

Head Office : Sree Sindhi Guru Sangat Sabha Association, # 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001.

Ph: 040-23234418, 040-2324419, 040-2324420, 040-24750437

Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata | Ahmedabad

CIVIL ENGINEERING BPSC PRACTICE QUESTIONS

- 01. The free-body diagram of a satellite rotating about the earth will show the satellite isolated from its surroundings and:
 - (a) no force acting on it
 - (B) its velocity shown on it
 - (C) the force of gravity and centrifugal force acting on it
 - (D) the force of gravity, centrifugal force and its velocity
- 02. The time taken by a small frictionless bead to slide on a thin wire in the gravitational field is the minimum if the shape of the wire is :
 - (A) A straight line (B) A cycloid (C) An involute (D) A parabola
- 03. Stability of equilibrium of a body requires that:

(A)
$$\frac{dPE}{ds} = 0$$

(B) $\frac{dPE}{ds} = 0$ and $\frac{d^2PE}{ds^2} < 0$
(C) $\frac{dPE}{ds} = 0$ and $\frac{d^2PE}{ds^2} > 0$
(D) None of the above

- 04. A rigid body, in translation:
 - (A) Must undergo plane motion only
 - (C) May move along a straight or curved path
- (B) Cannot move on a circular path
- (D) Can only move in a straight line
- 05. The first moment of triangular area of base "b" and height "h" taken about an axis coincident with the base is given by:

(A)
$$\frac{bh^3}{12}$$
 (B) $\frac{b^2h}{6}$ (C) $\frac{bh^2}{6}$ (D) $\frac{h}{3}$

06. The second moment of a plane area about any axis as compared to its second moment about the neutral axis:

(A) is always more	(B) is always less	(C) is sometimes more	(D) is equal
--------------------	--------------------	-----------------------	--------------

Engineering Publications	2	Practice Questions
07. The coefficient of restitution is defined on the (A) Velocity components along the line of im	e basis pact o	s of : only

- (B) Velocity component normal to the line of impact
- (C) The velocity direction before and after the collision
- (D) None of the above
- 08. The acceleration of a particle is given by $a = t^3 3t^2 + 5 \text{ m/s}^2$ where the time "t" is in seconds. If the velocity of the particle at t = 1 second is 6.25 m/s and displacement is 8.8 m, the velocity and displacement at t = 2 seconds is:
 - (A) 8 m/sec, 16.1 m
 - (C) 9 m/sec, 16.1 m

(B) 8.5 m/sec, 16.5 m (D) 16.4 m/sec, 8 m

- 09. The D' Alembert principle:
 - (A) is hypothetical principle
 - (B) provides no special advantage over Newton's law
 - (C) is based upon the existence of inertia forces
 - (D) allows a dynamic problem to be treated as a statical problem
- 10. The Coriolis acceleration may not vanish:
 - (A) If the relative velocity of the moving point become zero
 - (B) if the rotational velocity of the moving frame become zero
 - (C) if the rotational velocity of the moving frame and relative velocity become collinear
 - (D) if the angular acceleration of the point become zero

(B) 350

- 11. The ratio of effective length of compression member of steel to the approximate radius of gyration shall not exceed:
 - (A) 400

(C) 300

(D) 250

12. Beam fixed one end, supported at the other with uniform load as shown, then max deflection is given by:

(A)
$$\Delta \approx 185 \frac{WL^4}{EI}$$

(B) $\Delta \approx 180 \frac{WL^2}{EI}$
(C) $\Delta \approx 185 \frac{WL^3}{EI}$
(D) $\Delta \approx 180 \frac{WL^4}{EI}$

	ACE Engineering Publications		3		Practice Questions
13.	Poisson's ratio is a co	onstant upto elastic limi	t. It is t	he range of for s	teel.
	(A) $\frac{1}{4}$ to $\frac{1}{3}$	(B) $\frac{1}{5}$ to $\frac{1}{4}$	(C) $\frac{1}{5}$	$to\frac{1}{3}$	(D) $\frac{1}{6}$ to $\frac{1}{5}$
14.	A beam of square cro the maximum shear s	oss section ($B \times B$) is us stress from the neutral a	ised as a xis will	a beam with one diagor be at a distance of:	nal horizontal. The location of
	(A) zero	(B) $\frac{B}{4}$	(C) $\frac{0.7}{7}$	$\frac{25B}{\sqrt{2}}$	(D) $\frac{B}{8}$
15.	The maximum stress (A) large end	produced in a bar of ta (B) smaller end	pering s (C) mi	section under direct tens ddle	sion is at: (D) anywhere
16.	If a composite bar expansion will be:	is cooled, then the nat	ture of	stress in the part with	n high coefficient of thermal
	(A) Tensile	(B) Zero	(C) Co	ompressive	(D) None of these
17.	When a cantilever is develop at:	s loaded at its free end	d by a	downward load, maxir	num compressive stress shall
	(A) bottom fiber	(B) top fiber	(C) ne	utral axis	(D) centre of gravity
18.	The stability of a dam (A) tension at the bas (C) sliding of the dam	n is checked for: se n	(B) ov (D) all	er turning of the dam of these	
19.	The effective thickne	ess of a fillet weld is S	ince	1995	
	(A) $\frac{S}{2}$	(B) $\frac{S}{1.66}$	(C	c) $\frac{s}{1.428}$	(D) $\frac{S}{1.25}$
Wh	ere S is size of weld.				
20.	When a closely coile (A) Bending only (C) Torsion and shea	d spring is subjected to r	an axia (B) Sh (D) No	l load, it is said to be ur ear only one of these	nder:
21.	Polar moment of iner (A) $\frac{\pi D^3}{16}$	rtia of a solid shaft of di (B) $\frac{\pi D^2}{16}$	ameter (C) $\frac{\pi I}{3}$	"D" is : $\frac{D^2}{6}$	(D) $\frac{\pi D^4}{32}$

22. When a solid shaft is subjected to torsion, the shear stress induced in the shaft at its centre is (A) Zero (B) Minimum (C) Maximum (D) Average

ACE	4	Practice	Questions
Engineering Publications			

- 23. Stiffness factor of a beam fixed at one end and simply supported at the other end for rotation at simply supported end is:
 - (A) $\frac{3\text{EI}}{\text{I}}$ (B) $\frac{4\text{EI}}{\text{I}}$ (D) $\frac{8EI}{I}$ (C) $\frac{6\text{EI}}{\text{I}}$

24. Two simply supported beams of the same span carry the same total load. If the first beam carries the total load as a point load at its centre and the other uniformly distributed over the whole span, then the ratio of maximum slopes of first beam to the second will be: (D) 2 : 1

- (A) 1 : 1 (B) 1 : 15 (C) 1.5 : 1
- 25. The end rotation for the given beam is

26. The total strain energy of truss element is 500 joules and it carries an axial force of 100 kN. The extension of the member is:

(A) 1 mm	(B) 2 mm	(C) 5 mm	(D) 10 mm

- 27. Castigliano's theorem falls under the category of: (B) Equilibrium method (A) Displacement method S (D) Stiffness method (C) Force method
- 28. A rod is stressed to 50 kN/mm² in tension. The E for the rod is 200 kN/mm². The strain energy per cubic meter will be:
 - (C) 2.5×10^9 (B) 5.0×10^9 (D) 1.25×10^9 (A) 6.25×10^9
- 29. The rotation of the free end of a cantilever beam due to a 5 kN load is 0.001 rad. Then the deflection of the free end due to a moment of 120 kN-m is :

(A) 1.2 mm (B) 2.4 mm (C) 3.6 mm (D) 4.8 mm

5

30. The fixed end moment MFAB for the beam shown in the figure below is

(C) Redundant truss (D) All of the above

ACE	6	Practice Questions
Engineering Publications		

- 38. The variation of influence line for vertical support reaction of a statically determinate beam is :
 - (A) Linear (B) Parabolic
 - (C) Circular (D) None of the above
- 39. The area of the influence line diagram for the reaction at the hinged end of a uniform propped cantilever beam of span "L" is :
 - (A) $\frac{L}{2}$ (B) $\frac{3L}{8}$ (C) $\frac{L}{4}$ (D) $\frac{L}{8}$

40. The total area of the influence line diagram for shear force at mid span in a simply supported beam of span L is :

L^2		L^2		. L
$(A) = \frac{-}{2}$	(B) Zero	(C) = N		(D) $\frac{-}{2}$
8	C)	NEFIZING	1	Z

41. A two-hinged parabolic arch is subjected to a temperature rise of t^o C, then the horizontal thrust at the support will :

- (A) increase(B) decrease(C) remain same(D) increase or decrease
- 42. The line of thrust in a Parabolic arch is :

(A) Funnicular Polygon	(B) Parabolic
(C) Triangular	(D) Circular

43. The simply supported bending moment at the central hinge of a three hinged arch is 36 kNm. The span and rise at the hinge are 12 m and 3 m respectively. The horizontal thrust in the arch is :
(A) 3 kN
(B) 6 kN
(C) 9 kN
(D) 12 kN

44. In approximate analysis of building frames under lateral loads, the point of inflection in beams and columns is assumed at :
(A) Span / 2
(B) Span / 3
(C) Span /10
(D) Span / 20

- 45. The effective slenderness ratio of a cantilever column of length L :
 - (A) 0.5 L/r (B) L/r (C) $\sqrt{2}$ L/r (D) 2 L/r

Where, r = radius of gyration.

			7		Practice Questions
46.	46. A 40 cm diameter circular timber column is 4 i column is :		m lon	g (effective). The slen	derness ratio of the
	(A) 10	(B) 20	(C) 40	(D) 20 $\sqrt{2}$
47.	A soil sample (sp. gr 2 ratio of the sample is :	.7) has a degree of satur	ration	of 40 % at water cont	ent of 20%. The void
	(A) 1.35	(B) 0.03	(C) 5.4	(D) None of these
48.	Sieving is not carried o	ut for grain sizes smalle	er tha	n about :	
	(A) 0.75 mm	(B) 0.075 mm	(C) 0.150 mm	(D) 0.20 mm
49	If sand is in its densest	state its relative density	E.R.	NGA	
17.	(A) Zero	(B) 1	(C) Less than 1	(D) Greater than 1
50.	The ratio of the shear str	rength of undisturbed so	oil to	that of remoulded soil	is known as the :
	(A) liquidity index	(B) activity index	(C) relative consistency	(D) sensitivity
51.	Talus is a soil transport	ed by :			
	(A) Wind	(B) Water	(C) Glaciers	(D) Glacial tills
52.	Darcy's Law is applical	ble if a soil is :		$\langle \rangle$	
	(A) incompressible	(B) homogeneous	cé ^c) isotropic	(D) All of these
53.	The hydrostatic pressur	e on a phreatic line equ	als :		
	(A) Atmospheric		(B) Less than Atmospher	ric
	(C) Greater than Atmos	spheric	(D) None of these	
54.	Liquefaction can be pre	evented by :			
	(A) providing filters		(B) increasing the seepag	ge length of the flow
	(C) lowering the water table		(D	(D) All of these	
55.	The horizontal Geostati	c stress at a depth of 4n	n in a	uniform deposit of so	il having Kb = 0.5 and
	$\gamma_b = 16.5 \text{ kN/m}^3 \text{is}$:				
	(A) 16.0 kN/m ²	(B) 22.0 kN/m ²	2	(C) 33.0 kN/m ²	(D) 66.0 kN/m^2
	where Kb is Boussiness	q's influence factor.			

	Engineering Publications	8		Practice Questions			
56.	The shear stress below a point load	of 2 tons at a de	oth 4 m in a soil mass is	5 :			
	(A) Zero (B)	2 t/m ²	(C) $1t/m^2$	(D) None of these			
57.	If the coefficient of volume change	and the coefficie	ent of permeability of a	soil mass are			
	$2.91 \times 10^{-4} \text{ m}^2/\text{kNand } 3.4 \times 10^{-5} \text{m/sec}$	c then the coeffic	ient of consolidation wi	ill be :			
	(A) $11.91 \times 10^{-3} \text{ m}^2/\text{sec}$	(B) 3.62×1	$0^{-3} \text{ m}^2/\text{sec}$				
	(C) $9.82 \times 10^{-4} \text{ m}^2/\text{sec}$	(D) 9.89×1	$0^{-9} \text{ m}^2/\text{sec}$				
58.	If instead of single drainage, the nu	mber of drainage	faces are increased to	two, the rate of			
	compression will be :						
	(A) 4 times slower	(B) 2 times	(B) 2 times slower				
	(C) 4 times faster	(D) None o	f the above				
59.	After the complete consolidation of	f a soil mass, the	effective stress become	es equal to :			
	(A) the pore water pressure	(B) the neutral stress					
	(C) Both of these	(D) None o	(D) None of these				
60.	Sheep foot roller is ideally suited fo	r the compaction	of:				
	(A) cohesive soils	(B) cohensi	onless soils				
	(C) both types of soils	(D) None o	f these				
61.	An unconfined compression test is	good for :					
	(A) Granular soils	(B) Saturated cohesive soils					
	(C) Both granular and cohesive soi	ls (D) No	ne of these				
62.	A deviatoric stress is given by :						
	(a) $\sigma_1 + \sigma_3$	(B) σ ₁	- σ ₃				
	(C) $\frac{\sigma_1 + \sigma_3}{2}$	(D) No	ne of these				
()	The second se	1	····· ··· ··· ··· ··· ··· ··· ··· ···				

- 63. The maximum pressure intensity which a soil can carry without shear failure is known as its :
 - (A) safe bearing capacity
- (B) ultimate bearing capacity
- (C) net safe bearing capacity
- (D) net ultimate bearing capacity

ACE Engineering Publications	9	Practice Questions
64. The bearing capacity factor for local shear fa	ilure, ar	are determined with respect to :
(A) average c and ϕ parameters	B) increased c and reduced ϕ parameters	
(C) decreased c and increased $\boldsymbol{\varphi}$ parameters	(D	D) reduced c and ϕ parameters
65. The viscosity of the grout pumped into weak	k soil de	lepends directly on the :
(A) specific gravity of the soil	(B	B) shear strength of the soil
(C) permeability of the soil	(D	D) degree of saturation of the soil
66. In a plate load test, the ultimate load is estim	nated fro	rom the load-settlement curve on a log-loggraph :
(A) Directly (B) By draw	ing tang	gents to the curve at the initial and final points
(C) By the secant method (D) Simply a	at 0.2%	of the maximum settlement
67. Pile foundations are provided to :	Л	ACAS
(A) carry loads	(B	B) resist horizontal and uplift forces
(C) compact a loose cohesionless deposit	(D	D) All of these
68. The efficiency of pile group depends on :		
(A) soil type	(H	(B) method of pile installation
(C) pile spacing	(D	D) All of these
69. The method of slices was first suggested by		
(A) Taylor (B) Bishop	ince ^{(C}	C) Fellineous (D) Terzaghi
70. A slope is considered infinite when :		
(A) its length in the third dimension is infini	ite	(B) the slant height is very large
(C) the base of embankment is very long		(D) All of these
71. To have zero active pressure intensity at the uniform surcharge of intensity :	top of a	a wall in cohesive soil, one can apply a
(A) $2c \cot \alpha$		(B) $2c \tan \alpha$
(C) $-2c \cot \alpha$		(D) – 2c tan α

10

72. An unsupported vertical cut may be made in cohesive soil to a height of :

(a)
$$\frac{2c}{\gamma} \tan\left[45 + \frac{\phi}{2}\right]$$

(B) $\frac{2qu}{\gamma} \tan\left[45 + \frac{\phi}{2}\right]$
(C) $\frac{4qu}{\gamma} \tan\left[45 - \frac{\phi}{2}\right]$
(D) $\frac{4c}{\gamma} \tan\left[45 - \frac{\phi}{2}\right]$

73. The pressure diagram below the dredge line of an anchored sheet-pile wall embedded in cohesionless soil is :

(A) rectangular

(C) triangular then rectangular

(B) triangular (D) parabolic

- 74. Dynamic Magnification factor is the ratio of :
 - (A) static force to dynamic force
 - (C) dynamic deflection to static deflection
- (B) dynamic force to static deflection
- (D) dynamic force to static force
- 75. The Westergaard equations are used for analysis of :
 - (A) clayey soils
 - (C) black cotton soils
- 76. Under reamed piles are normally :
 - (A) Precast piles
 - (C) Driven piles

(B) Bored piles

(B) sedimentary soils

(D) cohesionless soils

- (D) Sunken piles
- 77. A lubricant 100 times more viscous than water would have a viscosity (in Pa-s) : (A) 0.01 (B) 0.1 (C) 1(D) 10

78. Kinematic Viscosity and specific gravity of a certain liquid are 5.58 stokes and 2 respectively. The viscosity of liquid in S.I. unit are :

(A) 1.116 Ns/m^2	(B) 1.315 Ns/m^2
(C) 1.489 Ns/m ²	(D) 1.652 Ns/m ²

79. In the laminar boundary layer flow over a flat plate, the ratio (δ/x) varies as :

(D) $R e^{-1/2}$ (B) $\sqrt{\text{Re}}$ (A) Re (C) 1/Re

where δ is the boundary layer thickness and X is the distance from the leading edge in the direction of flow.

			11		Practice Questions		
80.	The turbulence in wh	nich the products and so	luares o	of the velocity compo	nent and their derivatives		
	are independent of di	irection is called :					
	(A) isotropic	(B) potential	(0	C) anisotropic	(D) laminar		
81.	The laminar boundar	y layer thickness varies	s as :				
	(a) $x^{-1/2}$	(B) $x^{1/2}$	(0	C) x ^{1/7}	(D) $x^{6/7}$		
82.	For psedoplastic fluid	d, flow consistency inde	ex is :				
	(A) < 1	(B) = 1	((C) > 1	$\infty \Box \left(\mathbf{D} \right)$		
02							
os. If the fund entering the pipe is turbulent and the velocity in the tube is above critical the length is :				Sove entrear the transition			
	(A) 40 to 50 times the pipe diameter			(B) 10 to 30 times the entering velocity			
	(C) 20 to 30 times the pipe diameter			(D) None of the above			
	v 2						
84. If the pressure on the surface of an oil (s.g = 0.8) tank is 0.1 kg/cm ² , the pressure head a of 2.5 m is :				pressure head at a depth			
	(A) 1 m of water		(B) 2 m of water			
	(C) 3 m of water		(1	D) 3.5 m of water			
85.	A vertical rectangula	r plane surface is subm	erged i	n water such that its to	op and bottom surfaces are		
1.5 m and 6.0 m respectively below the free surface. The centre of pressure below the fre				ure below the free surface			
	will be at a depth of a						
	(A) 3.75 m	(B) 4.0 m	(C) 4.	2 m	(D) 4.5 m		
96	A jot strikes a station	omy ploto normally with		aity of 8 m/s and the	plata suffers a force of		
so. A jet strikes a stationary plate normally with a velocity of 8 m/s and the plate suffers a 120 N. The power obtained in kW is :				plate suffers a force of			
	(A) 0.96	(B) 9 4	(C) Ze	ero	(D) 958		
	(11) 0.90		(0)2				
87.	Which of the followi	ng is a dimensionless n	umber	?			
	(A) Manning's coefficient "n" ((B) Pi	(B) Pipe friction factor "f"			
	(C) Chez's coefficient "C" ((D) H	(D) Hazen–William coefficient CH			
88.	The momentum corre	ection factor "β" for lar	ninar fl	ow through a circular	pipe is :		
	(A) 1.5	(B) 2.0	(C) 1.	67	(D) 1.33		

	ACE Engineering Publications	12		Practice Questions	
89.	The continuity equation is based upon the pr	rinciple	of :		
	(A) Conservation of energy (B)	(B) Conservation of momentum			
	(C) Conservation of mass (D)	None o	f these		
90.	For a hydraulically efficient rectangular cha	nnel of	bed width 4.0 m, the de	epth of flow is :	
	(A) 4.0 m (B) 8.0 m	(C) 1.0	m	(D) 2.0 m	
91.	For an error of 10% in the measurement of h will be :	nead ove	er a broad crested weir,	the error in discharge	
	(A) 10 % (B) 5 %	(C) 15	%	(D) 25	
92.	The flow will be in supercritical state in the	follow	ing profiles :		
	(A) M ₃ , S ₃ and M ₁	(B) Ma	, S ₁ and M ₃		
	(C) S ₂ , S ₃ and M ₃	(D) S ₁ ,	S ₂ and S ₃		
93.	3. In a Sutro weir, discharge is proportional to :				
	(A) $H^{1/2}$ (B) H	(C) H ³	/2	(D) H ^{5/2}	
94.	A pump is required to deliver 150 L/s at a head of 45 m when running at 1750 r.p.m. The specific speed of the pump is :				
	(A) 17.4 (B) 39.0	(C) 89	.0	(D) 1233.0	
95.	5. Water is pumped through a pipeline to a height of 10 m at the rate of 0.1 m ³ /s frictional and other minor losses are 5 meter. Pumping power required, in kW is :				
	(A) 14.70 (B) 9.80	(C) 20	.0	(D) 13.3	
96.	Theory of probability is applied to :				
	(A) accidental error only	(B) con	nditional error		
	(C) both accidental and cumulative	(D) res	idual error		
97.	The shrinkage factor of an old map is 24/25	and R.I	F is $1/2400$ then the cor	rected scale for the	
	map is :				
	(A) $\frac{1}{2400}$ (B) $\frac{1}{2500}$	(C	$(1) \frac{1}{600}$	(D) $\frac{1}{6000}$	

	Engineering Publications		13		Practice Questions				
98.	If the length of a chain line along a slope of " α " is " <i>l</i> " the required slope correction is :								
	(A) $2l \cot^2 \alpha/2$		(B) 2 <i>l</i>	$\sin^2\alpha/2$					
	(C) $l\tan^2\alpha/2$		(D) <i>l</i> c						
99. Which of the following is the most precise instrum				nt for measuring h	orizontal distances ?				
	(A) Metallic Tape		(B) Ste	el Tape					
	(C) Tacheometer		(D) Tellurometer						
100. The whole circle bearing of a line, whose quadrantal bearing is S19°30'E is :									
	(A) 19°		(B) 199°						
	(C) 160°	(C) 160°			(D) None of the above				
101. The value of dip at the magnetic pole is :									
	(A) 0° (H (C) 90° (I			(B) 45°					
				(D) None of these					
102	. Stress-strain relation of a	material for struct	ural ana	lysis should be					
	(A) Elastic only (B) Linear only								
	(C) Elastic and linear		(D) Elastic and non-linear						
103. The closing error can be balanced by:									
	(A) Bowditch rule		(B) Transit rule						
	C) Working accurately latitudes (D) Either (A) or (B) as applicable				pplicable				
104	. If "N" is the number of s	tations and the leas	st count	of the instrument i	s, then the limit on the				
	angular error of closure in	n traversing should	versing should not be :						
	(A) < 20 N	(B) > 20 N	(C) < 20	$(D) > 20 \sqrt{N}$				
105	. What will be the correction	on for curvature fo	or a dista	nce of 1000 m?					
	(A) .0673 m	(B) .0785 m	(C) .0568 m	(D) None of these				
106	106. The reading on a 4.0 m staff at a point is observed as 2.895 m. If the staff was 8 cm out of the plumb line, the correct reading should have been :								
	(A) 2.8800 m	(B) 2.8937 m	(C) 2.8600 m	(D) 2.9937 m				

ACE Engineering Publications		14		Practice Questions		
107. If the degree of a curve is 1° and if chain length is 30 m, then the radius of the curve is equal to :						
(A) 5400 m	(B) 1720 m	(C	$) \frac{1720}{\pi} m$	(D) $\frac{5400}{\pi}$ m		
108. The long chord and is :	tangent length of a circ	cular curv	ve of radius R wi	ll be equal if the angle of deflection		
(A) 30°	(B) 60°	(C) 150°	(D) 120°		
109. If the radius of a circular curve is five times the length of a transition curve then the spiral angle is given by :						
(A) 1/5 rad	(B) 1/10 rad	(C) 1/20 rad	(D) 1/40 rad		
110. The resultant of two	o forces P and Q is R. If	f Q is do	ubled, the new re	sultant is perpendicular to P, then :		
(A) P = R	(B) Q = R	(C	$) \mathbf{P} = \mathbf{Q}$	(D) None of the above is		
111. The mass moment of inertia of a rectangular plate of mass M and sides a and b about an axis						
perpendicular to pla	te through its centre is :					
(A) $\frac{M}{3}(a^2+b^2)$		(B	$) \frac{M}{4} \left(a^2 + b^2 \right)$			
$(C) \ \frac{M}{12} \left(a^2 + b^2\right)$		(D	$M\left(\frac{a^2}{4} + \frac{b^2}{12}\right)$			
112. Two circular discs of	of same weight and thic	kness ar	e made from met	als having different densities.		

Which disc will have the larger rotational inertia about its central axis ?

- (A) disc with larger density (B) disc with smaller density
- (C) both discs will have same rotational inertia (D) None of the above
- 113. For a body subjected to hydrostatic static state of stress, the shear stress on a plane inclined at an angle of 45° with the horizontal will be :
 - (A) maximum(B) minimum(C) zero(D) 50% of hydrostatic pressure
- 114. For the flow to be definitely laminar in a pipe, the value of Reynold's number should be :(A) < 2000</td>(B) 2500(C) 5000(D) > 5000

ACE	15	Practice Questions
Engineering Publications		

- 115. For critical flow in a rectangular channel for a discharge per unit length of 25 cumec, the critical depth will be :
 - (A) 2.1 m (B) 1.5 m (C) 4 m (D) 2.75 m

116. The intensity of pressure developed by surface tension of 0.0075 Kg/m in a droplet of water of 0.075 mm diameter is :

- (A) 0.08 Kg/cm^2 (B) 0.06 Kg/cm^2 (C) 0.04 Kg/cm^2 (D) 40 Kg/cm^2
- 117. If there are n pipes of same diameter d laid in parallel in place of a single pipe of diameter D, then :

(a)
$$d = \frac{D}{n^{2/5}}$$
 (B) $D = \frac{d}{n^{2/5}}$ (C) $d = \frac{D}{n^{2/3}}$ (D) $d = \frac{D}{n^{1/5}}$

- 118. If Fr is the Froude number for a flow in a triangular channel, then the Froude number for same velocity and same depth of flow in rectangular channel will be :
 - (A) F_r (B) $\sqrt{2}$ F_r (C) $\frac{F_r}{\sqrt{2}}$
- 119. Shape factor is a property which depends :
 - (A) only on the ultimate stress of the material
 - (C) both on yield and ultimate stress of material

(B) only on the yield stress of the material(D) only on the geometry of the section

(D) $\frac{F_r}{\sqrt{3}}$

120. The rigid-jointed plane frame shown in figure will :

- (A) sway to left
- (B) sway to right
- (C) not sway at all
- (D) may sway to left or right depending upon the magnitude of Udl