

## Engineering Academy

Head Office : Sree Sindhi Guru Sangat Sabha Association, \# 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001.

## ESE- 2020 (Prelims) - Offline Test Series Test - 15 ELECTRICAL ENGINEERING <br> SUBJECT: POWER SYSTEMS + POWER ELECTRONICS + SYSTEMS AND SIGNAL PROCESSING

## 01. Ans: (c)

Sol: It is a band-pass signal.
Given $\mathrm{f}_{\mathrm{L}}=1 \mathrm{kHz}, \mathrm{f}_{\mathrm{H}}=1.5 \mathrm{kHz}$
$B W=f_{H}-f_{L}=0.5 \mathrm{kHz}$
$\mathrm{N}=\frac{\mathrm{f}_{\mathrm{H}}}{\mathrm{BW}}=\frac{1.5 \mathrm{k}}{0.5 \mathrm{k}}=3$
$\left(\mathrm{f}_{\mathrm{s}}\right)_{\min }=\frac{2 \mathrm{f}_{\mathrm{H}}}{\mathrm{N}}=\frac{2 \times 1.5 \mathrm{k}}{3}=1 \mathrm{kHz}$
02. Ans: (b)

Sol: $\operatorname{Arect}\left(\frac{\mathrm{t}}{\mathrm{T}}\right) \leftrightarrow \mathrm{AT} \sin \mathrm{c}(\mathrm{fT})$
From duality property
$\operatorname{TSinc}(\mathrm{tT}) \leftrightarrow \operatorname{rect}\left(\frac{\mathrm{f}}{\mathrm{T}}\right)$
$\mathrm{T}=1$
$\operatorname{Sinc}(\mathrm{t}) \leftrightarrow \operatorname{rect}(\mathrm{f})$
$\operatorname{ATri}\left(\frac{\mathrm{t}}{\mathrm{T}}\right) \leftrightarrow \operatorname{ATSinc}^{2}(\mathrm{fT})$
$\operatorname{TSinc}^{2}(\mathrm{tT}) \leftrightarrow \operatorname{Tri}\left(\frac{\mathrm{f}}{\mathrm{T}}\right)$

$$
\mathrm{T}=\frac{1}{2}
$$

$\operatorname{Sinc}^{2}\left(\frac{\mathrm{t}}{2}\right) \leftrightarrow 2 \operatorname{Tri}(2 \mathrm{f})$
Assume $x(t)=\operatorname{Sinc}(t) * \operatorname{Sinc}^{2}\left(\frac{t}{2}\right)$
Apply Fourier Transform

$$
X(f)=\operatorname{rect}(f) 2 \operatorname{Tri}(2 f)
$$



# ESE - MAIIS <br> Classes Start from: <br> $13^{\text {th }}$ <br> <br> FEB 2020 <br> <br> FEB 2020 <br>  

## Students who Qualify in Prelims can avail 100 \% Fee Waiver

ESE-2018, 2019 Prelims Qualified Students are also eligible
for more details Contact: 040-23234418/19/20, Email: hyderabad@aceenggacademy.com

## www.aceenggacademy.com

HYDERABAD || AHMEDABAD | DELHI | PUNE | BHUBANESWAR | LUCKNOW | KOLKATA | VIJAYAWADA | VIZAG | TIRUPATI | CHENNAI | BENGALURU
$X(f)=2 \operatorname{Tri}(2 f)$
Apply IFT
$\mathrm{x}(\mathrm{t})=\operatorname{Sinc}^{2}\left(\frac{\mathrm{t}}{2}\right)$
03. Ans: (a)

Sol: $\mathrm{f}_{\mathrm{s}}=2 \mathrm{kHz} \Rightarrow \mathrm{T}_{\mathrm{s}}=0.5 \mathrm{msec}$
$\therefore 1 \mathrm{msec}$ corresponds to $\mathrm{N}=2$
04. Ans: (c)

Sol: $\mathrm{e}^{-\mathrm{a} \mid \mathrm{t}} \leftrightarrow \frac{2 \mathrm{a}}{\mathrm{a}^{2}+4 \pi^{2} \mathrm{f}^{2}}$

$$
a=\sqrt{2}
$$

$$
\begin{aligned}
& \mathrm{e}^{-\sqrt{2}|\mathrm{t}|} \leftrightarrow \frac{2 \sqrt{2}}{2+4 \pi^{2} \mathrm{f}^{2}} \\
& \frac{1}{2 \sqrt{2}} \mathrm{e}^{-\sqrt{2}|\mathrm{t}|} \leftrightarrow \frac{1}{2+4 \pi^{2} \mathrm{f}^{2}}
\end{aligned}
$$

5. Ans: (c)

Sol: $\delta(\mathrm{t}) \leftrightarrow 1$
$\delta\left(\mathrm{t}-\mathrm{t}_{0}\right) \leftrightarrow \mathrm{e}^{-2 \pi \mathrm{ft}_{0}}($ from time $\quad$ shifting
property)
Given $\mathrm{x}(\mathrm{t})=\delta(\mathrm{t}+0.5)-\delta(\mathrm{t}-0.5)$
Apply Fourier Transform
$X(f)=e^{\mathrm{j} 2 \pi f(0.5)}-\mathrm{e}^{-\mathrm{j} 2 \pi f(0.5)}$
$X(f)=e^{j \pi f}-e^{-j \pi f}=2 j \sin (\pi f)$

## 06. Ans: (c)

Sol: $\operatorname{sinc}(\mathrm{t})$ can't be invertible because

$$
\sin \mathrm{c}(\mathrm{t}) * \sin \mathrm{c}(\mathrm{t})=\sin \mathrm{c}(\mathrm{t})
$$

$\operatorname{sinc}(\mathrm{t}) * 2 \operatorname{sinc}(2 \mathrm{t})=\operatorname{sinc}(\mathrm{t})$
07. Ans: (b)

Sol: Given $x(t)=e^{-t} u(t)$

$$
\begin{aligned}
& x_{e}(t)=\frac{x(t)+x(-t)}{2} \\
& x_{e}(t)=\frac{e^{-t} u(t)+e^{t} u(-t)}{2}=\frac{1}{2} e^{-|t|}
\end{aligned}
$$

8. Ans: (b)

Sol: $x\left(\mathrm{nT}_{\mathrm{s}}\right)=x\left[\frac{\mathrm{n}}{75}\right]=2 \cos \left[\frac{40 \pi \mathrm{n}}{75}\right]+\sin \left[\frac{60 \pi \mathrm{n}}{75}\right]$

$$
\begin{gathered}
\mathrm{N}_{1}=15 \quad \mathrm{~N}_{2}=5 \\
\mathrm{~N}=\text { L.C.M }\left(\mathrm{N}_{1}, \mathrm{~N}_{2}\right)=15
\end{gathered}
$$

9. Ans: (b)

Sol: Assume $X_{1}(s)=\frac{1}{(s+1)(s+2)}=\frac{A}{s+1}+\frac{B}{s+2}$

$$
X_{1}(s)=\frac{1}{s+1}-\frac{1}{s+2}
$$

Apply ILT
$x_{1}(t)=\left(e^{-t}-e^{-2 t}\right) u(t)$
Assume $X_{2}(s)=\frac{s}{(s+1)(s+2)}=\frac{A}{s+1}+\frac{B}{s+2}$
$\mathrm{X}_{2}(\mathrm{~s})=\frac{-1}{\mathrm{~s}+1}+\frac{2}{\mathrm{~s}+2}$
Apply ILT

$$
\begin{aligned}
& x_{2}(t)=-e^{-t} u(t)+2 e^{-2 t} u(t) \\
& \text { ILT }\left[e^{-2 s} X_{2}(s)\right]=x_{2}(t-2) \\
& \quad=-e^{-(t-2)} u(t-2)+2 e^{-2(t-2)} u(t-2)
\end{aligned}
$$

So, $X(s)=X_{1}(s)+X_{2}(s) e^{-2 s}$
$\mathrm{x}(\mathrm{t})=\mathrm{x}_{1}(\mathrm{t})+\mathrm{x}_{2}(\mathrm{t}-2)$
$x(t)=\left(e^{-t}-e^{-2 t}\right) u(t)+\left[2 e^{-2(t-2)}-e^{-(t-2)}\right] u(t-2)$
10. Ans: (d)

Sol: Given $\mathrm{x}(\mathrm{t})=\sum_{\mathrm{k}=0}^{\infty} \delta(\mathrm{t}-\mathrm{kT})$

$$
\mathrm{x}(\mathrm{t})=\delta(\mathrm{t})+\delta(\mathrm{t}-\mathrm{T})+\delta(\mathrm{t}-2 \mathrm{~T})+------
$$


L.T of periodic signal $x(t)$ is

$$
X(s)=\frac{1}{1-\mathrm{e}^{-s \mathrm{~T}}} \mathrm{X}_{1}(\mathrm{~s})
$$

where $\mathrm{X}_{1}(\mathrm{~s})$ is L.T over one period.
So, signal over one period is $\delta(\mathrm{t})$, So, $\mathrm{X}_{1}(\mathrm{~s})$ $=1$

$$
\mathrm{X}(\mathrm{~s})=\frac{1}{1-\mathrm{e}^{-\mathrm{sT}}}
$$

## 11. Ans: (c)

Sol: Given $y(t)=e^{t}\left[1+\int_{0}^{t} e^{-\tau} y(\tau) d \tau\right] t>0$
The above expression can be expressed as

$$
\begin{aligned}
& y(t)=e^{t} u(t)+\int_{0}^{t} e^{t-\tau} y(\tau) d \tau \\
& y(t)=e^{t} u(t)+e^{t} u(t) * y(t)
\end{aligned}
$$

Apply L.T
$\mathrm{Y}(\mathrm{s})=\frac{1}{\mathrm{~s}-1}+\frac{1}{\mathrm{~s}-1} \mathrm{Y}(\mathrm{s})$
$\mathrm{Y}(\mathrm{s})\left[1-\frac{1}{\mathrm{~s}-1}\right]=\frac{1}{\mathrm{~s}-1}$
$\mathrm{Y}(\mathrm{s})\left[\frac{\mathrm{s}-1-1}{\mathrm{~s}-1}\right]=\frac{1}{\mathrm{~s}-1}$
$\mathrm{Y}(\mathrm{s})=\frac{1}{\mathrm{~s}-2}$
Apply ILT
$\mathrm{y}(\mathrm{t})=\mathrm{e}^{2 \mathrm{t}} \mathrm{u}(\mathrm{t})=\mathrm{e}^{2 \mathrm{t}} \mathrm{t}>0$

## 12. Ans: (a)

Sol: Given $\mathrm{x}(\mathrm{n})=\{1,2\}$ and $\mathrm{y}(\mathrm{n})=\{2,3,1,6\}$
$\mathrm{X}(\mathrm{z})=1+2 \mathrm{z}^{-1}, \mathrm{Y}(\mathrm{z})=2+3 \mathrm{z}^{-1}+\mathrm{z}^{-2}+6 \mathrm{z}^{-3}$
we know that $\mathrm{Y}(\mathrm{z})=\mathrm{X}(\mathrm{z}) \mathrm{H}(\mathrm{z})$

$$
\mathrm{H}(\mathrm{z})=\frac{\mathrm{Y}(\mathrm{z})}{\mathrm{X}(\mathrm{z})}=\frac{2+3 \mathrm{z}^{-1}+\mathrm{z}^{-2}+6 \mathrm{z}^{-3}}{1+2 \mathrm{z}^{-1}}
$$

So, $\mathrm{H}(\mathrm{z})=2-\mathrm{z}^{-1}+3 \mathrm{z}^{-2}$
Apply IZT
$\mathrm{h}(\mathrm{n})=\{2,-1,3\}$

## 13. Ans: (a)

Sol: $\mathrm{x}(\mathrm{n})=\{1,0,-1,0\}$
$h(n)=\{1,2,4,8\}$
$\mathrm{x}(\mathrm{n})$ circular convolution
$\mathrm{h}(\mathrm{n})=\left[\begin{array}{llll}1 & 8 & 4 & 2 \\ 2 & 1 & 8 & 4 \\ 4 & 2 & 1 & 8 \\ 8 & 4 & 2 & 1\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right]=\left[\begin{array}{c}-3 \\ -6 \\ 3 \\ 6\end{array}\right]$

## 14. Ans: (c)

Sol: There is a potential problem for frequency sampling realization of the FIR linear phase filter. The frequency sampling realization of the FIR filter introduces poles and zeros at equally spaced points on the unit circle.
15. Ans: (a)

Sol: Type-II chehyshev filter

- has equiripple in stop-band
- monotonic characteristic in the pass band
- has both zeros and poles
- zero's lie on the imaginary axis on s-plane

16. Ans: (c)

Sol: Given, $g(n)=\{10,4,9,0,9,4,10\}$
$\Rightarrow \mathrm{ng}(\mathrm{n})=\{-30,-8,-9,0,9,8,30\}$
Also, $\mathrm{g}(\mathrm{n}) \stackrel{\text { D.т.f. }}{\longleftrightarrow} \mathrm{G}\left(\mathrm{e}^{\mathrm{j} 2}\right)$
By property,

$$
\operatorname{ng}(\mathrm{n}) \leftrightarrow \mathrm{j} \frac{\mathrm{~d}}{\mathrm{~d} \Omega} \mathrm{G}\left(\mathrm{e}^{\mathrm{j} \Omega}\right)
$$

By parseval's energy theorem

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|X\left(e^{j \Omega}\right)\right|^{2} d \Omega=\sum_{n=-\infty}^{\infty}|x(n)|^{2} \\
& \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|j \frac{d}{d \Omega} G\left(e^{j \Omega}\right)\right|^{2} d \Omega=\left.\sum_{n=-3}^{3} \operatorname{lng}(n)\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
\left.\int_{-\pi}^{\pi} \left\lvert\, \frac{\mathrm{d}}{\mathrm{~d} \Omega} \mathrm{G}\left(\mathrm{e}^{\mathrm{j} \Omega}\right)\right.\right)^{2} \mathrm{~d} \Omega & =2 \pi[900+64+81+0+81+64+900] \\
& =2 \pi[2090]=4180 \pi
\end{aligned}
$$

## 17. Ans: (c)

Sol: $\mathrm{X}(\mathrm{z})=\frac{\mathrm{z}}{3 \mathrm{z}^{2}-4 \mathrm{z}+1}=\frac{\mathrm{z}}{(3 \mathrm{z}-1)(\mathrm{z}-1)}$

$$
\begin{equation*}
\frac{X(z)}{z}=\frac{1}{(3 z-1)(z-1)}=\frac{A}{(3 z-1)}+\frac{B}{(z-1)} . \tag{1}
\end{equation*}
$$

$$
\frac{X(z)}{z}=\frac{(-3 / 2)}{(3 z-1)}+\frac{(1 / 2)}{(z-1)}
$$

$$
\begin{equation*}
X(\mathrm{z})=\frac{-1}{2} \frac{\mathrm{z}}{\mathrm{z}-\frac{1}{3}}+\frac{1}{2} \cdot \frac{\mathrm{z}}{\mathrm{z}-1} . \tag{2}
\end{equation*}
$$

Poles of $x(z)$ are $|z|=\frac{1}{3} \&|z|=1$
R.O.C. is $|\mathrm{z}|>1$ (given)

Taking I.Z.T. in equation (2)

$$
\begin{aligned}
& \mathrm{x}(\mathrm{n})=-\frac{1}{2} \cdot\left(\frac{1}{3}\right)^{\mathrm{n}} \cdot \mathrm{u}(\mathrm{n})+\frac{1}{2} \cdot \mathrm{u}(\mathrm{n}) \\
& \therefore \mathrm{x}(2)=\frac{-1}{2} \cdot\left(\frac{1}{3}\right)^{2}+\frac{1}{2}=\frac{4}{9} \\
& x(2)=\frac{4}{9}
\end{aligned}
$$

18. Ans: (c)

Sol: Given $y(n)-3 y(n-1)-4 y(n-2)=x(n)+$ $2 \mathrm{x}(\mathrm{n}-1)$

Apply z-transform

$$
\begin{aligned}
& Y(z)\left[1-3 z^{-1}-4 z^{-2}\right]=X(z)\left[1+2 z^{-1}\right] \\
& H(z)=\frac{Y(z)}{X(z)}=\frac{1+2 z^{-1}}{1-3 z^{-1}-4 z^{-2}} \\
& H(z)=\frac{z(z+2)}{\left(z^{2}-3 z-4\right)} \\
& \frac{H(z)}{z}=\frac{(z+2)}{(z-4)(z+1)}
\end{aligned}
$$

$$
\begin{gather*}
\frac{\mathrm{H}(\mathrm{z})}{\mathrm{z}}=\frac{(\mathrm{z}+2)}{(\mathrm{z}-4)(\mathrm{z}+1)}=\frac{\mathrm{A}}{(\mathrm{z}-4)}+\frac{\mathrm{B}}{(\mathrm{z}+1)} .  \tag{1}\\
\mathrm{H}(\mathrm{z})=\frac{6}{5} \cdot \frac{\mathrm{z}}{\mathrm{z}-4}-\frac{1}{5} \cdot \frac{\mathrm{z}}{\mathrm{z}+1}
\end{gather*}
$$

Apply inverse z-transform

$$
\mathrm{h}(\mathrm{n})=\left\{\frac{6}{5}\left[4^{\mathrm{n}}\right]-\frac{1}{5}[-1]^{\mathrm{n}}\right\} \cdot \mathrm{u}(\mathrm{n})
$$

19. Ans: (a)

Sol: Systems in (1) and (4) represent recursive discrete systems because present output depends on past outputs.

## 20. Ans: (c)

Sol: $\mathrm{x}_{1}(\mathrm{n})=\mathrm{e}^{\mathrm{j} \pi \mathrm{n}}=(-1)^{\mathrm{n}} \rightarrow \mathrm{y}_{1}(\mathrm{n})=1$ $y(n)=|x(n)|$ for all $n$
$\mathrm{x}_{1}(\mathrm{n})=1, \quad \mathrm{n}=0, \pm 2, \pm 4, \ldots$.
$=-1, \quad \mathrm{n}= \pm 1, \pm 3, \ldots \ldots$.
$g(n)=x(n-m) \rightarrow|g(n)|=|x(n-m)|$
$y(n-m)=|x(n-m)|, S_{1}$ is Time Invariant
$\alpha x(n) \rightarrow|\alpha x(n)| \neq \alpha|x(n)|, S_{1}$ is not linear.
$\mathrm{x}_{2}(\mathrm{n})=(-1)^{\mathrm{n}} \rightarrow \mathrm{y}_{2}(\mathrm{n})=(-1)^{\mathrm{n}}=\mathrm{x}_{2}(\mathrm{n}), \mathrm{y}(\mathrm{n})$
$=\mathrm{x}(\mathrm{n}), \mathrm{S}_{2}$ is LTI
$\mathrm{S}_{1}$ is not LTI but $\mathrm{S}_{2}$ is LTI

# TEST YOUR PREP IN A REAL TEST ENVIRONMENT <br> Pre GAIJE - 2020 

## Date of Exam : $\mathbf{1 8}^{\text {th }}$ January 2020

 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019Highlights:

- Get real-time experience of GATE-20 test pattern and environment.
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for CATE-20 toppers.


# SSC-JE (Paper-I) OOnline Test Series 

Staff Selection Commission - Junior Engineer

## No. of Tests : 20

Subject Wise Tests: 16| Mock Tests - 4
Civil| Electrical | Mechanical

## AVAILABLE NOW

All tests will be available till SSC 2019 Examination

## 21. Ans: (a)

Sol: a. Continuous time Fourier series

$$
\begin{equation*}
c_{n}=\frac{1}{T} \int_{t=0}^{T} x(t) e^{-j n \omega_{0} t} d t \tag{3}
\end{equation*}
$$

It's spectrum is Discrete and aperiodic or not periodic
b. Continuous time Fourier transform

$$
\begin{equation*}
X(j \omega)=\int_{t=-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{4}
\end{equation*}
$$

It's spectrum is Continuous and aperiodic
c. Discrete time FS
$C_{k}=\frac{1}{N} \sum_{n=0}^{(N-1)} x(n) e^{-j \frac{2 \pi}{N} K n}, \quad$ Period $=N$
(1)

It's spectrum is Discrete and periodic

## d. DTFT

$$
\begin{equation*}
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n} \tag{2}
\end{equation*}
$$

It's spectrum is Continuous and periodic, Period $=2 \pi$
22. Ans: (b)

Sol: The ULT of $\frac{d}{d t} x(t)$ is $s X_{I}(s)-x\left(0^{-}\right)$
23. Ans: (b)

Sol: For a right-handed discrete time signal $x(n)$, the ROC of the z -Transform is of the form $|\mathrm{z}|>\mathrm{r}_{\text {max }}$

## 24. Ans: (a)

Sol:

$I_{p}=\frac{6.66 \mathrm{~ms}}{6.66 \mathrm{mH}} \times 40$
Peak value of load current $I_{p}=40 \mathrm{~A}$
25. Ans: (c)
26. Ans: (d)

Sol: Given that $v_{s}=100 \sin (100 \pi t), R=\frac{100}{2 \pi} \Omega$

$$
\mathrm{I}_{0}=\frac{\mathrm{V}_{0}}{\mathrm{R}}
$$



$$
\begin{aligned}
\mathrm{V}_{0} & =\frac{1}{2 \pi}\left\{\int_{\alpha}^{\pi} \mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{td} \omega \mathrm{t}-\int_{\pi}^{2 \pi} \mathrm{~V}_{\mathrm{m}} \sin \omega \mathrm{td} \omega \mathrm{t}\right\} \\
& =\frac{\mathrm{V}_{\mathrm{m}}}{2 \pi}(3+\cos \alpha) \\
\mathrm{I}_{0} & =\frac{100}{2 \pi \times \frac{100}{2 \pi}}\left(3+\cos 30^{\circ}\right) \\
& =3.866 \mathrm{~A}
\end{aligned}
$$

## 27. Ans: (b)

Sol: max output voltage $\mathrm{V}_{0_{\max }}=\frac{3 \mathrm{~V}_{\mathrm{m} \ell}}{\pi}$

$$
\begin{aligned}
& =\frac{3 \times \sqrt{2} \times 420}{\pi} \\
& =567.2 \mathrm{~V}
\end{aligned}
$$

28. Ans: (d)

Sol: Given that $\mathrm{V}=415 \mathrm{~V}, \mathrm{I}=100 \mathrm{~A}$
$\theta_{\mathrm{JC}}=0.01^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{CS}}=0.08^{\circ} \mathrm{C} / \mathrm{W}$,
$\theta_{\mathrm{SA}}=0.09^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\mathrm{A}}=35^{\circ} \mathrm{C}$
During conduction $\mathrm{P}_{\text {avg }}=1.5 \times 100=150 \mathrm{~W}$

$$
P_{\mathrm{avg}}=\frac{\mathrm{T}_{\mathrm{j}}-\mathrm{T}_{\mathrm{A}}}{\theta_{\mathrm{jA}}}
$$

$$
\begin{gathered}
\theta_{\mathrm{jA}}=\theta_{\mathrm{jC}}+\theta_{\mathrm{CS}}+\theta_{\mathrm{SA}}=0.01+0.08+0.09 \\
=0.18^{\circ} \mathrm{C} / \mathrm{W} \\
150=\frac{\mathrm{T}_{\mathrm{j}}-35}{0.18}
\end{gathered}
$$

Junction Temperature $\mathrm{T}_{\mathrm{j}}=35+0.18 \times 150$

$$
\mathrm{T}_{\mathrm{j}}=62^{\circ} \mathrm{C}
$$

## 29. Ans: (d)

Sol: The switch utilization ratio

$$
\begin{aligned}
& =\frac{\text { output VA }}{\text { no of switches } \times \mathrm{V}_{\mathrm{T}_{\mathrm{m}}} \times \mathrm{I}_{\mathrm{T}_{\mathrm{m}}}} \\
& =\frac{200 \times 10}{4 \times 325 \times 10 \sqrt{2}}=\frac{\sqrt{2}}{13}
\end{aligned}
$$

31. Ans: (d)

Sol: $\quad V_{s}=\left(R_{s}+R_{L}\right) i+L \frac{d i}{d t}$
The solution for above equation is

$$
\mathrm{i}=\mathrm{I}\left(1-\mathrm{e}^{-\mathrm{t} / \tau}\right)
$$

Where $\mathrm{I}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\mathrm{L}}}$ and $\tau=\frac{\mathrm{L}}{\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\mathrm{L}}}$ $\frac{\mathrm{di}}{\mathrm{dt}}=\mathrm{Ie}^{-\mathrm{t} / \tau} \times \frac{1}{\tau}$

$$
=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\mathrm{L}}}\left(\mathrm{e}^{-\mathrm{t} / \tau}\right) \times \frac{\mathrm{R}_{\mathrm{s}}+\mathrm{R}_{\mathrm{L}}}{\mathrm{~L}}
$$

$$
\begin{aligned}
& \frac{\mathrm{di}}{\mathrm{dt}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{~L}} \mathrm{e}^{-\mathrm{t} / \tau} \\
& \frac{\mathrm{di}}{\mathrm{dt}} \text { is maximum at } \mathrm{t}=0
\end{aligned}
$$

$$
\left(\frac{\mathrm{di}}{\mathrm{dt}}\right)_{\max }=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{~L}}
$$

$$
\mathrm{L}=\frac{\mathrm{V}_{\mathrm{s}}}{\left(\frac{\mathrm{di}}{\mathrm{dt}}\right)_{\max }}
$$

$$
\mathrm{L}=\frac{240}{50}=4.8 \mu \mathrm{H}
$$

32. Ans: (d)

Sol: For a step rise in input voltage, the pulse Transformer output is a positive pulse. In other words, the input signal is transmitted as a derivative of the input waveform for step rise like wise, for a step fall in input voltage a negative pulse appears at the pulse transform output.
30. Ans: (d)
33. Ans: (a)
34. Ans: (b)

Sol: For 3- $\phi$ semi converter
Average output voltage $\mathrm{V}_{0}=\frac{3 V_{m \ell}}{2 \pi}(1+\cos \alpha)$

$$
\begin{aligned}
& =\frac{3 \times \sqrt{2} \times 400}{2 \pi}\left[1+\cos 45^{\circ}\right] \\
& \quad=507 \mathrm{~V} \\
& \mathrm{~T}=\mathrm{K} \mathrm{I}_{\mathrm{a}} \\
& \mathrm{I}_{\mathrm{a}}=\frac{\mathrm{T}}{\mathrm{~K}}=\frac{50}{2}=25 \mathrm{~A}
\end{aligned}
$$

Back emf $\mathrm{E}_{\mathrm{b}}=\mathrm{V}_{0}-\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}$

$$
=507-25=482 \mathrm{~V}
$$

35. Ans: (b)

Sol: For 3-pulse converter PIV $V_{m \ell}=1000 \mathrm{~V}$
For bridge 6 pulse converter PIV $=V_{m \ell}$

$$
=1000 \mathrm{~V}
$$

For midpoint 6-pulse converter PIV

$$
\begin{aligned}
& =1.155 V_{m \ell} \\
& =1155 \mathrm{~V}
\end{aligned}
$$

36. Ans: (b)

Sol:


The average output voltage for the discontinuous current mode as shown in fig.
$\mathrm{V}_{\mathrm{o}}=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{V}_{0} . \mathrm{dt}$

$$
\begin{aligned}
& =\frac{1}{T}\left[\int_{0}^{\mathrm{T}_{\mathrm{ov}}} \mathrm{~V}_{\mathrm{s} .} \mathrm{dt}+\int_{\mathrm{T}_{\text {on }}}^{\mathrm{t}_{\mathrm{x}}} 0 . \mathrm{dt}+\int_{\mathrm{t}_{\mathrm{x}}}^{\mathrm{T}} \mathrm{E} . \mathrm{dt}\right] \\
& =\mathrm{V}_{\mathrm{s}} \frac{\mathrm{~T}_{\mathrm{on}}}{\mathrm{~T}}+\mathrm{E}\left(\frac{\mathrm{~T}-\mathrm{t}_{\mathrm{x}}}{\mathrm{~T}}\right)
\end{aligned}
$$

$$
\mathrm{V}_{0}=\mathrm{D} \mathrm{~V}_{\mathrm{s}}+\mathrm{E}\left(1-\frac{\mathrm{t}_{\mathrm{x}}}{\mathrm{~T}}\right)(\text { volts })
$$

37. Ans: (b)
38. Ans: (d)

Sol: $N=\frac{f_{c}}{2 f}=\frac{15000}{2 \times 500}=15$
39. Ans: (d)

## HEARTY CONGRATULATIONS <br> TO OUR ESE - 2019 TOP RANKERS



## TOTAL SELECTIONS in Top 10: 33

(EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

#  <br> dIcITAL CLASSES for <br> ESE 2020/2021 General Studies \& Engineering Aptitude <br> Computer Science \& <br> Information Technology 

40. Ans: (d)

Sol: For a squirrel cage induction motor.
Constant $\frac{\mathrm{V}}{\mathrm{f}}$ and at low frequencies, the maximum torque is decreases, and starting torque increases.
Constant voltage and reduced frequencies, starting torque increases.
41. Ans: (c)
42. Ans: (c)

Sol: Triac can't be used for Inductive load
43. Ans: (b)

Sol: Buck boost converter

$$
\mathrm{K}=\frac{2 \mathrm{fL}}{\mathrm{R}}, \mathrm{~K}_{\mathrm{cr}}=(1-\mathrm{D})^{2}
$$

At Boundary conduction $\mathrm{K}=\mathrm{K}_{\mathrm{cr}}$

$$
\frac{2 \mathrm{fL}}{\mathrm{R}}=(1-\mathrm{D})^{2}
$$

$\sqrt{\frac{2 \mathrm{~L}}{\mathrm{RT}}}=1-\mathrm{D}$
$\mathrm{D}=1-\sqrt{\frac{2 \mathrm{~L}}{\mathrm{RT}}}$

## 44. Ans: 0 [zero]

Sol: The $\mathrm{o} / \mathrm{p}$ voltage is free from second harmonic and hence load current can not contain second harmonics.
45. Ans: (c)

Sol: Fast breeder reactor doesn't require a moderator.
46. Ans: (c)

Sol: $3 I_{a 0}=j 6 \Rightarrow I_{a 0}=j 2$ p.u., $I_{a 1}=-j 3$ p.u.
$\mathrm{LLG} \Rightarrow \mathrm{I}_{\mathrm{a} 1}+\mathrm{I}_{\mathrm{a} 2}+\mathrm{I}_{\mathrm{a} 0}=0, \mathrm{I}_{\mathrm{a} 2}=\mathrm{j} 1$ p.u.
47. Ans: (a)

Sol: $A=\cos \beta l=0.866$

$$
\begin{aligned}
\text { Voltage regulation } & =\frac{\left|\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{~A}}\right|-\left|\mathrm{V}_{\mathrm{r}}\right|}{\left|\mathrm{V}_{\mathrm{r}}\right|} \\
= & \frac{1}{0.866}-1=15.4 \%
\end{aligned}
$$

## 48. Ans: (a)

Sol: Velocity wave propagation in per unit form,

$$
\begin{aligned}
& v=\frac{\omega}{\sqrt{\mathrm{L}_{\mathrm{pu}} / \mathrm{km} \cdot \mathrm{C}_{\mathrm{pu}} / \mathrm{km}}} \\
& \mathrm{~L}_{\mathrm{pu}}=0.02 \mathrm{pu} \Rightarrow \mathrm{~L}_{\mathrm{pu}} / \mathrm{km}=\frac{0.02}{\ell} \\
& \mathrm{C}_{\mathrm{pu}}=\mathrm{B}_{\mathrm{pu}}=2 \mathrm{PU} \Rightarrow \mathrm{C}_{\mathrm{pu}} / \mathrm{km}=\frac{2}{\ell}
\end{aligned}
$$

$$
\text { Now, } v=\frac{\omega}{\sqrt{\frac{0.02}{\ell} \times \frac{2}{\ell}}}
$$

$$
v=\frac{\omega \cdot \ell}{\sqrt{0.02 \times 2}}
$$

$$
\ell=\frac{3 \times 10^{5} \sqrt{0.02 \times 2}}{2 \pi \times 50}=191 \mathrm{~km}
$$

## 49. Ans: (b)

Sol: Developed power,
$\mathrm{P}=\frac{735.5}{75} \times \mathrm{Q} \times \mathrm{W} \times \mathrm{H} \times \eta$ Watts
Here,
Discharge of water $(Q)=2 \mathrm{~m}^{3} / \mathrm{s}$,
Efficiency $(\eta)=90 \%$ and
Water head $(\mathrm{H})=40 \mathrm{~m}$

$$
\begin{aligned}
\therefore P & =\frac{735.5}{75} \times 1000 \times 2 \times 40 \times 0.9 \mathrm{~kW} \\
& =706.32 \mathrm{~kW}
\end{aligned}
$$

50. Ans: (d)

Sol: Cost Functions $\mathrm{C}_{1}=0.05 \mathrm{Pg}_{1}{ }^{2}+\mathrm{APg}_{1}+\mathrm{B}$

$$
\begin{aligned}
& \mathrm{C}_{2}=0.1 \mathrm{Pg}_{2}{ }^{2}+3 \mathrm{~A} \mathrm{Pg}_{2}+2 \mathrm{~B} \\
& \lambda=100 \mathrm{Rs} / \mathrm{MWhr}
\end{aligned}
$$

$\mathrm{P}_{\mathrm{D}}=\mathrm{P}_{\mathrm{g} 1}+\mathrm{P}_{\mathrm{g} 2}=1000 \mathrm{MW}$
$\lambda=\mathrm{IC}_{1}=\mathrm{IC}_{2}$
$\mathrm{IC}_{1}=\frac{\partial \mathrm{C}_{1}}{\partial \mathrm{P}_{\mathrm{g} 1}}=0.1 \mathrm{P}_{\mathrm{g} 1}+\mathrm{A}$
$\mathrm{IC}_{2}=\frac{\partial \mathrm{C}_{2}}{\partial \mathrm{P}_{\mathrm{g} 2}}=0.2 \mathrm{P}_{\mathrm{g} 2}+3 \mathrm{~A}$
From equation 1 and 2
$0.1 \mathrm{P}_{\mathrm{g} 1}+\mathrm{A}=100$
From equation 1 and 3
$0.2 \mathrm{P}_{\mathrm{g} 2}+3 \mathrm{~A}=100$
$\mathrm{P}_{\mathrm{g} 1}+\mathrm{P}_{\mathrm{g} 2}=1000$
Solving 4,5, 6
$\mathrm{P}_{\mathrm{g} 1}=800 \mathrm{MW} ; P_{g_{2}}=200 \mathrm{MW}$
$\mathrm{P}_{\mathrm{g} 1}: \mathrm{P}_{\mathrm{g} 2}=800: 200$

$$
=4: 1
$$

51. Ans: (a)

Sol: Given data,

$$
\begin{align*}
& \frac{\mathrm{dC}_{1}}{\mathrm{dP}_{1}}=0.02 \mathrm{P}_{1}+16 \\
& \frac{\mathrm{dC}_{2}}{\mathrm{dP}_{2}}=0.04 \mathrm{P}_{2}+20 \\
& \mathrm{P}_{\mathrm{L}}=\mathrm{B}_{11} \mathrm{P}_{1}^{2} \\
& \mathrm{~B}_{11}=\frac{10}{(100)^{2}}=260 \\
& \mathrm{P}_{1}+\mathrm{P}_{2}-\mathrm{P}_{\mathrm{L}}=260 \\
& \mathrm{P}_{1}+\mathrm{P}_{2}-\mathrm{B}_{11} \mathrm{P}_{1}^{2}=260 \\
& \mathrm{P}_{1}+\mathrm{P}_{2}-1 \times 10^{-3} \mathrm{P}_{1}^{2}=260 \tag{1}
\end{align*}
$$

Assuming loss less problem

$$
\begin{align*}
& \frac{\mathrm{dC}_{1}}{\mathrm{dP}_{1}}=\frac{\mathrm{dC}_{2}}{\mathrm{dP}_{2}} \Rightarrow 0.02 \mathrm{P}_{1}+16=0.04 \mathrm{P}_{2}+20 \\
& \Rightarrow \mathrm{P}_{2}=\frac{0.02 \mathrm{P}_{1}-4}{0.04} \\
& \mathrm{P}_{2}=0.5 \mathrm{P}_{1}-100 \ldots \ldots .(2) \tag{2}
\end{align*}
$$

Substitute (2) in (1)
$\mathrm{P}_{1}+0.5 \mathrm{P}_{1}-100-1 \times 10^{-3} \mathrm{P}_{1}^{2}=260$
$1 \times 10^{-3+} \mathrm{P}_{1}^{2}-1.5 \mathrm{P}_{1}+360=0$
$\mathrm{P}_{1}=1200, \mathrm{P}_{1}=300$
$\therefore \mathrm{P}_{2}=500 \& 50$.
The optimum distribution is $\mathrm{P}_{1}=300 \mathrm{MW} \&$ $\mathrm{P}_{2}=50 \mathrm{MW}$.

## 52. Ans: (c)

Sol: A dummy bimetallic element is designed to oppose the bending of the main bimetallic strip.

## 53. Ans: (a)

Sol: $\left[\begin{array}{l}V_{s} \\ I_{s}\end{array}\right]=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{l}V_{r} \\ I_{r}\end{array}\right]$
$\Rightarrow\left[\begin{array}{c}\mathrm{V}_{\mathrm{r}} \\ \mathrm{I}_{\mathrm{r}}\end{array}\right]=\left[\begin{array}{ll}\mathrm{A} & \mathrm{B} \\ \mathrm{C} & \mathrm{D}\end{array}\right]\left[\begin{array}{c}\mathrm{V}_{\mathrm{s}} \\ \mathrm{I}_{\mathrm{s}}\end{array}\right]$
$\Rightarrow\left[\begin{array}{l}\mathrm{V}_{\mathrm{r}} \\ \mathrm{I}_{\mathrm{r}}\end{array}\right]=\frac{1}{(\mathrm{AD}-\mathrm{BC})}\left[\begin{array}{cc}\mathrm{D} & -\mathrm{B} \\ -\mathrm{C} & \mathrm{A}\end{array}\right]\left[\begin{array}{c}\mathrm{V}_{\mathrm{s}} \\ \mathrm{I}_{\mathrm{s}}\end{array}\right]$
$\mathrm{AD}-\mathrm{BC}=1$ (reciprocal network property)

$$
\begin{aligned}
& \Rightarrow\left[\begin{array}{c}
\mathrm{V}_{\mathrm{r}} \\
\mathrm{I}_{\mathrm{r}}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{D} & -\mathrm{B} \\
-\mathrm{C} & \mathrm{~A}
\end{array}\right]\left[\begin{array}{l}
\mathrm{V}_{\mathrm{s}} \\
\mathrm{I}_{\mathrm{s}}
\end{array}\right] \\
& \mathrm{Z}_{\text {out }}=\frac{\mathrm{V}_{\mathrm{r}}}{\mathrm{I}_{\mathrm{r}}}=\frac{\mathrm{DV}_{\mathrm{s}}-\mathrm{BI}_{\mathrm{s}}}{-\mathrm{CV}_{\mathrm{s}}+\mathrm{AI}_{\mathrm{s}}}
\end{aligned}
$$

54. Ans: (b)

Sol: Draw the $\beta_{\mathrm{ew}}$ lay lattice diagram as,


Reflection coefficient C line to cable
$\alpha_{1}=\frac{Z_{2}-Z_{1}}{Z_{2}+Z_{1}}=\frac{1-\frac{Z_{1}}{Z_{2}}}{1+\frac{Z_{1}}{Z_{2}}}=-0.8$
Refraction coefficient (line to cable)
$\beta_{1}=\frac{2 \times 1}{1+9}=0.2$
Refraction coefficient (cable to line)
$\beta_{2}=\frac{2 \times 9}{9+1}=1.8$
$\mathrm{V}($ after 2 T$)=1-0.8+0.36=0.56$

## 55. Ans: (c)

Sol: Most of the fault at alternator will be single line to ground fault. In case of 3-phase CB the output power will be zero even for line to ground fault. So the acceleration is high. To limit the acceleration, single pole CB are placed so that the corresponding phase only will trip and the real power transfer will continue through healthy phases.
56. Ans: (b)

Sol: $\mathrm{J}=(2 \mathrm{n}-2-\mathrm{m}-l) \times(2 \mathrm{n}-2-\mathrm{m}-l)$
57. Ans: (b)

Sol: $\mathrm{C}=2 \pi \varepsilon_{0} \varepsilon_{\mathrm{r}}$

$$
\begin{aligned}
& =2 \pi \times 8.854 \times 10^{-12} \times 4 \mathrm{~F} / \mathrm{m} \\
& =2.225 \times 10^{-10} \mathrm{~F} / \mathrm{m} \\
\mathrm{C} & =2.225 \times 10^{-10} \times 20 \mathrm{~K} \\
& =4.45 \mu \mathrm{~F}
\end{aligned}
$$

58. Ans: (c)

## SSC-JE (Paper-II) MAINS 2018

## OFFLINE TEST SERIES

## Streams: Civil | Electrical | Mechanical

## 2. FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

## 2. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm
$\checkmark$ All tests will be conducted in Question Paper Booklet format.
$\checkmark$ Test Series will be conducted at all our centres.

(2) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

# ISRO - - <br> ONLINE TEST SERIES 

No. of Tests : 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO)
Recruitment of Scientist/Engineer 'SC'
ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
『 starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.
© 040-48539866 / 040-40136222 \& testseries@aceenggacademy.com

## 59. Ans: (b)

Sol: The flux produced by negative sequence component is having speed of $-\mathrm{N}_{\mathrm{S}}$. However with respect to rotor, it has relative speed of $2 \mathrm{~N}_{\mathrm{S}}$. So that negative sequence flux will cut the rotor field winding which will produce an induced emf. Induced emf will once again produce circulating current in rotor field winding with double the frequency. The circulating current will result in rotor field winding getting over heated. In order to protect the rotor due to over heating negative sequence relay is employed in stator.
60. Ans: (d)

Sol: For the system to be transiently stable synchronizing coefficient should be positive.
61. Ans: (d)

Sol: $\frac{d P}{d \delta}=\frac{E V}{X} \cos \delta$

## 62. Ans: (a)

Sol: Electrical island means separating a small part of distribution power network from the main grid such that the disconnected distribution system part has its own generating resource, which can supply the load existing in that part.

If the DG available in that island is capable to supply that demand then that island is known to be sustained island.

## 63. Ans: (b)

Sol: Reactive power compensation is required at the converter stations. The inter connection of two systems is alone by using isolation transformers so that the fault on one side will not be reflected on to other side. By using dc transmission corona can be reduced but not completely avoided.

## 64. Ans: (c)

Sol: $\quad \mathrm{I}_{2}=\mathrm{I}_{1}+\mathrm{I}_{\mathrm{g}}$
$\mathrm{V} \omega \mathrm{c}_{2}=\mathrm{V} \omega \mathrm{c}_{1}+\mathrm{V} \omega \mathrm{c}_{\mathrm{g}}$
$\mathrm{c}_{2}=\mathrm{c}_{1}+\mathrm{c}_{\mathrm{g}}$
$\Rightarrow \quad c_{2}=(10+1) \mu \mathrm{F}$
$\Rightarrow \mathrm{c}_{2}=11 \mu \mathrm{~F}$

## 65. Ans: (b)

Sol: In distribution applications vacuum circuit breaker is preferred, where as in transmission $\mathrm{SF}_{6}$ circuit breaker is preferred.
66. Ans: (c)

Sol:

$D_{s}=\sqrt[4]{\left(r^{\prime} d\right)\left(r^{\prime} d\right)}$
$=\sqrt{\left(\mathrm{r}^{\prime} \mathrm{d}\right)}-----(1)$

$\mathrm{D}_{\mathrm{s}}=\sqrt[9]{\left(\mathrm{r}^{\prime} \mathrm{dd}\right)\left(\mathrm{r}^{\prime} \mathrm{dd}\right)\left(\mathrm{r}^{\prime} \mathrm{dd}\right)}$
$=\sqrt[3]{\left(r^{\prime} \mathrm{d}^{2}\right)}$


$$
\begin{aligned}
D_{s} & =\sqrt[16]{\left(r^{\prime} d d \sqrt{2} d\right)^{4}} \\
& =\mathbf{1 0 . 9 1} \sqrt[4]{r^{\prime} d^{3}}----(3)
\end{aligned}
$$

67. Ans: (c)

Sol: There are no convergence issues with the discrete-time Fourier series in general as it consists of only a finite number of terms $=\mathrm{N}$, where N is a period of discrete-time signal. So, Statement (I) is correct.
A discrete-time signal is not always obtained by sampling a continuous-time signal.
So, Statement (II) is false.
68. Ans: (a)

Sol: A system is memory less if output, $y(t)$ depends only on $x(t)$ and not on past or future values of input, $x(t)$.
A system is causal if the output, $\mathrm{y}(\mathrm{t})$ at any time depends only on values of input, $x(t)$ at that time and in the past.
69. Ans: (a)

Sol: Both statements are correct and statement (II) is correct explanation for statement (I).
70. Ans: (d)
71. Ans: (c)

Sol: Fly back converter is also called Isolated buck-boost converter
72. Ans: (d)
73. Ans: (a)
74. Ans: (d)

Sol: The best location for SVC is at a point where voltage swings are greatest.

## 75. Ans: (a)

Sol: Circuit breaking is easy in ac currents than in dc currents because natural zero occurs in ac but not in dc.

