

03.

Head Office : Sree Sindhi Guru Sangat Sabha Association, # 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001.

Ph: 040-23234418, 040-2324419, 040-2324420, 040-24750437

Hyderabad | Delhi | Bhopal | Pune |Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata | Ahmedabad

MECHANICAL ENGINEERING

BPSC PRACTICE QUESTIONS

- 01. The [110] direction in a cubic unit cell is parallel to the following :
 - (a) Face diagonal of unit cell (b) Edge of the cube
 - (c) Body diagonal of the cube (d) None of the above
- 02. When mechanical properties of a material remain same in all directions at each point, such a material is called

(a) Isotropic	(b) Homogeneous
(c) Orthotropic	(d) Anisotropic
German silver is an alloy of	
(a) Silver and Tin	(b) Silver and Gold

- (c) Nickel and Copper (d) Nickel, Copper and Zinc
- 04. Iron is Face Centered Cubic (FCC) at which one of the following temperatures ?
 - (a) Room temperature(b) 1400°C(c) 910°C(d) None of the above
- 05. Babbit metal is an alloy of which one of the following ?
 - (a) Lead and Tin(b) Lead and Magnesium(c) Tin and Bismuth(d) None of the above
- 06. Griffith theory of failure is suitable for
 - (a) Mild Steel
 - (c) Alloy Steel
- 07. Mild Steel is an example of
 - (a) Substitution solid solution(c) Inter metallic compound
- (b) Interstitial solid solution(d) None of the above

(b) Low Carbon Steel

(d) Glass

255	2	

08. Bronze contains

- (a) 70% Cu and 30% Zn (b) 90% Cu and 10% Zn
- (c) 75% Cu and 25% Zn (d) None of the above

09. The processes, used to make the steel magnetically softer, are

- (a) Annealing and Decarburization
- (b) Decarburization and Quenching
- (c) Annealing, Grain growth and Decarburization
- (d) Grain growth and Quenching
- 10. The ductile-brittle transition temperature
 - (a) depends on size and shape of material, rate of loading, presence of notches, impurities and operating temperature
 - (b) depends on size but does not depend on shape of material
 - (c) does not depend on size of material
 - (d) does not depend on rate of loading but depends on presence of impurities
- 11. Match the items in List -1 to that of the List -2 and choose the correct alternative.

List – 1		R	List	-2
A. Alnico V	.		1. M	etallic Magnet
B. Ferrexodur			2. Ce	eramic Magnet
C. Nickel Oxid	e		3. A1	nti ferromagnetic
D. Ferrites	4		4. Co	ompounds containing trivalent iron
			5. Fe	errimagnetic
			6. Sc	oft magnetic
Alternatives :	A	В	C	D
(a)	1	2	3	4
(b)	6	2	3	4
(c)	4	6	1	2
(d)	2	1	6	1

- 12. Choose the correct statement from the following :
 - (a) Ceremic compounds involve simple coordination than their corresponding components.
 - (b) Ceremic compounds are more ductile.
 - (c) Ceramic compounds are more stable with respect to thermal and chemical environments than their components.
 - (d) Ceramic compounds have less resistance to slip.

Note: Q. Nos. 13 - 16 :

13. Choose the alternative from the code given below which explains the correct relationship between the Assertion (A) and Reason (R) :

Assertion (A): Metallic Magnets cannot be used in high frequency circuits.

Reason (R): The low resistivity of metallic magnets permits heating from induced currents.

Code :

- (a) (A) is true, but (R) is false.
- (b) (A) is false, but (R) is true.
- (c) Both (A) and (R) are true, but (R) does not explain (A) correctly.
- (d) Both (A) and (R) are true and (R) explains (A) correctly.
- 14. Assertion (A): Little energy is required to break materials such as glass, polystyrene and some cast irons. Conversely, rubber and many steels absorb considerable energy in the fracture process.
 Reason (R): The service limit in many engineering products is not the yield or ultimate strength, rather may be the energy associated with fracture propagation.
- 15. Assertion (A): In general, materials deform more readily at elevated temperature.
 Reason (R): Plastic deformation commonly arises from dislocation movements that involve a continual displacement of atoms to new neighbours at elevated temperature.
- 16. Assertion (A): Soft magnets are the obvious choice for ac or high frequency applications.Reason (R): They must be magnetised and demagnetized many times per second.

Since 1995

- 17. Dielectric strength can be reduced by
 - (a) removing cracks
 - (c) absence of flaws

(b) absence of imperfections(d) impurities, cracks and pores

- 18. Select the correct answer out of the following alternatives about 'Cyclic Stresses'.
 - (a) That a material can tolerate are much greater than stresses produced under static loading.
 - (b) Can lead to fatigue if the stress level is above the endurance limit.
 - (c) Can lead to fatigue if the stress level is below the endurance limit.
 - (d) Are not introduced in the axle of a running train.
- 19. Dislocation in material is called
 - (a) Point defect

(c) Plane defect

(b) Line defect

(d) Volumetric defect

Practice Questions

	Engineering Publ	ications				4				ł	Practice Questions
20.	Match	the iten	ns in Li	st – 1 to	the correspond	ling iter	ns in th	e List -	- 2.		
	List –	1 (Heat	t Treat	ment)	List – 2 (Eff	fect on	Proper	ties)			
	A. Ann	nealing			1. Refine gra	ain struc	tures				
	B. Nitr	iding			2. Improves	the hard	iness of	f the wl	nole ma	SS	
	C. Mar	temper	ing		3. Improves	surface	hardne	SS			
	D. Nor	malisin	ıg		4. Improves	ductilit	у				
	Choose	e the co	rrect fr	om the f	ollowing :						
		A	В	С	D		A	В	С	D	
	(a)	3	1	4	2	(b)	3	1	2	4	
	(c)	1	3	4	2	(d)	1	3	2	4	
h 1	T 1	. 1 .	,	. .		DIM					
21.				of α-iror	GINEE		GA6				
	(a) Sim	-			4 P	À	ace cen				
	(c) Boo	iy centi	red cubi			(a) C	lose-pa	скеа н	exagon	ai	
22	Salaata	(h o		f-	a tha fallorring						
22.					r the following						
		astic lin	nal limi								
		eld poin	_	naint							
	4. FIa		failure		1 2 4		(a) 1	2	2		(d) $2 - 1 - 4 - 3$
	(a) 1 –	2-3-	4	(0) 2	-1 - 3 - 4			-2-4	- 5		(d) 2 - 1 - 4 - 5
า ว	Thoma	ana atr		f a mat		ce 19					
23.				or a mau	erial is generall	ly exam			aaniat	ahniaua	
	(a) X-r	•	-						-	echnique	
	(c) Opt	icai mi	croscop	be			(d) N	/letallul	gical m	icroscop	pe
24	Gradua	1 time	donand	ont dafa	rmation under o	onstant	land a	r colf u	aight ig	called	
24.	(a) Ero		depende	(b) D				r sen w	eight is		1
	(a) EI0	SIOII		(U) D	ecay	(0) 1	ension			(d) C	leep
25.	Which	ingradi	iont is r	aananaik	le for corrosio	n regist	nt conc	hility i	n Stain1	ang Staa	19
23.		•		-	hromium	(c) Z	-	ionny i	li Stalli		
	(a) Iror	1		(0) C	monnunn	(c) Z	inc			(u) S	ulphur
26.	The pr	onerty (of mater	rial whi	ch enables it to	withst	and her	ding w	ithout f	acture	is known as
20.	-		l streng		(b) Stiffness		lexural	-			Ductility
		chanica	n sueng	5.11	(b) Surmess	(c) r	icnuial	ingiuity	,	(u) D	Juctifity

ACE

	Engineering Publications	5		Practice Questions
27.	The material commonly used for making ma	achine to	ool bed is	
	(a) Mild Steel (b) Aluminium		(c) Brass	(d) Cast Iron
28.	Which one of the following is the ferrous m	aterial?		
	(a) Zinc (b) Iron		(c) Silicon Carbide	(d) Copper
29.	Babbit materials are used for			
	(a) Gears (b) Bearings		(c) Bolts	(d) Clutch liners
30.	The ultimate tensile strength of low Carbon	Steel by	working at high strain r	ate will
	(a) increase		(b) decrease	
	(c) remain constant	RIN	(d) first increase, then	decrease
	ENGIN		A CA	
31.	Pure iron is the structure of			
	(a) Ferrite (b) Pearlite		(c) Austenite	(d) Cementite
32.	An example of amorphous material is			
	(a) Zinc (b) Lead		(c) Glass	(d) Sulphur
22	Dinding material in constant of each ide to all i			
33.	Binding material in cemented carbide tool is (a) Graphite (b) Lead	,	(c) Carbon	(d) Cobalt
34.	Which of the following are the reasons for r	eduction	n of tool life in a machini	ing operation ?
	1. Temperature rise of cutting edge.			
	2. Chipping of tool edge due to mechanical	impact.		
	3. Gradual wear at tool point.			
	4. Increase in feed of cut at constant cutting	force		
	Select the answer from the following :			
	(a) 1, 2 & 4 (b) 1, 2 & 3		(c) 1, 3 & 4	(d) 1, 2, 3 & 4

35. Choose the alternative, which explains the correct relationship between the given statements, (A) & (R) from the code given below :

Assertion (A) : In ECM, the shape of the cavity is the mirror image of the tool, but unlike EDM, the tool wear in ECM is a cathode.

Reason (R) : The tool in ECM is a Cathode.

	ACE Engineering Publications		6		Practice Questions
6.	An orthogonal cutti	ng operation is being	carried out ur	nder the following co	onditions :
	Cutting Speed = 2	2 m/sec,			
	Depth of $cut = 0.5$	ö mm,			
	Chip thickness =	0.6 mm.			
	What is the chip ve	locity?			
	(a) 2 m/sec	(b) 2.4 m/sec		(c) 1 m/sec	(d) 1.66 m/sec
7.	The rake angle of a	a cutting tool is 15°,	the shear ang	le is 45° and the cut	ting velocity is 35 mpm
	What is the velocity	of chip along the too	ol face ?		
	(a) 28.5 mpm	(b) 27.3 mpm		(c) 25.3 mpm	(d) 23.5 mpm
38.	In EDM, metal rem	oval rate is proportion	EERING		
	(a) Frequency of ch			(b) Energy delivered	in each spark
	(c) Both (a) and (b)			(d) None of the abov	_
		र		Ϋ́ Ζ	
9.	Which of the follow	ving is not true in case	e of Jigs and F	Fixtures ?	
	(a) Consistency in c		-	(b) Fast production s	peed is not possible
	(c) Auto-location co	ontrol		(d) None of the abov	e
0.	The upper and lowe	er control limits in cas	e of R-chart a	re given by	
	(a) $A_2\overline{R} \& A_3\overline{R}$			(b) $D_3\overline{R} \& D_4\overline{R}$	
	(c) $\overline{R} \pm D_3 \overline{R}$	Si	nce 199	(d) $\overline{R} \pm A_2 \overline{R}$	
	(c) $\mathbf{K} \pm \mathbf{D}_3 \mathbf{K}$			(d) $\mathbf{K} \pm \mathbf{A}_2 \mathbf{K}$	
11.	A cutting tool is tu	ming a work piece of	40 mm dian	neter, revolving at 30	00 rpm. If tool life is 120
	min, find the value	of constant C as per t	he Taylor's to	ol life equation, Ass	uming $n = 1/7$.
	(a) 85	(b) 80	(c) 70	(d) 75	;
12.	Which of the follow	ving should be more t	o reduce wear	of a tool ?	
	(a) Weight	(b) Density	(c) Hard) & (c) both
	<i>(a)</i>	(c) Density	(0) 1101	(u) (U	, (.)
3.	Which of the follow	ving instruments is us	ed to measure	smoothness of a me	tallic surface ?
	(a) Talysurf		(b) Coo	rdinate Measuring N	Iachine
	(c) Profile Projector		(d) Non	e of the above	

	Engineering Publications	7		Practice Questions
44.	Life of a single point cutting tool	is influenced by v	which of the	following factors ?
	(a) Cutting speed	(b)]	Feed rate	
	(c) Depth of cut	(d) .	All the above	
45.	The Plug gauge is used to			
	(a) Check the size and shape of h	ioles (b)	Measure the	diameter of holes
	(c) Measure the diameter of shaft	ts (d)]	Measure the o	diameters of shafts & holes
46.	The relationship between the si	hear angle (\$), fr	riction angle	(β), cutting rake angle (α)and the
	machining constant (C) for the w	ork material is		
	(a) $2\alpha + \beta - \phi = C$	(b) 2	$2\alpha + \beta + \phi = 0$	C
	(c) $2\phi + \beta - \alpha = C$	CINEER(d)	$2\alpha + \beta + \phi = 0$ $2\phi + \beta + \alpha = 0$	С
47.	Explosive forming is not used for	r the following :	. A	
	(a) Making very small complex p	•	For large part	ts typical of aerospace industry.
	(c) Both (a) & (b) above are corre			bove is correct.
48.	In Electro-Discharge-Machining	(EDM), the tool is	s made of	
	(a) High Speed Steel	(b) (Copper	
	(c) Cast Iron	(d) (Glass	
49.	The process in which the materia	l removal rate is g	overned by I	Faraday's law is ?
	(a) ECM (b) EDM	SILLE L	AJM	(d) LBM
			הו	
50.	In USM, the tool is vibrated with	the frequency of		
	(a) 5 kHz (b) 10 kHz	Hz (c)	5 kHz	(d) 20 kHz
51.	Continuous chips will be formed	when machining	speed is	
	(a) low (b) medi	um (c) l	nigh	(d) independent of speed
52.	Profile of a gear tooth can be che	ecked by		
	(a) Optical projector	-	Optical pyror	neter
		(-)	1 I J - 01	

	ACE Engineering Publications		8		Practice Questions
53.	For TIG welding, wh	ich of the following g	ases are	used ?	
	(a) Hydrogen and Car	bon-di-oxide		(b) Argon and	Helium
	(c) Argon and Neon			(d) Hydrogen a	and Oxygen
54.	Which of the followin casting ?	ng materials require th	ne larges	st shrinkage allowa	ance while making a pattern for
	(a) Aluminium	(b) Brass	(c) (Cast Iron	(d) Duralumin
55.	Which of the following equation $VT^n = const$	-	is asso	ciated with carbid	e tools when Taylor's tool life
	(a) 0.65 to 0.90	(b) 0.45 to 0.60	(c) (0.20 to 0.40	(d) 0.10 to 0.15
	~ /	INE	ERIA		
56.	In an orthogonal cutt	ing experiment, with	a tool o	of rake angle $\gamma = \gamma$	75° and shear angle $\phi = 22.8^\circ$,
	then friction angle β v				
	(a) 41.9°	(b) 51.4°	(c) (51.2°	(d) None of the above
57.	Which of the followir	ng operation does not	use a jig	g?	
	(a) Tapping	(b) Reaming	(c)]	Drilling	(d) Turning
58.	Which of the following	ng are the quality cont	trol limi	ts for p-charts ?	
	(a) $\overline{p} \pm 3\sqrt{\overline{p}(1-\overline{p})}$	(b) $\overline{p} \pm \sqrt{\overline{p}(1-\overline{p})}$	(c) ce	$\overline{p} \pm 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$	(d) $\overline{p} \pm 3\sqrt{n \overline{p} (1-\overline{p})}$
59.	Which is the false sta	tement about electro o	lischarg	e machining ?	
	(a) It can machine ver	ry hard material.		(b) Very good	surface finish is obtained.
	(c) Section to be mach	hined should be thick.		(d) Metal remo	oval rate is very slow.
60.	Choose the false state	ment from the follow	ing :		
	(a) Control chart indic	cate whether the proce	ess is in	control or not.	
	(b) \overline{X} and R charts and	e used to evaluate dis	spersion	of measurements.	
	(c) P-chart is a contro	l chart for percentage	defectiv	ve.	
	(d) C-charts are prepa	red for large and com	plex co	mponents.	
61.	The following is not t	he characteristics of e	explosiv	e forming :	
	(a) Low capital cost of	f the set up.	(b) [•]	Very large compor	nents can be formed.

ACE Engineering Publications

×3	Lengineering Publications	
62.	The following is not true for I	ECM :
	(a) It can machine highly con	nplicated shapes in a single pass.
	(b) Tool life is very high.	
	(c) Machinability of the work	material is independent of its physical and mechanical properties.
	(d) Kerosene is use as electro	lyte.
63.	Electro-discharge machining	uses the following dielectric fluid :
	(a) Kerosene	(b) Sodium hydroxide
	(c) Water	(d) Aqueous salt solution
64.	A good machinability rating v	
		requirement and less machining time.
		requirement and a good surface finish.
	(c) short tool life and a good s	surface finish.
	(d) long tool life, high power	requirement and a good surface finish.
65	In EDM measure the worknig	an is compared to
65.	In EDM process, the workpie	
	(a) Cathode	(b) Anode
	(c) Earth	(d) None of the above
66.	A hole of 1 mm is to be drille	ed in glass. It could be best done by
	(a) Laser drilling	(b) Plasma drilling
	(c) Ultrasonic drilling	(d) Electron beam drilling
67.	A comparator for its working	depends on
	(a) comparison with standard	such as slip gauges
	(b) accurately caliberated sca	le
	(c) optical device	
	(d) limit gauge	
68.	TMU means	

- (a) Time Motion Unit
- (b) Time Method Unit
- (c) Time Measurement Unit (d) Time Movement Unit
- ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

69. Choose the Correct relationship between the given statements of Assertion (A) and Reason (R). Assertion (A) : In case of control charts for variables, if some points fall outside the control limits, it is concluded that process is not under control.

Reason (R): It was experimentally proved by Shewart that averages of four or more consecutive readings from a universe (population) or from a process, when plotted, will form a normal distribution curve.

Codes :

(c) Strength

- (a) Both (A) and (R) are correct. (R) is the correct explanation of (A).
- (b) Both (A) and (R) are correct. (R) is not the correct explanation of (A).
- (c) (A) is correct, but (R) is in correct.
- (d) (A) is incorrect, but (R) is correct.
- 70. Which one of the following is most important parameter for EDM?
 - (a) Thermal capacity (b) Hardness
 - (d) Geometry
- 71. Which of the following is not the characteristics of work sampling ?
 - (a) Any interruption during study will not affect the results.
 - (b) The study causes less fatigue.
 - (c) Uneconomical for short cycle jobs.
 - (d) A stop watch is needed.
- 72. Which one of the followings statements is not correct regarding simplex method of linear programming?
 - (a) It is an iterative procedure.
 - (b) It has a trial basic feasible solution to constraints.
 - (c) The collection of feasible solution does not constitute a convex set.
 - (d) It improves the first trial solution by a set of rules.
- The following is not true for linear programming problems : 73.
 - (a) Objective function is expressed as a linear function of variables.
 - (b) Resources are not limited.
 - (c) Some alternative course of actions are also available.
 - (d) Decision variables are inter related.

|--|

74. Which of the following are said to be the benefits of assembly line balancing ?

- 1. It mimises the in-process inventory.
- 2. It reduces the work content.
- 3. It smoothens the production flow.
- 4. It maintains the required rate of output.

Select the correct answer using the codes given below :

Codes:

- (a) 1, 2 and 3 (b) 2, 3 and 4
- (c) 1, 3 and 4 (d) 1, 2 and 4
- 75. Value Engineering is concerned with the saving of
 - (a) Un-necessary costs (b) Administrative difficulties
 - (c) Overhead costs (d) Time

76. Assertion (A): Value analysis is superior to other conventional cost reduction techniques.

Reason (R) : In conventional cost reduction techniques, value is increased by widening tolerance bands.

Codes:

- (a) Both (A) and (R) are true. (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true. (R) is not the correct explanation of (A).
- (c) (A) is true, but (R) is false.
- (d) (A) is false, but (R) is true.
- 77. Assertion (A) : Vogel's approximation method yields the best initial basic feasible solution of a transportation problem.

Since 1995

Reason (R) : Vogel's method give allocations to the lowest cost elements of the whole matrix.

Codes:

- (a) Both (A) and (R) are correct. (R) is the correct explanation of (A).
- (b) Both (A) and (R) are correct. (R) is not the correct explanation of (A).
- (c) (A) is correct, but (R) is false.
- (d) (A) is false, but (R) is correct.

£1	Engineering Publications	12		Practice Questions				
8.	The following is the general policy for A class items in ABC analysis :							
	1. Very strict control							
	2. Frequent review of their consur	nption						
	3. Safety stock kept							
	Which of these statement/s is/are	correct ?						
	(a) 1 only (b) 1 and	2 only	(c) 2 only	(d) 1, 2 and 3				
9.	In the EOQ model, if the unit orde	ering cost gets dou	bled, then the EO	Q will be				
	(a) reduced to half	(b) de	oubled					
	(c) increased 1.414 times	(d) d	ecreased 1.414 tim	nes				
30.	Value engineering is necessary to	be used when the	following sympto	ms are indicated				
	1. New product designs are to be introduced.							
	2. The firm is unable to meet delivery date.							
	3. Rate of return on investment goes down.							
	Which of the above statement/s is/are correct?							
	(a) 1, 2 & 3	(b) 2	only					
	(c) 1 & 3 only	(d) 2	& 3 only					
31.	The leaving basic variable in simplex method is the basic variable that							
	(a) has the lowest value.							
	(b) has the largest coefficient in the key row.							
	(c) goes to zero first, as the entering basic variable is increased.							
	(d) has the smallest coefficient in	the key row.						
32.	ABC analysis is used in							
	(a) Job analysis	(b) P	roduction Schedul	e				
	(c) Inventory Control	(d) S	imulation					
33.	In ABC analysis, 'A' items are responsible to share approximately the following percentage of cost:							
	(a) 80 (b) 60	(c) 40) ((d) 20				
34.	BEP indicates the recovery of							
	(a) variable costs only	(b) both fixe	d and variable cos	ts				
	(c) fixed cost only	(d) both five	d and variable and	ts along with margin of profit				

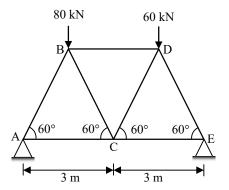
		13		Practice Questions				
85.	Which of the following is true about the init	tial bas	c feasible solution in si	mplex method ?				
	(a) It is an optimal solution.	(b) .	All basic variables are z	ero.				
	(c) Solution is not possible.	(d)	Any one basic variable	n zero				
86.	The probability law used for calculating the control limits of 'P' chart is							
	(a) Binomial	(b)	Poisson					
	(c) Normal	(d)	Exponential					
87.	If $P = \%$ activity and $A = $ limit of accura	cy in v	vork sampling. The nur	mber of observations at a				
	confidence level of 95% is given by							
	(a) $\frac{(1-P)}{A^2P}$ (b) $\frac{2(1-P)}{A^2P}$	(c)	3(1-P)	(b) $\frac{4(1-P)}{A^2P}$				
	A^2P A^2P A^2P	ERIA	A ² P	$A^{2}P$				
88.	When order quantity increases, the ordering	cost w	ill ^C ⁴ S					
	(a) increase (b) decrease	(c) 1	remains same	(d) None of the above				
89.	Which type of layout is preferred in order to	o avoid	excessive multiplication	n of facilities ?				
	(a) Process layout	(b)	Product layout					
	(c) Fixed position layout	(d)	Cellular manufacturing					
90.	An assembly activity is represented in an op	peration	process chart by the sy	rmbol				
	(a) ~ (b) A	(c)]		(d) ±				
	Sin	ce 1	995					
91.	In an m \times n transportation problem, the max			es is				
	(a) $m + n$ (b) $m - n$	(c) 1	n + n - 1	(d) $m + n + 1$				
92.	In the model M/M/I : ∞ /FCFS with utilization		and the second se	ength is equal to				
	(a) $1 - \rho$ (b) $\frac{1}{1 - \rho}$	(c)	$\frac{\rho}{1-\rho}$	(d) $\frac{\rho^2}{1-\rho}$				
93.	Group 'C' items constitute the following pe	rcentag	e of items in ABC analy	ysis :				
	(a) 10 (b) 20	(c) :	50	(d) 70				
94.	In linear programming problem, the shadow	price	S					
	(a) the value assigned to one unit capacity	(b)	he maximum cost per u	nit item				
	(c) the lowest sale price	. ,	None of the above					

Ó	ACE Engineering Publications		14		Practice Questions			
95.	Annual demand for a product, costing ₹ 100 per piece, is 900. Ordering cost per order is ₹ 100 and							
	the holding cost is \gtrless 2 per unit per year. The economic order quantity is							
	(a) 200	(b) 300	(c) 40	0	(d) 500			
6.	The mathematical	technique for finding th	ne best	use of limited resou	urces of a company in the			
	optimum manner is known as							
	(a) Value analysis			etwork analysis				
	(c) Linear program	nming	(d) Q	ueuing theory				
7.	Which of the follo	Which of the following charts indicates variability of variability within the collected samples ?						
	(a) \overline{X} chart	(b) σ chart GNE	P(c) c	chart	(d) u chart			
8.	Which statement is wrong about diamagnetic materials ?							
	(a) Their susceptibility is positive.		(b) TI	neir permeability is l	ess than one.			
	(c) Super-conducted	ors are diamagnetic.	(d) TI	ney repel the externa	l magnetic flux.			
9.	Super conductivity is that state of a material at which it electrical resistance							
	(a) becomes zero.		(b) be	comes infinite.				
	(c) starts showing	a change.	(d) st	ops being affected by	v temperature change.			
00.	The difference between Graphite and Diamond is that							
	(a) Diamond is transparent while Graphite is opaque.							
	(b) Diamond is insulator while Graphite is conductor.							
	(c) Diamond has all primary bonds while Graphite has three primary and one secondary bonds.							
	(d) All the above							
01.	Identify the pair w	which has same dimensions	:					
	(a) Force and pow	er	(b) Ei	nergy and work				
	(c) Momentum and	d energy	(d) In	pulse and momentu	m			

ACE 15 Practice Questions D 102. In the following figure, the tension in the rope AC is 30° (a) 17.32 N C/ (b) 56.60 N (c) 169.90 N (d) 113.20 N В 10 kg 103. The maximum frictional force, which comes into play, when a body just begins to slide over the surface of the other body, is known as (a) Limiting friction (b) Static friction (d) Coefficient of friction (c) Dynamic friction 104. A body subjected to coplanar non-concurrent forces will remain in a state of equilibrium if (a) $\Sigma F_x = 0$ (b) $\Sigma F_v = 0$ (c) $\Sigma M = 0$ (d) All the above three 105. A rigid body is subjected to non-coplanar concurrent force system. If the body is to remain in a state of equilibrium, then (a) $\Sigma F_x = \Sigma F_y = \Sigma F_z = 0$ (b) $\Sigma M_x = \Sigma M_y = 0$ (c) $\Sigma M_v = \Sigma M_z = 0$ (d) None of the above 106. One end of an uniform ladder, of length L and weight W, rests against a rough vertical wall and the other end rests on rough horizontal ground. The coefficient of friction f is same at each end. The

(a) $\tan^{-1}\left(\frac{1-f^2}{2f}\right)$ (b) $\tan^{-1}\left(\frac{1+f^2}{2f}\right)$ (c) $\tan^{-1}\left(\frac{2f}{1+f^2}\right)$ (d) $\tan^{-1}\left(\frac{2f}{1-f^2}\right)$

inclination of ladder when it is on the point of slipping is


- 107. In the analysis of truss, the force system acting at each pin
 - (a) is concurrent but not coplanar.
- (b) is coplanar and concurrent.
- (c) is coplanar and non-concurrent.
- (d) does not satisfy rotational equilibrium.

ACE Engineering Publications

16

108. For truss as shown below, the forces in the member AB and AC are

- (a) Tensile in each
- (b) Compressive in each
- (c) Compressive and Tensile respectively
- (d) Tensile and Compressive respectively

- 109. Two equal and mutually perpendicular forces of magnitude 'P', are acting at a point. Their resultant force will be
 - (a) P $\sqrt{2}$, at an angle of 30° with the line of action of any one force.
 - (b) P $\sqrt{2}$, at an angle of 45° with the line of action of each force.
 - (c) 2P $\sqrt{2}$, at an angle of 45° with the line of action of each force.
 - (d) Zero
- 110. The relationship, between number of joints (J), and the number of members (m), in a perfect truss, is given by

(a) m = 3j - 2 (b) m = 2j - 3 (c) m = j - 2 (d) m = 2j - 1

- 111. Four forces P, 2P, 3 P & 4P act along the sides of a square, taken in order. The resultant force is (a) zero (b) $\sqrt{5}$ P (c) $2\sqrt{2}$ P (d) 2P
- 112. According to the Newton's law of gravitation, the force of attraction, between the bodies of masses m₁ and m₂ situated at a distance 'd' apart, is given by

(a)
$$F = G \frac{m_1 m_2^2}{d^2}$$
 (b) $F = G \frac{m_1^2 m_2}{d^2}$ (c) $F = G \frac{m_1^2 m_2^2}{d^2}$ (d) $F = G \frac{m_1 m_2}{d^2}$

- 113. Varignon's theorem is related to
 - (a) Principle of moments (b) Principle of momentum
 - (c) Principle of force (d) Principle of inertia

114. Choose the correct relationship between the given statements of Assertion (A) and Reason (R).

Assertion (A) : Only axial forces act in members of roof trusses.

Reason (R) : Truss members are welded together.

Codes:

- (a) Both (A) & (R) are correct. (R) is the correct explanation of (A).
- (b) Both (A) & (R) are correct. (R) is not the correct explanation of (A).
- (c) (A) is true, but (R) is false.
- (d) (A) is false, but (R) is true.

115. If a force of 30 N is required to move a mass of 35 kg on a flat surface horizontally at a constant velocity, what will be the coefficient of friction ?

(a) 0.067 (b) 0.087 (c) 0.098 (d) 0.092

- 116. A train crosses a tunnel in 30 seconds time. The speed of the train at entry and at exit from the tunnel are 36 and 54 km/hour respectively. If acceleration remains constant, the length of the tunnel is
 - (a) 350 m (b) 360 m (c) 375 m (d) 400 m
- 117. If T_1 and T_2 are the initial and final tensions of an elastic string and x_1 and x_2 are the corresponding extensions, then the work done is

(a)
$$(T_2 + T_1) (x_2 - x_1)$$

(b) $(T_2 - T_1) (x_2 + x_1)$
(c) $\frac{(T_2 - T_1)(x_2 + x_1)}{2}$
(d) $\frac{(T_2 + T_1)(x_2 - x_1)}{2}$

- 118. The escape velocity on the surface of the earth is(a) 11.2 km/s(b) 8.2 km/s(c) 3.2 km/s(d) 1.2 km/s
- 119. A motor boat whose speed in still water is 15 km/hr goes 30 km downstream and comes back in a total time of four and half hours. The stream has a speed of
 - (a) 3 km/hr (b) 4 km/hr (c) 5 km/hr (d) 6 km/hr
- 120. If the period of oscillation is to become double, then
 - (a) the length of simple pendulum should be doubled.
 - (b) the length of simple pendulum should be quadrupled.
 - (c) the mass of the pendulum should be doubled.
 - (d) the length and mass should be doubled

121. Choose the correct relationship between the given statements of Assertion (A) and Reason (R).Assertion (A) : A dynamically system of multiple rotors on a shaft can rotate smoothly at the critical speeds of the system.

18

Reason (R) : Dynamic balancing eliminates all the unbalanced forces and couples from the system. **Codes:**

- (a) Both (A) and (R) are true. (R) is the correct explanation of (A).
- (b) Both (A) and (R) are true. (R) is not the correct explanation of (A).
- (c) (A) is true, but (R) is false.

ACE

(d) (A) is false, but (R) is true.

122. A spring scale reads 20 N as it pulls a 5.0 kg mass across a table. what is the magnitude of the force exerted by the mass on the spring scale ? EERING

(a) 4.0 N (b) 5.0 N (c) 20.0 N (d) 49.0 N

123. A thin circular ring of mass 100 kg and radius 2 m resting on a smooth surface is subjected to a sudden application of a tangential force of 300 N at a point on its periphery. The angular acceleration of the ring will be

(a) 1.0 rad/sec^2 (b) 1.5 rad/sec^2 (c) 2.0 rad/sec^2 (d) 2.5 rad/sec^2

124. The loss of kinetic energy, during inelastic impact of two bodies having masses m₁ and m₂, which are moving with velocity v₁ and v₂ respectively, is given by

(a)
$$\frac{m_1m_2}{2(m_1 + m_2)} (v_1 - v_2)^2$$

(b) $\frac{2(m_1 + m_2)}{m_1m_2} (v_1 - v_2)^2$
(c) $\frac{m_1m_2}{2(m_1 + m_2)} (v_1^2 - v_2^2)$
(d) $\frac{2(m_1 + m_2)}{m_1m_2} (v_1^2 - v_2^2)$

125. The unit of energy in S.I unit is

(a) Dyne (b) Watt (c) Newton (d) Joule

126. Polar moment of inertia of an equilateral triangle of side 'x' is given by

(a)
$$\frac{x^4}{16}$$
 (b) $\frac{x^4}{16\sqrt{3}}$ (c) $\frac{x^4}{32}$ (d) $\frac{x^4}{64}$

	E vabilications		19			Practice Questions	
27. Poiso	Poison's ratio is the ratio of						
(a) La	ateral stress to lon	gitudinal stress		(b) Lateral	stress to longitu	dinal strains	
(c) La	ateral strain to lon	gitudinal strain		(d) Shear st	tress to shear str	ain	
28. If the	If the sum of all the forces acting on a moving object is zero, the object will						
(a) co	ntinue moving w	ith constant velocity		(b) accelera	ate uniformly		
(c) ch	ange the direction	n of motion		(d) slow do	own and stop		
29. Dyna	mic friction as co	mpared to static fricti	on is				
(a) le	SS			(b) same			
(c) m	ore			(d) None of	f the above		
30. Wher	a body is throw	n up at an angle of 4	5° with	a velocity of	100 m/sec. it de	scribes a parabola.	
	When a body is thrown up at an angle of 45° with a velocity of 100 m/sec, it describes a parabola. Its velocity on point of return down will be						
(a) ze	ro	(b) 50 m/sec	$(c) = \frac{1}{2}$	$\frac{00}{\sqrt{2}}$ m/s	(d) $100\sqrt{2}$	m/sec	
(u) 20		(0) 50 11 500		$\sqrt{2}$ m/s	(4) 100 V2		
31. A pro	A projectile on a level ground will have maximum range if the angle of projection is						
(a) 30	90	(b) 45°	(c) 6	0°	(d) 75°		
32. Whic	Which one of the following is not an example of plane motion ?						
	(a) Motion of a duster on a black board. (b) Motion of ball point of pen on the paper.						
	(c) Motion of a cursor on the computer screen. (d) Motion of a nut on a threaded bolt.						
22 Whie	h and of the falle	wing is a scalar quart	:tr. 2				
		wing is a scalar quant	ny ?	(a) Second	7	(d) Valasita	
(a) Fo	orce	(b) Displacement		(c) Speed		(d) Velocity	
34. A 44	A 44 N block is thrust up a 30° inclined plane with an initial speed of 5 m/sec. It travels a distance						
of 1.5	of 1.5 m before it comes to rest. The frictional force acting upon it would be						
(a) 18	.3 N	(b) 15.3 N		(c) 12.3 N		(d) 9.3 N	
		a velocity 1 m/s and			-		
	-	ly becomes three tim	es, the	torce needed	to stop it within	the same distance	
would	i be						

(a) 1.5 F (b) 3.0 F (c) 6.0 F (d) 9.0 F

Engineering Publications	20	Practice Questions				
136. In a loaded beam, the term $\frac{dm}{dx}$ represents	In a loaded beam, the term $\frac{dm}{dx}$ represents					
(a) Deflection at a section		(b) Slope at a section				
(c) Intensity of loading at a section		(d) Shear force at a section				
137. A beam is of rectangular section. The distr	ibution (of shearing stress across a section is				
(a) Parabolic		(b) Rectangular				
(c) Triangular		(d) None of the above				
138. In a stressed field, the change in angle betw	veen two	o initially perpendicular lines is called				
(a) Normal strain		(b) Shear strain				
(c) Principal strain	ERIA	(d) Poisson's ratio				
139. A metallic cube is subjected to equal pres	sure (P)	on its all the six faces. If ε_v is volumetric strain				
produced, the ratio $\frac{P}{\varepsilon_v}$ is called						
(a) Elastic modulus		(b) Shear modulus				
(c) Bulk modulus		(d) Strain-Energy per unit volume				
140. To express stress-strain relations for a line	early ela	stic, homogeneous, isotropic material, minimum				
number of material constants needed are						
(a) Two (b) Three Sin	ce ^(c) I	Four (d) One				
141. A tension member with a cross-sectional an stress induced on the plane of maximum sh		0 mm^2 resists a load of 60 kN. What is the normal as ?				
() 21) 1/2 $(1) 11) 1/2$	(c) 4	$4 \text{ kN/mm}^2 \qquad (d) 3 \text{ kN/mm}^2$				
(a) 2 kN/mm^2 (b) 1 kN/mm^2						
(a) 2 kN/mm ⁻ (b) 1 kN/mm ⁻ 142. If the Mohr's circle for a state of stress become	omes a p	point, the state of stress is				
		point, the state of stress is Uniaxial state of stress				

Engineering Publications		21	Practice Questions					
44. In theory of simple be	ending of beams,	which one of the follo	owing assumptions is incorrect?					
(a) Elastic modulus ir	tension and com	pression are same for	the beam materials.					
(b) Plane sections ren	(b) Plane sections remain plane before and after bending.							
(c) Beam is initially s	(c) Beam is initially straight.							
(d) Beam material sho	ould not be brittle	2.						
45. A cylindrical shell c	f diameter 200	mm and wall thickno	ess 5 mm is subjected to internal fluid					
pressure of 10 N/mm	² . Maximum shea	ring stress induced in	the shell in N/mm ² , is					
(a) 50	(b) 75	(c) 100	(d) 200					
46. Consider the followin	g statements :	- ED IA						
1. An I.C. engine tran	1. An I.C. engine transforms chemical energy into mechanical energy.							
2. A compressed sprin	2. A compressed spring possess potential energy.							
3. A football rolling of	3. A football rolling on the ground performs plane motion.							
4. Strain gauges are u	sed to measure to	orque.						
Following are the cor	rect statements :							
(a) 1 and 2 only		(b) 2 and 3 only						
(c) 3 and 4 only		(d) 1, 2 and 4 only						
47. In a static tension test	s of a low carbon	steel sample, the gau	ige length affects					
(a) yield stress		(b) ultimate t	tensile stress					
(c) percentage elonga	tion	Sinc (d) percentag	ge reduction in cross-sectional area					
48. One end of a metallic	rod is fixed rigid		e is raised. It will experience					
(a) zero stress		(b) tensile str	ress					
(-)	~	(1) Normal f	ha aharra					

- (c) compressive stress (d) None of the above
- 149. Two cantilever steel beams of identical length and of rectangular section are subjected to same point load at their free end. In one beam, the longer side of section is vertical, while in the other, it is horizontal. Beams defect at free end :
 - (a) equally irrespective of their disposition.
 - (b) more in case of longer side vertical.
 - (c) less in case of longer side horizontal.
 - (d) less in case of longer side vertical.

Engineering Publications	22	Practice Questions
--------------------------	----	--------------------

150. A long column of length (l) with both ends hinged, is to be subjected to axial load. For the calculation of Euler's buckling load, its equivalent length is

(a)
$$l/2$$
 (b) $l/\sqrt{2}$ (c) l (d) $2l$

151. Match List – I with List – II and select the correct answer using the code given below the lists.

List – I	(Cha	aracterist	tic)	List – II (Member)		
A. Kernel of section				1. Helical spring		
B. Tie and Strut				2. Bending of beams		
C. Section	on m	odulus		3. Eccentric loading of short column		
D. Stiffness				4. Roof truss		
Code :	A	В	С	D		
(a)	1	2	3	4 GINEERING AC		
(b)	3	4	2			
(c)	4	1	20	3		
(d)	2	3	1	4		

152. The bending moment diagram for a simply supported beam AB of length 'L' is shown below :

 D_1

 D_2

 $\frac{L}{2}$

$$CD_1 = CD_2 = \frac{M}{2}$$

Sagging moment : positive

Hugging moment : negative

What is the load acting on beam AB?

- (a) An upward concentrated load $\frac{M}{2}$ at C.
- (b) A downward concentrated load $\frac{M}{2}$ at C.
- (c) An anticlockwise moment 'M' at C
- (d) A clockwise moment 'M' at C.

- 23
- 153. Two simply supported beams of equal lengths, cross sectional areas, and section moduli, are subjected to the same concentrated load at its mid-length. One beam is made of steel and other is made of Aluminium. The maximum bending stress induced will be in
 - (a) Steel beam

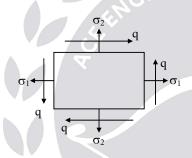
ACE

- (b) Aluminium beam
- (c) Both beams of equal magnitude
- (d) The beams according to their Elastic Moduli magnitude.
- 154. Two strips of equal lengths and widths are joined together by two rivets, one at each end. One strip is of copper and the other of steel. Now, the temperature of this assembly is lowered, the rivets will undergo.
 - (a) Bending
 - (c) Double shear

(b) Single shear

- (d) Both (a) & (b) above
- 155. A uniform metal bar of weight 'W', length 'l', cross-sectional area 'A' is hung vertically with its top end rigidly fixed. Which section of the bar will experience maximum shear stress ?
 - (a) Top-section (b) Mid-section
 - (c) Bottom-section (d) 1/3 from top
- 156. Which one of the following will result into a constant strength beam ?
 - (a) The bending moment at every section of the beam is constant.
 - (b) Shear force at every section is same. ince 1995
 - (c) The beam is of uniform section over its whole length.
 - (d) The ratio of bending moment to the section modulus for every section along the length is same.
- 157. A beam of Z-section is called a
 - (a) doubly symmetric section beam (b) singly symmetric section beam
 - (c) a-symmetric section beam (d) none of the above
- 158. The outside diameter of a hollow shaft is twice its inside diameter. The ratio of its torque carrying capacity to that of a solid shaft of the same material and the same outside diameter is
 - (a) 15/16 (b) 3/4 (c) 1/2 (d) 1/16

	24	Practice Questions
--	----	--------------------


159. Choose the correct relationship in the given statements of Assertion (A) and Reason (R).

Assertion (A) : A plane state of stress does not necessarily result into a plane state of strain.

Reason (R) : Normal stresses acting along X and Y directions will also result into strain along the Z-direction.

Code :

- (a) Both (A) & (R) are correct. (R) is the correct explanation of (A).
- (b) Both (A) & (R) are correct. (R) is not the correct explanation of (A).
- (c) (A) is true, but (R) is false.
- (d) (A) is false, but (R) is true.
- 160. A body is subjected to two unequal like direct stresses σ_1 and σ_2 in two mutually perpendicular planes along with simple shear stress q

Which among the following is then a wrong statement?

- (a) The principal stresses at a point are $P_1, P_2 = \frac{\sigma_1 + \sigma_2}{2} \pm \sqrt{\left[\left(\frac{\sigma_1 \sigma_2}{2}\right)^2 + q^2\right]}$
- (b) The position of principal planes with the plane of stress σ_1 , are

$$\theta_1 = \frac{1}{2} \tan^{-1} \frac{2q}{\sigma_1 - \sigma_2}; \theta_2 = \theta_1 + 45^\circ$$

(c) Maximum shear stress is
$$(\sigma_t)_{max} = \pm \sqrt{\left[\left(\frac{\sigma_1 - \sigma_2}{2}\right)^2 + q^2\right]}$$

- (d) Planes of maximum shear are inclined at 45° to the principal planes.
- 161. Slenderness ratio has dimension of
 - (a) cm (b) cm⁻¹ (c) cm² (d) None

162. When a body is subjected to direct tensile stresses (σ_x and σ_y) in two mutually perpendicular directions, accompanied by a simple shear stress τ_{xy} , then in Mohr's circle method, the circle radius is taken as

(a)
$$\frac{\sigma_{x} - \sigma_{y}}{2} + \tau_{xy}$$
(b)
$$\frac{\sigma_{x} + \sigma_{y}}{2} + \tau_{xy}$$
(c)
$$\frac{1}{2}\sqrt{(\sigma_{x} - \sigma_{y})^{2} + 4\tau_{xy}^{2}}$$
(d)
$$\frac{1}{2}\sqrt{(\sigma_{x} + \sigma_{y})^{2} + 4\tau_{xy}^{2}}$$

163. The ratio of hoop stress to longitudinal stress in thin walled cylinders is

(a) 1 (b) 1/2 (c) 2 (d) 1/4

164. The theory applicable for the analysis of thick cylinders, is

- (a) Lame's theory(b) Rankine's theory(c) Poisson's theory(d) Caurbon's theory
- ∇
- 165. The unit of modulus of elasticity is same as those of
 - (a) stress, strain and pressure

ACE

- (b) stress, pressure and modulus of rigidity
- (c) stress, force and modulus of rigidity
- (d) stress, force and pressure

166. The relation among the elastic constants E, G and K is

(a)
$$E = \frac{KG}{9K+G}$$

(b) $E = \frac{9KG}{K+G}$
(c) $E = \frac{9KG}{K+3G}$
(d) $E = \frac{9KG}{3K+G}$

167. Which of the following has no unit?

(a) Kinematic viscosity	(b) Strain
(c) Surface Tension	(d) Bulk Modulus

- 168. What does the elasticity of material enables it to do?
 - (a) Regain the original shape after the removal of applied force.
 - (b) Draw into wires by the application of force.
 - (c) Resist fracture due to high impact.
 - (d) Retain deformation produced under load permanently.

Engineering Publications		26	Practice Questions
169. Which of the followin	g brakes is commonly	used in	in motor cars ?
(a) Band Brake		(b)) Shoe Brake
(c) Internal expanding	Shoe Brake	(d)) All the above
170. Which one of the follo	wing is not an examp	le of hi	nigher pair ?
(a) Disc Cam and rolle	er follower	(b)) Spur Gear meshing teeth
(c) Ball Bearing		(d)) Bush Bearing
171. The minimum number	r of teeth which can be	e cut fo	for standard tooth for a given pressure angle '\phi' the
following			
(a) $\sin^2 \phi/2$	(b) $2/\sin^2 \phi$	ERIX	$(d) \frac{2}{\sin 2\phi}$
172. When there is no slip,	the power transmitted	l by bel	elts is proportional to
(a) $(T_1 - T_2) V$	(b) $(T_1 + T_2)$) V	3
(c) $(T_1 / T_2) V$	(d) $(T_1 - T_2)$) V	
173. When two gear teeth a	are in mesh, then pure	rolling	g occurs at the
(a) root of tooth	(b) tip of too	oth	
(c) pitch point	(d) flank		
174. In a governor, if the e			nt for all radii of rotation of balls, the governor is
said to be	Sin	ce 1	1995
(a) stable governor	(b) unstable	govern	rnor
(c) inertia governor	(d) isochron	ious go	overnor
175. The instantaneous cen	tre of rotation of a circ	cular di	disc rolling on a straight path is at
(a) the centre of the di	sc		
(b) their point of conta	act		
(c) the centre of gravit	y of the disc		
(d) infinity			
176. For a safe design, a fri	iction clutch is designed	ed assu	uming
	e		-

- (a) uniform wear (b) uniform pressure
- (c) any one of the above (d) None of the above

Engineering Publications		27	Prae	ctice Questions					
77. In a simple gear	train, there is odd 1	number of idlers.	The direction of rotation of the	e driver and the					
driven gears will	driven gears will be								
(a) same	(a) same								
(b) opposite	(b) opposite								
(c) depends upon	(c) depends upon the number of teeth of the gears								
(d) depends upor	n the diameter of idl	ers used							
178. In free vibrations	s, the acceleration vo	ector leads the disp	placement vector by						
(a) π/3	(b) π/2	(c) $2\pi/3$	d (d) π						
79. At a certain spea	ed, revolving shafts	tend to vibrate v	iolently in transverse direction	s, this speed is					
known as		HEERING							
(a) whirling spee	d	(b) critical spec	ed						
(c) whipping spe	ed L	(d) All the abo	ve VO						
190 If the grand of th	v		32	a a a ffi ai ant at					
		ween 390 and 410	rpm in a cycle of operation, th						
fluctuation of spe									
(a) 0.01	(b) 0.03	(c) 0.05	(d) 0.07						
181. When teeth form	ed on the cones are	straight, the gears	are known as						
(a) worm gear		(b) helical gear							
(c) straight bevel		(d) spiral bevel							
		Since 199	5						
182. Creep in belts oc		ne of the following							
(a) Belt and pulle	ecurs due to which o ey surfaces are smoo	ne of the following							
(a) Belt and pulle(b) Belt is thick	ey surfaces are smoo	ne of the following							
(a) Belt and pulle(b) Belt is thick(c) Due to unequi	ey surfaces are smoo al tensions on the tw	ne of the following							
(a) Belt and pulle(b) Belt is thick(c) Due to unequi	ey surfaces are smoo	ne of the following							
(a) Belt and pulle(b) Belt is thick(c) Due to unequi	ey surfaces are smoo al tensions on the tw ameters are large	ne of the following oth vo sides of the pul	ley						
(a) Belt and pulle(b) Belt is thick(c) Due to unequ(d) The pulley di	ey surfaces are smoo al tensions on the tw ameters are large	ne of the following oth vo sides of the pul	ley						
 (a) Belt and pulle (b) Belt is thick (c) Due to unequ (d) The pulley di 183. The point on the 	ey surfaces are smoo al tensions on the tw ameters are large	ne of the following oth vo sides of the pul	Bey sknown as the						
 (a) Belt and pulle (b) Belt is thick (c) Due to unequid (d) The pulley di 183. The point on the (a) Cam centre 	ey surfaces are smoo al tensions on the tw ameters are large Cam with maximur	ne of the following oth vo sides of the pul n pressure angle is (b) Pitch point (d) Prime point	Bey sknown as the						
 (a) Belt and pulle (b) Belt is thick (c) Due to unequ (d) The pulley di 183. The point on the (a) Cam centre (c) Trace point 	ey surfaces are smoo al tensions on the tw ameters are large Cam with maximur	ne of the following oth vo sides of the pul n pressure angle is (b) Pitch point (d) Prime point	Bey sknown as the						

ACE Engineering Publications	
Engineering Publications	

Case With	, Engineering Publications		
185.	The motion of a nu	t on a threaded bolt is	
	(a) Helical	(b) Plane	
	(c) Spherical	(d) None of the	he above
186.	Spur gears have/are	2	
	(a) straight teeth pe	rpendicular to the axis.	(b) curved teeth perpendicular to the axis.
	(c) not subjected to	axial thrust due to tooth lo	(d) subjected to axial thrust due to tooth load.
187.	Coriolis component	t of acceleration occurs in	
	(a) quick return me	chanism	(b) four bar mechanism
	(c) slider crank med	chanism	(d) none of the above
188.	Identify the wrong	statement:	RINGA
	(a) A mechanism is	an assemblage of four or	more links.
	(b) A slider crank c	hain consists of two slidin	g pairs and two turning pairs.
	(c) A kinematic cha	in requires at least four lir	nks and four turning pairs.
	(d) Open pairs are t	hose whose elements are r	not held together mechanically.
189.	Any distributed ma	ss can be replaced by two	point masses to have the same dynamical properties, if
	(a) The sum of the	two masses is equal to the	total mass.
	(b) The combined c	entre of mass coincides w	ith that of the rod.
	(c) The moment of	f inertia of two point mas	sses about perpendicular axis through their combined
	centre of mass	s is equal to that of the rod.	a 1995
	(d) All the above.		
100	F 1 1 1		
	-		ag at resonance condition is
	(a) 0°	(b) 45°	(c) 80° (d) 90°
191.	The maximum effic	ciency of a screw jack have	ing square threads and friction angle of 30° will be
	(a) 11 %	(b) 20 %	(c) 30 % (d) 33 %
192.	If the damping fact	or for a vibrating system is	s unity, then the system is
	(a) critically dampe	d	(b) under damped
	(c) over damped		(d) zero damped
193.	A gear train, in whi	ch at least one of the gear	axes is in motion relative to the frame, is known as
	(a) reverted gear tra	iin	(b) non-reverted gear train
	(c) epicyclic gear tr	ain	(d) none of the above

Engineering Publications		29	Practice Questions		
194. In a mechanism	having six links, the number	of ins	tantaneous centres of rotation present are		
(a) 15	(b) 12	(c) 9	9 (d) 6		
195. A flywheel in a	n I.C. engine :				
(a) controls the	supply of fuel to the engine	(b) (controls the cyclic fluctuation of speed		
(c) controls the	speed variation due to load	(d) .	All the above		
		nechar	nism used in shapers, the beginning and end of		
cutting stroke o	ccurs when				
(a) cranked leve	er are in line with each other	(b) (crank is perpendicular to lever		
(c) crank is hori	izontal	(d)]	ever is horizontal		
197. Stress and Strai	n are tensor of	RIA	IGAO		
(a) zero-order	ENC	(b) 1	first order		
(c) second order	r	(d)]	None of the above		
198. $\sigma_x + \sigma_y = \sigma_{x'} + c$	$\mathbf{x}_1 = \mathbf{x}_1 + \mathbf{x}_2$				
The above relat					
	cy of normal stresses	(b) (constancy of normal stresses		
(c) first invariar			all the above three		
		(4)			
199. In a slider-crank mechanism, the piston velocity is maximum, when:					
(a) Crank is perpendicular to line of stroke.					
(b) Crank and connecting rod are collinear.					
(c) Crank is perpendicular to connecting rod.					
(d) None of the	above.				
200. A body of weig	ht W is supported by two spri	ngs as	shown below. The equivalent spring constant is:		
		I			

(a) $\frac{1}{K_1} + \frac{1}{K_2}$ (b) $K_1 + K_2$ (c) $K_1 - K_2$ (d) $K_1 K_2$