

ESE- 2020 (Prelims) - Offline Test Series Test - 11
 ELECTRICAL ENGINEERING

SUBJECT: Engineering Mathematics + Computer fundamentals SOLUTIONS

1. Ans: (c)
2. Ans: (d)

Sol: Ready Queue $\rightarrow R_{1} R_{8} R_{1}, R_{3} R_{8} R_{X} R_{2} R_{1} R_{3}$

P_{1}	P_{2}	P_{1}	P_{3}	P_{2}	P_{1}	P_{3}	P_{1}	P_{3}
0	2	4	6	8	10	12	14	16

Process	Arrival time	Finish Time	Turn round time =F.T - A.T	Waiting time =TAT- Burst time
P_{1}	0	16	$16-0=16$	$16-8=8$
P_{2}	1	10	$10-1=9$	$9-4=5$
P_{3}	3	17	$17-3=14$	$14-5=9$

Average waiting time $=\frac{8+5+9}{3}=\frac{22}{3}=7.33$.
03. Ans: (b)
04. Ans: (b)

Sol:

Number of page faults $=37$.
05. Ans: (d)

Sol: Only one process should be allowed in critical section at a time to avoid race condition
06. Ans: (c)

Sol: Except for Strict Alternation remaining suffers from Bounded Waiting
07. Ans: (c)

08. Ans: (d)

Sol: Maximum average turn around time leads by Round Robin.
09. Ans: (c)

Sol: Minimum instance of $\mathrm{R}=(5-1)+(4-1)+$ $(6-1)+1=13$
10. Ans: (b)
11. Ans: (c)

Sol:

Number of context switches $=8$
12. Ans: (c)

Sol: $\mathrm{h}_{\mathrm{b}}=0.8, \mathrm{t}_{\mathrm{b}}=2 \mathrm{~ns}, \mathrm{t}_{\mathrm{m}}=10 \mathrm{~ns}, \mathrm{~N}=2, \mathrm{P}=\frac{1}{10^{5}}$

$$
\begin{aligned}
\text { EAT } & =\mathrm{h}_{\mathrm{b}} *\left(\mathrm{t}_{\mathrm{b}}+\mathrm{t}_{\mathrm{m}}\right)+\left(1-\mathrm{h}_{\mathrm{b}}\right) *\left[(1-\mathrm{P}) *\left(\mathrm{t}_{\mathrm{b}}+(\mathrm{N}+1) * \mathrm{t}_{\mathrm{m}}\right)+\mathrm{P} * \text { service time }\right] \\
& =0.8 *(2+10) \mathrm{ns}+0.2 *\left[\left(1-\frac{1}{10^{5}}\right) *(2+3 * 10) \mathrm{ns}+\frac{1}{10^{5}} * 10 * 10^{6} \mathrm{~ns}\right] \\
& =9.6 \mathrm{~ns}+0.2 *(131.99968) \\
& =35.999936 \mathrm{~ns}
\end{aligned}
$$

13. Ans: (c)

Sol: Offset $\Rightarrow 7$ bits, page no. $\Rightarrow 12-7=5$ bits
$\mathrm{ABC} \Rightarrow$ (21), $7 \mathrm{~A} 4 \Rightarrow$ (15), $\mathrm{A} 5 \mathrm{~A} \Rightarrow$ (20), $\mathrm{ACD} \Rightarrow$ (21),
$75 \mathrm{C} \Rightarrow(7), 7 \mathrm{~B} 3 \Rightarrow$ (15), $5 \mathrm{AC} \Rightarrow$ (11), $\mathrm{A} 2 \mathrm{D} \Rightarrow$ (20),
$5 \mathrm{BD} \Rightarrow$ (11).
$21,15,20,21,7,1511,20,11$
$\left.\begin{array}{ll|l|l|l|}\hline 21 \\ \hline 21 \\ 15\end{array} \begin{array}{|l|l}21 \\ 15 \\ 20 \\ \hline\end{array} \quad \begin{array}{|l}7 \\ 15 \\ 20 \\ \hline\end{array} \quad \begin{array}{|l}7 \\ 11 \\ 20\end{array}\right]$
14. Ans: (c)
16. Ans: (a)
15. Ans: (a)
18. Ans: (b)
19. Ans: (b)

Sol: fun(4) \rightarrow fun(3) \rightarrow fun(2) \rightarrow fun(1) \rightarrow fun(0)
print $4 \leftarrow$ print $3 \leftarrow$ print $2 \leftarrow$ print $1 \leftarrow$ return
20. Ans: (b)

Sol: It swap the values.
21. Ans: (c)
22. Ans: (c)

Sol: Maximum size of virtual memory $=$ Size of disk
23. Ans: (b)

Sol: Return type of printf function is integer and value of this integer is exactly equal to number of characters including white space, printf function prints. So, printf("Hello world") will return 11.
24. Ans: (b)

Sol: Segmentation suffer from external fragmentation \& the essential content in page table entry is frame number.
25. Ans: (b)
26. Ans: (a)

Sol: Here,
$\mathrm{m}=$ number of rows $=2$
$\mathrm{n}=$ number of columns $=3$
$*(\mathrm{~A}[0]+0)=\mathrm{A}[0][0]=10$
$*(\mathrm{~A}[1]+0)=\mathrm{A}[1][0]=13$
Similarly all the elements are accessed
$\therefore 101311141215$ is the output
27. Ans: (d)

Sol: ALOHA, Ethernet (CSMA/CD) and Token Bus (Token) are 3 different ways for channel Access in Bus topology.
28. Ans: (c)
29. Ans: (a)

Sol: * HTTP is stateless protocol

* FTP is statefull protocol

30. Ans: (c)

Sol:

- CRC and checksum are error detection techniques only.
- Hamming code is error detection and correction technique.

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

2. FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

2. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm

- All tests will be conducted in Question Paper Booklet format.
\checkmark Test Series will be conducted at all our centres.

(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

ISRO * ONLINE TEST SERIES

No. of Tests : 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO) Recruitment of Scientist/Engineer 'SC'

ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
『 starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.
(C) 040-48539866 / 040-40136222 \searrow testseries@aceenggacademy.com

31. Ans: (b)

Sol: Poles $\mathrm{z}=1 \& 2$ both are inside the $|\mathrm{z}|=3$
$f(z)=\cos \pi z^{2}$ is an analytic function

$$
\begin{aligned}
& \therefore{\underset{c}{f}} \frac{\cos \pi z^{2}}{(z-1)(z-2)} d z=\prod_{c}^{\frac{\cos \pi z^{2}}{z-2}} \mathrm{z}-1 \\
& z-1 \\
& \quad=2 \pi i f(1)+2 \pi i f(2) \\
& \quad \frac{\cos \pi z^{2}}{z-1} \\
& z-2 \\
& \quad=2 \pi i[-\cos \pi+\cos 4 \pi] \\
& \quad=4 \pi i
\end{aligned}
$$

32. Ans: (b)

Sol: Given that $\mathrm{z}=f(\mathrm{x}, \mathrm{y})$, where $\mathrm{x}=\mathrm{e}^{\mathrm{u}}+\mathrm{e}^{-\mathrm{v}}$ and $\mathrm{y}=\mathrm{e}^{-\mathrm{u}}-\mathrm{e}^{\mathrm{v}}$
Then $\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \quad$ and $\quad \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}$
$\Rightarrow \quad \frac{\partial \mathrm{z}}{\partial \mathrm{u}}=\frac{\partial \mathrm{z}}{\partial \mathrm{x}}\left(\mathrm{e}^{\mathrm{u}}\right)+\frac{\partial \mathrm{z}}{\partial \mathrm{y}}\left(-\mathrm{e}^{-\mathrm{u}}\right)$ and $\frac{\partial \mathrm{z}}{\partial \mathrm{v}}=\frac{\partial \mathrm{z}}{\partial \mathrm{x}}\left(-\mathrm{e}^{-\mathrm{v}}\right)+\frac{\partial \mathrm{z}}{\partial \mathrm{y}}\left(-\mathrm{e}^{\mathrm{v}}\right)$
Now, $\frac{\partial \mathrm{z}}{\partial \mathrm{u}}-\frac{\partial \mathrm{z}}{\partial \mathrm{v}}=\left(\mathrm{e}^{\mathrm{u}} \frac{\partial \mathrm{z}}{\partial \mathrm{x}}-\mathrm{e}^{-\mathrm{u}} \frac{\partial \mathrm{z}}{\partial \mathrm{y}}\right)-\left(-\mathrm{e}^{-\mathrm{v}} \frac{\partial \mathrm{z}}{\partial \mathrm{x}}-\mathrm{e}^{\mathrm{v}} \frac{\partial \mathrm{z}}{\partial \mathrm{y}}\right)$
$\Rightarrow \quad \frac{\partial \mathrm{z}}{\partial \mathrm{u}}-\frac{\partial \mathrm{z}}{\partial \mathrm{v}}=\left(\mathrm{e}^{\mathrm{u}}+\mathrm{e}^{-\mathrm{v}}\right) \frac{\partial \mathrm{z}}{\partial \mathrm{x}}-\left(\mathrm{e}^{-\mathrm{u}}-\mathrm{e}^{\mathrm{v}}\right) \frac{\partial \mathrm{z}}{\partial \mathrm{y}}$
$\therefore \quad \frac{\partial \mathrm{z}}{\partial \mathrm{u}}-\frac{\partial \mathrm{z}}{\partial \mathrm{v}}=\mathrm{x} \frac{\partial \mathrm{z}}{\partial \mathrm{x}}-\mathrm{y} \frac{\partial \mathrm{z}}{\partial \mathrm{y}}$

33 Ans: (c)

Sol: Let $u+i v=f(z)=\left(x^{2}+c_{1} y^{2}-2 x y\right)+i\left(c_{2} x^{2}-y^{2}+2 x y\right)$ be the analytic function.
Then the real and imaginary parts of an analytic functions will satisfy $C-R$ euqaitons.

$$
\begin{aligned}
& \text { i.e., } \mathrm{u}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}} \quad \text { and } \mathrm{v}_{\mathrm{x}}=-\mathrm{u}_{\mathrm{y}} \\
& \Rightarrow 2 \mathrm{x}-2 \mathrm{y}=-2 \mathrm{y}+2 \mathrm{x} \text { and } 2 \mathrm{c}_{2} \mathrm{x}+2 \mathrm{y}=-\left(2 \mathrm{c}_{1} \mathrm{y}-2 \mathrm{x}\right) \\
& \Rightarrow 2 \mathrm{c}_{2} \mathrm{x}+2 \mathrm{y}=2 \mathrm{x}-2 \mathrm{c}_{1} \mathrm{y} \\
& \therefore \quad \mathrm{c}_{1}=-1 \text { and } \mathrm{c}_{2}=1
\end{aligned}
$$

34. Ans: (a)

Sol:

For a given circle centre is $(5,5)$ and radius is 2

$$
\begin{aligned}
& \mathrm{OC}=\sqrt{O A^{2}+A C^{2}}=\sqrt{25+25} \\
& \quad=\sqrt{50}=5 \sqrt{2} \\
& \mathrm{OB}=\mathrm{OC}-\mathrm{BC} \\
& \quad=5 \sqrt{2}-2
\end{aligned}
$$

\therefore The minimum distance from the origin to the circle is $5 \sqrt{2}-2$

35. Ans: (b)

Sol: The solution to the above differential equation is

$$
\begin{aligned}
y(I F) & =\int Q(I F) d x \\
\Rightarrow y\left(1+x^{2}\right) & =\int \frac{4 x^{2}}{\left(1+x^{2}\right)} \times\left(1+x^{2}\right) d x \\
\Rightarrow y\left(1+x^{2}\right) & =\frac{4 x^{3}}{3}+c
\end{aligned}
$$

But it is passing through origin,
we get, $\mathrm{c}=0$
\therefore The equation of the curve is

$$
\begin{aligned}
& y\left(1+x^{2}\right)=\frac{4 x^{3}}{3} \quad \text { (or) } \\
& 3 y\left(1+x^{2}\right)=4 x^{3}
\end{aligned}
$$

36. Ans: (d)

Sol: Given $u_{t}=c^{2} u_{x x}$
with B.C's
$u(0, t)=0\}$
$u(\pi, t)=0$
$\& I . C u(x, 0)=\sin x=f(x)$
Now, the solution of (1) is given by
$u(x, t)=\sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi x}{\ell} e^{\left(\frac{-\mathrm{n}^{2} \pi^{2} \mathrm{c}^{2}}{\ell^{2}}\right) t}$
where $\mathrm{a}_{\mathrm{n}}=\frac{2}{\ell} \int_{0}^{\ell} \mathrm{f}(\mathrm{x}) \sin \frac{\mathrm{n} \pi \mathrm{x}}{\ell} \mathrm{dx}$
put $t=0$ in (4), we get

$$
\begin{aligned}
& u(x, 0)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{\ell}\right) \\
& \Rightarrow \sin (x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{\ell}\right) \\
& \quad=a_{1} \sin (x)+a_{2} \sin (2 x)+ \\
& \Rightarrow \sin (x)=a_{1} \sin x+\ldots \ldots(\ell=\pi, n=1) \\
& \therefore a_{1}=1, a_{2}=0 \ldots a_{3}=0 \ldots .
\end{aligned}
$$

From (4), the solution of (1) with (2) \& (3) is
$u(x, t)=a_{1} \sin (x) \cdot e^{-c^{2} t}$
$\therefore \mathrm{u}(\mathrm{x}, \mathrm{t})=\sin (\mathrm{x}) . \mathrm{e}^{-\mathrm{c}^{2} \mathrm{t}}$

37. Ans: (a)

Sol: The given equation is

$$
\left(5 x^{3}+3 x y+2 y^{2}\right) d x+\left(x^{2}+2 x y\right) d y=0
$$

Let, $M=5 x^{3}+3 x y+2 y^{2}$ and $N=x^{2}+2 x y$
$\Rightarrow \frac{\partial \mathrm{M}}{\partial \mathrm{y}}=3 \mathrm{x}+4 \mathrm{y} \quad$ and $\quad \frac{\partial \mathrm{N}}{\partial \mathrm{x}}=2 \mathrm{x}+2 \mathrm{y}$
$\Rightarrow \frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}=x+2 y$
$\Rightarrow \frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right)=\frac{x+2 y}{x^{2}+2 x y}=\frac{1}{x}$
\therefore I.F $=\mathrm{e}^{\int \frac{1}{\mathrm{x}} \mathrm{dx}}=\mathrm{x}$
$\Rightarrow \mathrm{k}=1$
Multiplying the given Differential Equation by the integrating factor, we get

$$
\left(5 x^{4}+3 x^{2} y+2 x y^{2}\right) d x+\left(x^{3}+2 x^{2} y\right) d y=0
$$

which is exact
The solution is $\int\left(5 x^{4}+3 x^{2} y+2 x y^{2}\right) d x=c$

$$
\therefore \mathrm{x}^{5}+\mathrm{x}^{3} \mathrm{y}+\mathrm{x}^{2} \mathrm{y}^{2}=\mathrm{c}
$$

38. Ans: (a)

Sol: Given $f(D) y=Q(x)$
where $f(D)=D^{2}+4 D+4$
$\& Q(x)=x^{4} e^{-2 x}=e^{-2 x} \cdot x^{4}=e^{x} . V(x)$
Now, $y_{P}=\frac{1}{f(D)}\left[e^{-2 x} x^{4}\right]$
$\Rightarrow y_{P}=e^{-2 x}\left[\frac{1}{f(D-2)} x^{4}\right]$
$\Rightarrow y_{P}=e^{-2 x}\left[\frac{1}{(D-2)^{2}+4(D-2)+4} x^{4}\right]$

$$
\begin{aligned}
& \Rightarrow y_{P}=e^{-2 x}\left[\frac{1\left(\mathrm{x}^{4}\right)}{\mathrm{D}^{2}}\right] \\
& \therefore \mathrm{y}_{\mathrm{P}}=\mathrm{e}^{-2 \mathrm{x}} \cdot \frac{\mathrm{x}^{6}}{30}
\end{aligned}
$$

39. Ans: (d)

Sol: Given
$\mathrm{r} \sin \theta \mathrm{d} \theta+\left(\mathrm{r}^{3}-2 \mathrm{r}^{2} \cos \theta+\cos \theta\right) \mathrm{dr}=0$
Let $\left.M=r \sin \theta \quad \& \quad N=r^{3}-2 r^{2} \cos \theta+\cos \theta\right)$
$\frac{\partial \mathbf{M}}{\partial r}=\sin \theta$ and $\frac{\partial \mathrm{N}}{\partial \theta}=+2 \mathrm{r}^{2} \sin \theta-\sin \theta$
$\frac{1}{\mathrm{M}}\left(\frac{\partial \mathrm{N}}{\partial \theta}-\frac{\partial \mathrm{M}}{\partial \mathrm{r}}\right)=2\left(\mathrm{r}-\frac{1}{\mathrm{r}}\right)$
Integrating factor is

$$
\text { I.F }=e^{\int 2\left(\mathrm{r}-\frac{1}{\mathrm{r}}\right) \mathrm{dr}}=\frac{\mathrm{e}^{\mathrm{r}^{2}}}{\mathrm{r}^{2}}
$$

40. Ans: (c)

Sol: The given equation can be written as
$z-x y=\phi\left(x^{2}+y^{2}\right)$
Differentiating (1) partially with respect to x
$p-y=\phi^{1}\left(x^{2}+y^{2}\right) \cdot 2 x$ \qquad
Differentiating (2) partially with respect to y $q-x=\phi^{1}\left(x^{2}+y^{2}\right) \cdot 2 y$ \qquad
Dividing (2) by (3)

$$
\begin{aligned}
& \frac{p-y}{q-x}=\frac{x}{y} \\
\therefore & q x-p y=x^{2}-y^{2}
\end{aligned}
$$

TEST YOUR PREP IN A REAL TEST ENVIRONMENT

Pre GATE - 2020

Date of Exam : $\mathbf{1 8}^{\text {th }}$ January 2020 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019

Highlights:

- Get real-time experience of GATE-20 test pattern and environment
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for GATE-20 toppers.

PAN INDIA
persthet avanalit in moer then

SSC-JE (Paper-I)

Staff Selection Commission - Junior Engineer

No. of Tests : 20

Subject Wise Tests: $16 \mid$ Mock Tests -4
Civil|Electrical|Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination

41. Ans: (b)

Sol: The given equation is

$$
\begin{align*}
& \mathrm{z}=\mathrm{ax}+\mathrm{by}+\mathrm{a}^{2}+\mathrm{b}^{2} \\
\Rightarrow \quad & \frac{\partial \mathrm{z}}{\partial \mathrm{x}}=\mathrm{p}=\mathrm{a} \ldots \ldots . . \text { (ii) } \tag{i}
\end{align*}
$$

and $\frac{\partial z}{\partial y}=q=b$ \qquad
substituting the values of $\mathrm{a} \& \mathrm{~b}$ from (ii) \& (iii) in (i),
we get, $\quad \mathrm{z}=\mathrm{px}+\mathrm{qy}+\mathrm{p}^{2}+\mathrm{q}^{2}$
42. Ans: (c)

Sol: The Fourier series coefficient repeat for every ' N 'i.e.,
$\mathrm{a}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}+\mathrm{N}}=\mathrm{a}_{\mathrm{k}+2 \mathrm{~N}}=\ldots \ldots$.
$\mathrm{a}_{2}=\mathrm{a}_{16}=2 \mathrm{j}$
$a_{3}=a_{17}=3 j$
And given that $\mathrm{x}(\mathrm{n})$ is real and odd so the Fourier series coefficient a_{k} will be purely imaginary and odd, $\mathrm{a}_{0}=0$.
$\mathrm{a}_{-2}=-2 \mathrm{j}$
$\mathrm{a}_{-3}=-3 \mathrm{j}$
$\mathrm{a}_{-2}+\mathrm{a}_{-3}+\mathrm{a}_{0}=-5 \mathrm{j}$
43. Ans: (d)

Sol: DC value $=\mathrm{a}_{0}=\frac{1}{\mathrm{~T}_{0}} \int_{0}^{\mathrm{T}_{0}} \mathrm{x}(\mathrm{t}) \mathrm{dt}=\frac{1}{2} \int_{0}^{2} \mathrm{x}(\mathrm{t}) \mathrm{dt}$

$$
\mathrm{a}_{0}=\frac{1}{2}\left[\int_{0}^{1} \mathrm{tdt}+\int_{1}^{2}(2-\mathrm{t}) \mathrm{dt}\right]
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[\left.\frac{\mathrm{t}^{2}}{2}\right|_{0} ^{1}+\left.2 \mathrm{t}\right|_{1} ^{2}-\left.\frac{\mathrm{t}^{2}}{2}\right|_{1} ^{2}\right] \\
& =\frac{1}{2}\left[\frac{1}{2}+2-\frac{1}{2}(3)\right]=\frac{1}{2}\left(\frac{1+4-3}{2}\right) \\
& \mathrm{a}_{0}=\frac{1}{2}
\end{aligned}
$$

44. Ans: (b)

Sol: Given $2 x+3 y=0$

$$
\begin{aligned}
& 4 \mathrm{x}+\mathrm{qy}=0 \\
& \Rightarrow \mathrm{AX}=\mathrm{O} \\
& {\left[\begin{array}{ll}
2 & 3 \\
4 & q
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

For non-trivial solution, $|\mathrm{A}|=0$

$$
\begin{aligned}
& \text { i.e., }\left|\begin{array}{ll}
2 & 3 \\
4 & q
\end{array}\right|=0 \\
& \Rightarrow 2 q-12=0 \\
& \therefore q=6
\end{aligned}
$$

45. Ans: (b)

Sol: Given that $\mathrm{A}_{\mathrm{m} \times \mathrm{n}} \mathrm{X}_{\mathrm{n} \times 1}=\mathrm{B}_{\mathrm{m} \times 1}$
$\Rightarrow A_{n \times n} X_{n \times 1}=B_{n \times 1}(m=n)$
In this case, the given system may (or) may not have unique solution.

If A is singular then unique solution does not exist. And if A is non - singular then unique solution exist.
\therefore Option (b) is wrong statement
46. Ans: (a)

Sol: Given $A=\left[\begin{array}{rr}4 & -4 \\ 5 & 5\end{array}\right]$ and $\mathrm{A}^{-1}=\left[\begin{array}{ll}1 / 4 & a \\ b & \frac{1}{5}\end{array}\right]$

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{A}^{-1}=\left[\begin{array}{ll}
1 / 4 & a \\
b & \frac{1}{5}
\end{array}\right]=\left[\begin{array}{ll}
5 & 4 \\
-5 & 4
\end{array}\right] \frac{1}{40} \\
& \quad \mathrm{a}=\frac{1}{10} \& \mathrm{~b}=\frac{-1}{8} \\
& \therefore \mathrm{a}-\mathrm{b}=\frac{18}{80}=\frac{9}{40}
\end{aligned}
$$

47. Ans: (a)

Sol: The given matrix A can be obtained from the unit matrix with elementary operation R_{1} $\leftrightarrow \mathrm{R}_{2}$. The inverse matrix corresponding to the elementary matrix A is A itself.
48. Ans: (d)

Sol: The given quadratic form is in 2 - variables x_{1} and x_{2}.
$a_{11}=$ The coefficient of $x_{1} x_{1}$ (or) $x_{1}^{2}=0$
$a_{12}=a_{21}$
$=\frac{1}{2}\left[\right.$ The coefficient of $\left.x_{1} x_{2}\right]$
$=\frac{1}{2}(4)=2$
$a_{22}=$ The coefficient of $x_{2} \cdot x_{2}$ (or) $x_{2}^{2}=-5$
\therefore The matrix $\mathrm{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=\left[\begin{array}{cc}0 & 2 \\ 2 & -5\end{array}\right]$
49. Ans: (d)

Sol: By a property, if A is any square matrix then
(i) $A+A^{T}$ is always symmetric and
(ii) $\mathrm{A}-\mathrm{A}^{\mathrm{T}}$ is always skew-symmetric
\therefore Option (d) is correct
50. Ans: (a)

Sol: Given AX = B

$$
\Rightarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]
$$

Consider the Augmented matrix $[\mathrm{A} \mid \mathrm{B}]$

$$
\begin{aligned}
& {[A \mid B]=\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
1 & 0 & -1 & 0 \\
1 & -1 & 1 & 1
\end{array}\right]} \\
& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}, \quad \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}
\end{aligned}
$$

$$
\sim\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & -1 & -2 & -3 \\
0 & -2 & 0 & -2
\end{array}\right]
$$

$\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-2 \mathrm{R}_{2}$

$$
\sim\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & -1 & -2 & -3 \\
0 & 0 & 4 & 4
\end{array}\right]
$$

$\rho(\mathrm{A})=3, \rho(\mathrm{~A} \mid \mathrm{B})=3$
Here $\rho(\mathrm{A})=\rho(\mathrm{A} \mid \mathrm{B})=3=\mathrm{n}$
\therefore Unique solution exists.

51. Ans: (c)

Sol: $P(X=x)=\frac{e^{-\lambda} \cdot \lambda^{x}}{x!}$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}=0)=\mathrm{P}(\mathrm{X}=2) \\
& \begin{aligned}
& \mathrm{e}^{-\lambda}=\frac{\mathrm{e}^{-\lambda} \cdot \lambda^{2}}{2!} \Rightarrow \lambda=\sqrt{2} \\
& \mathrm{P}(\mathrm{X} \leq 1.3)=\mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1) \\
&=\mathrm{e}^{-\sqrt{2}}+\mathrm{e}^{-\sqrt{2}} \cdot(\sqrt{2})^{1} \\
&=\mathrm{e}^{-\sqrt{2}}(\sqrt{2}+1)
\end{aligned}
\end{aligned}
$$

52. Ans: (c)

Sol: $\mathrm{P}($ Bonus $)=\frac{1}{3} \times \frac{4}{5}+\frac{4}{9} \times \frac{3}{10}+\frac{2}{9} \times \frac{1}{2}=\frac{23}{45}$
53. Ans: (b)

Sol: For total number of cases, first person can born in any 12 months and second person can born in any 12 months

Total cases $=12 \times 12$
For favorable number of cases, Two friends share same birth month means both should have same birth month i.e.,

$$
(\mathrm{J}, \mathrm{~J}),(\mathrm{F}, \mathrm{~F}),(\mathrm{M}, \mathrm{M}),(\mathrm{A}, \mathrm{~A}) \ldots,(\mathrm{D}, \mathrm{D})
$$

i.e., favorable cases $=12$

$$
\mathrm{p}=\frac{12}{12 \times 12}=\frac{1}{12}
$$

54. Ans: (b)

Sol: As per the definition of regression model.
55. Ans: (a)

Sol: $\mathrm{p}=0.1, \mathrm{n}=900, \mathrm{q}=1-\mathrm{p}=0.9$
Mean $=n p=90$

$$
\mathrm{S} . \mathrm{D}=\sigma=\sqrt{\mathrm{npq}}=9
$$

56. Ans: (d)

Sol: $P(X>1)=\int_{1}^{\alpha} f(x) d x=\int_{1}^{2} \frac{3}{14}\left(5 x-2 x^{2}\right) d x=\frac{17}{28}$

57 Ans: (A)

Sol:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{x} \geq 110)=\alpha \Rightarrow \mathrm{P}(\mathrm{x} \leq 90)=\alpha \\
& \Rightarrow \mathrm{P}(90 \leq \mathrm{x} \leq 110)=1-2 \alpha .
\end{aligned}
$$

58. Ans: (a)

Sol: $\int_{0}^{4} f(x) d x=\frac{h}{2}\left[\left(y_{o}+y_{4}\right)+2\left(y_{1}+y_{2}+y_{3}\right)\right]$

$$
\begin{aligned}
& =\frac{1}{2}[(0+160)+2(10+40+90)] \\
& =220
\end{aligned}
$$

59. Ans: (a)

Sol: The Newton - Raphson iteration formula is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{1}\left(x_{n}\right)}
$$

Let $\mathrm{x}=\sqrt{N}$

$$
\Rightarrow \mathrm{x}^{2}-\mathrm{N}=0
$$

Let $f(x)=x^{2}-N=0$

$$
\mathrm{f}^{1}(\mathrm{x})=2 \mathrm{x}
$$

Substituting in (1)

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{n}+1}=\mathrm{x}_{\mathrm{n}}-\frac{\left(\mathrm{x}_{\mathrm{n}}^{2}-\mathrm{N}\right)}{2 \mathrm{x}_{\mathrm{n}}} \\
& \Rightarrow \mathrm{x}_{\mathrm{n}+1}=\frac{1}{2}\left(\mathrm{x}_{\mathrm{n}}+\frac{\mathrm{N}}{\mathrm{x}_{\mathrm{n}}}\right)
\end{aligned}
$$

HEARTY CONGRATULATIONS
 TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33

(EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

DIGITAL CLASSES for
 ESE 2020/2021 General Studies \& Engineering Aptitude

60. Ans: (d)

Sol: All the other methods, we need two initial values near the root.
61. Ans: (A)

Sol: Probability $=p(2)+p\left(2^{c}\right) p(3 \cup 5)^{c} p(2)+$

$$
\begin{aligned}
& \mathrm{p}\left(2^{\mathrm{c}}\right) \mathrm{p}(3 \cup 5)^{\mathrm{c}} \mathrm{p}\left(2^{\mathrm{c}}\right) \mathrm{p}(3 \cup 5)^{\mathrm{c}} \mathrm{p}(2)+\ldots \ldots \ldots \\
& =\frac{1}{6}+\left(\frac{5}{6}\right)\left(\frac{2}{3}\right)\left(\frac{1}{6}\right)+\left(\frac{5}{6}\right)\left(\frac{2}{3}\right)\left(\frac{5}{6}\right)\left(\frac{2}{3}\right)\left(\frac{1}{6}\right)+\ldots \\
& =\frac{\frac{1}{6}}{1-\left(\frac{5}{6}\right)\left(\frac{2}{3}\right)}(\text { Geometric Series }) \\
& =\frac{3}{8}
\end{aligned}
$$

62. Ans: (a)

Sol: $\mathrm{f}(\mathrm{x})=\mathrm{x}|\mathrm{x}|$

$$
\begin{aligned}
& \operatorname{Lt}_{x \rightarrow 0-}^{\operatorname{Lt}} f(x)=\underset{x \rightarrow 0}{\operatorname{Lt}}\left(-x^{2}\right)=0 \\
& \operatorname{Ltt}_{x \rightarrow 0+} f(x)=\underset{x \rightarrow 0}{\operatorname{Lt}}\left(x^{2}\right)=0
\end{aligned}
$$

$$
f(0)=0
$$

$$
\therefore \mathrm{f}(\mathrm{x}) \text { is continuous at } \mathrm{x}=0
$$

$$
\mathrm{f}^{\prime}(0-)=\operatorname{Lt}_{\mathrm{h} \rightarrow 0-} \frac{\mathrm{f}(0+\mathrm{h})-\mathrm{f}(0)}{\mathrm{h}}
$$

$$
=\operatorname{Lt}_{\mathrm{h} \rightarrow 0} \frac{-\mathrm{h}^{2}}{\mathrm{~h}}=0
$$

$$
\mathrm{f}^{\prime}(0+)=\operatorname{LLt}_{\mathrm{h} \rightarrow 0+} \frac{\mathrm{f}(0+\mathrm{h})-\mathrm{f}(0)}{\mathrm{h}}
$$

$$
=\underset{h \rightarrow 0}{\operatorname{Lt}} \frac{h^{2}}{h}=0
$$

$\therefore \mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$
63. Ans. (b)

Sol: $\int_{0}^{n}[x] d x=\int_{0}^{n} x d x$
$=\int_{0}^{1} 0 d x+\int_{0}^{1} 1 d x+\int_{1}^{2} 2 d x+\ldots \ldots .+\int_{n-1}^{n}(n-1) d x$
$=0+1+2+\ldots \ldots . .+n-1$
$=\frac{(\mathrm{n}-1) \mathrm{n}}{2}$

64. Ans: (c)

Sol: $f(x)=e^{x}(\sin x-\cos x)$

$$
f^{1}(x)=e^{x}(\cos x+\sin x)+(\sin x-\cos x) \cdot e^{x}
$$

Consider $\mathrm{f}^{1}(\mathrm{c})=0$

$$
\begin{aligned}
& \Rightarrow 2 \mathrm{e}^{\mathrm{c}} \cdot \sin \mathrm{c}=0 \\
& \Rightarrow \sin \mathrm{c}=0 \\
& \Rightarrow \mathrm{c}=\pi \in\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right)
\end{aligned}
$$

65. Ans: (a)

Sol: Given $f(x, y)=2\left(x^{2}-y^{2}\right)-x^{4}+y^{4}$
Consider $f_{x}=4 x-4 x^{3}=0$
$\Rightarrow \mathrm{x}=0,1,-1$
Consider $f_{y}=-4 y+4 y^{3}=0$
$\Rightarrow \mathrm{y}=0,1,-1$
Now, $r=f_{x y}=4-12 x^{2}, s=f_{x y}=0$
and $t=f_{y y}=-4+12 y^{2}$

At $(0,1)$, we have $\mathrm{r}>0$ and $\left(\mathrm{rt}-\mathrm{s}^{2}\right)>0$
$\therefore \mathrm{f}(\mathrm{x}, \mathrm{y})$ has minimum at $(0,1)$
At $(-1,0)$, we have $\mathrm{r}<0$ and $\left(\mathrm{rt}-\mathrm{s}^{2}\right)>0$
$\therefore \mathrm{f}(\mathrm{x}, \mathrm{y})$ has a maximum at $(-1,0)$

66. Ans: (d)

Sol:

$$
\begin{aligned}
\oint_{C} \vec{A} \cdot d \vec{r} & =\oint_{C}(x-y) d x+(x+y) d y \\
& =\iint_{R}(1+1) d x d y
\end{aligned}
$$

[By Green's theorem]

$$
=2 \int_{x=0}^{1} \int_{y=0}^{\sqrt{x}} d y d x
$$

$$
=2 \int_{x=0}^{1}(y)_{x^{2}}^{\sqrt{x}}
$$

$$
=2 \int_{x=0}^{1}\left\{\sqrt{x}-x^{2}\right\} d x
$$

$$
=2\left\{\frac{2}{3} x^{\frac{3}{2}}-\frac{x^{3}}{3}\right\}_{0}^{1}
$$

$$
=2\left\{\frac{2}{3}-\frac{1}{3}\right\}=\frac{2}{3}
$$

68. Ans: (a)

Sol: Here $\mathrm{f}=\frac{\mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$

$$
\frac{\partial f}{\partial x}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}, \frac{\partial f}{\partial y}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, \quad \frac{\partial f}{\partial z}=0
$$

$\operatorname{grad} f=i \frac{\partial f}{\partial x}+j \frac{\partial f}{\partial y}+k \frac{\partial f}{\partial z}$

$$
=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}} i+\frac{\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} j
$$

At $(0,1), \operatorname{grad} f=-\vec{j}$
The unit vector along the line making angle 30° with positive x -axis at the point $(0,1)=\left(\cos 30^{\circ} \mathrm{i}+\sin 30^{\circ} \mathrm{j}\right)$

Then, required directional derivative

$$
\begin{aligned}
& =(\nabla \mathrm{f})_{\mathrm{P}} \cdot \frac{\overrightarrow{\mathrm{a}}}{|\overrightarrow{\mathrm{a}}|}=-\mathrm{j} \cdot(\cos 30 \mathrm{i}+\sin 30 \mathrm{j}) \\
& =-\sin 30=\frac{-1}{2}
\end{aligned}
$$

69. Ans: (a)

Sol: $\int_{\frac{-1}{2}}^{\frac{1}{2}} \cos x \log \left(\frac{1+x}{1-x}\right) d x$

$$
\begin{aligned}
& f(x)=\cos x \log \left(\frac{1+x}{1-x}\right) \\
& \begin{aligned}
f(-x) & =\cos x \log \left(\frac{1-x}{1+x}\right) \\
& =-\cos x \log \left(\frac{1+x}{1-x}\right)
\end{aligned}
\end{aligned}
$$

$$
=-f(x)
$$

$\therefore \mathrm{f}(\mathrm{x})$ is odd function
\Rightarrow The value of the given integral is zero.

70. Ans: (a)

Sol: $u=f(r)$ where $x^{2}+y^{2}=r^{2}$

$$
\begin{aligned}
u_{x} & =f^{1}(r) \cdot \frac{\partial r}{\partial x} \\
& =f^{1}(r) \cdot \frac{x}{r} \\
u_{x x} & =\frac{f^{1}(r)}{r}+x \cdot\left\{\frac{\mathrm{rf}^{11}(r)-f^{1}(r)}{r^{2}}\right\} \cdot \frac{x}{r} \\
u_{x x} & +u_{y y}+u_{z z}=\frac{f^{1}(r)}{r}+f^{11}(r)
\end{aligned}
$$

71. Ans: (b)

Sol: Both statements $1 \& 2$ are individually true and 2 is correct explanation of 1 .
IP is based on packet switching.

72. Ans: (a)

Sol: Statement (I) and Statement (II) are true and 'Statement (II)' is the correct explanation for Statement (I).

73. Ans: (b)

Sol: Statement (I) and Statement (II) are true but Statement (II)' is not correct explanation for Statement (I).

74. Ans: (b)

Sol: Both statements are correct, but Statement (II) is not reason for Statement (I).

Memory protection is provided by OS and specifically memory management unit of OS. But dual mode of operation protects I/O devices and other software resources.

75. Ans: (A)

Sol: Non-preemptive system cannot take away CPU from any process if it is not either terminated or it is not going to block state (for any I/O execution).
Hence process can make two transitions from running state to block/wait state or to terminate state.

