

HYDERABAD | DELHI | PUNE | BANGALORE | LUCKNOW | CHENNAI | VISAKHAPATNAM | VIJAYAWADA | TIRUPATHI | KOLKATA | AHMEDABAD

ESE-2020 (MAINS)

QUESTIONS WITH DETAILED SOLUTIONS

CIVIL ENGINEERING

PAPER-II

ACE Engineering Academy has taken utmost care in preparing the ESE-2020 MAINS Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to ESE - 2020 MAINS Solutions are to be sent to the following email address hyderabad@aceenggacademy.com Contact Us : 040-23234418,19,20

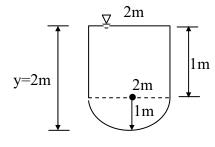
www.aceenggacademy.com

CIVIL ENGINEERING

ESE_MAINS_2020_PAPER - II

Questions with Detailed Solutions

SUBJECT WISE WEIGHTAGE


S.No	NAME OF THE SUBJECT	Marks
01	Fluid Mechanics & Hydraulic Machines	67
02	Hydrology	38
03	Irrigation Engineering	29
04	Environmental Engineering	116
05	Geotechnical Engineering	99
06	Surveying	42
07	Transportation Engineering	89

	ACE Engineering Publications	2	ESE 2020 MAINS_Paper_2 Solutions
01.	(a)		
	Find out the pH of a mixture formed by mi	ixing	the following two water solutions:
	Solution A : Volume 450 mL , pH = 7.5		
	Solution B : Volume 550 mL, pH = 6.5		(8)
Sali	Solution Λ V \cdot 450 ml (nII) \cdot 7.5		$10^{-7.5}$ m $^{1/1}$
501:	Solution A $V_A : 450 \text{ ml}$ $(pH)_A : 7.5$ Solution B $V_B : 550 \text{ ml}$ $(pH)_B : 6.5$		
		(Н	$J_{\rm B}$: 10 mol/m
	$\left(\mathrm{H}^{+}\right)_{\mathrm{mix}} = \frac{\mathrm{V}_{\mathrm{A}}\left(\mathrm{H}^{+}\right)_{\mathrm{A}} + \mathrm{V}_{\mathrm{B}}\left(\mathrm{H}^{+}\right)_{\mathrm{B}}}{\mathrm{V}_{\mathrm{A}} + \mathrm{V}_{\mathrm{B}}}$		
	A D		
	$=\frac{450\times10^{-7.5}+550\times10^{-6.5}}{450+550}=1.881\times$	10^{-7}	mol/lit
	$(pH)_{mix} = \log_{10} \frac{1}{(H^+)_{mix}} = \log_{10} \frac{1}{(1.881 \times 10^{-7})^{-7}}$	$_{7} = 6$	725 4
	$(H^+)_{mix}$ (1.881×10 ,) //	AO.
	G		13
(ii)	Compute the theoretical oxygen demand of	f 108	$2.75 \text{ mg/l of glucose.} \tag{4}$
Sol:	Glucose : 108.75 mol/lit		
	Mol weight of glucose : 180		
	Mol weight of oxygen : 192		
	180 parts of glucose demand : 192 parts of ox	ygei	1
	$\therefore 108.75 \text{ mg/l of glucose demand} : \frac{192}{180} \times 108$	8.75	mg/lit of oxygen
	\therefore Theoretical oxygen demand of glucose = $\frac{1}{1}$	$\frac{.92}{.80}$ ×	108.75 = 116 mg/1
(b)			
(i)	A rectangular plate of $0.5 \text{ m} \times 0.5 \text{ m}$ dime	nsio	ns, weighing 500 N slides down an inclined plane
	making 30° angle with the horizontal at a v	eloc	ity of 1.75 m/s. If the 2 mm gap between the plate
	and inclined surface is filled with a lubrica	ting	oil, find its viscosity in poise. (6)
Sol:			
	Given: Rectangular Plate		
	Cross section = $0.5 \text{ m} \times 0.5 \text{ m} = 0.25 \text{ m}^2$		
	W = 500 N		
	Incline Angle = 30°		
	Velocity 1.75 m/s		
	Engineering Publications Hyderabad • Delhi • Pune • Lucknow		

Lubrication clearance = 2 mm = 2 × 10 ³ m To find: Viscosity in Poise $\frac{V}{\sqrt{30^{\circ}}}$ Assumption 1. The velocity is constant, therefore equilibrium is applicable 2. Velocity profile is linear Solution For Equation: W sin $\theta = F_{c}$ $\Rightarrow W \sin \theta = \mu \cdot \frac{du}{dy} A_{c}$ $\Rightarrow W \sin \theta = \mu \cdot \frac{du}{dy} A_{c}$ $\Rightarrow W \sin \theta = \mu \frac{du}{dy} A_{c}$ $= \frac{500 \times 2 \times 10^{-3} \times 0.5}{1.75 \times 0.25}$ = 1.1428 Pa.8 = 11.428 Poise The viscosity of the oil is 11 428 poise	Engineering Publications	3 Civil Engineering
To find: Viscosity in Poise $V = \int_{a}^{b} \int$	Lubrication clearance = 2 mm	
V $\frac{V}{\sqrt{30^{\circ}}}$ Assumption: 1. The velocity is constant, therefore equilibrium is applicable 2. Velocity profile is linear Solution: For Equation: $W \sin \theta = F_s$ $\Rightarrow W \sin \theta = \mu \frac{du}{dy} A_s$ $\Rightarrow W \sin \theta = \mu \frac{V - \theta}{h} A_s$ $\mu = \frac{Wh. \sin \theta}{V.A_s}$ $= \frac{500 \times 2 \times 10^{-3} \times 0.5}{1.75 \times 0.25}$ $= 1.1428 \text{ Pa.s}$ $= 11.428 \text{ Pa.s}$	$= 2 \times 10^{-3} \mathrm{m}$	
Assumption: 1. The velocity is constant, therefore equilibrium is applicable 2. Velocity profile is linear Solution: For Equation: $W \sin \theta = F_s$ $\Rightarrow W \sin \theta = \mu \cdot \frac{du}{dy} \cdot A_s$ $\Rightarrow W \sin \theta = \mu \cdot \frac{V - \theta}{h} \cdot A_s$ $\mu = \frac{W h \cdot \sin \theta}{V \cdot A_s}$ $= \frac{500 \times 2 \times 10^{-3} \times 0.5}{1.75 \times 0.25}$ = 1.1428 Pass = 11.428 Poise	To find: Viscosity in Poise	
1. The velocity is constant, therefore equilibrium is applicable 2. Velocity profile is linear Solution: For Equation: $W \sin \theta = F_s$ $\Rightarrow W \sin \theta = \mu . \frac{du}{dy} . A_s$ $\Rightarrow W \sin \theta = \mu \frac{V - 0}{h} . A_s$ $\mu = \frac{W.h.\sin \theta}{V.A_s}$ $= \frac{500 \times 2 \times 10^{-3} \times 0.5}{1.75 \times 0.25}$ = 1.1428 Pa.s = 11.428 Poise		h
2. Velocity profile is linear Solution: For Equation: $W \sin \theta = F_s$ $\Rightarrow W \sin \theta = \tau A_s$ $\Rightarrow W \sin \theta = \mu \frac{du}{dy} A_s$ $\Rightarrow W \sin \theta = \mu \frac{V - \theta}{h} A_s$ $\mu = \frac{W h \sin \theta}{V A_s}$ $= \frac{500 \times 2 \times 10^{-3} \times 0.5}{1.75 \times 0.25}$ = 1.1428 Pa.s = 11.428 Poise	Assumption:	
Solution: For Equation: $W \sin \theta = F_s$ $\Rightarrow W \sin \theta = \mu \cdot \frac{du}{dy} \cdot A_s$ $\Rightarrow W \sin \theta = \mu \frac{V - 0}{h} \cdot A_s$ $\mu = \frac{W \cdot h \cdot \sin \theta}{V \cdot A_s}$ $= \frac{500 \times 2 \times 10^{-3} \times 0.5}{1.75 \times 0.25}$ = 1.1428 Pa.s = 11.428 Poise	1. The velocity is constant, therefore equili	brium is applicable
For Equation: $W \sin \theta = F_s$ $\Rightarrow W \sin \theta = \pi \cdot \frac{du}{dy} \cdot A_s$ $\Rightarrow W \sin \theta = \mu \frac{V - \theta}{h} \cdot A_s$ $\mu = \frac{W \cdot h \cdot \sin \theta}{V \cdot A_s}$ $= \frac{500 \times 2 \times 10^{-3} \times 0.5}{1.75 \times 0.25}$ = 1.1428 Pa.s = 11.428 Poise	2. Velocity profile is linear	
$\Rightarrow W \sin \theta = \tau A_s$ $\Rightarrow W \sin \theta = \mu \frac{du}{dy} A_s$ $\Rightarrow W \sin \theta = \mu \frac{V - 0}{h} A_s$ $\mu = \frac{W h \sin \theta}{V A_s}$ $= \frac{500 \times 2 \times 10^{-3} \times 0.5}{1.75 \times 0.25}$ = 11.428 Paise	Solution:	
$\Rightarrow W \sin \theta = \tau A_s$ $\Rightarrow W \sin \theta = \mu \frac{du}{dy} A_s$ $\Rightarrow W \sin \theta = \mu \frac{V - \theta}{h} A_s$ $\mu = \frac{W \cdot h \cdot \sin \theta}{V \cdot A_s}$ $= \frac{500 \times 2 \times 10^{-3} \times 0.5}{1.75 \times 0.25}$ = 1.1428 Pa.s = 11.428 Poise	For Equation: $W \sin \theta = F_s$	Wsin0
$\Rightarrow W \sin \theta = \mu \frac{V - 0}{h} A_s$ $\mu = \frac{W h \sin \theta}{V A_s}$ $= \frac{500 \times 2 \times 10^{-3} \times 0.5}{1.75 \times 0.25}$ $= 1.1428 \text{ Pa.s}$ $= 11.428 \text{ Poise}$		- 13
$\mu = \frac{W.h.\sin\theta}{V.A_s}$ $= \frac{500 \times 2 \times 10^{-3} \times 0.5}{1.75 \times 0.25}$ $= 1.1428 \text{ Pa.s}$ $= 11.428 \text{ Poise}$ Since 1995	\Rightarrow W sin $\theta = \mu \frac{V - 0}{V - 0}$ A	
1.75 × 0.25 = 1.1428 Pa.s Since 1995 = 11.428 Poise	$\mu = \frac{W.h.\sin\theta}{\theta}$	
= 11.428 Poise		
	= 1.1428 Pa.s	nce 1995
The viscosity of the oil is 11 428 poise	= 11.428 Poise	
	The viscosity of the oil is 11.428 poise	

(ii) A channel has two sides vertical and semi-circular bottom of 2 m diameter. Calculate the discharge of water through the channel, when depth of flow is 2 m. Take C = 70 and slope of bed as 1 in 1000.

Engineering Publications	4	ESE 2020 MAINS_Paper_2 Solutions
Given		
C = 70		
$S_0 = \frac{1}{1000}$		
y = 2m		
$A = 2 \times 1 + \frac{\pi \times 1^2}{2}$		
$A = 3.57 m^2$		
$P = 1 + \pi \times 1 + 1 = 5.14 m$		
$Q = C.A.\sqrt{R.So}$ $R = \frac{A}{P} = \frac{3.57}{5.14} =$		
$= 70 \times 3.57 \times \sqrt{0.694 \times \frac{1}{1000}}$	NEERING	ACA
$Q = 6.585 \text{ m}^3/\text{s}$		E III
$Q = 6.59 \text{ m}^3/\text{s}$		
(c) A rectangular sewer with width twic	e its denth is k	ydraulically equivalent to a circular sewer.
		ular sewer and the diameter of the circular

sewer assuming that sewer is running completely full.

Sol: For rectangular sewer

$$d = depth$$

$$B = width$$

For circular sewer

$$d = depth = diameter$$

$$R = d/4$$

$$B = 2d \Longrightarrow d = \frac{B}{2}$$
 $R = \frac{A}{P} = \frac{B \times d}{B + 2d}$

For hydraulically equivalent sections for full flow

 $Q_{rect} = Q_{circ}$ [They are same grade, same material & carry same flow rate]

Since 1995

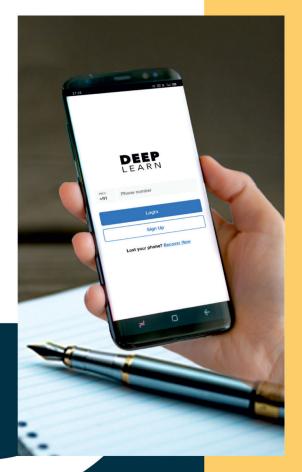
$$(B \times d) \times \frac{1}{n} \times (R)^{2/3} (S)^{1/2} = \frac{\pi}{4} d^2 \times \frac{1}{n} \times (R)^{2/3} (S)^{1/2}$$
$$B \times \frac{B}{2} \times \left(\frac{B \times B/2}{B + 2 \times \frac{B}{2}}\right)^{2/3} = \frac{\pi}{4} d^2 \times \left(\frac{d}{4}\right)^{2/3}$$

Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

(12)

	ACE Engineering Publications	5	Civil Engineering				
	$\frac{\mathrm{B}^2}{2} \times \frac{\mathrm{B}^2/2}{2\mathrm{B}} = \frac{\pi}{4} \mathrm{d}^2 \times \mathrm{d}$						
	$\frac{B^3}{8} = \frac{\pi}{4}d^3 \Longrightarrow B = \frac{8 \times \pi}{4}d = 2\pi d$						
(d)	After how many days will you supply	water	• to soil (clay loam) in order to ensure efficient				
	irrigation of the given crop, if:		(12)				
	Field capacity of soil $= 27\%$						
	Permanent wilting point = 14%						
	Density of soil = 1.5 g/cm ²	3					
	Effective depth of root zone = 75 cm						
	Daily consumptive use of water for the g	iven c	rop = 11 mm				
Sol:	FC = 27%						
	PWP = 14%		E.				
	Density = 1.5 gm/cc		2				
	d = 75 cm = 750 mm						
	$C_u = 11 \text{ mm/day}$						
	To ensure efficient irrigation of the given c	rop,					
	$d_w = Sd (FC - OMC)$						
	= 0.6 Sd (FC - PWP)						
	$= 0.6 (1.5) (750) \left(\frac{27 - 14}{100}\right)$		1005				
	= 87.75 mm	ice	1995				
	Frequency of irrigation = $f = \frac{d_w}{C_u}$						
	$f = \frac{87.75 \text{mm}}{11 \text{mm}/\text{day}} = 7.977 \text{days} \approx 8 \text{days}$						
	Note: Efficient irrigation means external supply of water to the field, when the soil in the field is at its						
	optimum moisture content						

ONLINE COURSES


for **ESE | GATE | PSUs** curated by India's best minds. Access courses through Mobile App only from anywhere.

EXCITING ANNOUNCEMENT!!

We have launched **3 months subscription for GATE 2021,** Streams: ECE | EEE | ME | CE | CS | IN | PI* **on Deep-Learn**. Online recorded classes, Fee: Rs. 16,000/- only (without Material).

RECORDED VIDEO LECTURES for **GATE + PSUs - 2021/2022**, **ESE + GATE + PSUs - 2021/2022**, **ESE : General Studies**, **SSC-JE** Streams: ECE | EEE | ME | CE | CS | IN | PI*

SALIENT FEATURES:

- Dynamic & Experienced Faculty.
- Subscription options 3 months, 6 months, 12 months, 18 months & 24 months.
- Covers Exam Preparation Strategy and Live Doubt clearing sessions.
- Facilitates Enhanced learning by incorporating 2d & 3d animations.
- Free Online Test Series (Total 118 tests, subject wise, sectional wise, and full length mock tests.
- Compose online study notes and save it for future reference.
- Comprises of weekly self assessment tests.
- Free Interview Guidance & Post GATE Guidance for subscribers.
- ASK AN EXPERT feature for doubt clarifications via emails/video (services to be availed within 12 hrs.)
- Procure Full set of Study Material (Optional)*
- ▶ EMI option available.

Scan QR Code to Download DEEP-LEARN Android Platform App

www.deep-learn.in www.aceenggacademy.com Help: support@frostinteractive.com Email: hyderabad@aceenggacademy.com Call: 040-23234418/19/20

	ACE6ESE 2020 MAINS_Paper_2 Solutions
(e)	
(i)	A town with a population of 3 lakh produces solid waste at a rate of 2.5 kg/capita/day. If the waste is compacted to a density of 1500 kg/m ³ , how much volume of landfill site is needed in a year? Assuming that the ratio of solid waste to cover is 4 : 1, what volume of cover soil is needed in a year? What type of soil would you recommend as a cover? (4)
Sol:	Population = 3 lakh Rate of S.W. generation = 2.5 kg/capital/day $[\rho_{com}]_{sw}$: 1500 kg/m ³ Volume of cover soil is needed / year = ? Type of soil = ? Total wt of s.w. generated/year = Rate of generation × Population × no. of days $= 2.5 \times 3 \times 10^5 \times 365$ kg Volume of compacted land fill required = Volume of compacted S.W. in fill $= \frac{\text{Total wt of SW generated}}{[\rho_{com}]_{sw}} = \frac{2.5 \times 3 \times 10^5 \times 365}{1500} = 182500 \text{ m}^3$ Volume of sewer soil required = $\frac{\text{Volume of land fill}}{4} = \frac{182500}{4} = 45625 \text{ m}^2$ Loamy (or) silty soils that are free of large stones and excess gravel are the best cover for a land fill. Clayee soils may be sticky and difficult to spread, & sandy soils are subjected to wind erosion.
(ii)	The sound power from a voice shouting is 0.002 W. What is the Sound Power Level ? What are the Sound Intensity, Sound Intensity Level, the Sound Pressure and the Sound Pressure Leve at a distance of 10 metres from the source? Assume that sound radiates from the source in al directions
Sol:	(8) $P = 0.002 \text{ w} = 0.002 \times 10^{12} \text{ Pa} = 2000 \mu \text{ Pa}$ $SPL \qquad L = 20 \log_{10} \frac{P}{P_o} = 20 \log_{10} \frac{2000}{20} = 40 dB$ Sound 'P' $10 \log_{10} \frac{I}{I_o}$ $I_o : 1 \times 10^{-12} w/m^2 \qquad I = \text{Intensity of sound}$ $40 = 10 \log_{10} \frac{I}{1 \times 10^{-12}} \Rightarrow I = 1 \times 10^{-12} \times 10^4$ Intensity $I = 1 \times 10^{-8} w/m^2$

	ACE 7	Civil Engineering
02.	(a)	
(i)	What is \$\$ index ? How is it estimated ? What a	re the factors that affect \oplus index ? (8)
Sol:	:	
	For consistency in hydrological calculations, a co	onstant value of infiltration rate for the entire storm
	duration is adopted. The average infiltration rate is	s called the infiltration index.
	The two commonly used infiltration indices are	
	(1) ϕ -Index (2) w-index	
	1. •-Index: This is defined as the rate of infiltr	ation above which the rainfall volume equals runof
	volume. (i) Intensity of rainfall cm/hr Time (hrs) \rightarrow	$= \frac{P_e - R}{t_e}$
		lly involve some trial. Since the infiltration capacity
		verage loss rate in the form of ϕ -Index is best suited
	for design storms occurring on wet soils in which	case the lose rate reaches a final constant rate prior

Since 1995

 ϕ - Index = $\frac{P_e - R}{t}$

to or early in the storm.

 $P_e = Rainfall depth corresponding to time t_e$

R = Runoff depth

 $t_e = Time of excess$

Steps to be Followed:

- Assume a trial value of t_e, [take P_e corresponding to t_e] 1.
- 2. Compute ϕ -Index
- Plot hytograph and check. If $i > \phi$ -Index, then assumed t_e is correct and obtained ϕ -Index is 3. correct or continues trials.

ACE Engineering Publications

ACI	C				8			ESE 2020 MAINS_Paper_2 Solution					
Engineering Publicat	ons												
Factors	affecting	φ-Index	:										
• Soil type													
• Vegetation cover													
•	Initial moisture conditions												
		-	cipitat	ion pro	duced	a dire	ect run	off of 5.8 cm. The time distribution o					
	m is given							(12)					
Estima	te the φ in						_	(12)					
		rom sta		icreme									
		(h)		in each	-	cm)							
		1			0.4 EF	ling							
		2			0.9	11	25	9					
		3	4		1.5		_						
		4	र		2.3		_	2					
		5			1.8								
		6			1.6								
	7 2 1.0				1.0								
		8			0.5								
ol: $P = 10 c$	cm, R = 5.8	8 cm, φ-1	ndex =	= ?									
Time (hrs) 0-1	1-2	2-3	3-4 s	.4-5	5-6	6-7	7-8					
i, cm/h	r 0.4	0.9	1.5	2.3	1.8	1.6	1.0	0.5					
P, cm	0.4	0.9	1.5	2.3	1.8	1.6	1.0	0.5					
Trial-1													
	$t_e = 8$ hou												
$P_{e} = 0.4$	+0.9+1.	5 + 2.3 -	+ 1.8 +	1.6+1.	0+0.5 =	= 10 ci	n						
	$\mathbf{x} = \frac{\mathbf{P}_{\mathrm{e}} - \mathbf{R}}{\mathbf{t}_{\mathrm{e}}}$	$\frac{10-3}{8}$	$\frac{5.8}{}=0$.525 cm	/hr								
φ ₁ -Inde	Check: Compare i & ϕ_1 -Index												
	Compare	i &	Idex				$i_1 = 0.4 \text{ cm/hr}, i_8 = 0.5 \text{ cm/hr} < \phi_1$ -Index						
Check:	-			-Index									

mm diameter and specific gravity 2.66, porosity
ally. Compute
(10)
percent.
m^2 /sec and assume $C_D = \frac{24}{R}$.
K
995

	ACCE 10 ESE 2020 MAINS_Paper_2 Solutions
(ii)	Briefly explain various factors affecting bactericidal efficiency of chlorine in water treatment
	process. (10)
Sol:	Factor affecting bacterial efficiency of chlorine are
	(i) chlorine dose
	(ii) Contact time
	(iii) Temperature
	(iv) pH
	(v) Number of organisms (or) density of organisms i.e., quality of water
	(vi) Form of chlorine
(c)	
(i)	A flat plate of 2 m width and 4 m length is kept parallel to air flowing at 5 m/s velocity at 15° C.
	Determine the length of the plate over which boundary layer is laminar, shear at the location
	where boundary layer ceases to be laminar and total force on both sides on that portion of plate
	the boundary layer is laminar. (15)
	Take $\rho = 1.208 \text{ kg/m}^3$ and $v = 1.47 \times 10^{-5} \text{ m}^2/\text{s}$.
Sol:	Given: A flat plate $C/S = 4 \text{ m} \times 2 \text{ m}$
	$U_{\infty} = 5 m/s$
	$\rho_{air} = 1.208 kg / m^3$
	$v = 1.47 \times 10^{-5} \text{ m}^2/\text{ s}$
	To Find:
	1. The length "x" uptill which laminar B.L exists
	2. τ_o at x
	3. F _D on both sides in laminar B.L.
	5. P _D on both sides in familiar B.L.
	Assumptions:
	1. The plate is smooth, therefore critical $R_e = 5 \times 10^5$
	2. Blasius velocity profile (exact velocity profile) exists.
	Solution:
	$R_{ex} = \frac{U_{\infty}.x}{v}$
	$\Rightarrow 5 \times 10^5 = \frac{5.x}{1.47 \times 10^{-5}}$
	x = 1.47 m (1)
ACE	Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications	11 Civil Engineering
$\tau_o = C_f \frac{1}{2} \rho U_{\infty}^2$	
$C_{f} = \frac{0.664}{\sqrt{R_{ex}}}$ for Blasius V.P.	
$C_f = \frac{0.664}{\sqrt{5 \times 10^5}} = 9.39 \times 10^{-4}$	
$\tau_{o} = 9.39 \times 10^{-4} \times \frac{1}{2} \times 1.208 \times 5^{2}$	
$\tau_o = 0.01418$ Pa (OR) 14.18 Milli Pa	——(2)
$C_{\rm D} = \frac{1.328}{\sqrt{R_{\rm eL}}}$ for Blasius V.P	
$=\frac{1.328}{\sqrt{5\times10^5}}=1.878\times10^{-3}$	EERING ACA
$F_{\rm D} = 2C_{\rm D}. \left(L \times B\right) \frac{1}{2} \rho U_{\infty}^2$	THE AND
$= 2 \times 1.878 \times 10^{-3} \times 4 \mathrm{m} \times 2 \mathrm{m} \times \frac{1}{2} (1.208)$	$8) \times 5^2$
$F_D = 0.1667 \text{ N} \text{ (or) } 166.7 \text{ milliN}$	—(3)
(ii) What are the functions of a surge tank ?	.? (5)

Sol: The functions of surge Tank:

- When the flow through penstock has to be reduced, the penstock can experience water hammer effect. Surge Tank helps in avoiding the bursting of penstock, as the fluid rises in surge tank, thus absorbing the rise in pressure.
- Surge Tanks also can behave as secondary reservoirs. If the flow in penstock has to be increased, the fluid flows from surge tank in order to create the required flow rate.

03. (a)

- (i) In a factory, coal is burnt at a rate of 1 kg/second. Analysis of the coal reveals a sulphur content of 3 percent. The sulphur in the ash is 5 percent of the input sulphur. What is the annual rate of emission of sulphur dioxide ? (10)
- **Sol:** Rate of coal burnt = 1 kg/second
 - % sulphur in coal = 3
 - % ash in sulphur = 5

Engineering Fablications	12	ESE 2020 MAINS_Paper_2 Solutions					
% gaseous sulphur = $100 - 5 = 95$							
SO_2 emission / year = ?							
	Sulphur gas emission/ year = $1 \times \frac{3}{100} \times \frac{95}{100} \times \frac{1}{1000} \times 1365 \times 24 \times 60 \times 60$ t/year						
= 898.776 t/y 1 part of sulphur = 2 parts of SO ₂	/ear						
$\begin{bmatrix} S + O_2 \rightarrow SO_2 & \text{mol wt of } S = 32 \\ & \text{mol wt of } SO_2 = 64 \end{bmatrix}$							
$\therefore SO_2 \text{ gas emission rate} = 2 \times 898.776 \text{ m}$ $= 1797.552 \text{ t/ye}$	-						
(ii) Describe various functional elements	EER	waste management system. (10)					
Sol: Functional elements of solid waste man							
1. Generation	agement						
2. Collection		2					
3. Transfer & transport							
4. Processing & recovery							
5. Disposal							
(b)							
(i) Water are the effects of water logging	?	(5)					
	Since	1995					
• Inhibiting activity of soil bacteria							
• Decrease in available capillary wa	ter						
• Fall in soil temperature, as waterle	ogged soi	l warms up very slowly, as a result of action of soil					
bacteria is sluggish							
• Defective air circulation because o	f high G	WT, drainage becomes impossible, CO ₂ liberated by					
the plant roots cannot be dissolved a	nd taken a	away					
• Rise of Salt: Accumulation of alkali	salts in t	he surface soil by the upward flow of water.					
Note: Alkaline deposit changes the pH v	value of s	oil					
Soils with pH 7.0 to 8.5 norma	Soils with pH 7.0 to 8.5 normal yields						
Soils with pH 8.0 to 9.0 decrea	sed yield						
Soils with $pH > 11$ infertile							
• Delay in cultivation operations							
ACE Engineering Publications Hyderabad • Delhi • Pune • Lu	icknow • Beng	aluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad					

	ACE Engineering Publications	13	Civil Engineering
	• Growth of wild flora, leading to was	stage o	f money and time
	• Adverse effect on community health	1	
(b) (ii)	A centrifugal pump runs at 1000 rpm a	gainst	a head of 16 m and carries 145 litres/s of water
	discharge. The impeller diameter at the	outlet	is 300 mm and the width there is 60 mm. If the
	vane angle ϕ at the outlet is 40°, determine	ne the	manometric efficiency. (15)
Sol:			
	Given data: N = 1000 rpm, $H_m = 16 m$		
	$Q = 145 \text{ lit/s}, D_2 = 300 \text{ mm}$		
		ER/	NGA
			α_2
	β_2		- TZ
		V ₂	V _{f2}
	V _{r2}	v ₂	1
	V ₁		
	$Q = \pi D_2 B_2 V_{f2} \qquad \qquad u_1^{\text{T}} V_{r1} \\ g_1 \qquad \qquad u_1^{\text{T}} S_1$	α ₁ =9	0°
	i.e., $0.145 = \pi \times 0.3 \times 0.06 \times V_{f2}$	V _{w1} =	= 0
	\Rightarrow V _{f2} = 2.564 m/s		
	$u_2 = \frac{\pi D_2 N}{60} = \frac{\pi \times 0.3 \times 1000}{60} = 15.71 \mathrm{m/s}$	nce	1995
	From exit velocity triangle		
	$\tan\beta_2 = \frac{V_{f2}}{u_2 - V_{w_2}}$		
	i.e., $\tan 30 = \frac{2.564}{15.71 - V_{\text{ex}}}$		
	$15.71 - V_{\omega_2}$		
	\Rightarrow V _{ω_2} = 11.27 m/s		
	The manometric efficiency is given by		
	$\therefore \ \eta_{mano} = \frac{gH_m}{u_2 V_{\omega_2}} = \frac{9.81 \times 16}{15.71 \times 11.27} = 0.886$		
	= 88.6%		
ACE	Engineering Publications Hyderabad • Delhi • Pune • Luckno	w . Rong	aluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

EXCLUSIVE

ONLINE CLASSES

ENGLISH

ESE | GATE | PSUs – 2022

COURSE DETAILS

• For ESE+GATE+PSUs Students

- 1. Online Live Classes Technical Subjects Only.
- 2. Recorded Classes General Studies Subjects (on ACE Deep Learn Platform)
- Recorded version of the online live class will be made available through out the course (with 3 times view).
- Doubt clearing sessions and tests to be conducted regularly.
- 3 to 4 hours of live lectures per day in week days (Timing 5 pm to 9 pm) On Sundays 5-6 Hours Live Online Lectures (6 days a week).
- Access the lectures from any where.

BATCH DATE

7th NOVEMBER 2020

DISCOUNTS

- **Rs. 5,000 OFF for ACE Old Students**
- Pay Full fee & Get 5% Additional Discount.
- 20% off for IIT / NIT, Students.
- 15% off for IIIT / Govt. College students.

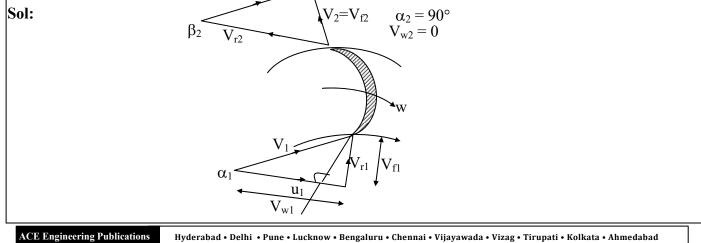
FEE

ESE + GATE + PSUs : Rs. 70,000/-GATE + PSUs : Rs. 55,000/-(Fee can be paid in two installments)

Engineering Publications		ESE 2020 MAINS_Paper_2 Solutions			
(c) A municipality has directed to upgrade its primary wastewater treatment unit to a secondary					
unit that can meet an effluent star	ndard of 20	mg/l BOD ₅ and 20 mg/l total suspended solids.			

They have selected a completely mixed activated sludge system. BOD₅ of total suspended solids is 63% of TSS concentration. Estimate the required volume of aeration tank. The following data is available from existing primary plant:

Flow = $0.150 \text{ m}^3/\text{s}$, BOD₅ = 80 mg/l.


Assume the following values for half velocity constant = 95 mg/l of BOD₅ ; maximum growth rate constant = 2.5/day; Decay rate of micro-organism = 0.050/day; Yield coefficient = 0.50 mg VSS per mg BOD₅ removed ; MLVSS = 2000 mg/l. (20)

Sol.

 $S : y_{e} = 20 \text{ mg/l } V = ?$ $S_{o} : y_{i} = 80 \text{ mg/l } Q_{o} = 0.15 \text{ m}^{3}/\text{sec} : 0.15 \times 24 \times 60 \times 60 \text{ m}^{3}/\text{day}$ $K_{s} : 95 \text{ mg/l} \qquad K_{o} : 2.5 \text{ d}^{-1} \qquad K_{d} : 0.05 \text{ d}^{-1}$ $Y = 0.5 \text{ mg/mg of } VSS \ X = 2000 \text{ mg/l}$ $\frac{K_{o}S}{K_{s} + S} = \frac{Q_{o}Y}{VX} (S_{0} - S)$ $\frac{2.5 \times 20}{95 + 20} = \frac{(0.15 \times 24 \times 60 \times 60) \times 0.5}{V \times 2000} \times (80 - 20)$ $V = 447.12 \text{ m}^{3}$

04.

(a) An outward flow turbine running at 200 rpm, works on a discharge of 5 m³/s under a head of 40 m. Internal and external diameters of the wheel are 2 m and 2.5 m respectively while the width at the inlet and outlet is 200 mm. Assuming the discharge to be radial at the outlet, determine angles of the turbine at the inlet and outlet. Also draw the velocity triangles for outward flow turbine.

	1:	15 Civil Engineering	
Given data:			
N = 200 rpm			
$Q = 5 m^3/s$			
$D_1 = 2m$			
H = 40 m			
$D_2 = 2.5 m$			
$B_2 = B_1 = 200 \text{ mm}$			
$u_1 = \frac{\pi D_1 N}{60}$			
$=\frac{\pi\times2\times200}{60}$			
= 20.94 m/s	NEE	ERING	
$u_2 = \frac{\pi D_2 N}{60} = \frac{\pi \times 2.5 \times 200}{60} = 26.$	18m/s	ACAD	
$Q = \pi D_1 B_1 V_{f1}$		3	
$5 = \pi \times 2 \times 0.2 \times V_{fl}$			
\Rightarrow V _{fl} = 3.98 m/s			
Similarly,			
$Q = \pi D_2 B_2 V_{f2}$			
$5 = \pi \times 2.5 \times 0.2 \times V_{f2}$			
\Rightarrow V _{f2} = 3.183 m/s			
From exit velocity triangle	Cinc	ce 1995	
$\tan \beta_2 = \frac{V_{f_2}}{u_2} = \frac{3.183}{26.18}$			
$\Rightarrow \beta_2 = 6.93^\circ \rightarrow 9 \text{Ans})$			
Similarly, from inlet velocity tria	ingle		
$\tan(180-\beta_1) = \frac{V_{f1}}{V_{w_1}-u_1}$	→(1)		
In inlet velocity triangle only ty	vo parameters	ers ($u_1 \& V_{f1}$), are known. At least three parameters a	are

In inlet velocity triangle only two parameters ($u_1 \& V_{fl}$), are known. At least three parameters are required to calculate any parameter related to inlet velocity triangle. As the data is insufficient we assume.

$$V_1 = \sqrt{2gH} \longrightarrow (2)$$

'Engineering Publications

(Note: However, the above assumption is very crude because in reaction turbine available head is not completely converted in kinetic energy as some part of head is available in the form of pressure energy as well).

16

:
$$V_1 = \sqrt{2 \times 9.81 \times 40} = 28.01 \,\mathrm{m/s}$$

But $V_1^2 = V_{f1}^2 + V_{w_1}^2$

:.
$$V_{w1} = \sqrt{28.01^2 - 3.98^2} = 27.73 \,\text{m/s}$$

From equation (1)

$$\tan \beta_{1} = \frac{V_{f1}}{V_{w1} - u_{1}} = \frac{3.58}{27.73 - 20.94}$$
$$\Rightarrow \beta_{1} = 30.4^{\circ} \qquad \rightarrow \text{(Ans)}$$

(b)

(i) Explain the factors that cause sludge bulking in activated sludge process for waste water treatment. (10)

Sol: Bulking Sludge Problems:

Bulking Sludge is a major problem that can cause serious operational issues to the management of wastewater treatment plant. Basically with this condition around, it will be very difficult in order to get a good separation of sludge and water and this will lead to carry over of solids to the discharge side and clog up the final polishing filter.

A bulking sludge is a condition defined by solids with poor settling characteristic (which are either slow or unable to settle at all and will just float on top) and this can be observed by the high SV test result. As a general guide, the SV test will indicate the volume of settled solids after 30 minutes time period. Another characteristic which we can use to refer to the bulking sludge problem is the poor compactibility of the sludge in which there are water or gas trapped in between the solid floc and thus leads to the sludge having a low density and it won't agglomerate well together in a compact matter. Both

sludge characteristics are the main reasons that will affect quality of wastewater discharge.

Growth of filamentous bacteria is the main cause that leads to poor settling characteristic of the waste sludge. Although presence of these microorganisms can help towards efficient removal and breakdown of organic matter, they have weak floc forming behavior and sludge mass containing these bacteria will be slow to settle. Although presence of large number of filamentous bacteria is generally blamed and identified as the main cause, there could be other microorganisms that could also lead to the same condition which are the growth of acid-favoring fungi which predominates due to the low

Engineering Publications	17	Civil Engineering

nitrogen content of the feed water and acidic condition in the pond. There are no specific names towards naming of these microorganisms but they are all grouped under the slime producing genera.

(ii) Differentiate and compare anaerobic digestion process and composting process used for solid waste treatment. (10)

Sol:

ANAEROBIC DIGESTION	COMPOSTING		
1.The Process of Anaerobic – Without	1. The Process of Composting is Aerobic -		
Oxygen Biological decomposition occurs in	With Oxygen Biological decomposition occurs		
a enclosed structure and naturally - occuring	in a controlled. Open air setting where		
microorganisms breakdown organic	microorganisms breakdown organic material		
materials			
2. The Emissions of Low Methane is	2. The Emissions of High Commercial scale		
collected and used to create energy	compost can release significant amounts of		
	methane into the atmosphere		
3. The Soil Benefits of Digested Waste is	3. The Soil Benefits of Composted Waste is		
Nutrient Dense No Chemicals are released	Healthy Regenerates poor soil and produces		
into the soil	healthy microorganisms		
4. The Energy Produced of Large Amounts	4. The Energy Produced is None		
Processed waste creates biogas which can			
be used to power homes, cars, and more	1005		
5. The Environmental Impact of Immense	5. The Environmental Impact is High		
Keeps waste our of landfills, produces clean	Keeps waste out of landfills and can prevent		
energy and prevents erosion and pollution	erosion and pollution		
6. The Processing Time is $20 - 30$ Days	6. The Processing Time is 12 Weeks		

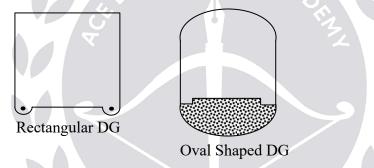
(c)

(i) What do you understand by galleries and shafts and why are they provided in gravity dams?

(12)

Sol: Galleries and Shafts in Gravity Dams:

A gallery is a formal opening left in a gravity dam. This may run in transverse or longitudinal direction and may run horizontally or on a slope. The shape and size varies from dam to dam and is generally governed by the functions it has to perform.


Engineering Publications	18	ESE 2020 MAINS_Paper_2 Solutions

Purposes of galleries:

- To provide drainage of the dam section i.e., constant seepage water is drained off through galleries
- To provide facilities for drilling and grouting operations for foundations
- To provide space for header and return pipes for post cooling of concrete and grouting the longitudinal joints after the completion of dam
- To provide access to observe and measure the behaviour of structure, examining development of cracks etc.
- To provide an access of mechanical contrivances needed for the operation of outlet gates.

Shafts:

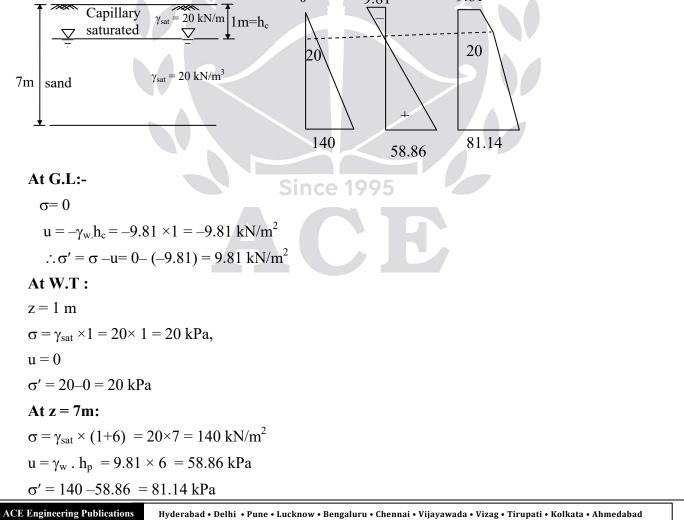
- Vertical opening in the dam are called shafts
- Shafts are provided to connect galleries at various levels.
- Plumber shaft is provided to measure the deflections of dam by suspending a plumbob in t.

(ii) During a recuperation test, the water in an open well was depressed by 2.5 m by pumping and it recuperated 1.8 m in 80 minutes. Find yield from a well of 4 m diameter under a depression head of 3 m.

Sol:

 $h_1 = 2.5 m$

Recuperated head = 1.8 m $h_2 = 2.5 - 1.8 = 0.7$ m $T_r = 80$ mins


$$D = 4 m H = 3mQ_y = ?$$

$$k_{s} = \frac{1}{T_{r}} \ell n \left[\frac{h_{1}}{h_{2}} \right]$$
$$k_{s} = \frac{1}{80} \ell n \left[\frac{2.5}{0.7} \right]$$

ACE Engineering Publications

Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

		19		Civil Engineering
	$k_s = 0.015912 min$			
	$Q_y = k_s A H$			
	$Q_{y} = 0.015912 \times \left(\frac{\pi \times 4^{2}}{4}\right) \times 3$			
	$Q_y = 0.6 \text{ m}^3/\text{mins}$			
	$Q_y = 10$ lit/sec			
05.				
(a)	The soil profile in a particular site consis	sts of	7 m thick sa	ndy layer overlain by a layer of clay.
	The water table is at 1 m below the groun	nd sui	face. Above	the water table, the sand is saturated
	with capillary moisture. The dry unit we	ight o	f sand is 17 l	N/m ³ and its saturated unit weight is
	20 kN/m ³ . Plot the total stress, neutral s	tress	and effective	stress with depth up to a depth of 7
	m.		4	(12)
Sol:	σ		u	σ
	$\begin{array}{c} & 0 \\ \hline & Capillary \\ \bigtriangledown & saturated \end{array} \\ \gamma_{sat} = 20 \text{ kN/m} 1 \text{m} = h_c \end{array}$		9.81	9.81

ACE Engineering Publications	20	ESE 2020 MAINS_Paper_2 Solutions
---------------------------------	----	----------------------------------

(b) What is meant by N value ? Why should we apply corrections for the N value obtained from the field? Briefly explain the corrections (12)

Sol:

N value is the number of blows required to penetrate the last 30 cm of sampler while collecting the sample. In standard penetration test, it is represented as standard penetration number. Standard penetration number is corrected for over burden correction and dilatancy correction.

Overburden correction:

In granular soils, over burden pressure affects penetration resistance.

- If two soils having same relative density but different confining pressure, the one with high confining pressure gives higher penetration number.
- 'N' value is underestimated at shallow depths and overestimated at deeper depths. for uniformity, over burden pressures are corrected to standard effective over burden pressure.

According to Gibbs and Holtz: N' = N_R ×
$$\frac{350}{\sigma_o^{'} + 70} (\sigma_o^{1} \le 280 \text{ kPa})$$

According to Peck, Hansen and Thornburn: N'= $0.77 \times N_R . \log \left(\frac{19.05}{\sigma} \right)$

N' : Corrected N - value

 N_R : ObservedN – value

Dilatancy correction:

Silty fine sands and fine sands below water table develop pore water pressure, inturn increase the resistance of soil and hence penetration number. 1995

Terzaghi and peck recommend

$$N''=15+\frac{1}{2}(N'-15) \Longrightarrow if N'>15$$

$$N'' = N'$$
 (if N'< 15)

Dilatancy correction should apply after over burden correction only.

N" : corrected N-value after dilatancy correction

N': corrected N-value after overburden correction

ONLINE + OFFLINE CLASSES

ENGLISH

ESE | GATE | PSUs – 2022

Morning / Evening / Weekend Baches for College Going Students

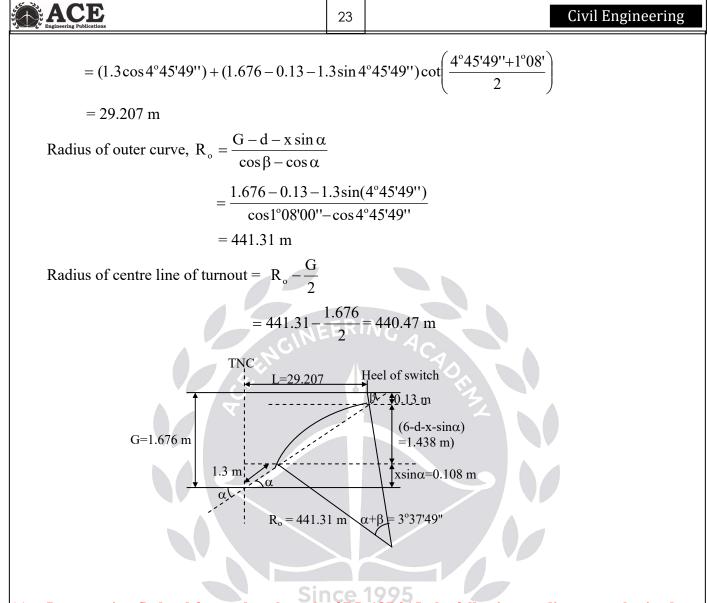
OELHI HYDERABAD PUNE VIJAYAWADA VIZAG TIRUPATI

COURSE DETAILS

- Classes will be planned & conducted as per Government Regulations - partially online and offline (classroom coaching).
- Payment options Available -Partial Payment/ Full Payment.
- After the payment of II
 Installment Get access to
 complete study material and
 Online Test Series.
- Recorded version of the online live class will be made available through out the course (with 3 times view).
- Doubt clearing sessions and tests to be conducted regularly.

BATCH DATE

7th NOVEMBER 2020



Scan QR Code for more info.

Email: hyderabad@aceenggacademy.com | www.aceenggacademy.com

	ACE Engineering Fublications	21	Civil Engineering		
(c)			phase traffic signal with pedestrian crossing by of traffic on cross roads A and B during design		
	<u> </u>		saturation flows on roads A and B are given as		
	1200 PCU and 1000 PCU per hour respectively. All red time required for pedestrian crossing is 12 seconds and amber times of 2 seconds for clearance in each phase is to be provided. (12)				
Sol:	Optimum Signal Time:				
	It is the length of cycle of a signal corresp	ondii	ng to minimum total delay to all the vehicle at the		
	approach roads of intersection				
	Given:				
	Saturation flow on road $A = S_a = 1200 \text{ PCU}/$	/hr			
	Saturation flow on road $B = S_b = 1000 \text{ PCU/}$	′hr			
	Normal flow on road $A = q_a = 480 \text{ PCU/hr}$	ERI	NG		
	Normal flow on road $B = q_b = 250 \text{ PCU/hr}$		AC4		
	All red time $T = 12$ sec		On the		
	Amber time = 2 sec		32		
	No. of phases $n = 2$				
For road A, $y_A = \frac{q_a}{s_a} = \frac{480}{1200} = 0.4$					
	For road B, $y_B = \frac{q_b}{s_b} = \frac{250}{1000} = 0.25$				
	$y = y_a + y_b = 0.4 + 0.25 = 0.65$				
	Lost time per cycle $'L' = 2n + R$ Sin	ce	1995		
	= 2(2) + 12				
	= 16 sec				
	Cycle length = $\frac{1.5L+5}{1-y}$				
	$=\frac{1.5(16)+5}{1-0.65}=82.85\mathrm{sec}$				
	say 83 sec				
Green time for road A = G _a = $\frac{y_a}{y}(C_o - L)$					
	$=\frac{0.4}{0.65}(83-16)$				
=41.23 sec					
ACE	Engineering Publications Hyderabad • Delhi • Pune • Lucknow		aluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad		

	ESE 2020 MAINS_Paper_2 Solutions
	Say 41.5 sec
	Green time for road B = G _B = $\frac{y_B}{y}(C_o - L)$
	$=\frac{0.25}{0.65}(83-16)$
	= 25.77 sec
	Say 26 sec
	For Amber time of 2 sec each for clearance
	total cycle time = $41.5 + 26 + 12 + 2 + 2 = 83.5$ sec
	Phase Diagram:
(d)	Phase-I G_A R_A R = all red time Phase-II R_B G_B + 43.5 sec $+ + + + 26 sec$ $+ + + 26 secCalculate lead and radius of a turnout on a Broad Gauge railway track with the following data:Heel divergence = 130 mmStraight length between theoretical nose of crossing and tangent point of crossing = 1.3 mAngle of crossing = 4°45'49''Angle of switch = 1°08'00''$
	Broad Gauge width = 1.676 m
	Show the values on a neat sketch of turnout. (12)
Sol:	Given:
	Angle of crossing ' α ' = 4°45'49"
	Angle of switch ' β ' = 1°08'00"
	Heed divergence $'d' = 0.13 \text{ m}$
	Straight length between theoretical nose of crossing a tangent point of crossing 'x' = 1.3 m
	Width of BG track 'G' = 1.676 m
	Lead = $x \cos \alpha + (G - d - x \sin \alpha) \cot \left(\frac{\alpha + \beta}{2}\right)$
	$\begin{pmatrix} 2 \end{pmatrix}$

(e) In a running fly level from a benchmark of RL 187.215, the following reading were obtained.

BS	1.115	2.135	1.880	2.725
FS	0.805	3.930	0.880	-

From the last position of the instrument, five pegs at 20 m intervals are to be set out on a uniformly falling gradient of 1 in 40. The first peg is to have an RL of 185.670. Work out the staff readings required for setting the tops of the pegs on the given gradient. (12)

BS	1.115 m	2.135 m	1.880 m	2.725 m
FS	0.805 m	3.930 m	0.880 m	-

Sol:

Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

- ACE Engineering Publications
 - -5 pegs @ 20 m interval
 - falling gradient of 1/40
 - RL peg₁ =185.670 (Given)
 - -RL peg₂ = 185.670 $\left(20 \times \frac{1}{40}\right)$ = 185.170 m
 - $-\text{RL } \text{peg}_3 = 185.670 \left(40 \times \frac{1}{40}\right) = 184.670 \,\text{m}$

-RL peg₄ = 185.670 -
$$\left(60 \times \frac{1}{40}\right)$$
 = 184.170 m

-RL peg₅ = 185.670 -
$$\left(80 \times \frac{1}{40}\right)$$
 = 183.670 m

	BS	IS	FS	н	RL	Remark
1	1.115	G		188.330	187.215	Bench mark
2	2.135		0.865	189.600	187.465	Í N
3	1.880		3.930	187.550	185.670	
4	2.745		0.880	189.415	186.67	5
5		3.745			185.670	Peg ₁
6		4.245			185.170	Peg ₂
7		4.745			184.670	Peg ₃
8		5.245			184.170	Peg ₄
9			5.745	ce 199	183.670	Peg ₅

 $HI_2 = RL_2 + BS_2$ $HI_1 = RL_{BM} + BS_1$ = 187.215 + 1.115= 187.465 + 2.135= 188.330 m= 189.6 m $RL_2 = HI_1 - FS_2$ $RL_3 = HI_2 - FS_3$ = 188.330 - 0.805= 185.670 m= 187.465 m $HI_4 - IS_5 = 185.670$ (RL of peg 1) \Rightarrow 189.415 – IS₅ = 185.670 IS₅ = 3.745 m $HI_4 - IS_6 = RL peg 2$ \Rightarrow 189.415 – IS₆ = 185.170

ACE Engineering Publications Hyd

Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

24

	Engineering Publications 25	Civil Engineering
	$IS_6 = 4.245 m$	
	Check:	
	$\Sigma Bs - \Sigma Fs = L.R_L - F.R_L$	
	(7.875)-(11.42)=183.670-187.215	
	-3.545 m = -3.545 m	
6.		
a)		e carried out to failure on two identical specimen
	of silty clay with pore water pressure measure	ments, as given below:
	S.No Confining pressure (kPa) s	Deviator Pore pressure
	1 100	stress (kPa) (kPa) 150 40
	$\begin{array}{c c} 1 \\ \hline 2 \\ \hline 0 \\ \hline \end{array}$	220 70
	Determine the shear strength parameters, if	
	(i) construction is done at a faster rate,	
	(ii) construction is done slowly.	(20)
Sol:		
	Consolidated Undrained test: CU test	
	σ_{c} σ_{d} u Since	1995
	1 100 150 40	
	2 200 220 75	
	(i) If construction is done at faster rate:	
	no time for dissipation of pore water	
	: total stress analysis:	
	$\sigma_3 = \sigma_c$	
	$\sigma_1 = \sigma_c + \sigma_d$	
	$\sigma_3 \sigma_1$	
	1 100 250	
	2 200 420	

From plastic equilibrium condition.

 $\therefore \sigma_{1} = \sigma_{3} \tan^{2} \alpha_{f} + 2 \operatorname{Cu} \tan \alpha_{f}$ $250 = 100 \tan^{2} \alpha_{f} + 2 \operatorname{Cu} \tan \alpha_{f} \rightarrow (1)$ $420 = 200 \tan^{2} \alpha_{f} + 2 \operatorname{Cu} \tan \alpha_{f} \rightarrow (2)$ $(2) - (1) \Rightarrow 170 = 100 \tan^{2} \alpha_{f}$ $\therefore \tan \alpha_{f} = 1.304$ $\alpha_{f} = 52.51^{\circ}$ $45 + \frac{\varphi_{u}}{2} = 52.51^{\circ}$ $\varphi_{u} = 15.026^{\circ}$ From equation (1) $250 = 100 \times 1.304^{2} + 2 \times \operatorname{Cu} \times 1.304$ $\operatorname{Cu} = 30.66 \text{ kPa}$

(ii) If construction is done at slower rate:

allows time for pore water to dissipate results in development of effective stresses

Since 1995

$$\therefore \sigma_3 = \sigma_3 - u$$

$$\sigma_1 = \sigma_1 - u$$

$$\boxed{\begin{array}{c} \sigma_3 & \sigma_1 \\ 1 & 60 & 210 \\ \hline 2 & 125 & 345 \end{array}}$$

$$\sigma_1 = \sigma_3^1 \tan^2 \alpha_f + 2C' \tan \alpha_f$$

$$210 = 60 \tan^2 \alpha_f + 2C' + \tan \alpha_f \rightarrow (1)$$

$$345 = 125 \tan^2 \alpha_f + 2C' \tan \alpha_f \rightarrow (2)$$

$$(2) - (1) \Rightarrow 135 = 65 \tan^2 \alpha_f$$

 $tan\alpha_{\rm f}\,{=}\,1.44$

$$45 + \frac{\phi'}{2} = 55.24^{\circ}$$

 $\phi' = 20.487^{\circ}$
 $= 20.49^{\circ}$

ACE Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

26

27

From equation(1): - $210 = 60 \times 1.44^2 + 2C' \times 1.44$ C' = 29.72 kPa

The soil profile in a particular site consists of a 1.5 m thick filled up soil (N = 3, γ = 15 kN/m³). **(b)** This is followed by 6 m thick sandy layer (av. N value = 8 and $\gamma = 17 \text{ kN/m}^3$), which is followed by 11 m thick stiff clay layer (av. Cohesion = 25 kN/m^2 , $\gamma = 15 \text{ kN/m}^3$). This is followed by dense sand up to 30 m (av. N value = 50, γ = 19 kN/m³). The water table is at 1.5 m below GL. Calculate the safe load that a 25 m long 600 mm dia bored cast in situ pile can carry. (20)for N = 3, $\phi = 24^{\circ}$, N = 8, $\phi = 28^{\circ}$

Take

ACE

for N = 50,
$$\phi$$
 = 41°, N_q = 140 and N_y = 152.

Sol:

$$15 \text{ m}$$

$$25 \text{ m}$$

$$25 \text{ m}$$

$$25 \text{ m}$$

$$11 \text{ m}$$

$$4.5 \text{ m}$$

 $f_{\rm b} = \sigma_{\rm y}^{\rm i}.Nq$ [In deep foundations, generally $0.5\gamma BN_{\gamma}$ term is neglected]

 σ'_{v} = vertical effective stress at pile tip or base

$$\sigma'_{v} = \gamma_{thick} \times 1.5 + \gamma_{softclay}^{1} \times 2 + \gamma_{sand}^{'} \times 6 + \gamma_{stiffclay}^{'} \times 11 + \gamma_{densesand}^{'} \times 4.5$$
Assume $\gamma_{w} = 9.81 \text{ kN/m}^{3}$

$$\sigma_{v}^{1} = 1.5 \times 17 + 2 \times (15 - 9.81) + 6 \times (17 - 9.81) + 11 \times (15 - 9.81) + 4.5 \times (19 - 9.81)$$

$$\sigma_{v}^{'} = 177.47 \text{ kN/m}^{2}$$

	ACE Engineering Publications
2000	Engineering Publications

ESE 2020 MAINS_Paper_2 Solutions

 $f_b = 177.47 \times 140 = 24,845 \text{ kPa}$

However, maximum value of f_b in normal silica sand is limited to 11,000 kN/m² (As per Tomlinson) $\therefore f_b = 11,000$ kPa

Generally,
$$(f_b)_{bored pile}$$
 is $\frac{1}{2}$ to $\frac{1}{3}$ of f_b of driven pile

Assume
$$(f_b)_{bored \, pile} = \frac{1}{2} \times (f_b)_{driven}$$

= $\frac{1}{2} \times 11,000 = 5500 \, \text{kPa}$

$$\therefore Q_{b} = f_{b}A_{b} = 5500 \times \frac{\pi}{4} \times 0.6^{2} = 1555.08 \text{ kN}$$

• As top 1.5 m thick filled soil is loose sand (N = 3, Q = 24°) and 2m soft clay. These soils settles more than surroundingPiles and induce a downward drag results inNegative skin friction, Q_n.

$$Q_n = (Q_n)_{thick soil} + (Q_n)_{soft} clay$$

For thick soil (1.5 m): (Loose sand)

$$Q_{n1} = f_{n1}.A_s$$

$$Q_{n1} = K. \sigma'_a . \tan \delta A_s$$

Where, $K = 1 - \sin \phi$, "K" varies from 0.3 to 0.75 with a median value of 0.5 for bored piles in sand.

Given, $\phi = 24^\circ$, but should reduce by 3° due to being bored pile, to account the loosening of sand due to drilling of hole.

:
$$K = 1 - \sin 21^\circ = 0.642$$

 δ = angle of friction between pile and soil for negative skin friction computations, generally,

$$\delta = \frac{1}{2}\phi \operatorname{to} \frac{2}{3}\phi$$

So, assume $\delta = \frac{2}{3}\phi$

$$\delta = \frac{2}{3} \times 24^\circ = 16^\circ$$

 $\therefore \sigma'_a$ = average effective vertical stress

$$\sigma_a^1 = \frac{0 + 17 \times 1.5}{2} = 12.75 \, kN \, / \, m^2$$

 $\therefore \ Q_{n1} = 0.642 \times 12.75 \times tan16^{\circ} \times \pi \times 0.6 \times 1.5 = 6.635 \ kN$

Engineering Publications	29	Civil Engineering			
Soft clay: (2m)					
$Q_{n2} = \alpha.C'.\pi DL$					
IS: 2911 part I (1979) recommends, for bor	ed pile	es			
$\alpha = 0.7 \Rightarrow \text{soft clays}$	$\alpha = 0.7 \Rightarrow \text{soft clays}$				
$\alpha = 0.4 \Rightarrow$ stiff clays	$\alpha = 0.4 \Longrightarrow \text{stiff clays}$				
$Q_{n2} = 0.7 \times 5 \times \pi \times 0.6 \times 2 = 13.195 \text{ kN}$					
Ultimate skin frictional resistance, Q _s in sand	layer	(6m) :			
$\mathbf{Q}_{\mathbf{s}_1} = \mathbf{A}_{\mathbf{s}} \cdot \mathbf{f}_{\mathbf{s}}$					
As N = 8, ϕ = 28°; sand is considered as low	ose sar	nd			
ϕ should reduce by 3°	FR	No			
$K = 1 - \sin 25^\circ = 0.58$		ACA			
$f_s = K. \sigma'_a. \tan \delta. A_s$		NO _R			
$\delta = \phi$ for bored piles excavated in dry soil					
$\delta < \phi$ for bored piles if bentonite slurry is use	$\delta < \phi$ for bored piles if bentonite slurry is used during boring				
Therefore, Assume $\delta = \frac{3}{4}\phi$	Therefore, Assume $\delta = \frac{3}{4}\phi$				
$\delta = \frac{3}{4} \times 28^\circ = 21^\circ$					
As $\frac{L}{d} = \frac{6}{0.6} = 10 < (15 - 20)$	nce	1995			
No arching, effect:					
σ_{v}^{l} varies linearly with depth					
σ_v^1 at top of sand layer \Rightarrow (σ_v^1) _{top layer} = 1.5 γ +2 γ'					
$= 1.5 \times 17 + 2 \times (15 - 9.81)$					
= 35.88 kPa					
$\therefore (\sigma_v^l)_{bottom \ layer} = (1.5\gamma + 2\gamma_{clay}') + 6\gamma'_{sand}$					
$= 35.88 + 6 \times (17 - 9.81)$					
= 79.02 kPa					
$f_s = 0.58 \times \left[\frac{35.88 + 79.02}{2}\right] \times \tan 21^\circ \times 6$					
ACE Engineering Publications Hyderabad • Delhi • Pune • Luckno	ow • Beng	aluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad			

Engineering Publications	30	ESE 2020 MAINS_Paper_2 Solutions
$f_s = 12.79 \text{ kPa} < 100 \text{ kN/m}^2$		
Maximum value of f_s is limited to	o 100 kPa in normal si	lica sand
$\therefore \mathbf{Q}_{\mathbf{s}_1} = 12.79 \times \pi \times 0.6 \times 6 = 144.6$	55 kN	
Ultimate skin frictional resistance in	stiff clay (11 m):	
$Q_{s2} = \alpha C \cdot A_s$		
$= 0.4 \times 25 \times \pi \times 0.6 \times 11 = 20$)7.34 kN	
Ultimate skin frictional resistance in	dense sand (4.5 m):	
$\phi = 41^{\circ}$		
$\delta = 0.75 \times 41 = 30.75^{\circ}$	INEERING	
$Q_{s3} = K.\sigma_a$. tan δA_s	NCI	A CA
$K = 1 - \sin 38^\circ = 0.384$	Ň l	C III
		2
$\frac{L}{d} = \frac{4.5}{0.6} = 7.5 < 15$		
No arching effect:		
$\left(\sigma'_{v}\right)_{20.5 \text{ m}} = 1.5\gamma + 2\gamma'_{\text{soft clay}} + 6\gamma'_{\text{sand}}$	$+11 \times \gamma'_{\text{stiff clay}}$	
$= 1.5 \times 17 + 2 \times (15 - 9.8)$		$1 \times (15 - 9.81)$
$= 79.02 + 11 \times (15 - 9.8)$		
= 136.11 kPa	Since 199	5
At 25 m depth: $(\sigma'_v)_{25m} = 136.11 + \gamma'_{dens}$	×4.5	H.
	$5 \times (19 - 9.81) = 177.46$	1.51/-3
	$0 \times (19 - 9.81) = 1 / /.46$	KIN/m
$f_s = K\sigma'_a \tan \delta$		
$= 0.384 \left[\frac{136.11 + 17.7.46}{2} \right] \times ta$	nn 30.75°	
$f_s = 35.82 \text{ kPa} <100 \text{ kPa}$ (1)	Hence ok)	
$Q_{s3} = 35.82 \times \pi \times 0.6 \times 4.5 = 303.84$	4 kN	
Total ultimate load carrying capa	city of pile	
$Q_u = Q_b + Q_{s1} + Q_{s2} + Q_{s3} - (Q_{n1} - Q_{n1}) + Q_{n1} - Q_{n1$	+ Q _{n2})	
= 1555.08 + 144.65 + 207.34	+ 303.84- (6.635+13.1	195)

(20)

31

 $\therefore Q_u = 2191.08 \text{ kN}$

ACE

Assume safety factor, F.O.S = 2.5

:
$$Q_{\text{safe}} = \frac{2191.08}{2.5} = 876.43 \,\text{kN}$$

Mention standard conditions assumed for basic runway length. Design the runway length for a proposed airport site at an altitude of 420 m above mean sea level. Use the following data:
 Basic runway lengths for take-off and landing are 2000 m and 2400 m respectively.
 Airport reference temperature is 23° C.

Effective gradient along the proposed runway is 0.4%.

Sol:

The assumed conditions of runway length for standard environment which decides the basic runway length are as follows

- No wind is blowing on the runway
- The aircraft is loaded to its full loading capacity
- The airport is situated at means ea level (MSL)
- There is no wind blowing on the way to the destination
- The runway is levelled in the longitudinal direction or in other words, it has zero effective gradients

Since 1995

- The same standard temperature is maintained along the runway
- The standard temperature if 15°C exists at the airport (at MSL)

Given:

Basic length of runway for takeoff = $L_1 = 2000$ m Basic length of runway for landing = $L_2 = 2400$ m Elevation of airport = H = 420 m above MSL Airport reference temperature = T = 23°C Effective gradient = 0.4%

(a) Correction runway takeoff length

Step I: Correction for elevation

As per ICAO, basic runway length is to be increased at the rate of 7% per 300 m elevation above MSL

ACE 32 $\therefore \text{ Correction} = \frac{7}{100} \times \frac{\text{H}}{300} \times \text{Basic length}$ $=\frac{7}{100}\times\frac{420}{300}\times2000$ = 196 m Corrected length, L = 2000 + 196 = 2196 m**Step II: Correction for Temperature:** As per ICAO, runway length corrected to elevation is increased at rate of 1% per 1°C rise in temperature Standard temperature = 15 - 0.065 H $T_s = 15 - 0.0065 \times 420 = 12.27^{\circ}$ Rise in temperature = $T_R - T_s = 23 - 12.27 = 10.73^{\circ}$ Correction = $\frac{10.73}{100} \times 2196 = 235.63$ m Corrected length = 2196 + 235.6 = 2431.63 m Check: As per ICAO, total correction for elevation and temperature shall not exceed 35% of basic runway length Total correction = 196 + 235.63 = 431.63 m % correction = $\frac{431.63}{2000} \times 100 = 21.58\% < 35\%$ Heck OK Step III: Correction for Gradient: As per ICAO, runway length corrected to elevation and temperature shall further be increased at rate of 20% for every 1% of effective gradient Correction for gradient = $\frac{20}{100} \times 0.4 \times 2431.63 = 194.53$ m Corrected length = 2431.63 + 194.53 = 2626.16 m

Final runway length = 2626.16 m

<u>.</u>		
1171	Engin	eerino
	- Lingin	CCI IIIS

(b) Correction for runway lading length

Step I: Correction for Elevation:

ACE

 $Correction = \frac{7}{100} \times \frac{420}{300} \times 2400$ = 235.2 m

Corrected length = 2400 + 235.2 = 2635.2 m

For runway landing length, correction for temperature and gradient is not required

Maximum of runway take-off length and runway landing length shall be considered

 \therefore Length of runway = 2635.2 m

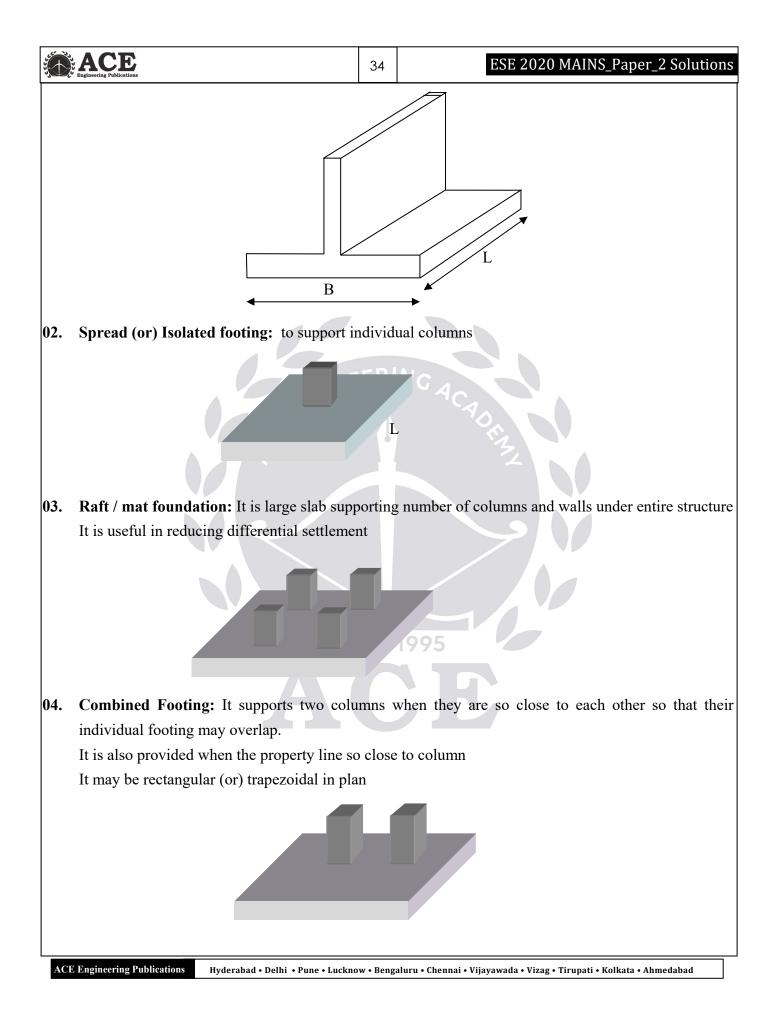
07. (a)

(i). What is the basis for classifying foundations into shallow and deep ? Briefly explain the situations in which different types of shallow foundations are adopted. (8)

Sol: Foundations may be grouped as shallow (or) deep foundation depending on depth of installation of foundation

	Shallow foundation		Deep Foundation
1	If the depth of foundation ' D_f ' less than	1	
	width of footing		$D_f \ge B$
	$D_{f} \leq B$		
2	If load coming from structure is small	2	If load coming from structure is
	Ex. Residential Buildings		more
	Since 10		Ex: Super structures, sky scrappers
3	If the soil below footing is Dense (or) Stiff	3	If the soil below footing is very
	to medium dense		loose (or) weak.

Types of Shallow foundations:


01. Strip footing:

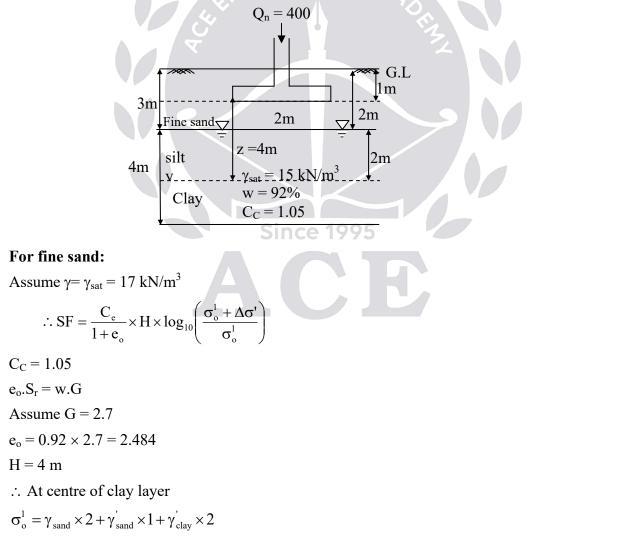
Provided for load bearing wall

It is also provided for closely spaced row of columns where spread footing may overlap.

 $\therefore L >> B$

33

	ACE Engineering Publications	35	Civil Engineering
--	---------------------------------	----	-------------------


05. Strap (or) cantilever footing: It consists of two isolated footing connected with strap (or) lever such that they behave as one unit.

A strap footing is more economical than combined footing when allowable soil pressure is high.

(ii) A square footing $(2 \text{ m} \times 2\text{m})$ founded at a depth 1 m below GL has to support a column load of 400 kN. The soil profile consists of fine sand ($\gamma = 17 \text{ kN/m}^3$) up to a depth of 3 m, followed by a 4 m thick layer of silty clay ($\gamma = 15 \text{ kN/m}^3$, NMC = 92%, C_c = 1.05). This is followed by dense sandy layer up to 12 m. The WT is at 2 m below the GL. Compute the possible consolidation settlement and state whether it is within permissible limits. (12)

Sol:

ACE Engineering Publications

Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Expinering Publications	36	ESE 2020 MAINS_Paper_2 Solutions
$\sigma_{o}^{1} = 17 \times 2 + (17 - 9.81) \times 1 + (15 - 981) \times 2$		

$$σ_o^1 = 51.57 \text{ kPa}$$

 $Δσ' = \frac{Q_n}{(B+z)^2} = \frac{400}{(2+4)^2} = 11.11 \text{ kPa}$
 $s_f = \frac{1.05}{1+2.484} × 4 × log_{10} (\frac{51.57+11.11}{51.57}) = 0.102 \text{ m} = 102.15 \text{ mm}$
∴ S_f = 102.15 mm

For Isolated footing in sands, maximum settlement is 50 mm and in clays, it is 75 mm. As obtained ultimate settlement is beyond those values, settlement obtained is not within limits.

Determine the correct magnetic bearings of the lines of closed traverse having the following **(b)** bearings as observed: (20)

Line	AB	BC	CD	DE	EA
FB	81°5′	100°20′	171°35′	210°50′	300°50′
BB	260°20′	282°35′	351°45′	30°05′	121°10′

Sol:

ACE

	Line	FB	BB
	AB	81°5′	260°20′
	BCS	100°20′	282°35′
	CD	171°35′	351°45′
	DE	210°50′	30°5′
i.	EA	300°50′	121°10′

Included angle:

 $\angle A = FB_{AB}$ - FB_{AE} $= FB_{AB} - BB_{EA}$ $= 81^{\circ}5' - 121^{\circ}10' (+360^{\circ})$ $= 319^{\circ} 55'$ $\angle B = FB_{BC} - BB_{AB}$ $= 100^{\circ}20' - 260^{\circ}20' (+360^{\circ})$ $=200^{\circ}$

Engineering Publications		37	Civil Engineering
$\angle C = FB_{CB} - BB_{BC}$			
$= 249^{\circ}$			
$\angle D = 219^{\circ}5'$			
$\angle E = 270^{\circ}45'$			
$\angle A + \angle B + \dots + \angle$	$E = 1258^{\circ}45'$		
$(2n+4) 90^{\circ}$			
$\Rightarrow (2 \times 5 + 4)90^{\circ} = 1260^{\circ}$			
\therefore Total Error = 1258°4	$5' - 1260^\circ = -1^\circ 15$,	
Correction = $+1^{\circ}15'$			
Correction per angle =	$\frac{1^{\circ}15'}{5} = 15'$	ERINC	
:. Corrected angles	NGINE	AC	
$\angle A = 320^{\circ}10',$	4		
$\angle B = 200^{\circ}15',$		• 3	
$\angle C = 249^{\circ}15',$			
$\angle D = 219^{\circ}20',$			
$\angle E = 271^{\circ}$			
No line is free from local	attraction		
	Line FB – BB	Difference from 180°	
	AB 179°15′	45'	
	BC 182°15′	2°15′	
	CD 180°10′	$10' \rightarrow$ Least difference	ce
	DE 180°45'	45'	
	EA 179°40′	20'	
			1
Adjusted FB and BB of lin	ne CD		
$FB_{CD} = 171^{\circ}35' + \frac{10'}{2} = 171^{\circ}$			

$$BB_{CD} = 351^{\circ}45' - \frac{10'}{2} = 351^{\circ}40'$$

Now,

Corrected $\angle C = FB_{CD} - BB_{BC}$

$$249^{\circ}15'=171^{\circ}40'-BB_{BC}$$

ACE Engineering Publications Hyderabad • Delhi • Pune • Lucknow • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	38		ESE 2020 MAINS_Paper_2 Solutions
$BB_{BC} = -77^{\circ}35'(+360^{\circ})$			
$= 282^{\circ}25'$			
FB _{BC} =102°25'			
Corrected $\angle B = FB_{BC} - BB_{AB}$			
$200^{\circ}15' = 102^{\circ}25' - BB_{AB}$			
$BB_{AB} = 262^{\circ}10'$			
$FB_{AB} = 82^{\circ}10'$			
Corrected $\angle A = FB_{AE} - BB_{EA}$			
$320^{\circ}10' = 82^{\circ}10' - BB_{EA}$			
$BB_{EA} = 122^{\circ}$			
\Rightarrow FB _{EA} = 302°	EERI	NGAC	
Corrected $\angle E = FB_{EA} - BB_{DE}$		~~	
$271^{\circ} = 302^{\circ} - BB_{DE}$			EZ.
$BB_{DE} = 31^{\circ}$			
$FB_{DE} = 211^{\circ}$			
$\angle D = FB_{DE} - BB_{CD}$ $219^{\circ}20' = 211^{\circ} - BB_{CD}$			
$BB_{CD} = 351^{\circ}40'$			
\therefore Checked			
Corrected Bearings:			
	FB e 1	BB	
	82°10′	262°10′	
BC	102°25′	' 282°25'	
CD	171°40′		
DE	211°	31°	
EA	302°	122°	
		· · ·	

|--|

(c) Describe tunnel lining and various materials used for it

Sol: Tunnel lining:

Tunnel lining is the finishing touch given to the cross section of tunnel and it acts as a ground support system to the periphery of a tunnel or shaft excavation. Tunnels may be completely lined, partially lined, or even unlined. If the tunnel is passing through hard stratum, it may be left unlined. Lining may be of two types:

Temporary lining: It is provided for supporting the roof and the walls of tunnel during construction.

Permanent lining: It is provided in soft soil which is always liable to disintegrate.

The ideal lining should be easy to maintain, economical, durable, simple to construct and stable.

The advantages of providing a tunnel with permanent lining are:

- 1. It gives correct shape and cross section to the tunnel.
- 2. It withstands soil pressure when driven in soft soils.
- 3. It reduces losses in friction and erosive action, and ensures stream line motion, when the tunnel has to carry water by providing a smooth passage at good velocity, free from turbulence.
- 4. It forms a good protective covering to certain types of rocks prone to air slaking.
- 5. It keeps prevents water percolation into the tunnel.
- 6. It supports large slabs of rock which might have become loosened during blasting.
- 7. It strengthens the sides and roofs to withstand pressure and prevent the tunnel from collapsing

Materials used for tunnel lining:

- (a) **Concrete:** It is used because of its superiority in structural strength, ease of placement, durability, and lower maintenance cost. Concrete can be cast insitu or prefabricated.
- (b) **Flake concrete:** This is generally used to limit the usage of cement quantity and by using good quality stones . Flaked concrete is used in side wall lining for good rocks.
- (c) **Shotcrete:** Shotcrete is formed by condensing dry mix of concrete, quick-setting agent and water with a high-speed concrete jetting machine on a clean rock surface. It has high compactness and can quickly close the cracks of the surrounding rock
- (d) **Brick masonry:** This is generally used in underground sewers, as bricks are more acid resisting and suitable to carry sewage.
- (e) **Steel and cast iron :** Perforated segments of steel and cast iron are used. The segments are jointed by bolting and joints are sealed.
- (f) Timber

THE BIG FESTIVAL OFFER

Flat 20% off

From 20th to 26th October

Call: 040-48539866, 4013 6222 Email: testseries@aceenggacademy.com

www.aceenggacademy.com

ACE Engineering Publications	40	ESE 2020 MAINS_Paper_2 Solutions
---------------------------------	----	----------------------------------

(d) Classify wet docks and write advantages and disadvantages of each of them. (10)

Sol: Wet docks: These are the docks which are used for berthing of vessels, to facilitate loading and unloading of passengers and cargo.

Classification of wet docks:

(a) Wet docks in tidal basins:

- These are provided in low tide areas.
- In ports on the open sea coats protected by an outlying break water, basins are provided within its shelter.
- In these basins, pier walls are projected at right angles to the shore along side which the vessels can lie and discharge their cargoes.
- The disadvantages is that the fluctuations in water level will cause rubbing of sides of ships against the berths. Also it cannot be used for high range tides.

(b) Wet docks in enclosed or impounded basins:

- These are used when tidal ranges are very marked and large.
- Docks are formed by enclosures and are shut off by entrances using locks in order to maintain fairly uniform level of water.
- It prevents the rubbing of sides of ships against the berths due to fluctuations in water level.

The disadvantages is that use of lock and gate arrangement is costly and ship will take time to enter and exit the dock.

08. (a)

Since 1995

(i) Comment on the statement "The net bearing capacity of a shallow foundation in clayey soil is unaffected by the position of water table, whereas in sandy soil, it is very much affected.

Sol:

For strip footing

Clays: $q_{nu} = CN_c$

Sands: $q_{nu} = CN_c + \gamma \alpha N_q - 1) + 0.5\gamma BN_r$

Net ultimate bearing capacity in clay soil is independent on position of water table, so rise (or) fall of water table doesn't affect ' q_{nu} ' in clayey soils but in sandy soils, if water table rises to G.L., q_{nu} reduces by almost 50%.

(5)

	ACE 241 Civil Engineering
(ii)	With respect to a compaction curve, explain how one can plot the zero air voids line, 90%
	saturation line and 10% air voids line. (10)
Sol:	$\gamma_{d} = \frac{(1 - n_{a})G\gamma_{w}}{1 + wG} \text{ (or) } \gamma_{d} = \frac{G\gamma_{w}}{1 + \frac{wG}{S}}$
	For Zero air void line:
	$n_a = 0$
	$\mathbf{a}_{\mathrm{c}}=0$
	$S_r = 100\%$
	$\gamma_{d_1} = \frac{G\gamma_w}{1 + wG}$
	For 90% Saturation line:
	S _r = 90%
	a _c = 10%
	n _a < 10%
	$\gamma_{d_2} = \frac{G\gamma_w}{1 + \frac{wG}{0.9}} = \frac{0.9G\gamma_w}{0.9 + wG}$
	For 10% air void line:
	$n_{a} = 10\%$
	$\gamma_{d_3} = \frac{(1-0.1) \times G\gamma_w}{1+wG}$
	$\gamma_{d_3} = \frac{0.9G\gamma_{w}}{1 + wG}$
	For all lines, γ_d varies inversely with water content
	γ_d \uparrow \uparrow γ_d

ACE POSTAL COACHING

POSTAL COACHING

ESE / GATE / PSUs

PSCs

ACE Engineering Academy, the leading institute for GATE, ESE and PSUs offers postal coaching (Distance learning programme) for engineering students.

Scan **QR Code** for more info.

ACE PUBLICATIONS

Limited Period Offer UPTO 25% DISCOUNT*

Call: 040-40044403, 040-23234420 | Email: acepostalcoaching@gmail.com | www.aceenggacademy.com

Engineering Publications	42	ESE 2020 MAINS_Paper_2 Solutions

(b) Discuss the geological characteristics necessary for the design and construction of reservoirs.

Sol: Geological investigations of the dam and reservoir site are dams for the following purposes:

- (i) Suitability of foundation for the dam
- (ii) Water tightness of the reservoir basin
- (iii) Location of the quarry sites for the construction materials

Geological characteristics necessary:

• The surrounding hills which constitute the rim of the reservoir should be water tight, so that there is no leakage of water through any part of the rim.

(10)

- Bed rock near the surface, if the rocks are massive intact it provides excellent supporting foundation material.
- Discontinuous, weathered rocks and fragile rocks should be removed or treated properly before laying foundation material.
- Granite, gneiss, quartzite provides best foundation
- Fine grained seelimentary rocks have higher shear strength than course grained rocks
- The river valley near the site should be narrow.
- The site should be such that as far as possible minimum level and property is submerged in the reservoir.
- As far as possible a deep reservoir must be formed so that the land costs per unit of capacity are low, evaporation is less.
- The ultimate bearing power of the supporting soil should be calculated so that to design the foundation can should be taken that the unit load at the base of a footing should not be larger than the safe having power of the supporting soil.
- Ground water table should be low.
- Highly jointed rocks should be investigated for joint intensity and spacing which will help in assessing the grouting.
- Valley sections in competent, hard resistant rocks like Granite, Quartzite, Gnesis provide excellent sites.

	ACE	
S L X	Engineering Publications	

(c) Discuss how the sensors are classified in Remote Sensing and briefly explain their salient features. (10)

Sol: Sensors for remote sensing:

- Sensors may be classified as active or passive, imaging or non-imaging, commercial or military.
- An active sensor provides its own source of energy, directing it at the object in order to measure the returned energy
- A passive sensor records the energy that naturally radiates or reflects from an object.
- Photography with flash is active and without flash is passive remote sensing
- The main advantage of passive sensor is that they are simple, both electrically and mechanically and they do not have high power requirement.
- Their disadvantages are that, particularly in wave bands where natural emittance or reflectance levels are low high detector sensitiveness and wide radiation collection apertures are necessary to obtain a reasonable signal level
- Another dis-advantage of passive systems is dependency on good weather conditions.
- Non imaging sensors, in particular, are designed to give quantitative measures of the integrated intensity of electro-magnetic radiation from all objects within their field of view as functions of time and wave length.
- The imaging sensors, on the other hand, are designed to provide a visual image of their field of view either directly or indirectly through the stored information.
- Thus imaging sensors stress upon spatial resolution while non-imaging sensors stress upon time and wavelength resolution.
- Classification of sensors as commercial (or) military is based on their application or purpose.

(d) Design the length of transition curve to be provided on a horizontal curve of radius 484 m on a National Highway with double lane passing through heavy rainfall area. Following design data is given: (25)

Ruling design speed = 80 kmph

Type of terrain = Rolling terrain

Rate of introduction of superelevation = 1 in 150

Wheel base of design vehicle = 6 m

Sol: Given:

Radius of curve 'R' = 484 m

Ruling design speed = V = 80 kmph

Rate of introduction of super elevation 1 in 150

Engineering Publications	44	ESE 2020 MAINS_Paper_2 Solutions		
i.e., N = 150				
Length of wheel base, $L = 6 m$				
Length of transition curve is based on				
(a) Rate of change of centrifugal accelera	tion			
$L_s = \frac{v^3}{CR}$				
v is speed in m/sec = $80 \times 0.278 = 22.24$ m/	/sec			
C = Rate of change of centrifugal acceler				
$=\frac{80}{75+\mathrm{V}}$				
$=\frac{80}{75+80}=0.516$	ERI	NGACA		
0.5 < C < 0.8 Hence OK		OT.		
R = 484 m		2		
$L_{s} = \frac{(22.24)^{3}}{0.516 \times 484}$				
= 44.04 m(1)				
(b) Rate of introduction of super elevatio	n			
Assuming pavement is rotated about inner e				
$L_s = e N (W + W_e)$				
e = super elevation	ice	1995		
For mixed traffic, $e = \frac{V^2}{225 R}$				
$=\frac{80^2}{225\times484}=0.0587$				
= 5.87 % < 7 %	He	ence OK		
$e+f=\frac{V^2}{127R}$				
$\Rightarrow 0.0587 + f = \frac{80^2}{127 \times 484}$				
\Rightarrow f = 0.045 < 0.15 Hence OK				
e = 5.87%				
ACE Engineering Publications Hyderabad • Delhi • Pune • Luckno	w • Beng	aluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad		

ACE Engineering Publications	45	Civil Engineering
W = 7 m for two lane road		
$W_e = \frac{n\ell^2}{2R} + \frac{V}{9.5\sqrt{R}}$		
$=\frac{2\times 6^2}{2\times 484}+\frac{80}{9.5\sqrt{484}}$		
= 0.457 m		
: $L_s = 0.0587 \times 150 (7 + 0.457)$		
$= 65.66 \text{ m} \dots (2)$		
(c) As per IRC	7	
$L_s = \frac{2.7V^2}{R}$	FER	
$=2.7\times\frac{80^2}{484}$	LEEN	NG ACAD
= 35.7 m(3)		TZ I
Length of transition curve is maximum of	f above	three = 65.66 m say 66 m
S	ince	1995
A		

5 5 C C

GATEway to Government JOBS...

COURSE DETAILS

- Experienced and erudite faculty from ACE Hyd.
- Focussed and relevant
- Structured online practice tests (FREE)
- Scheduled live doubt clearing sessions (FREE)
- Access lectures from anywhere.
- Recorded version of the online live class will be made available throughout the course (with 3 times view).
- 5 to 6 Hours live online
 lectures per day (5-7 Days a week)

KPSC / KPWD

Starts from 22nd OCT. 2020

SSC JE (GS)

Starts from 14th OCT. 2020

APPSC / TSPSC

Starts from 22nd OCT. 2020

BPSC