ESE- 2020 (Prelims) - Offline Test Series
 Test-12 GENERAL STUDIES AND ENGINEERING APTITUDE

SUBJECT: ENGINEERING MATHEMATICS AND NUMERICAL ANALYSIS SOLUTIONS

01. Ans: (b)

Sol: We are given a system of three equations in two unknowns which will be consistent, if
$\left|\begin{array}{ccc}2-\lambda & 2 & 3 \\ 2 & 4-\lambda & 7 \\ 2 & 5 & 6-\lambda\end{array}\right|=0$
[Operating $\mathrm{R}_{3}-\mathrm{R}_{2}$]
$\left|\begin{array}{ccc}2-\lambda & 2 & 3 \\ 2 & 4-\lambda & 7 \\ 0 & 1+\lambda & -1-\lambda\end{array}\right|=0$
[Operating $\mathrm{C}_{2}+\mathrm{C}_{3}$]

$$
\left|\begin{array}{ccc}
2-\lambda & 5 & 3 \\
2 & 11-\lambda & 7 \\
0 & 0 & -1-\lambda
\end{array}\right|=0
$$

[Expanding along R_{3}]
$[(-1-\lambda)(2-\lambda)(11-\lambda)-10]=0$
or If, $(\lambda+1)\left(\lambda^{2}-13 \lambda+12\right)=0$
$(\lambda+1)(\lambda-1)(\lambda-12)=0$
or if, $\lambda=-1,1,12$
02. Ans: (c)

Sol: The characteristic equation of A is
$|A-\lambda I|=0$ i.e., $\left|\begin{array}{ccc}2-\lambda & -1 & 1 \\ -1 & 2-\lambda & -1 \\ 1 & -1 & 2-\lambda\end{array}\right|=0$ or
$\lambda^{3}-6 \lambda^{2}+9 \lambda-4=0$ (On simplification)
By Cayley - Hamilton theorem, we have
$A^{3}-6 A^{2}+9 A-4 I=0$
Multiplying by A^{-1}
$A^{2}-6 A+9 I-4 A^{-1}=0$
$\therefore A^{2}-6 A+9 I=4 A^{-1}$
03. Ans: (a)

Sol: The characteristics equation is $|\mathrm{A}-\mathrm{xI}|=0$

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
2-\lambda & 1 & 1 \\
0 & 1-\lambda & 0 \\
1 & 1 & 2-\lambda
\end{array}\right|=0 \\
& \therefore \lambda=1,1,3
\end{aligned}
$$

4. Ans: (d)

Sol: Here, u is a function of x, y and z while y and z are functions of x.

$$
\begin{aligned}
\therefore \frac{\mathrm{du}}{\mathrm{dx}} & =\frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\frac{\partial \mathrm{u}}{\partial \mathrm{y}} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}+\frac{\partial \mathrm{u}}{\partial \mathrm{z}} \cdot \frac{\mathrm{dz}}{\mathrm{dx}} \\
& =\mathrm{e}^{\mathrm{y}} \mathrm{z} \cdot 1+\mathrm{xe}^{\mathrm{y}} \mathrm{z} \cdot \frac{1}{2}\left(\mathrm{a}^{2}-\mathrm{x}^{2}\right)^{-1 / 2}(-2 \mathrm{x})+
\end{aligned}
$$

$x^{y} .2 \sin x \cos x$

$$
=e^{y}\left[z-\frac{x^{2} z}{\sqrt{a^{2}-x^{2}}}+x \sin 2 x\right]
$$

5. Ans: (b)

Sol: $r=\sqrt{x^{2}+y^{2}}$ and $\theta=\tan ^{-1} \frac{y}{x}$

$$
\frac{\partial r}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}}}
$$

$$
\begin{aligned}
& \frac{\partial \mathrm{r}}{\partial \mathrm{y}}=\frac{\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \\
& \frac{\partial \theta}{\partial \mathrm{x}}=\frac{1}{1+\frac{\mathrm{y}^{2}}{\mathrm{x}^{2}}}\left(-\frac{\mathrm{y}}{\mathrm{x}^{2}}\right)=-\frac{\mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}} \\
& \frac{\partial \theta}{\partial \mathrm{y}}=\frac{1}{1+\frac{\mathrm{y}^{2}}{\mathrm{x}^{2}}\left(\frac{1}{\mathrm{x}}\right)=\frac{\mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}}} \\
& \frac{\partial(r \cdot \theta)}{\partial(x \cdot y)}=\left|\frac{\partial r}{\frac{\partial \theta}{\partial x}} \quad \frac{\partial r}{\partial \mathrm{y}}\right|=\left|\frac{\partial \theta}{\partial y}\right|=\left|\frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \frac{\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \frac{\mathrm{y}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}} \frac{\mathrm{x}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}}\right| \\
& =\frac{x^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} \\
& =\frac{x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\frac{1}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

Alternately

The given equations can be written as $\mathrm{x}=\mathrm{r} \cos \theta$ and $\mathrm{y}=\mathrm{r} \sin \theta$
$\frac{\partial(x . y)}{\partial(r . \theta)}=r$
then, $\frac{\partial(r . \theta)}{\partial(x . y)}=\frac{1}{r}=\frac{1}{\sqrt{x^{2}+y^{2}}}$
06. Ans: (b)

Sol: Let $\mathrm{F}(\mathrm{a})=\int_{0}^{\infty} \frac{e^{-x} \sin (a x)}{x} d x$
Differentiating partially with respect to a

$$
\begin{aligned}
& F^{\prime}(a)=\int_{0}^{\infty} \frac{e^{-x}}{x} x \cos (a x) d x \\
& =\frac{a}{a^{2}+1} \\
\Rightarrow & F(a)=\tan ^{-1} a+c \\
& F(0)=0 \Rightarrow c=0 \\
\therefore & F(a)=\tan ^{-1} a
\end{aligned}
$$

7. Ans: (b)

Sol: The A.E is $D^{3}-4 D^{2}+4 D=0$
or $D\left(D^{2}-4 D+4\right)=0$

$$
\mathrm{D}(\mathrm{D}-2)^{2}=0
$$

$$
\mathrm{D}=0,2,2
$$

Hence, the solution is

$$
\begin{aligned}
& y=c_{1} e^{0 x}+\left(c_{2} x+x_{3}\right) e^{2 x} \\
& \text { or } y=c_{1}+\left(c_{2} x+c_{3}\right) e^{2 x}
\end{aligned}
$$

8. Ans: (c)

Sol: $P . I=\frac{1}{D^{3}-3 D^{2}+4} e^{2 x}$
Here, the denominator vanishes when D is replaced by 2 . It is a case of failure.
We multiply the numerator by x and differentiate the denominator w.r.t D (rule).

$$
\text { P.I }=x \cdot \frac{1}{3 D^{2}-6 D} e^{2 x}
$$

It is again a case of failure. We multiply the number by x and differentiate the denominator w.r.t D

$$
\therefore P . I=x^{2} \cdot \frac{1}{6 D-6} e^{2 x}=x^{2} \cdot \frac{1}{6(2)-6} e^{2 x}=\frac{x^{2}}{6} e^{2 x}
$$

9. Ans: (d)

Sol: Given equation in symbol form is $\left(D^{2}-2 D+\right.$

1) $y=x e^{x} \sin x$
A.E is $D^{2}-2 D+1=0$ or $(D-1)^{2}=0$ so that $\mathrm{D}=1,1$
C.F $=\left(c_{1}+c_{2} x\right) e^{x}$
P.I $=\frac{1}{(D-1)^{2}} e^{x} \cdot x \sin x=e^{x} \cdot \frac{1}{(D+1-1)^{2}} x \sin x$ $=\mathrm{e}^{\mathrm{x}} \frac{1}{\mathrm{D}^{2}} \mathrm{x} \sin \mathrm{x}=\mathrm{e}^{\mathrm{x}} \frac{1}{\mathrm{D}} \int \mathrm{x} \sin \mathrm{dx}$
Integrating by parts

$$
\begin{aligned}
& =\mathrm{e}^{\mathrm{x}} \frac{1}{D}\left[x(-\cos x)-\int 1(-\cos x) d x\right] \\
& =e^{x} \frac{1}{D}(-x \cos x+\sin x) \\
& =e^{x} \int(-x \cos x+\sin x) d x \\
& =e^{x}\left[-\left\{x \sin x-\int 1 \sin x d x\right\}-\cos x\right] \\
& =\mathrm{e}^{\mathrm{x}}[-\mathrm{x} \sin \mathrm{x}-\cos \mathrm{x}-\cos \mathrm{x}]
\end{aligned}
$$

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

2. FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

2. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm

- All tests will be conducted in Question Paper Booklet format.
\checkmark Test Series will be conducted at all our centres.

(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

ISRO * ONLINE TEST SERIES

No. of Tests : 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO) Recruitment of Scientist/Engineer 'SC'

ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
『 starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.
(C) 040-48539866 / 040-40136222 \searrow testseries@aceenggacademy.com
$=-\mathrm{e}^{\mathrm{x}}(\mathrm{x} \sin \mathrm{x}+2 \cos \mathrm{x})$
Hence, the solution is
$\mathrm{y}=\left(\mathrm{c}_{1}+\mathrm{c}_{2} \mathrm{x}\right) \mathrm{e}^{\mathrm{x}}-\mathrm{e}^{\mathrm{x}}(\mathrm{x} \sin \mathrm{x}+2 \cos \mathrm{x})$
10. Ans: (d)

Sol: Given equation is a Cauchy's homogenous linear equation
Put $\mathrm{x}=\mathrm{e}^{\mathrm{z}} \quad$ i.e., $\mathrm{z}=\log \mathrm{x}$
$x \frac{d y}{d x}=D y, \quad x^{2} \frac{d^{2} y}{d x^{2}}=D(D-1) y$
$x^{3} \frac{d^{3} y}{d x^{3}}=D(D-1)(D-2) y$
where $\mathrm{D}=\frac{\mathrm{d}}{\mathrm{dz}}$
Substituting these values in the given equation, it reduces to
$[\mathrm{D}(\mathrm{D}-1)(\mathrm{D}-2)+2 \mathrm{D}(\mathrm{D}-1)+2] \mathrm{y}=0$

$$
\left(D^{3}-D^{2}+2\right) y=0
$$

Which is a linear equation with constant coefficients
It's A.E is
$D^{3}-D^{2}+2=0$ or $(D+1)\left(D^{2}-2 D+2\right)=0$
$\therefore D=-1, \frac{2 \pm \sqrt{4-8}}{2}=-1,1 \pm i$
The solution is

$$
\begin{aligned}
\mathrm{y} & =\mathrm{c}_{1} \mathrm{e}^{-\mathrm{z}}+\mathrm{e}^{\mathrm{z}}\left(\mathrm{c}_{2} \cos \mathrm{z}+\mathrm{c}_{3} \sin \mathrm{z}\right) \\
& =\frac{c_{1}}{x}+x\left[c_{2} \cos (\log x)+c_{3} \sin (\log x)\right]
\end{aligned}
$$

11. Ans: (b)

Sol: Differentiating z partially with respect to x

$$
\begin{align*}
p= & \frac{\partial z}{\partial x}=2 f^{\prime}\left(\frac{1}{x}+\log y\right)\left(-\frac{1}{x^{2}}\right) \\
& -p x^{2}=2 f^{\prime}\left(\frac{1}{x}+\log y\right) \ldots \ldots . . \tag{1}
\end{align*}
$$

Similarly, Differentiating z partially with respect to y
$q=\frac{\partial z}{\partial y}=2 y+2 f^{\prime}\left(\frac{1}{x}+\log y\right)\left(\frac{1}{y}\right)$
$q y-2 y^{2}=2 f^{\prime}\left(\frac{1}{x}+\log y\right)$
From (1) and (2) we have
$-p x^{2}=q y-2 y^{2}$ or $x^{2} p+y q=2 y^{2}$
Which is the required partial differential equation.
12. Ans: (c)

Sol: The given equation can be written as $y^{2} z p+x^{2} z q=x y^{2}$
Comparing with $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$, we have
$P=y^{2} z, Q=x^{2} z, R=x y^{2}$
\therefore The auxiliary equations are $\frac{d x}{y^{2} z}=\frac{d y}{x^{2} z}=\frac{d z}{x y^{2}}$
Taking the first two members, we have $\mathrm{x}^{2} \mathrm{dx}$ $=y^{2} d y$
Which an integration gives
$\mathrm{x}^{3}-\mathrm{y}^{3}=\mathrm{c}_{1}$
Again taking the first and third members, we have $\mathrm{x} \mathrm{dx}=\mathrm{z} \mathrm{dz}$
Which on integration gives

$$
\mathrm{x}^{2}-\mathrm{z}^{2}=\mathrm{c}_{2} \ldots \ldots \ldots \ldots .
$$

From (1) and (2), the general solution is ϕ $\left(x^{3}-y^{3}, x^{2}-z^{2}\right)=0$

13. Ans: (a)

Sol: Here x denotes the length of life of dry battery cells.
The standard normal variable
$\mathrm{z}=\frac{\mathrm{x}-\overline{\mathrm{x}}}{\sigma}=\frac{\mathrm{x}-12}{3}$
$\mathrm{x}=15 \Rightarrow \mathrm{z}=1$

$\therefore \mathrm{P}(\mathrm{x}>15)=\mathrm{P}(\mathrm{z}>1)$
$=\mathrm{P}(0<\mathrm{z}<\infty)-\mathrm{P}(0<\mathrm{z}<1)$
$=0.5-0.4772$

$$
=0.0228=2.28 \%
$$

14. Ans: (a)

Sol: $f(x)=x^{4}-x-9$
$f(x)=x^{4}-x-9, \quad f^{\prime}(x)=4 x^{3}-1$

The first approximation is given by

$$
\begin{aligned}
x_{1}=x_{0} & -\frac{f\left(x_{0}\right)}{f\left(x_{0}\right)}=x_{0}-\frac{x_{0}^{4}-x_{0}-9}{4 x_{1}^{3}-1} \\
& =\frac{3 x_{0}^{4}+9}{4 x_{1}^{3}-1}=\frac{3\left(2^{4}\right)+9}{4\left(2^{3}\right)-1}=\frac{57}{31}=1.8
\end{aligned}
$$

15. Ans: (c)

Sol: The general solution is $y(x)=c e^{3 x}$,
From this solution and the initial condition, we obtain $\mathrm{c}=5.7$
Hence the initial value problem has the solution $\mathrm{y}(\mathrm{x})=5.7 \mathrm{e}^{3 \mathrm{x}}$
16. Ans: (b)

Sol: The auxiliary is $\mathrm{m}^{2}+1=0$
$\Rightarrow \mathrm{m}= \pm \mathrm{i}$
The solution is
$\mathrm{y}=\mathrm{c}_{1} \cos \mathrm{x}+\mathrm{c}_{2} \sin \mathrm{x}$
$y(0)=3 \Rightarrow c_{1}=3$
$\mathrm{y}^{\prime}=-\mathrm{c}_{1} \sin \mathrm{x}+\mathrm{c}_{2} \cos \mathrm{x}$
$y^{\prime}(0)=-0.5$
$\Rightarrow-0.5=c_{2}$
substituting the values of c_{1} and c_{2} in (1), we get

$$
y=3 \cos x-(0.5) \sin x
$$

17. Ans: (d)

Sol: $\mathrm{a}_{0}=\frac{1}{2} \int_{-2}^{2} f(x) d x$

$$
=\frac{1}{2} \int_{-1}^{1} k d x=\mathrm{k}
$$

$a_{n}=\frac{1}{2} \int_{-2}^{2} f(x) \cos \frac{n \pi x}{2} d x=\frac{1}{2} \int_{-1}^{1} k \cos \frac{n \pi x}{2} d x=\frac{2 k}{n \pi} \sin \frac{n \pi}{2}$
Thus $a_{n}=0$ if n in even and
$\mathrm{a}_{\mathrm{n}}=\frac{2 \mathrm{k}}{\mathrm{n} \pi}$ if $\mathrm{n}=1,5,9 \ldots \ldots$,
$\mathrm{a}_{\mathrm{n}}=\frac{-2 \mathrm{k}}{\mathrm{n} \pi}$ if $\mathrm{n}=3,7,11, \ldots \ldots \ldots$.
$b_{n}=\frac{1}{2} \int_{-2}^{2} f(x) \sin \frac{n \pi x}{2} d x=\frac{1}{2} \int_{-1}^{1} k \sin \frac{n \pi x}{2} d x=0$

The fourier series is

$$
f(x)=\frac{k}{2}+\frac{2 k}{\pi}\left(\cos \frac{\pi}{2} x-\frac{1}{3} \cos \frac{3 \pi}{2} x+\frac{1}{5} \cos \frac{5 \pi}{2} x-\ldots\right)
$$

18. Ans: (a)

Sol: Now $\mathrm{u}_{\mathrm{x}}=2 \mathrm{x}$ and $\mathrm{u}_{\mathrm{y}}=-2 \mathrm{y}-1$.
Hence because of the Chauchy Riemann equation a conjugate v of u must satisfy

$$
\mathrm{v}_{\mathrm{y}}=\mathrm{u}_{\mathrm{x}}=2 \mathrm{x} ; \quad \mathrm{v}_{\mathrm{x}}=-\mathrm{u}_{\mathrm{y}}=2 \mathrm{y}+1
$$

$\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$
$\mathrm{f}^{\prime}(\mathrm{z})=\mathrm{u}_{\mathrm{x}}+\mathrm{i} \mathrm{v}_{\mathrm{x}}$

$$
=u_{x}+i u_{y}
$$

$$
=2 x+i(2 y+1)
$$

$$
=2 \mathrm{z}+\mathrm{i} \quad(\text { replacing } \mathrm{x} \text { by } \mathrm{z} \text { and } \mathrm{y} \text { by } 0)
$$

$f(z)=z^{2}+i z+c$

19. Ans: (a)

Sol: For the unit circle, $\mathrm{z}=\mathrm{e}^{\mathrm{it}}$
$\Rightarrow \bar{z}=e^{-i t}$
t varies form 0 to 2π

$$
\oint_{C} \bar{z} d z=\int_{0}^{2 \pi} e^{-i t} i e^{i t} d t=2 \pi i
$$

20. Ans: (b)

Sol: For any contour enclosing the point $\pi \mathrm{i}$ (counterclockwise)

$$
\oint_{c} \frac{\cos z}{(z-\pi i)^{2}} d z=\left.2 \pi i(\cos z)^{\prime}\right|_{z=\pi i}=-2 \pi i \sin \pi i=2 \pi \sinh \pi
$$

21. Ans: (a)

Sol: $\frac{1}{1+z^{2}}=\frac{1}{1-\left(-z^{2}\right)}=\sum_{n=0}^{\infty}\left(-z^{2}\right)^{n}$

$$
=\sum_{n=0}^{\infty}(-1)^{n} z^{2 n}=1-z^{2}+z^{4}-z^{6}+\ldots(|z|<1)
$$

22. Ans: (c)

Sol: We have $\mathrm{f}^{\prime}(\mathrm{z})=\frac{1}{\left(1+\mathrm{z}^{2}\right)}$

$$
\frac{1}{1+z^{2}}=\frac{1}{1-\left(-z^{2}\right)}=\sum_{n=0}^{\infty}\left(-z^{2}\right)^{n}
$$

TEST YOUR PREP IN A REAL TEST ENVIRONMENT

Pre GATE - 2020

Date of Exam : $\mathbf{1 8}^{\text {th }}$ January 2020 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019

Highlights:

- Get real-time experience of GATE-20 test pattern and environment
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for GATE-20 toppers.

PAN INDIA
persthet avanalit in moer then

SSC-JE (Paper-I)

Staff Selection Commission - Junior Engineer

No. of Tests : 20

Subject Wise Tests: $16 \mid$ Mock Tests -4
Civil|Electrical|Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination
$=\sum_{n=0}^{\infty}(-1)^{n} z^{2 n}=1-z^{2}+z^{4}-z^{6}+\ldots \quad(|z|<1)$
Integrating term by term and using $f(0)=0$, we get

$$
\begin{aligned}
\tan ^{-1} \mathrm{z} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} z^{2 n+1} \\
& =z-\frac{z^{3}}{3}+\frac{z^{3}}{5}+\ldots(|\mathrm{z}|<1)
\end{aligned}
$$

23. Ans: (b)

Sol: $z^{3}-z^{4}=z^{3}(1-z)$ shows that $f(z)$ is singular at $\mathrm{z}=0$ and $\mathrm{z}=1$.
Now $\mathrm{z}=1$ lies outside C.
So, we need the residue of $f(z)$ at $z=0$.
We find it from the Laurent series that converges for $0<|\mathrm{z}|<1$.

$$
\begin{aligned}
\frac{1}{z^{3}-z^{4}} & =\frac{1}{z^{3}}(1-z)^{-1} \\
& =\frac{1}{z^{3}}\left(1+z+z^{2}+z^{3}+\ldots .\right) \\
& =\frac{1}{z^{3}}+\frac{1}{z^{2}}+\frac{1}{z}+1+z+\ldots
\end{aligned}
$$

We see from it that this residue is 1.
Clockwise integration thus yields

$$
\oint_{c} \frac{d z}{z^{3}-z^{4}}=-2 \pi i \operatorname{Res}_{z=0} f(z)=-2 \pi i
$$

24. Ans: (c)

Sol: The characteristic equation is
$(\lambda-3)(\lambda-4)=0$
$\Rightarrow \lambda^{2}-7 \lambda+12=0$
By cayley Hamilton theorem, we have
$A^{2}-7 A+12 I=0$
Multiplying both sides by A^{-1}, we get
$\mathrm{A}-7 \mathrm{I}+12 \mathrm{~A}^{-1}=0$
$\therefore \mathrm{A}^{-1}=\frac{7 I-A}{12}$
25. Ans: (d)

Sol: $\frac{\partial M}{\partial y}=3 x y^{2} \quad \& \quad \frac{\partial N}{\partial x}=2 A x y^{2}$

$$
\begin{aligned}
\text { Exact } & \Rightarrow \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \\
& \Rightarrow \mathrm{~A}=\frac{3}{2}
\end{aligned}
$$

26. Ans: (b)

Sol: The equation can be written in Bernoullis form

$$
\begin{aligned}
& \text { i.e, } \frac{d y}{d x}+Q y=-P y^{4} \\
& \mathrm{y}^{-4} \frac{d y}{d x}+Q y^{-3}=-P
\end{aligned}
$$

If we put $y^{-3}=V$
Then the above equation will be reduced to linear function.
27. Ans: (d)

Sol: $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$
$\mathrm{P}(\mathrm{A} / \mathrm{B})=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{1 / 4}{1 / 2}=\frac{1}{2}$
28. Ans: (b)

Sol: If $\mathrm{AX}=\mathrm{B}$ is an inconsistent system of equations. Then $\rho(A)$ must be less than 3 .
\therefore The highest possibility is 2 .
29. Ans: (b)

Sol: $P(X=5)=P(X=6)$
$\frac{\mathrm{e}^{-\lambda} \cdot \lambda^{5}}{5!}=\frac{\mathrm{e}^{-\lambda} \cdot \lambda^{6}}{6!}$
$1=\frac{\lambda}{6} \Rightarrow \lambda=6$
\therefore mean $=\lambda=6$

30. Ans: (c)

Sol: Given
$f(x)=\frac{e^{\operatorname{Sin} x}}{e^{\operatorname{Cos} x}}=e^{\operatorname{Sin} x-\operatorname{Cos} x}$
$f^{\prime}(x)=e^{\operatorname{Sin} x-\operatorname{Cos} x}[\cos x+\operatorname{Sin} x]=0$
$\Rightarrow \mathrm{x}=\frac{3 \pi}{4}, \frac{-\pi}{4}$ are stationary points
f " $\left(\frac{3 \pi}{4}\right)<0 \Rightarrow$ max imum at $x=\frac{3 \pi}{4}$

31. Ans: (a)

Sol: The given matrix A can be obtained from the unit matrix with elementary operation R_{1} $\leftrightarrow R_{3}$. The inverse matrix corresponding to the elementary matrix A is A itself.
32. Ans: (d)

Sol: We have $\nabla .(\bar{A} \times \bar{B})=\bar{B} \cdot(\nabla \times \bar{A})-\bar{A}(\nabla \times \bar{B})$
Remaining three options are valid vector identities.

33. Ans: (a)

Sol: We have

$$
\begin{aligned}
& \frac{x d y-y d x}{x^{2}}=d\left(\frac{y}{x}\right) \\
& \frac{x d y-y d x}{x y}=\mathrm{d}\left[\log \left(\frac{y}{x}\right)\right] \\
& x d y+y d x=d(x y) \\
& \frac{x d y+y d x}{x y}=d[\log (x y)]
\end{aligned}
$$

34. Ans: (b)

Sol: In Euler's method, we neglect h^{2}, h^{3} and other higher order terms.
(In the expansion of taylor series)

35. Ans: (a)

Sol: $\lambda=2$
Let $\mathrm{x}=$ number of typographical errors on a page

$$
\mathrm{P}(\mathrm{x}=\mathrm{k})=\frac{\mathrm{e}^{-\lambda} \lambda^{k}}{k!}
$$

Required probability $=P(x=0)=e^{-2}$

36. Ans: (b)

Sol: $r^{2}=x^{2}+y^{2}+z^{2}$

$$
\begin{aligned}
& 2 \mathrm{r} \frac{\partial \mathrm{r}}{\partial \mathrm{x}}=2 \mathrm{x} \\
& \Rightarrow \frac{\partial \mathrm{r}}{\partial \mathrm{x}}=\frac{\mathrm{x}}{\mathrm{r}} \\
& \mathrm{v}_{\mathrm{x}}=\mathrm{nr}^{\mathrm{n}-1} \frac{\mathrm{x}}{\mathrm{r}} \\
& \quad=\mathrm{nr}^{\mathrm{n}-2} \mathrm{x}
\end{aligned}
$$

$$
\mathrm{v}_{\mathrm{xx}}=\mathrm{n} \mathrm{r}^{\mathrm{n}-2}+\mathrm{n}(\mathrm{n}-2) \mathrm{r}^{\mathrm{n}-3} \frac{\mathrm{x}}{\mathrm{r}} \mathrm{x}
$$

$$
=\mathrm{n} \cdot \mathrm{r}^{\mathrm{n}-2}\left\{1+(\mathrm{n}-2) \frac{\mathrm{x}^{2}}{\mathrm{r}^{2}}\right\}
$$

$$
\mathrm{v}_{\mathrm{xx}}+\mathrm{v}_{\mathrm{yy}}+\mathrm{v}_{\mathrm{z}}=\mathrm{n}(\mathrm{n}+1) \mathrm{r}^{\mathrm{n}-2}
$$

Putting $\mathrm{n}=-2$

$$
v_{x x}+v_{y y}+v_{z z}=2 \mathrm{r}^{-4}
$$

37. Ans: (c)

Sol: $z=x^{n} f_{1}\left(\frac{y}{x}\right)+y^{-n} f_{2}\left(\frac{x}{y}\right)=z_{1}+z_{2}$
where, z_{1} is a homogeneous function of degree 3 and z_{2} is a homogeneous function of degree -3 .

By Euler's formula,

$$
\begin{aligned}
& x^{2} \cdot z_{x x}+2 x y \cdot z_{x y}+y^{2} \cdot z_{y y} \\
& =3(3-1) z_{1}+(-3)(-3-1) z_{2} \\
& =6 z_{1}+12 z_{2} \\
& x^{2} z_{x x}+2 x y z_{x y}+y^{2} z_{y y}+x z_{x}+y \cdot z_{y} \\
& =6 x^{3} f_{1}\left(\frac{y}{x}\right)+12 y^{-3} f_{2}\left(\frac{x}{y}\right)
\end{aligned}
$$

38. Ans: (b)

Sol: Let $u=e^{a x+b y} . f(a x-b y)$

$$
u_{x}=e^{a x+b y} \cdot f^{1}(a x-b y) \cdot a+a e^{a x+b y} \cdot f(a x-b y)
$$

$$
u_{y}=e^{a x+b y} \cdot f^{1}(a x-b y)(-b)+b e^{a x+b y} \cdot f(a x-b y)
$$

b. $\mathrm{u}_{\mathrm{x}}+\mathrm{a} \cdot \mathrm{u}_{\mathrm{y}}=2 \mathrm{ab} \mathrm{u}$

Putting $\mathrm{a}=2$ and $\mathrm{b}=3$
$3 u_{x}+2 u_{y}=12 u$

39. Ans: (a)

Sol: $\vec{F}=y \vec{i}-x \vec{j}$

$$
\begin{equation*}
\int_{c} \overrightarrow{\mathrm{~F}} \cdot \mathrm{~d} \overrightarrow{\mathrm{r}}=\int_{c} y d x-x d y \tag{1}
\end{equation*}
$$

To evaluate $\int_{c} \vec{F}$. dr along $\mathrm{y}=\mathrm{x}^{2}$,
so that dy $=2 x d x$, from $(0,0)$ to $(1,1)$
Equation (1) can be written as

$$
\begin{aligned}
\int_{c} \overrightarrow{\mathrm{~F}} \cdot d \vec{r} & =\int_{c} x^{2} d x-2 x^{2} d x \\
& =\int_{0}-x^{2} d x=-\left(\frac{x^{3}}{3}\right)_{0}^{1} \\
& =-\frac{1}{3}
\end{aligned}
$$

40. Ans: (c)

Sol: Cosec x cannot be expanded as Fourier series as it is undefined in the interval $(-\pi, \pi) \mathrm{s}$.
41. Ans: (a)

Sol: $\quad \mathrm{a}_{0}=\frac{2}{\ell} \int_{0}^{\ell} \mathrm{f}(\mathrm{x}) \mathrm{dx}$

$$
=\int_{0}^{2} x d x=\left(\frac{x^{2}}{2}\right)_{0}^{2}=2
$$

The constant term $=\frac{\mathrm{a}_{0}}{2}=1$
42. Ans: (c)

Sol: Given: $\overrightarrow{\mathrm{F}}=4 x z \overrightarrow{\mathrm{i}}-y^{2} \overrightarrow{\mathrm{j}}+\mathrm{yz} \overrightarrow{\mathrm{k}}$

$$
\begin{gathered}
\operatorname{div} \overrightarrow{\mathrm{F}}=4 z-2 y+y=(4 z-y) \\
\iint_{S} \overrightarrow{\mathrm{~F}} \cdot \overrightarrow{\mathrm{n}} \mathrm{ds}=\iiint_{V} \operatorname{div} \overrightarrow{\mathrm{~F}} d x d y d z
\end{gathered}
$$

[divergence theorem]

HEARTY CONGRATULATIONS
 TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33

(EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

DIGITAL CLASSES for
 ESE 2020/2021 General Studies \& Engineering Aptitude

$$
\begin{aligned}
& =\int_{x=0}^{1} \int_{y=0}^{1} \int_{z=0}^{1}(4 z-y) d x d y d z \\
& =\int_{x=0}^{1} \int_{y=0}^{1}\left(2 z^{2}-y z\right)_{0}^{1} d x d y \\
& =\int_{x=0}^{1} \int_{y=0}^{1}(2-y) d x d y \\
& =\int_{0}^{1}\left(2 y-\frac{y^{2}}{2}\right)_{0}^{1} d x \\
& =\int_{0}^{1}\left(2-\frac{1}{2}\right) d x=\frac{3}{2}
\end{aligned}
$$

43. Ans: (a)

Sol: $\iint_{\mathrm{S}}(\nabla \times \overrightarrow{\mathrm{A}}) \cdot \hat{\mathrm{n}} \mathrm{ds}=\iiint_{\mathrm{V}} \operatorname{div}(\nabla \times \overrightarrow{\mathrm{A}}) \mathrm{dx} \mathrm{dy} \mathrm{dz}$

$$
\begin{aligned}
& =\iiint_{\mathrm{V}} \operatorname{div}(\operatorname{curl} \overrightarrow{\mathrm{~A}}) \mathrm{dx} \operatorname{dydz} \\
& =0 \quad[\because \operatorname{div}(\operatorname{curl} \overrightarrow{\mathrm{~F}})=0]
\end{aligned}
$$

44. Ans: (c)

Sol: $f(x, y)=4-2 x y$

$$
\mathrm{x}_{0}=0, \mathrm{y}_{0}=0.2, \mathrm{f}_{1}=0.1
$$

By Euler's formula

$$
\begin{aligned}
\mathrm{y}_{1} & =\mathrm{y}_{0}+\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)=0.2+0.1(4-0) \\
& =0.6
\end{aligned}
$$

45. Ans: 1.1961

Sol: $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}+\sin \mathrm{y}$

$$
\begin{aligned}
\mathrm{x}_{0} & =0, \mathrm{y}_{0}=1, \mathrm{~h}=0.2 \\
\mathrm{k}_{1} & =\mathrm{h}\left(\mathrm{f}_{0}, \mathrm{y}_{0}\right) \\
& =0.2(0+\sin 1)
\end{aligned}
$$

$$
\begin{aligned}
& =0.2(0.8414)=0.1682 \\
\mathrm{k}_{2} & =\mathrm{hf}\left(\mathrm{x}_{0}+\mathrm{h}, \mathrm{y}_{0}+\mathrm{k}_{1}\right) \\
& =0.2(0.2+\sin (1.1682)) \\
& =0.2(0.2+0.9200)=0.2(1.1200)=0.2240 \\
\mathrm{y}_{1} & =1+\frac{1}{2}(0.1682+0.2240)=1.1961
\end{aligned}
$$

46. Ans: (a)

Sol:

We have $\Sigma \mathrm{P}_{\mathrm{i}}=1$
$\Rightarrow \frac{2+5 \mathrm{P}}{5}+\frac{1+3 \mathrm{P}}{5}+\frac{1.5+2 \mathrm{P}}{5}=1$
$\therefore \mathrm{P}=0.05$
47. Ans: (a)

Sol: For continuous random variable

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \mathrm{f}(\mathrm{x}) \mathrm{dx}=1 \\
\Rightarrow & \int_{0}^{2} \mathrm{k}\left(5 \mathrm{x}-2 \mathrm{x}^{2}\right) \mathrm{dx}=1 \\
\Rightarrow & \mathrm{k}\left[5\left(\frac{\mathrm{x}^{2}}{2}\right)_{0}^{2}-2\left(\frac{\mathrm{x}^{3}}{3}\right)_{0}^{2}\right]=1 \\
\Rightarrow & \mathrm{k}\left(10-\frac{16}{3}\right)=1 \\
\therefore & \mathrm{k}=\frac{3}{14}
\end{aligned}
$$

48. Ans: (a)

Sol: $f(z)=\frac{1}{\sqrt{2 \pi}} e^{\frac{-z^{2}}{2}}$ is the probability density function of Normal Distribution

$$
\therefore \int_{-\infty}^{\infty} \mathrm{f}(\mathrm{z}) \mathrm{dz}=1
$$

\therefore The value of given integral $=\sqrt{2 \pi}$
49. Ans: (c)

Sol: $\frac{1-\mathrm{e}^{2 \mathrm{z}}}{\mathrm{z}^{4}}=\frac{1-\left\{1+(2 \mathrm{z})+\frac{(2 \mathrm{z})^{2}}{2!}+\frac{(2 \mathrm{z})^{3}}{3!}+\ldots \ldots\right\}}{\mathrm{z}^{4}}$

$$
\begin{aligned}
& =\frac{\left(-2 z-2 z^{2}-\frac{4 z^{3}}{3}-\ldots . .\right)}{z^{4}} \\
& =-\frac{2}{z^{3}}-\frac{2}{z^{2}}-\frac{4}{3 z}-\ldots . .
\end{aligned}
$$

$\operatorname{Re} s . f(z)=-\frac{4}{3}$
50. Ans: (b)

Sol: Let $f(z)=\frac{z^{2}+z}{(z-1)^{10}}$.
Then the singular point of $f(z)$ is $z=1$ and the singular $\mathrm{z}=1$ lies inside the circle $|z|=2$.
Now, $f(z)=\frac{\phi(z)}{\left[z-z_{0}\right]^{n+1}}=\frac{z^{2}+z}{[z-1]^{9+1}}$
\therefore By Cauchy's Integral formula, we have

$$
\begin{aligned}
\oint_{\mathrm{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz} & =\frac{2 \pi \mathrm{i}}{9!}\left[\frac{\mathrm{d}^{9}}{\mathrm{dz}^{9}}\left(\mathrm{z}^{2}+\mathrm{z}\right)\right]_{\mathrm{z}=1} \\
& =\frac{2 \pi \mathrm{i}}{9}(0)=0
\end{aligned}
$$

