Head Office : Sree Sindhi Guru Sangat Sabha Association, \# 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001.
Ph: 040-23234418, 040-2324419, 040-2324420, 040-24750437

SUBJECT: ELECTRONIC MEASUREMENTS \& INSTRUMENTATION, COMPUTER ORGANIZATION \& ARCHITECTURE AND ANALOG \& DIGITAL COMMUNICATION SYSTEMS - SOLUTIONS

1. Ans: (b)

Sol: Comparing the modulated signal, with the AM equation $\mathrm{A}_{\mathrm{c}}\left[1+\mu \cos \omega_{\mathrm{m}} \mathrm{t}\right] \cos \omega_{\mathrm{c}} \mathrm{t}$, we get $4.5\left(1+2 \cos \omega_{\mathrm{m}} \mathrm{t}\right) \cos \omega_{\mathrm{c}} \mathrm{t}$, thus $\mu=2$.
For modulation index greater than 1 , envelope detector fails to detect and synchronous detector is preferred.

02. Ans: (d)

Sol: Need for modulation
\rightarrow Multiplexing
\rightarrow Practicability of antennas
\rightarrow Narrow banding

03. Ans: (b)

Sol: DSB-SC signal is generated using product modulator.
04. Ans: (d)

Sol: $\underset{\substack{\text { B-PSK } \\ \text { whit phase } \\ \text { mismatch }}}{\mathrm{p}_{\mathrm{e}}}=\mathrm{Q}\left[\sqrt{\frac{\mathrm{A}_{\mathrm{c}}^{2} \mathrm{~T}_{\mathrm{b}}}{\mathrm{N}_{\mathrm{o}}} \cos ^{2} \phi}\right]$
Since $\phi=45^{\circ}$

$$
\begin{aligned}
& \cos ^{2} \phi=\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{1}{2} \\
& \therefore \underset{\text { B-PSK }}{p_{e}}=\mathrm{Q}\left[\sqrt{\frac{\mathrm{~A}_{\mathrm{c}}^{2} \mathrm{~T}_{\mathrm{b}}}{2 \mathrm{~N}_{\mathrm{o}}}}\right]
\end{aligned}
$$

5. Ans: (c)

Sol: Generally DPSK have more p_{e} than B-PSK scheme. Hence to maintain the same value of p_{e} DPSK has to the transmit with more power than B-PSK.
06. Ans: (a)

Sol: $\quad \mathrm{DR}=\mathrm{V}_{\text {max }}-\mathrm{V}_{\text {min }}$
$\mathrm{N}_{\mathrm{q}}=\frac{\Delta^{2}}{12}$
$\Delta=\frac{\mathrm{V}_{\text {max }}-\mathrm{V}_{\text {min }}}{2^{\mathrm{n}}}=\frac{\mathrm{DR}}{2^{\mathrm{n}}}$
$\therefore \mathrm{DR} \downarrow, \Delta \downarrow, \mathrm{N}_{\mathrm{q}} \downarrow$
07. Ans: (a)

Sol: The frequency deviation $\Delta \mathrm{f}=\beta \mathrm{f}_{\mathrm{m}}$. But in a mixer, modulation index ' β ' and the message frequency are same. So the frequency deviation will not change. So Δf $=75 \mathrm{kHz}$.
08. Ans: (a)

Modulation index depends on the amplitude variation of the AM signal only.
$\mu=\frac{\mathrm{s}(\mathrm{t})_{\max }-\mathrm{s}(\mathrm{t})_{\text {min }}}{\mathrm{s}(\mathrm{t})_{\max }+\mathrm{s}(\mathrm{t})_{\text {min }}}=\frac{12-4}{12+4}=\frac{8}{16}$
$\mu=0.5$
For triangular wave,
$\eta=\frac{\mu^{2}}{3+\mu^{2}}=\frac{0.25}{3.25}=0.07$

ESE - MAINS
 Classes Start from:

 $13^{\text {th }}$ FEB 2020

 $13^{\text {th }}$ FEB 2020

Students who Qualify in Prelims can avail 100 \% Fee Waiver

ESE-2018, 2019 Prelims Qualified Students are also eligible
for more details Contact: 040-23234418/19/20, Email: hyderabad@aceenggacademy.com

www.aceenggacademy.com

HYDERABAD || AHMEDABAD | DELHI | PUNE | BHUBANESWAR | LUCKNOW | KOLKATA | VIJAYAWADA | VIZAG | TIRUPATI | CHENNAI | BENGALURU
09. Ans: (c)

Sol: In telephone, the BW allotted to each signals is 4 kHz and the number of voice signals multiplexed in a super group are 60. So, the BW is $60 \times 4 \mathrm{kHz}=240 \mathrm{kHz}$.
10. Ans: (d)

Sol: For no slope overload distortion,
$\frac{\Delta}{\mathrm{T}_{\mathrm{s}}} \geq\left|\frac{\mathrm{d}}{\mathrm{dt}}[\mathrm{m}(\mathrm{t})]\right|$
$\frac{\Delta}{\mathrm{T}_{\mathrm{s}}} \geq 2 \pi \mathrm{f}_{\mathrm{m}} \mathrm{A}_{\mathrm{m}}$
$\Rightarrow 0.628 \times 4 \times 10^{3}=2 \pi \mathrm{f}_{\mathrm{m}} \times 2$
$\therefore \mathrm{f}_{\mathrm{m}}=200 \mathrm{~Hz}$
11. Ans: (c)

Sol: The Basic principle of this method is to generate a NBFM indirectly by using phase-
modulation technique and then converting this NBFM to WBFM.
12. Ans: (b)

Sol: In a typical broadcast system, each channel bandwidth in AM is 15 kHz and for FM is 150 kHz .
13. Ans: (d)

Sol: $\mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz}$
$\mathrm{A}_{\mathrm{m}}=2 \mathrm{~V}$
$\Delta \mathrm{f}=60 \mathrm{kHz}=\mathrm{k}_{\mathrm{f}} \mathrm{A}_{\mathrm{m}}$
$\mathrm{k}_{\mathrm{f}}=\frac{\Delta \mathrm{f}}{\mathrm{A}_{\mathrm{m}}}=\frac{60}{2}=30 \mathrm{kHz} / \mathrm{V}$.

14. Ans: (a)

Sol: To find the frequency deviation $\Delta \mathrm{f}$, we find the instantaneous frequency ω_{i}, given by

$$
\begin{aligned}
\omega_{\mathrm{i}} & =\frac{\mathrm{d}}{\mathrm{dt}} \theta(\mathrm{t}) \\
& =\omega_{\mathrm{c}}+15000 \cos 3000 \mathrm{t}+20,000 \cos 2000 \mathrm{t} .
\end{aligned}
$$

The carrier deviation is
$15000 \cos 3000 \mathrm{t}+20000 \cos 2000 \mathrm{t}$.
The 2 sinusoids will add in phase at some point, and the maximum value of this expression is $15000+20,000=35000$. This is the maximum carrier deviation $\Delta \omega$.
Hence, $\Delta \mathrm{f}=\frac{\Delta \omega}{2 \pi}=\frac{35000}{2 \pi}=5414 \mathrm{~Hz}$

15. Ans: (a)

Sol: As f_{m} increased by two times, β becomes half.
$\Rightarrow \beta=5$
Bandwidth $=2(\beta+1) \mathrm{f}_{\mathrm{m}}=2(5+1) 2000$

$$
=24 \mathrm{kHz}
$$

16. Ans: (d)

Sol: Hilbert transform of $f(t)=f_{h}(t)$
Hilbert transform of $f_{h}(t)=-f(t)$
17. Ans: (b)

Sol: The selectivity of a super heterodyne receiver is decided mainly by Pre selector and RF stage only.

18. Ans: (b)

Sol: NBFM has a magnitude spectrum as below

which can be mapped to phasor diagram as

19. Ans: (a)

Sol: DSB-SC, $\mathrm{s}_{1}(\mathrm{t})=\mathrm{m}_{1}(\mathrm{t}) \cos \omega_{\mathrm{c}} \mathrm{t}$

$$
\mathrm{s}_{2}(\mathrm{t})=\mathrm{m}_{2}(\mathrm{t}) \cos \omega_{\mathrm{c}} \mathrm{t}
$$

let, $\mathrm{m}_{3}(\mathrm{t})=\mathrm{m}_{1}(\mathrm{t})+\mathrm{m}_{2}(\mathrm{t})$;

$$
\begin{aligned}
\mathrm{s}_{3}(\mathrm{t}) & =\mathrm{s}_{1}(\mathrm{t})+\mathrm{s}_{2}(\mathrm{t}) \\
& =\left(\mathrm{m}_{1}(\mathrm{t})+\mathrm{m}_{2}(\mathrm{t})\right) \cos \omega_{\mathrm{c}} \mathrm{t} . \\
\mathrm{s}_{3}(\mathrm{t}) & =\mathrm{m}_{3}(\mathrm{t}) \cos \omega_{\mathrm{c}} \mathrm{t}
\end{aligned}
$$

20. Ans: (b)

Sol: Maximum transmission rate for NRZ transmission is,

$$
\begin{aligned}
\mathrm{r}_{\mathrm{b}},(\mathrm{bps}) & =\frac{1}{2 \Delta \mathrm{t} \times \mathrm{L}} \\
& =\frac{1}{2 \times 5 \times 10^{-9} \times 10}
\end{aligned}
$$

$(\because \Delta \mathrm{t}, \mathrm{L}$ measured in kms$)$

$$
=10 \mathrm{Mbps}
$$

21. Ans: (a)

Sol: $\mathrm{f}_{\mathrm{s}}=8 \mathrm{kHz}$ (nyquist rate)
$\mathrm{f}_{\mathrm{i} / \mathrm{p}}=5 \mathrm{kHz}$
Alias frequency $=\mathrm{f}_{\mathrm{s}}-\mathrm{f}_{\mathrm{i} / \mathrm{p}}=8 \mathrm{k}-5 \mathrm{k}=3 \mathrm{kHz}$
22. Ans: (d)

Sol: $\theta=8 \pi t^{3}+6 \pi t^{2}+4 \pi t+5$
$\omega=\frac{\mathrm{d} \theta}{\mathrm{dt}}=24 \pi \mathrm{t}^{2}+12 \pi \mathrm{t}+4 \pi$
$f=\frac{1}{2 \pi} \omega=12 t^{2}+6 t+2$
$\left.\mathrm{f}\right|_{\mathrm{att}=1}=12+6+2=20 \mathrm{~Hz}$
23. Ans: (b)

Sol: $\mathrm{I}=-\log _{2} \mathrm{p}$ bits $=-\log _{10} \mathrm{p}$ Hartleys

$$
=-\log _{\mathrm{e}} \mathrm{p} \text { nats }
$$

24. Ans: (a)

Sol: Output SNR in DM system

$$
\begin{aligned}
& =\frac{3 \mathrm{f}_{\mathrm{s}}^{3}}{8 \pi^{2} \mathrm{f}_{\mathrm{m}}^{2} \mathrm{f}_{\mathrm{M}}}=\frac{3 \times\left(32 \times 10^{3}\right)^{3}}{8 \pi^{2} \times\left(10^{3}\right)^{2} \times 4 \times 10^{3}} \\
& =311.25=24.93 \mathrm{~dB}
\end{aligned}
$$

HEARTY CONGRATULATIONS
 TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33

(EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

 dIcITAL CLASSES for
 ESE 2020/2021 General Studies \& Engineering Aptitude
 Computer Science \&
 Information Technology

25. Ans: (b)

Sol: Recursive functions are elegant and cleaner and all algorithms which uses recursive functions are easier to visualize.
Recursive functions make the program execution slow due to stack overlapping.
Recursive implicitly evaluates all stack operations.
26. Ans: (b)
27. Ans: (c)

Sol: We cannot copy anything using strcpy function to the character pointer pointing to NULL.
28. Ans: (c)

Sol: The collection of information stored in a database at a particular moment is called instance.

29. Ans: (a)

Sol: If two or more processes are sharing resources then it should be mandatory that only one process should access the resource at a time, this condition is called as mutual exclusion.
30. Ans: (c)

Sol: By Definition all statements in their content are TRUE.
31. Ans: (d)

Sol: All four are benefits of using multithreading
32. Ans: (a)

Sol: Number of pages $=\frac{2^{32} \mathrm{~B}}{64 \mathrm{~KB}}=2^{16}$
Size of page table

$$
\begin{aligned}
& =\text { Number of pages } * 1 \text { entry size } \\
& =2^{16} * 4 \mathrm{~B} \\
& =2^{18} \mathrm{~B}
\end{aligned}
$$

Number of pages required

$$
=\frac{2^{18} \mathrm{~B}}{\text { pagesize }}=\frac{2^{18} \mathrm{~B}}{2^{16} \mathrm{~B}}=2^{2}
$$

But because, all the entries cannot be stored in single page, hence 2-level paging will be required. So 1 extra page is required to store the external page table.
Hence total $4+1=5$ pages are needed.
33. Ans: (c)

Sol:

- Number of processes in memory is known as degree of multiprogramming
- Interrupts are not allowed in nonpreemptive multiprogramming because once a process is given to run of CPU, process can leave CPU by its own wish (either completed or going for I/O).

34. Ans: (d)

Sol: In paging \Rightarrow Page table
In segmentation \Rightarrow Segment table
For particular implementation either of these two is used.
35. Ans: (d)

Sol: In direct mapping at each index only one block is stored in cache. Hence if new block comes in cache then existing block should be replaced from that index. Hence no any choice of selecting one victim among multiple which mean no any replacement policy is required.
36. Ans: (b)

Sol: All 1: M and 1:1 relationships should be converted into two tables but not separate tables
37. Ans: (a)

Sol: EAT $=H(T+M)+(1-H)(T+2 M)$

$$
\begin{aligned}
& =0.8(20+100)+(0.2)(20+200) \\
& =\frac{8}{10} \times 120+\frac{2}{10} \times 220 \\
& =96+44=140 \mathrm{~ns}
\end{aligned}
$$

TEST YOUR PREP IN A REAL TEST ENVIRONMENT
 Pre GAIJE - 2020

Date of Exam : $\mathbf{1 8}^{\text {th }}$ January 2020

 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019Highlights:

- Get real-time experience of GATE-20 test pattern and environment.
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for CATE-20 toppers.

SSC-JE (Paper-I) OOnline Test Series

Staff Selection Commission - Junior Engineer

No. of Tests : 20

Subject Wise Tests: 16| Mock Tests - 4
Civil| Electrical | Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination
38. Ans: (a)

Sol: Only EC+ contains all attributes of the relation, then EC is key for R .
39. Ans: (a)

Sol: Option (b) is true only for linear pipelines Option (c) is true only for synchronized pipeline with no hazard.
40. Ans: (b)

Sol: If Y is deleted, then X is also deleted
41. Ans: (a)

Sol:

- O.S. stops executing a process (i.e. process crashes) when exception is caught such as divide by zero exception \& null pointer exception.
- Stack \& Heap overflow are not considered as crashing errors.

42. Ans: (b)

Sol: In linked allocation, there is no accommodation of the principle of locality.
43. Ans: (a)

Sol: Reading the clock of system is done in user mode and accessing the I/O devices needs privileged instruction.
44. Ans: (c)

Sol: Every attribute of select must appear in the group by class.
45. Ans: (a)

Sol: The blocks / chunks of same size of logical memory are called as pages
The blocks / chunks of same size of physical memory are called as frames
Page Table contains the base address of the frame location for each page in the process Page offset is combined with the base address to define the physical memory address.

46. Ans: (d)

Sol: For standard coil with impedance $Z_{\mathrm{s}}=R_{\mathrm{s}}+j \omega_{1} L_{\mathrm{s}}$, Q meter resonates with a capacitor of capacitance C_{1} and corresponding Q factor is Q_{1}.
$\Rightarrow \mathrm{Q}_{1}=\frac{1}{\omega_{1} \mathrm{C}_{1} \mathrm{R}_{\mathrm{s}}}$
$\Rightarrow \mathrm{R}_{\mathrm{s}}=\frac{1}{2 \pi \mathrm{f}_{1} \mathrm{C}_{1} \mathrm{Q}_{1}}$
When an unknown impedance of $Z_{x}=R_{x}+j \omega_{1} L_{x}$ is connected in series with standard coil then resonant capacitance C_{2} and corresponding Q factor is Q_{2}

$$
\begin{aligned}
& \Rightarrow Q_{2}=\frac{1}{\omega_{1} C_{2}\left(R_{s}+R_{x}\right)} \\
& \Rightarrow R_{\mathrm{s}}+R_{x}=\frac{1}{2 \pi \mathrm{f}_{1} \mathrm{C}_{2} \mathrm{Q}_{2}}
\end{aligned}
$$

$$
\mathrm{R}_{\mathrm{x}}=\frac{1}{2 \pi \mathrm{f}_{1} \mathrm{C}_{2} \mathrm{Q}_{2}}-\mathrm{R}_{\mathrm{s}}
$$

$$
=\frac{1}{2 \pi \mathrm{f}_{1} \mathrm{C}_{2} \mathrm{Q}_{2}}-\frac{1}{2 \pi \mathrm{f}_{1} \mathrm{C}_{1} \mathrm{Q}_{1}}
$$

[From (1)]
$\mathrm{R}_{\mathrm{x}}=\frac{1}{2 \pi \mathrm{f}_{1}}\left[\frac{1}{\mathrm{C}_{2} \mathrm{Q}_{2}}-\frac{1}{\mathrm{C}_{1} \mathrm{Q}_{1}}\right]$

47. Ans: (d)

Sol: Given time period $\mathrm{T}=10 \mathrm{~ms}$
Count $(\mathrm{C})=025=25$
\therefore Frequency $(\mathrm{f})=\frac{\mathrm{C}}{\mathrm{T}}$

$$
=\frac{25}{10 \times 10^{-3}}
$$

$$
=2500 \mathrm{~Hz}
$$

48. Ans: (c)

Sol:

$\frac{\text { time }}{\text { disvision }}=10 \mu \mathrm{~s}$
$\frac{\text { volt }}{\text { division }}=100 \mathrm{mV}$
Here the wave repeats for every 3 divisions.
Time period $\mathrm{T}=10 \mu \mathrm{~s} \times 3=30 \mu \mathrm{~s}$.
Frequency $=1 / \mathrm{T}=\frac{1}{30 \times 10^{-6}}=33.33 \mathrm{kHz}$ and
Number of division for peak to peak is 4 .
\therefore Peak to peak voltage $=4 \times \frac{\text { voltage }}{\text { division }}$

$$
\begin{aligned}
& =4 \times 100 \\
& =400 \mathrm{mV}
\end{aligned}
$$

49. Ans: (b)

Sol: A multimeter can measure voltage, current and resistance.
50. Ans: (b)

Sol: During the retrace time or flyback time, the beam returns quickly to the left side of the screen.
51. Ans: (b)

Sol: Given $\mathrm{R}_{1}=\mathrm{R}_{2}=100 \pm 1 \% \Omega$
$\Rightarrow \sigma_{\mathrm{x} 1}=\sigma_{\mathrm{x} 2}=1 \Omega$
For parallel combination
$\mathrm{R}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
$\frac{\partial \mathrm{R}}{\partial \mathrm{R}_{1}}=\frac{\mathrm{R}_{2}^{2}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)^{2}}=\frac{(100)^{2}}{(100+100)^{2}}=\frac{1}{4}$

$$
\begin{aligned}
& \begin{aligned}
& \frac{\partial \mathrm{R}}{\partial \mathrm{R}_{2}}=\frac{\mathrm{R}_{1}^{2}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)^{2}}=\frac{100^{2}}{(100+100)^{2}}=\frac{1}{4} \\
& \begin{aligned}
\sigma_{\mathrm{R}} & =\sqrt{\left(\frac{\partial \mathrm{R}}{\partial \mathrm{R}_{1}}\right)^{2} \sigma_{\mathrm{R}_{1}}^{2}+\left(\frac{\partial \mathrm{R}}{\partial \mathrm{R}_{2}}\right)^{2} \sigma_{\mathrm{R}_{2}}^{2}} \\
= & \sqrt{\left(\frac{1}{4}\right)^{2}(1)^{2}+\left(\frac{1}{4}\right)^{2}(1)^{2}}=\frac{1}{2 \sqrt{2}} \Omega \\
\mathrm{R}= & \frac{100 \times 100}{100+100}=50 \Omega
\end{aligned} \\
& \begin{aligned}
\therefore \% \sigma_{\mathrm{R}} & =\frac{\sigma_{\mathrm{R}}}{\mathrm{R}} \times 100
\end{aligned} \\
& \quad=\frac{\frac{1}{2 \sqrt{2}}}{50} \times 100 \\
&=\frac{1}{100 \sqrt{2}} \times 100 \\
& \% \sigma_{\mathrm{R}}= \frac{1}{\sqrt{2}}
\end{aligned}
\end{aligned}
$$

52. Ans: (d)

Sol: Application of measurement systems

1. Control of processes \& operations
2. Experimental Engineering analysis
3. Monitoring of processes and operations
4. Ans: (d)

Sol: For converting galvanometer into ammeter, we put a low value of resistance in parallel with the galvanometer.
54. Ans: (d)

Sol: Given $\mathrm{i}=5+10 \sin (100 \pi \mathrm{t})+20 \sin (200 \pi \mathrm{t})$ is flowing through PMMC and M.I instrument.
PMMC reads average value $=5 \mathrm{~A}$
M.I reads rms value

$$
\begin{aligned}
& =\sqrt{(5)^{2}+\left(\frac{10}{\sqrt{2}}\right)^{2}+\left(\frac{20}{\sqrt{2}}\right)^{2}} \\
& =\sqrt{25+50+200}=16.58 \mathrm{Amp}
\end{aligned}
$$

Ratio of M.I to PMMC reading

$$
=\frac{16.58}{5}=3.31
$$

55. Ans: (d)

Sol: CC current settings: 15A, 30A
PC voltage settings : $300 \mathrm{~V}, 600 \mathrm{~V}$
Full scale reading $=4500$ Watts
When the meter is connected for $30 \mathrm{~A}, 600 \mathrm{~V}$
VA rating $=30 \times 600=18,000$
Which is 4 times the full scale watt meter reading
Therefore, Multiplying factor $=4$
Actual power $=4 \times$ Wattmeter reading

$$
\begin{aligned}
& =4 \times 2000 \\
& =8000 \mathrm{watts}
\end{aligned}
$$

56. Ans: (d)

Sol: First 6 hrs energy consumption is

$$
\begin{aligned}
& \mathrm{E}_{1}=\mathrm{VI} \cos \theta \times \mathrm{t} \\
&=250 \times 10 \times 1 \times 6 \\
&=15 \mathrm{kWh} \\
& \text { for next } 10 \text { hours } \\
& \mathrm{E}_{2}=\mathrm{VI} \cos \theta \times \mathrm{t} \\
&=250 \times 10 \times 0.8 \times 10 \times 0.5 \\
&=20 \mathrm{kWh} \times 0.5=10 \mathrm{kWh}
\end{aligned}
$$

For last 8 hours
$\mathrm{E}_{3}=\mathrm{VI} \cos \theta \times \mathrm{t}$

$$
=250 \times 7.5 \times 0.6 \times 8
$$

$$
=9 \mathrm{kWh}
$$

$$
\therefore \mathrm{E}=\mathrm{E}_{1}+\mathrm{E}_{2}+\mathrm{E}_{3}
$$

$$
=15+10+9
$$

$$
=34 \mathrm{kWh}
$$

\therefore Number of revolutions $=$ meter constant \times total energy
$=34 \mathrm{kWh} \times 1600$ revolutions $/ \mathrm{kWh}$ $=54,400$ revolutions
57. Ans: (b)

Sol: The given bridge is Desauty's bridge
Given $\mathrm{R}_{3}=40 \Omega, \mathrm{R}_{4}=80 \Omega, \mathrm{C}_{2}=20 \mu \mathrm{~F}$
\therefore Unknown capacitance $\mathrm{C}_{\mathrm{x}}=\frac{\mathrm{R}_{4}}{\mathrm{R}_{3}} \times \mathrm{C}_{2}$
$=\frac{80}{40} \times 20$
$=40 \mu \mathrm{~F}$.
58. Ans: (b)

Sol: For normal frequency of supply, the voltage drop across non inductive resistor and across inductor are equal. So needle takes up a position to 45° to show pointer reading as normal.

59. Ans: (d)

Sol: (i) Controlling torque is not required in both $1-\phi$ and 3- ϕ electrodynamometer type power factor meters
(ii) Frequency changes will cause errors in $1-\phi$ pf meter but not in $3-\phi$ pf meters
60. Ans: (b)

Sol: load current $\mathrm{I}_{1}=50 \mathrm{~A}$ (primary current)
Wattmeter CC current $\mathrm{I}_{2}=5 \mathrm{~A}$ (secondary current)
CTratio $=\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{50}{5}=\frac{10}{1}$
61. Ans: (c)

Sol: $\theta=\frac{180}{\pi} \times \frac{\mathrm{I}_{\mathrm{m}}}{\mathrm{nI}}$

$$
\begin{aligned}
& =\frac{180}{\pi} \times \frac{80}{200 \times 5} \\
& =4.58^{\circ}
\end{aligned}
$$

62. Ans: (d)

Sol: In the measurement of strain by wheat stone bridge, the maximum sensitivity is obtained by a combination of four active strain gauges.

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

2. FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

2. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm
\checkmark All tests will be conducted in Question Paper Booklet format.
\checkmark Test Series will be conducted at all our centres.

(2) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

ISRO - -
 ONLINE TEST SERIES

No. of Tests : 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO)
Recruitment of Scientist/Engineer 'SC'
ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
『 starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.
© 040-48539866 / 040-40136222 \& testseries@aceenggacademy.com

63. Ans: (b)

Sol: Acceleration (a) $=\frac{\mathrm{Kx}}{\mathrm{M}}$

$$
\begin{aligned}
& \mathrm{K}=3 \times 10^{3} \mathrm{~N} / \mathrm{m} \\
& \mathrm{M}=0.05 \mathrm{~kg} \\
& \mathrm{x}= \pm 1 \mathrm{~mm} \\
& \mathrm{a}=\frac{3 \times 10^{3} \times 1 \times 10^{-3}}{0.05}=60 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

64. Ans: (c)

Sol: Hall effect converts magnetic energy to electric energy. Hall effect pick-up can be used for the measurement of magnetic flux.

65. Ans: (a)

Sol: The coefficient of discharge (d) of orifice opening. The Cd value of orifice meter is much smaller than Cd value of a venturimeter. The orifice normal value of Cd is 0.6 and the $\%$ loss of work out at 65% of the differential pressure.
66. Ans: (b)

Sol: For the Piezo electric transducer,
No load output voltage, $\mathrm{E}_{0}=3 \mathrm{~V}$
Crystal capacitance, $\mathrm{C}_{\mathrm{P}}=250 \mathrm{pF}$
Load capacitance, $\mathrm{C}_{\mathrm{L}}=125 \mathrm{pF}$
At high frequencies, the voltage across the load is $E_{L} \approx E_{0} \frac{C_{P}}{C_{P}+C_{L}}$
$\Rightarrow \mathrm{E}_{\mathrm{L}}=3 \times \frac{250}{375}=2 \mathrm{~V}$

67. Ans: (a)

68. Ans: (a)

Sol: Associative memories are content addressable memories, in those searching is performed with content not with addresses. The content matching in each cell is performed parallely with the help of the matching logic in each cell.
70. Ans: (b)

Sol: Statement (I) and Statement (II) both are true but Statement (II) is not the correct reason for Statement (I) because increasing the number of page frames allocated to a process sometimes increases the page fault rate is "Belady's anamoly" and it is not related with locality of reference.
71. Ans: (d)

Sol: For recursive function calls, a stack is required. Since the variables are declared at each function call and the instants of all the local variables at each function call are needed to be stored. For this, a stack data structure is used.

72. Ans: (a)

Sol: Dual scope A/D converter is most preferred A/D conversion approach in digital multimeters since it provides highest accuracy and also highest noise rejection.

73. Ans: (a)

Sol: Shunts used with measuring instruments should have the following properties:
(i) The resistance temperature coefficient of shunt should be low and as nearly as possible to that of the instrument.
(ii) Resistance of shunts should be time invariant
(iii)They should have low thermal emfs with copper.
(iv)They should carry current without excessive temperature rise. Manganin has a low temperature coefficient of resistance which is $40 \times 10^{-6} 1^{\circ} \mathrm{C}$. Hence it is a preferred shunt material in DC instruments.
Constantan's thermal emf with copper, eventhough high, is unidirectional and hence it is used as a shunt in AC instruments.
69. Ans: (a)
74. Ans: (d)

Sol: Air cored electrodynamometer type instruments are protected against external magnetic fields by enclosing them in a casing of high permeability alloy.
75. Ans: (c)

Sol: Both are not related
Statement (II) is wrong.

