ESE- 2020 (Prelims) - Offline Test Series
 Test - 13 ELECTRICAL ENGINEERING

SUBJECT: Control Systems + Basic Electronics Engineering + Analog and Digital Electronics - SOLUTIONS

01. Ans: (d)

Sol: $\frac{C}{R}=\frac{G_{1} G_{2}+G_{1} G_{3}}{1-\left(-H_{1} G_{1}-H_{2} G_{2}+G_{1} G_{3} H_{1} H_{2}\right)}$

$$
\frac{C}{R}=\frac{G_{1} G_{2}+G_{1} G_{3}}{1+H_{1} G_{1}+H_{2} G_{2}-G_{1} G_{3} H_{1} H_{2}}
$$

2. Ans: (a)

Sol: The main objective of drawing the root locus plots are

- To find out closed loop stability of system
- To find the range of K to make the system stable
- To find out relative stability of system
- To obtain a clear picture of the closed loop poles of the system
- To obtain a clear picture of the transient response of the system for varying gain K.
- To find out K-value for undamped, under damped, critical damped, over damped systems.

3. Ans: (c)

Sol:

$C E=s^{2}+4 s+4=0$
$\omega_{n}^{2}=4$
$\omega_{\mathrm{n}}=2 \mathrm{rad} / \mathrm{sec}$
04. Ans: (b)

Sol: PD controller is very sensitive to noise.
05. Ans: (b)

Sol: Since the value of resistance is independent of the frequency, the system is stable for all frequencies.

06. Ans: (a)

Sol: Angle condition

$$
\begin{aligned}
\left.\angle G(s) H(s)\right|_{s=-\frac{1}{2}+j \frac{\sqrt{3}}{2}} & =\frac{\angle K}{\left\langle\left(-\frac{1}{2}+\frac{j \sqrt{3}}{2}+1\right)^{3}\right.} \\
& =\frac{\angle K}{\angle\left(\frac{1}{2}+\frac{j(\sqrt{3})}{2}\right)^{3}} \\
& =-3 \tan ^{-1}(\sqrt{3)}
\end{aligned}
$$

$=-180^{\circ}$ satisfies angle condition s_{1} is on root locus

$$
\begin{aligned}
\left.\angle \mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})\right|_{\mathrm{s}_{2}=\left(-\frac{1}{2}+\mathrm{j} \frac{1}{2}\right)} & =\frac{\angle K}{\angle\left(-\frac{1}{2}+j \frac{1}{2}+1\right)^{3}} \\
& =\frac{\angle K}{\angle\left(\frac{1}{2}+j \frac{1}{2}\right)^{3}} \\
& =-3 \tan ^{-1}(1)=-135^{\circ}
\end{aligned}
$$

\rightarrow Not satisfies angle condition
$\rightarrow \mathrm{s}_{2}$ is not on Root Locus

07. Ans: (a)

Sol: $\xrightarrow{\mathrm{CE}} 1+\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=0$

$$
\begin{aligned}
& \xrightarrow{C E} \mathrm{~s}^{3}+6 \mathrm{~s}^{2}+\mathrm{Ks}^{2}+11 \mathrm{~s}+6+\mathrm{K}=0 \\
& \xrightarrow{C E}\left(\mathrm{~s}^{3}+6 \mathrm{~s}^{2}+11 \mathrm{~s}+6\right)+\mathrm{K}\left(\mathrm{~s}^{2}+1\right)=0
\end{aligned}
$$

$$
\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=\frac{\mathrm{K}\left(\mathrm{~s}^{2}+1\right)}{\mathrm{s}^{3}+6 \mathrm{~s}^{2}+11 \mathrm{~s}+6}
$$

No.of Asymptotes $\mathrm{N}=|\mathrm{P}-\mathrm{Z}|=|3-2|=1$

$$
\theta_{0}=\frac{(2 \ell+1) 180^{\circ}}{(\mathrm{P}-\mathrm{Z})}=\frac{(2 \times 0+1) 180^{\circ}}{1}=180^{\circ}
$$

08. Ans: (d)

Sol: Option (a) is lag compensator which is wrong
Options (b), (c) \& (d) are lead compensators.
Here required to verify stability with Gain K

$$
\begin{aligned}
& \mathrm{G}(\mathrm{~s})=\frac{1}{\mathrm{~s}-1}, \mathrm{G}_{\mathrm{c}}(\mathrm{~s})=\mathrm{K}\left(\frac{\mathrm{~s}+2}{\mathrm{~s}+10}\right) \\
& \left.\mathrm{G}(\mathrm{~s})\right|_{\omega_{\mathrm{c}}}=\frac{\mathrm{K}(\mathrm{~s}+2)}{(\mathrm{s}-1)(\mathrm{s}+10)}, \mathrm{H}(\mathrm{~s})=1 \\
& \xrightarrow{C E} 1+\left.\mathrm{G}(\mathrm{~s})\right|_{\omega_{\mathrm{c}}}=0 \\
& \xrightarrow[C E]{ } \mathrm{s}^{2}+10 \mathrm{~s}-\mathrm{s}-10+\mathrm{Ks}+2 \mathrm{~K}=0 \\
& \xrightarrow{C E} \mathrm{~s}^{2}+9 \mathrm{~s}-10+\mathrm{Ks}+2 \mathrm{~K}=0 \\
& \xrightarrow[C E]{ } \mathrm{s}^{2}+\mathrm{s}(\mathrm{~K}+9)+(2 \mathrm{~K}-10)=0 \\
& \begin{array}{|l|l|l|}
\hline \mathrm{s}^{2} & 1 & 2 \mathrm{~K}-10 \\
\hline \mathrm{~s}^{1} & (\mathrm{~K}+9) & \\
\hline \mathrm{s}^{0} & (2 \mathrm{~K}-10) & \\
\hline
\end{array}
\end{aligned}
$$

$(K+9)>0 \Rightarrow K>-9$,
$(2 \mathrm{~K}-10)>0 \Rightarrow \mathrm{~K}>5$
$\mathrm{K}>5$ Given system with lead compensator becomes stable. Option (d) is correct
09. Ans: (a)

Sol: $\quad \alpha=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{1}{1+1}=\frac{1}{2}$

$$
\phi_{\mathrm{m}}=\sin ^{-1}\left(\frac{1-\alpha}{1+\alpha}\right)
$$

$$
=\sin ^{-1}\left(\frac{1-\frac{1}{2}}{1+\frac{1}{2}}\right)=\sin ^{-1}\left(\frac{1}{3}\right)
$$

TEST YOUR PREP IN A REAL TEST ENVIRONMENT
 Pre GATE - 2020

Date of Exam : 18 ${ }^{\text {th }}$ January 2020

 Last Date to Apply : 31 ${ }^{\text {st }}$ December 2019Highlights:

- Get real-time experience of GATE-20 test pattern and environment.
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for CATE-20 toppers.

PAN INDIA
PRESENCE AVAILABLE IN MORE THAN

SSC-JE (Paper-I) OOnline Test Series

Staff Selection Commission - Junior Engineer

No. of Tests : 20
 Subject Wise Tests: 16|Mock Tests - 4
 Civil|Electrical | Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination

10. Ans: (c)

Sol: If the poles are located in left side of $\mathrm{s}-$ plane, then the system is stable. (or)

The IR of a causal and stable system must be absolutely integrable between the limits 0 and $\infty \int_{0}^{\infty}|\operatorname{IR}| \mathrm{dt}<\infty$

If the roots are located on imaginary axis which are repeated then the system is unstable. $\int_{0}^{\infty}|\mathrm{IR}| \mathrm{dt}=\infty$

When non-repeated or simple poles poles are located on imaginary axis, then the system is marginally or limitedly or critically or just stable (or) When time $t \rightarrow$ ∞ IR is neither approaches to ' 0 ' nor goes to ' ∞ ' and will have fixed IR.

11. Ans: (d)

Sol:

$$
\omega=0 \quad \angle \mathrm{TF}=-180^{\circ}
$$

12. Ans: (c)

Sol: $\angle \frac{e^{\frac{-\pi}{2} \mathrm{j} \omega}}{j \omega}=-\pi$

$$
-\left(\frac{\pi}{2} \omega+\frac{\pi}{2}\right)=-\pi
$$

$\omega_{\mathrm{pc}}=1 \mathrm{rad} / \mathrm{sec}$
$\left|\frac{\mathrm{e}^{\frac{-\pi}{2} \mathrm{j} \omega}}{\mathrm{j} \omega}\right|=\frac{1}{\omega}=1$
$\therefore \mathrm{GM}=1$ or 0 dB
$\left|\frac{e^{\frac{-\pi}{2} j \omega}}{j \omega}\right|=1$
$\omega_{\mathrm{gc}}=1 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \mathrm{PM}=180^{\circ}-90^{\circ}-\frac{\pi}{2} \omega_{\mathrm{gc}} \\
& \quad=180^{\circ}-90^{\circ}-90^{\circ}=0^{\circ}
\end{aligned}
$$

$$
\mathrm{PM}=0^{\circ}
$$

13. Ans: (a)

Sol: $G(s)=\frac{8}{(S+10)^{2}}$

$$
S=j \omega
$$

$$
G(j \omega)=\frac{8}{(j \omega+10)^{2}}
$$

$$
|G(j \omega)|=\frac{8}{\left(\sqrt{\omega^{2}+10^{2}}\right)^{2}}
$$

O / p amplitude $=\mathrm{I} / \mathrm{p}$ amplitude $\times|\mathrm{G}(\omega)|$

$$
=2 \cdot \frac{8}{\left(\sqrt{\omega^{2}+10^{2}}\right)^{2}}
$$

Where $\omega=3 \mathrm{rad} / \mathrm{sec}$
o / p amplitude $=\frac{2 \times 8}{(\sqrt{100+9})^{2}}=\frac{16}{109}=0.146$
14. Ans: (a)

Sol:

No. of forward paths $=2$
RabcdY
RacdY
No. of two non touching loops $=1$
aba, cdc
15. Ans: (a)

Sol:

$\mathrm{TF}_{1}=\frac{\mathrm{L} \cdot \mathrm{T}\left[-0.5\left(1+\mathrm{e}^{-2 \mathrm{t}}\right)\right]}{\mathrm{L} \cdot \mathrm{T}[\mathrm{u}(\mathrm{t})]}$
$=\frac{-0.5\left(\frac{1}{\mathrm{~s}}+\frac{1}{\mathrm{~s}+2}\right)}{\frac{1}{\mathrm{~s}}}=\frac{-(\mathrm{s}+1)}{\mathrm{s}+2}$
$\mathrm{TF}_{2}=\frac{1}{\mathrm{~s}+1}$
Overall transfer function of system

$$
\mathrm{TF}=\mathrm{TF}_{1} \cdot \mathrm{TF}_{2}=\frac{-1}{\mathrm{~s}+2}
$$

16. Ans: (c)

Sol: There are two loops
Loop gain $1=-\mathrm{H}_{1} \mathrm{G}_{1} \mathrm{G}_{2}$
Loop gain $2=-\mathrm{H}_{2} \mathrm{G}_{3}$
17. Ans: (d)

Sol: $T F=\frac{R+\frac{1}{C s}}{R+L s+R+\frac{1}{C s}}$
$=\frac{\mathrm{RCs}+1}{\mathrm{LCs}^{2}+2 \mathrm{RCs}+1}$
2 poles, 1 zero
18. Ans: (b)

Sol: $\mathrm{TF}=\frac{2}{\mathrm{~s}^{2}+3 \mathrm{~s}+2}=\frac{2}{(s+1)(s+2)}$
Real and unequal roots, then system is over damped.

Initial value
$\mathrm{c}(0)=\underset{s \rightarrow \infty}{\operatorname{Lt}} s C(s)=\underset{s \rightarrow \infty}{\operatorname{Lt}} \frac{2}{(s+1)(s+2)}=0$
Final value
$\mathrm{C}(\infty)=\underset{s \rightarrow 0}{\operatorname{Lt}} \frac{2}{(s+1)(s+2)}=1$
19. Ans: (c)

Sol: The bandwidth for first order system,
$\mathrm{BW}=\frac{1}{T}$, Here ' T ' is time constant
OLTF: $G(s)=\frac{1}{s+1}$

$$
\mathrm{G}(\mathrm{~s})=\frac{1}{s T+1}
$$

Time constant, $\mathrm{T}=1$
Bandwidth $=\mathrm{G}(\mathrm{s})=\frac{1}{1}=1 \mathrm{rad} / \mathrm{s}$
CLTF $=\frac{1}{s+2}=\frac{\frac{1}{2}}{1+\frac{s}{2}}$
$\mathrm{T}=\frac{1}{2}$
Bandwidth $=\frac{1}{T}=2 \mathrm{sec}$.
20. Ans: (a)

Sol:

$+\mathrm{x}^{6}$	1	-2	-16	32
$+\mathrm{x}^{5}$	1	0	-16	0
$-\mathrm{x}^{4}$	-2	0	32	
$-\mathrm{x}^{3}$	$0(-8)$	0	0	
$+\mathrm{x}^{2}$	O(8)	32		
$+\mathrm{x}^{1}$	$\frac{(32)(8)}{\varepsilon}$			
$+\mathrm{x}^{0}$	32			

$\mathrm{AE}=-2 \mathrm{x}^{4}+32$
$\frac{\partial \mathrm{AE}}{\partial \mathrm{x}}=-8 \mathrm{x}^{3}$
No. of RH roots $=2$
$j \omega$ roots $=2$
LH roots $=2$
21. Ans: (a)

Sol: Delay time $\rightarrow 0$ to 50% of the final value Rise time $\rightarrow 10$ to 90% of the final value
22. Ans: (b)

Sol: $T(\mathrm{~s})=\frac{\mathrm{Y}(\mathrm{s})}{\mathrm{X}(\mathrm{s})}$

$$
\begin{aligned}
& =\frac{\mathrm{G}(\mathrm{~s})}{1+\mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})} \\
& =\frac{\frac{\mathrm{K}(\mathrm{~s}+4)}{\mathrm{s}(\mathrm{~s}+1)}}{1+\frac{1}{\mathrm{~s}+2} \cdot \frac{\mathrm{~K}(\mathrm{~s}+4)}{\mathrm{s}(\mathrm{~s}+1)}} \\
& =\frac{\mathrm{K}(\mathrm{~s}+4)(\mathrm{s}+2)}{\mathrm{s}(\mathrm{~s}+1)(\mathrm{s}+2)+\mathrm{K}(\mathrm{~s}+4)}
\end{aligned}
$$

C.E $=1+\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=0$
$s^{3}+3 s^{2}+2 s+K s+4 K=0$
$s^{3}+3 s^{2}+(2+K) s+4 K=0$

RH table:

s^{3}	1	$2+\mathrm{K}$
s^{2}	3	4 K
s^{1}	$\frac{6+3 \mathrm{~K}-4 \mathrm{~K}}{3}$	
s^{0}	4 K	

For marginal stable: s^{1}-row must be zero
$\frac{6-K}{3}=0$
$K=6$
23. Ans: (a)

Sol: T.F $=\frac{\mathrm{L}[\text { output }]}{\mathrm{L}[\text { input }]}=\frac{\mathrm{L}[\mathrm{c}(\mathrm{t})]}{\mathrm{L}[\text { unit step }]}$

$$
\begin{gathered}
=\frac{\mathrm{L}\left[1-\mathrm{e}^{-10 \mathrm{t}}-10 \mathrm{te}^{-10 \mathrm{t}}\right]}{\mathrm{L}[\mathrm{u}(\mathrm{t})]}=\frac{\frac{1}{\mathrm{~s}}-\frac{1}{\mathrm{~s}+10}-\frac{10}{(\mathrm{~s}+10)^{2}}}{\frac{1}{\mathrm{~s}}} \\
\Rightarrow \frac{\mathrm{C}(\mathrm{~s})}{\mathrm{R}(\mathrm{~s})}=\frac{100}{\mathrm{~s}^{2}+20 \mathrm{~s}+100}=\frac{\omega_{\mathrm{n}}^{2}}{\mathrm{~s}^{2}+2 \zeta \omega_{\mathrm{n}} \mathrm{~s}+\omega_{\mathrm{n}}^{2}} \\
\omega_{\mathrm{n}}=10 \mathrm{rad} / \mathrm{sec} ; 2 \zeta \omega_{\mathrm{n}}= \\
2 \zeta(10)=20 \\
\zeta=1
\end{gathered}
$$

Impulse response in time domain $=L^{-1}$ [transfer function]

$$
\begin{aligned}
& =\mathrm{L}^{-1}\left[\frac{100}{\mathrm{~s}^{2}+20 \mathrm{~s}+100}\right] \\
& =\mathrm{L}^{-1}\left[\frac{100}{(\mathrm{~s}+10)^{2}}\right]=100 \mathrm{te}^{-10 \mathrm{t}}
\end{aligned}
$$

24. Ans: (b)

Sol: \Rightarrow Electron density $(\mathrm{n}) \simeq \mathrm{N}_{\mathrm{D}}-\mathrm{N}_{\mathrm{A}}$

$$
\begin{aligned}
& =3 \times 10^{14}-0.5 \times 10^{14} \\
& =2.5 \times 10^{14} / \mathrm{cm}^{3}
\end{aligned}
$$

25. Ans: (b)

Sol: $\mathrm{V}_{\mathrm{p}}=\mu_{\mathrm{p}} \mathrm{E}$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{p}} & =\frac{\mu_{\mathrm{p}} \mathrm{~V}}{\ell}=\frac{500 \times 10 \times 10^{-4}}{1 \times 10^{-3}} \\
& =500 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

26. Ans: (b)

Sol:

\rightarrow Depletion region penetrates more into lightly doped side of PN junction. So, '1' is false.
$\rightarrow \quad$ A barrier voltage is created by charge carrier depletion effect, positive on n-side and negative on p -side. So , ' 2 ' is true.
\rightarrow Thermal voltage $\mathrm{V}_{\mathrm{T}}=\frac{\mathrm{kT}}{\mathrm{q}}$. Hence ,it is dependent on temperature. So, ' 3 ' is false.
27. Ans: (d)
28. Ans: (b)

Sol: Given $\mathrm{A}_{\mathrm{v}}=100, \mathrm{Z}_{\mathrm{i}}=1 \mathrm{k} \Omega, \mathrm{Z}_{0}=5 \mathrm{k} \Omega=\mathrm{Z}_{\mathrm{L}}$
Current-Shunt Negative feed back Amplifier gain is Current gain

$$
\begin{gathered}
A_{v}=\frac{A_{I} \cdot Z_{L}}{Z_{i}} \Rightarrow A_{I}=\frac{A_{v} \cdot Z_{i}}{Z_{L}}=\frac{100 \times 1}{5}=20 \\
1+\beta A_{I}=1+0.2(20)=5 \\
Z_{i f}=\frac{Z_{i}}{1+\beta A_{I}}=\frac{1}{5} \mathrm{k} \Omega
\end{gathered}
$$

29. Ans: (b)

Sol: The feedback circuit of Wein Bridge oscillator is as below.

$$
\begin{aligned}
& \frac{\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{o}}}{\mathrm{R}+\frac{1}{\mathrm{SC}}+\mathrm{SCV}_{\mathrm{F}}+\frac{\mathrm{V}_{\mathrm{F}}}{\mathrm{R}}=0} \\
& \mathrm{~V}_{\mathrm{F}}\left(\frac{1}{\mathrm{R}+\frac{1}{\mathrm{SC}}}+\mathrm{SC}+\frac{1}{\mathrm{R}}\right)=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{R}+\frac{1}{\mathrm{SC}}} \\
& \frac{\mathrm{~V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{F}}}=1+\mathrm{SC}\left(\mathrm{R}+\frac{1}{\mathrm{SC}}\right)+\frac{1}{\mathrm{R}}\left(\mathrm{R}+\frac{1}{\mathrm{SC}}\right) \\
& \quad=1+\mathrm{SCR}+1+1+\frac{1}{\mathrm{SCR}} \\
& \quad=3+\mathrm{SCR}+\frac{1}{\mathrm{SCR}} \\
& \Rightarrow \frac{\mathrm{~V}_{\mathrm{o}}}{\mathrm{~V}_{\mathrm{F}}}=3+\mathrm{j}\left(\omega R C-\frac{1}{\omega R C}\right)
\end{aligned}
$$

At resonant frequency
$\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{F}}}=3(\because$ Imaginary part is zero $)$
\therefore Attention factor (or) feedback factor,
$\beta=\frac{\mathrm{V}_{\mathrm{F}}}{\mathrm{V}_{\mathrm{o}}}=\frac{1}{3}$
30. Ans: (c)

Sol: Given $A=300, D=16 \%, \beta=\frac{5}{100}$

$$
\begin{aligned}
& 1+\beta A=1+\frac{5}{100} \times 300=16 \\
& D_{f}=\frac{D}{1+\beta A}=1 \%
\end{aligned}
$$

31. Ans: (d)

Sol: The equivalent circuit is

When $\frac{\mathrm{V}_{\mathrm{i}}}{2}>0.7 \mathrm{~V}$

$$
\mathrm{D}-\mathrm{ON} \Rightarrow \mathrm{~V}_{0}=0.7 \mathrm{~V}
$$

When $\frac{V_{i}}{2} \leq 0.7 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{D}-\mathrm{OFF} \Rightarrow \mathrm{~V}_{0}=\frac{\mathrm{V}_{\mathrm{i}}}{2}=2.5 \sin \omega \mathrm{t} \\
& \Rightarrow \mathrm{~V}_{0 \min }=-2.5 \mathrm{~V} \\
& \therefore\left(\mathrm{~V}_{0}\right)_{\max }=0.7 \mathrm{~V},\left(\mathrm{~V}_{0}\right)_{\min }=-2.5 \mathrm{~V}
\end{aligned}
$$

32. Ans: (b)

Sol: Input power $=V_{i} \times I_{i}$

$$
=0.5 \times 2 \times 10^{-3}=1 \mathrm{~mW}
$$

Output power $=\mathrm{V}_{0} \times \mathrm{I}_{0}=16 \times 15 \times 10^{-3}=$ 240mW

Power gain $=\frac{P_{0}}{P_{i}}=240$
33. Ans: (a)

Sol: Astable Multivibrator can generate square waveforms.
Mono stable Multivibrator is used for pulse width modulation.

Bi-stable is using to storing binary information.

HEARTY CONGRATULATIONS
 TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33

(EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

 dIcITAL CLASSES for
 ESE 2020/2021 General Studies \& Engineering Aptitude
 Computer Science \&
 Information Technology

34. Ans: (a)

Sol: Transformer coupling provides high impedance matching. So, it requires less number of stages for achieving same gain compared to RC couplī̄$\overline{\bar{\pi}}$.
35. Ans: (c)

Sol:

JFET operating in region ' I ' if $\mathrm{I}_{\mathrm{D}}<\mathrm{I}_{\mathrm{DSS}}$, I_{D} is linearly related to V_{DS}, so it behavior like a resistor
36. Ans: (c)

Sol: \rightarrow Placing a BJT around an op-amp provides a logarithmic function.
\rightarrow Placing a diode around an op-amp leads to precision rectifier i.e., a circuit that can rectify very small input swings.
\rightarrow Integrators suffer from op-amp imperfections like DC offsets and input bias currents.
\rightarrow The speed of op-amp circuits is limited by the bandwidth of the op-amps. For large signals, the op-amp suffers from a finite slew rate, distorting the output waveform.
37. Ans: (c)

Sol: The feedback circuit of Wein Bridge oscillator is as below

$\frac{\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{o}}}{\mathrm{R}+\frac{1}{\mathrm{SC}}}+\mathrm{SCV}_{\mathrm{F}}+\frac{\mathrm{V}_{\mathrm{F}}}{\mathrm{R}}=0$
$\mathrm{V}_{\mathrm{F}}\left(\frac{1}{\mathrm{R}+\frac{1}{\mathrm{SC}}}+\mathrm{SC}+\frac{1}{\mathrm{R}}\right)=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{R}+\frac{1}{\mathrm{SC}}}$
$\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{F}}}=1+\mathrm{SC}\left(\mathrm{R}+\frac{1}{\mathrm{SC}}\right)+\frac{1}{\mathrm{R}}\left(\mathrm{R}+\frac{1}{\mathrm{SC}}\right)$
$=1+\mathrm{SCR}+1+1+\frac{1}{\mathrm{SCR}}=3+\mathrm{SCR}+\frac{1}{\mathrm{SCR}}$
$\Rightarrow \frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{F}}}=3+\mathrm{j}\left(\omega R \mathrm{C}-\frac{1}{\omega R C}\right)$
Feedback factor

$$
\beta=\frac{V_{F}}{V_{o}}=\frac{1}{3+j\left(\omega R C-\frac{1}{\omega C R}\right)}
$$

At frequency of Oscillations, imaginary part is zero, $\beta=1 / 3, \mathrm{~A}=3$

38. Ans: (b)

Sol: The given circuit is a voltage regulator. Then
(i) The unregulated input voltage, V_{S} should be more than the break down voltage of zener diode, V_{Z}
(ii) By applying KCL at node A in the circuit, $\mathrm{I}_{1}=\mathrm{I}_{2}+\mathrm{I}_{\mathrm{L}} \Rightarrow \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{1}-\mathrm{I}_{2}$
(iii) The dynamic resistance of zener diode r_{z} when it is in break down is very small when compared with the resistance R_{S}.
i.e R_{S} should be more than r_{z}, so that it maintains the current into zener diode between and $\mathrm{I}_{\mathrm{Z}_{\text {max }}}$

39. Ans: (b)

Sol:

A. E-B junction forward bias and C-B junction reverse bias-High gain amplifier
B. Both E-B and C-B junctions forward bias- Saturation condition
C. E-B junction reverse bias and C-B junction forward bias- Very low gain amplifier
D. Both E-B and C-B junctions reverse bias- Cut-off condition
40. Ans: (b)

Sol: $\mathrm{I}_{\mathrm{CQ}}=\frac{\mathrm{V}_{\mathrm{CC}}}{\mathrm{R}_{\mathrm{AC}}+\mathrm{R}_{\mathrm{DC}}}=\frac{\mathrm{V}_{\mathrm{CC}}}{\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{C}}}=\frac{\mathrm{V}_{\mathrm{CC}}}{2 \mathrm{R}_{\mathrm{C}}}$
41. Ans: (c)

Sol:

$$
\mathrm{V}_{\mathrm{b}}=\frac{\mathrm{V}_{0}(1 \mathrm{k})+(1 \mathrm{~V})(9 \mathrm{k})}{10 \mathrm{k}}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{b}}=\frac{\mathrm{V}_{0}+9}{10} \\
& \mathrm{~V}_{0}=\mathrm{A}\left(\mathrm{~V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right) \\
& \mathrm{V}_{0}=10\left(0-\frac{\mathrm{V}_{0}+9}{10}\right) \\
& \mathrm{V}_{0}=-\mathrm{V}_{0}-9 \\
& 2 \mathrm{~V}_{0}=-9 \\
& \therefore \mathrm{~V}_{0}=-4.5 \text { Volts }
\end{aligned}
$$

42. Ans: (d)

Sol: In broadcast television, the number of scanning per frame is chosen to be an odd number to make interlacing easier.
43. Ans: (c)

Sol: $\quad \mathrm{SQNR}=\frac{3}{2} \mathrm{~L}^{2}$
Where L is number of quantization levels
44. Ans: (a)

Sol: Advantages of PCM:
PCM permits regeneration of pulses along the transmission path, this reduces noise interference

Multiplexing of various PCM signals is easily possible.

Effect of channel noise and interference is reduced

Larger bandwidth is not an advantage. It is disadvantage.

45. Ans: (a)

Sol: Quantization levels $L=2^{n}=2^{6}=64$
Each sample requires $n=6$ bits
\therefore sampling rate $\left(\mathrm{f}_{\mathrm{s}}\right)=2 \times \mathrm{f}_{\mathrm{m}}=10 \mathrm{kHz}$
\therefore Bit Transmission rate $\left(\mathrm{R}_{\mathrm{b}}\right)=\mathrm{nxf}_{\mathrm{s}}$

$$
=6 \times 10=60 \mathrm{kbps} .
$$

46. Ans: (c)

Sol: $\%$ Power saving $=\frac{\text { Power saved }}{\text { total power }} \times 100$

$$
\begin{aligned}
& =\frac{P_{C}}{P_{C}\left[1+\frac{\mu^{2}}{2}\right]} \times 100=\frac{1}{1+\frac{0.8^{2}}{2}} \times 100 \\
& =75.76 \%
\end{aligned}
$$

47. Ans: (d)

Sol: One of main functions of the RF amplifiers in a superheterodyne receiver is to improve the rejection of the image frequency.
48. Ans: (d)

Sol: Pre-Emphasis in FM system defined as the process of boosting high frequencies of an audio signal, such that the signal to Noise ratio is greater than one.
49. Ans: (c)

Sol: Given data: $\mathrm{IF}=455 \mathrm{kHz}, \mathrm{f}_{\mathrm{s}}=1200 \mathrm{kHz}$ Image frequency $f_{\text {si }}=f_{s}+2 \times$ IF

$$
=1200+2 \times 455=2110 \mathrm{kHz}
$$

50. Ans: (a)

Sol:

USB $=$ Upper side band
$\mathrm{f}_{\mathrm{c}}=60 \mathrm{kHz}$
f_{c} to $\mathrm{f}_{\mathrm{c}}+\mathrm{f}_{\mathrm{m}}$
Lowest USB $=60 \mathrm{k}+300 \mathrm{~Hz}=60.3 \mathrm{kHz}$
$(\because \mathrm{W}=300 \mathrm{~Hz})$
Highest USB $=60 \mathrm{k}+3000 \mathrm{~Hz}=63 \mathrm{kHz}$
$(\because \mathrm{W}=3000 \mathrm{~Hz})$
\therefore The range of upper side band is 60.3 to 63 kHz

51. Ans: (b)

Sol: conversion time $\mathrm{t}_{\mathrm{A}}=10 \mu \mathrm{~s}$
Sampling frequency $\mathrm{f}_{\mathrm{s}(\max)}=\frac{1}{\mathrm{t}_{\mathrm{A}}}=\frac{1}{10 \mu \mathrm{~s}}$
$=0.1 \mathrm{MHz}=100 \mathrm{KHz}$
$\mathrm{f}_{\mathrm{s}(\max)}=2 \mathrm{f}_{\mathrm{m}(\max)}$
Maximum input signal frequency
$\mathrm{f}_{\mathrm{m}(\max)}=\frac{\mathrm{f}_{\mathrm{s}(\max)}}{2}=\frac{100 \mathrm{KHz}}{2}=50 \mathrm{KHz}$

52. Ans: (a)

Sol: Let number of Flip-flops required be N .

$$
2^{\mathrm{N}} \geq 6000
$$

$\mathrm{N} \geq 13$
$\mathrm{N}=13$
53. Ans: (a)

Sol: No flags will be affected when data transfer instructions are executed.
54. Ans: (c)

Sol: In this

$$
\mathrm{J}_{\mathrm{A}}=\overline{\mathrm{B}}+\overline{\mathrm{C}}, \mathrm{~K}_{\mathrm{A}}=\mathrm{BC}, \mathrm{~J}_{\mathrm{B}}=\mathrm{A}, \mathrm{~K}_{\mathrm{B}}=\overline{\mathrm{A}}, \mathrm{~J}_{\mathrm{C}}=\mathrm{B}, \mathrm{~K}_{\mathrm{C}}=\overline{\mathrm{B}}
$$

CLK	$\mathrm{J}_{\mathrm{A}} \mathrm{K}_{\mathrm{A}}$	$\mathrm{J}_{\mathrm{B}} \mathrm{K}_{\mathrm{B}}$	$\mathrm{J}_{\mathrm{C}} \mathrm{K}_{\mathrm{C}}$	A B C
0				000
1	10	01	01	100
2	10	10	01	110
3	10	10	10	111
4	01	10	10	011
5	01	01	10	001
6	10	01	01	100

Hence, modulus of the counter is 5 .
55. Ans: (a)

Sol: $\mathrm{x}_{2}=\mathrm{b}_{2} \oplus \mathrm{~b}_{1} \oplus \mathrm{~b}_{1}=\mathrm{b}_{2} \oplus 0=\mathrm{b}_{2}$

$$
\begin{aligned}
& \mathrm{x}_{1}=\mathrm{b}_{2} \oplus \mathrm{~b}_{1} \\
& \mathrm{x}_{0}=\mathrm{b}_{0} \oplus \mathrm{~b}_{1}
\end{aligned}
$$

b_{2}	$\mathrm{~b}_{1}$	$\mathrm{~b}_{0}$	x_{2}	x_{1}	x_{0}
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0

i.e., binary to gray code converter

Counter type ADC $\quad\left(2^{\mathrm{n}}-1\right) \mathrm{T}_{\mathrm{CLK}}$
Flash type ADC $\quad 1 . \mathrm{T}_{\text {CLK }}$
Successive Approx. ADC N.T $\mathrm{T}_{\text {CLK }}$
Dual Slope ADC $\quad 2^{\mathrm{n}+1} \cdot \mathrm{~T}_{\text {CLK }}$
So, Dual Slope ADC has maximum conversion time.
57. Ans: (c)

Sol:

MVI C, 0A H	$=7 \mathrm{~T}$
XRA A	$=4 \mathrm{~T}$
LOOP: DCR C	$=4 \mathrm{~T}$
INC A	$=4 \mathrm{~T}$
JNZ LOOP	$=7 \mathrm{~T} / 10 \mathrm{~T}$

So,
Number of T states required

$$
\begin{aligned}
& =7 \mathrm{~T}+4 \mathrm{~T}+(09 \times 18) \mathrm{T}+4 \mathrm{~T}+4 \mathrm{~T}+7 \mathrm{~T} \\
& =7 \mathrm{~T}+4 \mathrm{~T}+162 \mathrm{~T}+4 \mathrm{~T}+4 \mathrm{~T}+7 \mathrm{~T} \\
& =188 \mathrm{~T}
\end{aligned}
$$

58. Ans: (d)

Sol: $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum\left(\mathrm{m}_{0}, \mathrm{~m}_{2}, \mathrm{~m}_{7}\right)=\sum \mathrm{m}(0,2,7)$
$\mathrm{f}^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum\left(\mathrm{m}_{1}, \mathrm{~m}_{3}, \mathrm{~m}_{4}, \mathrm{~m}_{5}, \mathrm{~m}_{6}\right)=\Pi\left(\mathrm{M}_{0}\right.$,
$\mathrm{M}_{2}, \mathrm{M}_{7}$)
59. Ans: (d)

Sol: size $=2^{\mathrm{x}} \times \mathrm{y} \times \mathrm{n}$
Let n be the number of chips.;
$x \rightarrow$ no. of address lines
$y \rightarrow$ no. of data lines
$2^{\mathrm{x}} \times \mathrm{y} \times \mathrm{n}=32 \mathrm{~KB}$

Sol: ADC

$$
\begin{aligned}
& 2^{12} \times 4 \times \mathrm{n}=32 \times 1024 \times 8 \\
& \mathrm{n}=\frac{32 \times 1024 \times 8}{2^{12} \times 4}=16 \\
& \mathrm{n}=16
\end{aligned}
$$

60. Ans: (b)

Sol: XOR gate, Half adder, Full subtractor are combinational circuits

Register is a Sequential circuit.
61. Ans: (c)

Sol: A is connected as negative edge clock input for T-flip-flop. So, for every negative edge B is applied to FF. $\quad \mathrm{Q}(\mathrm{t}+1)=\mathrm{T} \oplus \mathrm{Q}(\mathrm{t})$

62. Ans: (b)

Sol:

A	B	Y_{0}
1	0	0
1	1	0
0	0	0
0	1	1

If $A=1$, then irrespective of ' B ' output is
' 0 '. Since transistors are ON
If $\mathrm{A}=0$, then transistors are $\mathrm{OFF} \&$
If $\mathrm{B}=0$, diode $\mathrm{ON} \Rightarrow \mathrm{Y}_{0}=0$
If $\mathrm{B}=1$, diode $\mathrm{OFF} \Rightarrow \mathrm{Y}_{0}=1$
$\Rightarrow \mathrm{Y}_{0}=\overline{\mathrm{A}} \mathrm{B}$
63. Ans: (a)

Sol: F(A,B,C,D)

$$
\begin{aligned}
& =\overline{\mathrm{A}} \mathrm{~B} \overline{\mathrm{D}} \cdot \mathrm{C}+\mathrm{A} \overline{\mathrm{~B}} \overline{\mathrm{D}} \cdot 1+\overline{\mathrm{A}} \mathrm{BD} \cdot 1+\mathrm{A} \overline{\mathrm{~B}} \mathrm{D} \cdot \overline{\mathrm{C}} \\
& =\overline{\mathrm{A}} \mathrm{BC} \overline{\mathrm{D}}+\mathrm{A} \overline{\mathrm{~B}} \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{BD}+\mathrm{A} \overline{\mathrm{~B}} \overline{\mathrm{C}} \mathrm{D} \\
& =\overline{\mathrm{A}} \mathrm{~B}(\mathrm{C} \overline{\mathrm{D}}+\mathrm{D})+\mathrm{A} \overline{\mathrm{~B}}(\overline{\mathrm{D}}+\overline{\mathrm{C}} \mathrm{D}) \\
& =\overline{\mathrm{A}} \mathrm{~B}(\mathrm{C}+\mathrm{D})+\mathrm{A} \overline{\mathrm{~B}}(\overline{\mathrm{C}}+\overline{\mathrm{D}})
\end{aligned}
$$

64. Ans: (c)

Sol: $F=(B \bar{C}+\bar{A} D)(A \bar{B}+C \bar{D})$
$\mathrm{F}=\mathrm{B} \overline{\mathrm{C}} \mathrm{A} \overline{\mathrm{B}}+\mathrm{B} \overline{\mathrm{C}} C \overline{\mathrm{D}}+\overline{\mathrm{A}} \mathrm{DA} \overline{\mathrm{B}}+\overline{\mathrm{A}} D C \overline{\mathrm{D}}=0$
$\overline{\mathrm{F}}=1$
Number of literals in $\overline{\mathrm{F}}=1$ is 0 .
65. Ans: (a)

Sol: $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=$

$$
\begin{aligned}
& \mathrm{AB}+\overline{\mathrm{A} C}+\mathrm{BC}= \\
& \mathrm{AB}(\mathrm{C}+\overline{\mathrm{C}})+\overline{\mathrm{A}}(\mathrm{~B}+\overline{\mathrm{B}}) \mathrm{C}+(\mathrm{A}+\overline{\mathrm{A}}) \mathrm{BC} \\
& =\mathrm{ABC}+\mathrm{AB} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{BC}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{C}+\mathrm{ABC}+\overline{\mathrm{A}} \mathrm{BC}
\end{aligned}
$$

66. Ans: (c)

Sol: $(23 \mathrm{E})_{\mathrm{X}}=2 \mathrm{X}^{2}+3 \mathrm{X}+\mathrm{E}$
In the given number ' E ' is the highest digit
so we can take its radix from greater
than equal to F. So,
$=2(15)^{2}+3(15)^{1}+\mathrm{E}(15)^{0}$
$=2(225)+3(15)+14=509$

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

2 FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

2. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm
\checkmark All tests will be conducted in Question Paper Booklet format.
\checkmark Test Series will be conducted at all our centres.

(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

$$
\begin{aligned}
& \text { ONLINE TEST SERIES } \\
& \text { OU }
\end{aligned}
$$

No. of Tests : 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO) Recruitment of Scientist/Engineer 'SC' ELECTRONICS | MECHANICAL | COMPUTER SCIENCE

『 starts from $5^{\text {th }}$ November 2019

 All tests will be available till 12-01-2020.
(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com
67. Ans: (c)

Sol: Adding two n-bit numbers,
ROM inputs $=\mathrm{n}+\mathrm{n}=2 \mathrm{n}$
Adding two n -bit numbers largest result size
$=(\mathrm{n}+1)$ bits
\therefore ROM size $=2^{2 n} \times(n+1)$ bits

68. Ans: (c)

Sol: ROM, Hard disk, Magnetic disk - NonVolatile

RAM - Volatile
69. Ans: (b)

Sol: Any Boolean function can be realized by using a suitable multiplexer. So, statement (I) is true

A multiplexer can be realized using NAND and NOR gates, which are universal gates.

So, statement (II) is true
Statement (I) and Statement (II) are individually true but Statement (II) is not correct explanation for Statement (I).

70. Ans: (c)

Sol: All Software interrupts of 8085 are Maskable and Vectored. So, Statement (I) is true.

Software interrupts are random in nature. So, Statement (II) is false.
71. Ans: (d)

Sol: Need of modulation:

1. To avoid the mixing of the signals.
2. To increase the range of communication
3. To decrease the length of transmitting and receiving antenna
4. To improve the quality of reception i.e. increasing the value of S / N ratio
5. To allows the multiplexing of the signals
6. To remove the interference.

72. Ans: (d)

Sol: A fixed bias BJT circuit cannot exhibit better performance as compared to self bias BJT circuit. Hence Statement (I) is false.
73. Ans: (c)

Sol: When PN junction is reverse biased, depletion region acts like an insulator. While P and N type regions on either side act as plate.

Hence it can be treated as parallel plate capacitor. So, statement (I) is true.

Transition or space charge capacitance $\mathrm{C}_{\mathrm{T}} \propto \frac{1}{\left(\mathrm{~V}_{\mathrm{k}}+\mathrm{V}_{\mathrm{R}}\right)^{\mathrm{n}}}$

It is voltage dependent. So, statement (II) is false.
74. Ans: (c)

Sol: Transfer function applicable for only linear time invariant systems.
75. Ans: (a)

Sol: T.F $=\frac{40}{(s+2)(s+20)}$
DC gain should not change after removing far pole.
DC gain before removing far pole $=$ $\frac{40}{(0+2)(0+20)}=1$
$\mathrm{T} . \mathrm{F}$ after removing far pole $=\frac{\mathrm{K}}{\mathrm{s}+2}$

DC gain $=\frac{K}{0+2}=\frac{K}{2}$
$\therefore \frac{\mathrm{K}}{2}=1 \Rightarrow \mathrm{~K}=2$
$\mathrm{T} . \mathrm{F}=\frac{2}{\mathrm{~s}+2}$
Comparing with standard $1^{\text {st }}$ order T.F $\frac{\mathrm{A}}{\mathrm{s}+\mathrm{T}}$
\therefore Time constant $=\frac{1}{\mathrm{~T}}=\frac{1}{2}$
2% Settling time, $\mathrm{t}_{\mathrm{s}}=4 \times \frac{1}{2}=2 \mathrm{sec}$ which depends on dominant pole.

