflection plates = $\frac{\ell L V_d}{2 d V_a}$ and $G = \frac{1}{S} = \frac{V_d}{D}$
allo Sol: G = Acc De: l = L = d = D =	ows full deflection of 4 cm on the oscilloscope screen?[20M]= 80 V/Cmcelerating voltage, $V_a = 2500 V$ flection of the electron beam on the screen, $D = 4 cm$ Length of the deflection plates.= Distance between the screen and the mid of the deflection plates= Distance between the deflection plates= Distance between the deflection plates
Sol: $G =$ Act De: l = L = d = D =	 = 80 V/Cm celerating voltage, V_a = 2500 V flection of the electron beam on the screen, D = 4 cm Length of the deflection plates. = Distance between the screen and the mid of the deflection plates = Distance between the deflection plates
Acc De: l = L = d = D =	 celerating voltage, V_a = 2500 V flection of the electron beam on the screen, D = 4 cm Length of the deflection plates. = Distance between the screen and the mid of the deflection plates = Distance between the deflection plates
De: <i>l</i> = <i>L</i> = <i>d</i> = D =	flection of the electron beam on the screen, D = 4 cm Length of the deflection plates. = Distance between the screen and the mid of the deflection plates = Distance between the deflection plates
<i>l</i> = L = d = D =	Length of the deflection plates. = Distance between the screen and the mid of the deflection plates = Distance between the deflection plates
L = d = D =	 Distance between the screen and the mid of the deflection plates Distance between the deflection plates
d = D =	Distance between the deflection plates
D =	NEERING
	$=\frac{\ell L V_d}{2 d V}$ and $G = \frac{1}{S} = \frac{V_d}{D}$
	$G = \frac{V_{d}}{\left(\frac{\ell L V_{d}}{2 d V_{a}}\right)} = \frac{2 d V_{a}}{\ell L} \qquad \dots \dots \dots (1)$
	r the minimum distance L, from the geometry, $\frac{L}{D} = \frac{\ell}{D}$ i.e., $L = \frac{D\ell}{d}$ (2)
	om eq. (1), $d = \frac{\ell LG}{2V_a}$ substitute in eq. (2)
L^2 :	$= \frac{2DV_{a}}{G} = \frac{2 \times 4 \times 10^{-2} \times 2500}{80 \times 10^{2}}$ Since 1995
L^2 :	= 0.025
L =	= 0.158 m

	ACE agine Fiblications	52	ESE 2020 MAINS_Paper_1 Solutions
8(c)		cillator.	the condition for starting of sustained oscillation . Neglect h _{oe} and h _{re} . Assume R >> h _{ie} and a loa [20M]
Sol:	BJT-RC-PSO:		
	$R_{\rm B} = R_1 / / R_2$ and in generally $R_{\rm B} > R_i$		
	$R_i = h_{ie}$		
	$R_3 + h_{ie} \approx R$ The equivalent circuit is	nce	1995
	$R_{B} \underset{h_{ie}}{\overset{B}{\underset{h_{ie}}}} h_{ie} \underset{h_{ie}}{\overset{H_{ie}}{\underset{h_{ie}}}} h_{ie}$	$-\frac{R_c}{W_0}$ R _c	$C \qquad C \qquad C \qquad R \qquad P \qquad P$
	Apply KVL to loops		
	$(R + R_C - jX_C)I_1 - I_2R = V_0 \dots \dots$	(1)	
	$(\mathbf{x} + \mathbf{x}_{0} - \mathbf{y}_{0}) = \mathbf{y}_{0} - \mathbf{y}_{0}$	(1)	

ACE	53	ELECTRICAL Engineering
$-I_1R + (2R - jX_C)I_2 - I_3R = 0$	(2)	
$-I_2 R + (2R - jX_C)I_3 = 0$	(3)	
Then		

$$\begin{bmatrix} (\mathbf{R} + \mathbf{R}_{c} - \mathbf{j}\mathbf{X}_{c}) & -\mathbf{R} & \mathbf{0} \\ -\mathbf{R} & 2\mathbf{R} - \mathbf{j}\mathbf{X}_{c} & -\mathbf{R} \\ \mathbf{0} & -\mathbf{R} & 2\mathbf{R} - \mathbf{j}\mathbf{X}_{c} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{1} \\ \mathbf{I}_{2} \\ \mathbf{I}_{3} \end{bmatrix} = \begin{bmatrix} \mathbf{V}_{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

$$\Delta = (R + R_{\rm C} - jX_{\rm C})[(2R - jX_{\rm C})^2 - R^2] + R[-R(2R - jX_{\rm C})]$$

= $(R + R_{\rm C} - jX_{\rm C})[(2R - jX_{\rm C})^2 - R^2] - R^2(2R - jX_{\rm C})$
= $R^3 \left[\left\{ \left(1 + \frac{R_{\rm C}}{R} - j\frac{X_{\rm C}}{R} \right) \right\} \left\{ \left(2 - j\frac{X_{\rm C}}{R} \right)^2 - 1 \right\} - \left(2 - j\frac{X_{\rm C}}{R} \right) \right]$

Assume,
$$\frac{RC}{R} = K$$
, $\frac{X_{c}}{R} = \alpha$

$$= R^{3} \{ (1 + K - j\alpha)(3 - \alpha^{2} - j4\alpha) - (2 - j\alpha) \}$$

$$= R^{3} \{ 3 - \alpha^{2} j4\alpha + 3K - \alpha^{2}K - j4\alpha K - j3\alpha + j\alpha^{3} - 4\alpha^{2} - 2 + j\alpha \}$$

$$\Delta = R^{3} [1 + 3K - (5 + K)\alpha^{2} - j\{(6 + 4K)\alpha - \alpha^{3}\}]$$

$$\Delta_{3} = \begin{bmatrix} R + R_{c} - jX_{c} & -R & V_{0} \\ -R & 2R - jX_{c} & 0 \\ 0 & -R & 0 \end{bmatrix} = V_{0}R^{2}$$

$$= -h_{fe}I_{b}.R_{c}R^{2}$$

$$I_{3} = \frac{\Delta_{3}}{2} = \frac{-h_{fe}I_{b}R_{c}R^{2}}{-R R^{2}}$$

$$I_{3} = \frac{\Delta_{3}}{\Delta} = \frac{-h_{fe} I_{b} K_{C} K^{2}}{R^{3} [(1 + 3K - (5 + K)\alpha^{2}) - j \{(6 + 4K)\alpha - \alpha^{3}\}]}$$

But $I_3 = I_b$ then

ACE Engineering Publications

$$\frac{-h_{fe}R_{C}}{R\{1+3K-(5+K)\alpha^{2}-j\{(6+4K)\alpha-\alpha^{3}\}\}} = 1$$

$$V_{0} = -h_{fe}I_{b}R_{C}, V_{f} = I_{3}R$$

$$\frac{V_{f}}{V_{0}} = \frac{1}{\{(1+3K) - \alpha^{2}(5+K)\} - j\{(6+4K)\alpha - \alpha^{3}\}}$$

To get undamped oscillations imaginary part must be zero

$\alpha^2 = 6 + 4K \qquad \beta = \frac{1}{(1+3)^2}$ $\alpha = \sqrt{6+4K} \qquad = \frac{1}{1+3K}$	$ → \text{ feedback factor} = \frac{1}{(1+3K) - \alpha^2(5+K)} $ $ \frac{1}{3K) - (6+4K)(5+K)} $ $ \frac{1}{-30 - 26K - 4K^2} $ $ \frac{-1}{4K^2 + 23K + 29} $
$\alpha = \sqrt{6 + 4K} = \frac{1}{1 + 3K}$ $\frac{X_{\rm C}}{R} = \sqrt{6 + 4K} = \frac{1}{1 + 3K}$	$\frac{1}{-30-26K-4K^2}$
$\frac{X_{\rm C}}{\rm R} = \sqrt{6 + 4\rm K} = 1$	
	$\frac{-1}{4K^2 + 23K + 29}$
$\frac{1}{\omega RC} = \sqrt{6 + 4K}$	
$\omega = \frac{1}{\mathrm{RC}\sqrt{6+4\mathrm{K}}}$	NGINEERINGACAD
Where $K = \left(\frac{RC}{R}\right)$	E A A A A A A A A A A A A A A A A A A A
	Since 1995
	ACE

GATEway to Government JOBS...

COURSE DETAILS

- Experienced and erudite faculty from ACE Hyd.
- Focussed and relevant
- Structured online practice tests (FREE)
- Scheduled live doubt clearing sessions (FREE)
- Access lectures from anywhere.
- Recorded version of the online live class will be made available throughout the course (with 3 times view).
- 5 to 6 Hours live online lectures per day (5-7 Days a week)

KPSC / KPWD

Starts from 22nd OCT. 2020

SSC JE (GS)

Starts from 14th OCT. 2020

APPSC / TSPSC

Starts from 22nd OCT. 2020

BPSC