SUBJECT: ELECTROMAGNETICS, MATERIALS SCIENCE, NETWORK THEORY \& BASIC ELECTRONICS ENGINEERING(EDC \& VLSI) - SOLUTIONS

1. Ans: (d)

Sol: The cylinder $\rho=20 \mathrm{~mm}$ don't encloses the cylinder of radius 40 mm . Hence $\quad \bar{K}=200 \hat{a}_{z}$ will not contribute in $\overline{\mathrm{H}}$, but due to solenoid ($\rho=80 \mathrm{~mm}, \overline{\mathrm{~K}}=160 \hat{\mathrm{a}}_{\phi} \mathrm{A} / \mathrm{m}$) there will be a magnetic field intensity so we have $\overline{\mathrm{H}}=160 \hat{\mathrm{a}}_{\mathrm{z}} \mathrm{A} / \mathrm{m}$.
$\therefore|\overline{\mathrm{H}}|=160 \mathrm{~A} / \mathrm{m}$.

02. Ans: (b)

Sol: $\quad \mathrm{Q}=\int_{\mathrm{V}} \bar{\nabla} \cdot \overline{\mathrm{D}} \mathrm{dv}$

$$
\begin{aligned}
& \bar{\nabla} . \overline{\mathrm{D}}=\frac{\partial}{\partial \mathrm{x}}\left(6 \mathrm{xyz}^{2}\right)+\frac{\partial}{\partial \mathrm{y}}\left(3 \mathrm{x}^{2} z^{2}\right)+\frac{\partial}{\partial \mathrm{z}}\left(6 \mathrm{x}^{2} \mathrm{yz}\right) \\
&=6 \mathrm{yz}^{2}+6 \mathrm{x}^{2} \mathrm{y} \\
& \begin{aligned}
\therefore \mathrm{Q} & =\int_{1}^{3} \int_{0}^{1} \int_{-1}^{1}\left(6 \mathrm{yz}^{2}+6 x^{2} y\right) \mathrm{dxdydz} \\
= & 6[\mathrm{x}]_{1}^{3}\left[\frac{\mathrm{y}^{2}}{2}\right]_{0}^{1}\left[\frac{\mathrm{z}^{3}}{3}\right]_{-1}^{1}+6\left[\frac{\mathrm{x}^{3}}{3}\right]_{1}^{3}\left[\frac{\mathrm{y}^{2}}{2}\right]_{0}^{1}[\mathrm{z}]_{-1}^{1} \\
= & 56 \mathrm{C}
\end{aligned}
\end{aligned}
$$

03. Ans: (c)

Sol: $\overline{\mathrm{G}} \cdot \overline{\mathrm{dL}}=\left(\mathrm{x}^{2} \hat{a}_{x}-x y z \hat{a}_{z}\right) .\left(d x \hat{a}_{x}+d y \hat{a}_{y}+d z \hat{a}_{z}\right)$

$$
\begin{gathered}
=\mathrm{x}^{2} \mathrm{dx}-\mathrm{xyzdz} \\
\therefore \int_{\mathrm{P}_{1}}^{\mathrm{P}_{2}} \overline{\mathrm{G}} \cdot \overline{\mathrm{dL}}=\int_{1}^{5} \mathrm{x}^{2} \mathrm{dx}-\int_{3}^{4} \mathrm{xyzdz}
\end{gathered}
$$

Path of integration is $\mathrm{P}(1,2,3)$ to $(5,2,3)$ to $(5,0,3)$ to (5, 0, 4). Between first and second point, y and z coordinates are constant where as x coordinate varies from $x=1$ to $x=5$. Hence in the first integral, if required substitute $y=2$ and $z=3$.
Between third and fourth point, x and y coordinates are constant where as z coordinate varies from $z=3$ to $z=4$. Hence in the second integral, substitute $x=5$ and $\mathrm{y}=0$.

$$
\begin{aligned}
\therefore \int_{P_{1}}^{\mathrm{P}_{2}} \overline{\mathrm{G}} \cdot \overline{\mathrm{dL}} & =\int_{1}^{5} \mathrm{x}^{2} \mathrm{dx}=\left[\frac{\mathrm{x}^{3}}{3}\right]_{1}^{5} \\
& =\frac{125-1}{3}=41.333
\end{aligned}
$$

4. Ans: (b)

Sol: From boundary condition, $D_{1 n}=D_{2 n}$ and $E_{t 1}=E_{t 2}$
Now $E_{t 1}=E_{1} \sin \theta_{1}$ So $\mathrm{E}_{\mathrm{t} 2}=\mathrm{E}_{1} \sin \theta_{1}$

ESE-MAINS Classes Start from:
 $13^{\text {th }}$ FEB 2020

 (@ HYDERABAD)

Students who Qualify in Prelims can avail 100 \% Fee Waiver

ESE-2018, 2019 Prelims Qualified Students are also eligible
for more details Contact: 040-23234418/19/20, Email: hyderabad@aceenggacademy.com

www.aceenggacademy.com

HYDERABAD || AHMEDABAD | DELHI | PUNE | BHUBANESWAR | LUCKNOW | KOLKATA | VIJAYAWADA | VIZAG | TIRUPATI | CHENNAI | BENGALURU

$$
\begin{aligned}
& \mathrm{D}_{2 \mathrm{n}}=\mathrm{D}_{1 \mathrm{n}} \Rightarrow \mathrm{E}_{2 \mathrm{n}}=\frac{\varepsilon_{1}}{\varepsilon_{2}} \mathrm{E}_{1 \mathrm{n}} \\
& \mathrm{E}_{2 \mathrm{n}}=\frac{\varepsilon_{1}}{\varepsilon_{2}} \mathrm{E}_{1} \cos \theta_{1} \\
& \mathrm{E}_{2}=\sqrt{\left(\mathrm{E}_{1} \sin \theta_{1}\right)^{2}+\left(\frac{\varepsilon_{1}}{\varepsilon_{2}} \mathrm{E}_{1} \cos \theta_{2}\right)^{2}} \\
& \therefore \mathrm{E}_{2}=\mathrm{E}_{1} \sqrt{\sin ^{2} \theta_{1}+\left(\frac{\varepsilon_{1}}{\varepsilon_{2}}\right)^{2} \cos ^{2} \theta_{1}}
\end{aligned}
$$

5. Ans: (a)

Sol: $\quad \nabla^{2} \overline{\mathrm{E}}=\mu \sigma \frac{\partial \overline{\mathrm{E}}}{\partial \mathrm{t}}+\mu \varepsilon \frac{\partial^{2} \overline{\mathrm{E}}}{\partial \mathrm{t}^{2}}$

$$
\nabla^{2}=\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}}=\frac{\partial^{2}}{\mathrm{dx}^{2}}
$$

$$
\left(\because \frac{\partial^{2}}{\partial \mathrm{y}^{2}}=\frac{\partial^{2}}{\partial \mathrm{z}^{2}}=0\right)
$$

$$
\frac{\partial^{2} \overline{\mathrm{E}}}{\partial \mathrm{x}^{2}}=\mu \sigma \frac{\partial \overline{\mathrm{E}}}{\partial \mathrm{t}}+\mu \varepsilon \frac{\partial^{2} \overline{\mathrm{E}}}{\partial \mathrm{t}^{2}}
$$

06. Ans: (a)

Sol: From the given electric field, the wave is linearly polarized.
07. Ans: (c)

Sol: Given: $\mathrm{Z}_{\mathrm{R}}=15+\mathrm{j} 20 \Omega$

$$
\mathrm{Z}_{0}=25 \Omega
$$

Normalized impedance,

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{R}}^{\prime}=\frac{\mathrm{Z}_{\mathrm{R}}}{\mathrm{Z}_{0}}=\frac{15+\mathrm{j} 20}{25} \\
& \therefore \mathrm{Z}_{\mathrm{R}}^{\prime}=0.6+\mathrm{j} 0.8
\end{aligned}
$$

8. Ans: (d)

Sol: Given:

Characteristic impedance: Z_{0}
Load impedance: Z_{R} (or) $Z_{L}=\frac{Z_{0}}{3}$
Reflection coefficient, $K=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}$

$$
\begin{aligned}
& \frac{\frac{\mathrm{Z}_{0}}{3}-\mathrm{Z}_{0}}{} \\
& \frac{\mathrm{Z}_{0}}{3}+\mathrm{Z}_{0} \\
&=\frac{-2 \mathrm{Z}_{0}}{4 \mathrm{Z}_{0}} \\
& \therefore \mathrm{~K}=-\frac{1}{2}(\text { or }) \frac{1}{2} \angle 180^{\circ}
\end{aligned}
$$

voltage standing wave ratio,
$\operatorname{VSWR}=\frac{1+|\mathrm{K}|}{1-|\mathrm{K}|}=\frac{1+\frac{1}{2}}{1-\frac{1}{2}}$
\therefore VSWR $=3$

09. Ans: (b)

Sol: Let R, L, G and C are primary constants of two wire transmission line.
Series impedance, $Z=R+j \omega L$
Shunt admittance, $\mathrm{Y}=\mathrm{G}+\mathrm{j} \omega \mathrm{C}$
Propagation constant,

$$
P=\sqrt{Z Y}=\sqrt{(R+j \omega L)(G+j \omega C)}
$$

Characteristic impedance

$$
Z_{0}=\sqrt{\frac{Z}{Y}}=\sqrt{\frac{(R+j \omega L)}{(G+j \omega C)}}
$$

10. Ans: (b)

Sol: The radiation resistance,

$$
\begin{aligned}
\mathrm{R}_{\mathrm{r}} & =80 \pi^{2}\left(\frac{\mathrm{~d} \ell}{\lambda}\right)^{2}=80 \times 9.86 \times\left(\frac{\lambda}{15 \lambda}\right)^{2} \\
& =\frac{80 \times 9.86}{225}=3.5 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \eta=\frac{R_{r}}{R_{r}+R_{\ell}}=\frac{3.5}{3.5+1.5}=0.7 \\
& \eta \%=0.7 \times 100=70 \%
\end{aligned}
$$

11. Ans: (d)

Sol: The directivity of n-element end fire array is given by
$\mathrm{D}=\frac{4 \mathrm{~L}}{\lambda}$
Where L: length of the array
$\mathrm{L}=(\mathrm{n}-1) \mathrm{d}$
$\mathrm{L}=\mathrm{nd}$ (if n is large)
' d ' spacing between array elements.
Given $\mathrm{n}=1000, \mathrm{~d}=\frac{\lambda}{4}$
$D \approx \frac{4 \times(1000)\left(\frac{\lambda}{4}\right)}{\lambda}$
D $=1000$
Directivity, $\mathrm{D}($ in dB $)=10 \log 1000$
$\mathrm{D}=30 \mathrm{~dB}$
12. Ans: (c)

Sol: Aperture ratio (or) aspect ratio (or) width to height ratio of standard rectangular waveguide, $\frac{\mathrm{a}}{\mathrm{b}}=\frac{2}{1}$ (or) $\mathrm{a}=2 \mathrm{~b}$
Cut off wavelength for $\mathrm{TM}_{\mathrm{mn}}$ mode is given by
$\lambda_{c}=\frac{2}{\sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}}}$
As $\mathrm{m}=1, \mathrm{n}=2$ for TM_{12}
$\lambda_{\mathrm{c}}=\frac{2}{\sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{2}{b}\right)^{2}}}=\frac{2 \mathrm{a}}{\sqrt{17}}$ (or) $\frac{4 \mathrm{~b}}{\sqrt{17}}$

13. Ans: (c)

Sol: Spacing between maximum and minimum is $=\frac{\lambda_{\mathrm{g}}}{4}$
Given $\frac{\lambda_{g}}{4}=2.5 \mathrm{~cm}$
$\lambda_{\mathrm{g}}=10 \mathrm{~cm}$
Phase shift constant, $\bar{\beta}$ inside a waveguide is given by

$$
\begin{aligned}
\bar{\beta} & =\frac{2 \pi}{\lambda_{\mathrm{g}}}=\frac{2 \pi}{10} \mathrm{rad} / \mathrm{cm} \\
& =\frac{\pi \mathrm{rad}}{5 \times 10^{-2} \mathrm{~m}}=\frac{100 \pi}{5} \mathrm{rad} / \mathrm{m} \\
& =20 \pi \mathrm{rad} / \mathrm{m}
\end{aligned}
$$

14. Ans: (b)

Sol: Given: Interface $\mathrm{z}=0$ (xy plane)
$\overrightarrow{\mathrm{E}}_{1}=-3 \hat{\mathrm{a}}_{\mathrm{x}}+4 \hat{\mathrm{a}}_{\mathrm{y}}-2 \hat{\mathrm{a}}_{\mathrm{z}}($ for $\mathrm{z}<0)$
$\varepsilon_{r_{1}}=2$
$\varepsilon_{\mathrm{r}_{2}}=8$
$\overrightarrow{\mathrm{E}}_{\mathrm{t}_{1}}=-3 \hat{\mathrm{a}}_{\mathrm{x}}+4 \hat{\mathrm{a}}_{\mathrm{y}}$
$\vec{E}_{\mathrm{n}_{1}}=-2 \overrightarrow{\mathrm{a}}_{\mathrm{z}}$
From boundary conditions:
$\overrightarrow{\mathrm{E}}_{\mathrm{t}_{2}}=\overrightarrow{\mathrm{E}}_{\mathrm{t}_{1}}=-3 \hat{\mathrm{a}}_{\mathrm{x}}+4 \hat{\mathrm{a}}_{\mathrm{y}}$
$\varepsilon_{1} \overrightarrow{\mathrm{E}}_{\mathrm{n}_{1}}=\varepsilon_{2} \overrightarrow{\mathrm{E}}_{\mathrm{n}_{2}}$
$\overrightarrow{\mathrm{E}}_{\mathrm{n}_{2}}=\left(\frac{\varepsilon_{\mathrm{r}_{1}}}{\varepsilon_{\mathrm{r}_{2}}}\right) \overrightarrow{\mathrm{E}}_{\mathrm{n}_{1}}$
$=\left(\frac{2}{8}\right)\left(-2 \hat{\mathrm{a}}_{\mathrm{z}}\right)=-0.5 \hat{\mathrm{a}}_{\mathrm{Z}}$
$\therefore \overrightarrow{\mathrm{E}}_{2}=\left(-3 \hat{\mathrm{a}}_{\mathrm{x}}+4 \hat{\mathrm{a}}_{\mathrm{y}}-0.5 \hat{\mathrm{a}}_{\mathrm{z}}\right) \mathrm{V} / \mathrm{m} \quad($ for $\mathrm{Z}>0)$

15. Ans: (c)

Sol: \rightarrow Stationary charges produces electrostatic fields.
\rightarrow A steady current produces magneto static field.
\rightarrow An emf-produced field $\overline{\mathrm{E}}_{\mathrm{f}}$ is a nonconservative field.
\rightarrow Magneto static field is not conservative but magnetic flux is conserved.
16. Ans: (c)

Sol: Electronic and Ionic polarizations does not depends on temperature.
17. Ans: (b)

Sol: $\mathrm{R}_{\mathrm{H}}=\frac{1}{\mathrm{nq}}$

$$
=\frac{1}{10^{22} \times 1.6 \times 10^{-19}}=6.25 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{C}
$$

18. Ans: (c)

Sol: Polarization $=\mathrm{D}\left(1-\frac{1}{\varepsilon}\right)=3\left(1-\frac{1}{4}\right)=2.2 \mathrm{c} / \mathrm{m}^{2}$
19. Ans: (a)

Sol: $\mathrm{M}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$ is a general formula of garnets. $\mathrm{CuOFe}_{2} \mathrm{O}_{3}$ is a ferri magnetic material.
Ferrox cube has square hysteresis loop.
20. Ans: (d)

Sol: Anti ferromagnetic material has zero susceptibility.

$$
\begin{aligned}
& \mu_{\mathrm{r}}=1+\chi \\
& \mu_{\mathrm{r}}=1(\because \chi=0)
\end{aligned}
$$

21. Ans: (b)

Sol: The materials used for magnetic shielding must have high saturation induction and low coercivity.

22. Ans: (d)

Sol: Alnico is a permanent magnet, remaining all are soft magnetic materials.
23. Ans: (b)

Sol: The material used for cores of electromagnets must have low hysteresis loss, low coercivity, high retentivity, high initial permeability, maximum flux density.

TEST YOUR PREP IN A REAL TEST ENVIRONMENT

 Pre GAIIE - 2020

 Pre GAIIE - 2020}

Date of Exam : $\mathbf{1 8}^{\text {th }}$ January 2020

 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019Highlights:

- Get real-time experience of GATE-20 test pattern and environment
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for GATE-20 toppers.

SSC-JE (Paper-I) OOnline Test Series

Staff Selection Commission - Junior Engineer

No. of Tests : 20

Subject Wise Tests: 16|Mock Tests - 4
Civil| Electrical | Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination
24. Ans: (a)

Sol: Super conductor properties:

1. A super conductor is a perfect diamagnetic with magnetic susceptibility $=-1$.
2. A super conductor has bound electron pairs also known as cooper pairs within it cooper pair showed that an arbitrarily small attraction between electrons.
3. A super conductor becomes a normal conductor when
(a) Increasing temperature above transition temperature
(b) Increasing magnetic field above critical field
(c) Increasing current above critical current
4. Ans: (d)

Sol: A superconductor is used to generate magnetic field.
26. Ans: (b)

Sol: The bond length of grain boundary is more compare to inside grain and hence they have low energy and easily react with chemical.
27. Ans: (a)

Sol: Hot working does not vary the recrystallisation temperature (RCT) and cold working reduces RCT.
28. Ans: (a)

Sol: The correct ascending order of the resistivity of Fe, Ag, Constantan, Mica and Aluminium is given below

Metal
Resistivity(in $\mu \Omega$-cm)
1 Fe
8.85

2 Ag
1.51

3 Constantan 49
4 Mica $\sim 10^{21}$
5 Aluminium 2.62
29. Ans: (a)

Sol: Circuit at $\mathrm{t}=\mathbf{0}^{-}$

$\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=6 \mathrm{~A}$
Circuit at $\mathbf{t}=\mathbf{0}^{+}$

By KVL, $10-30-\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)=0$
$\Rightarrow \mathrm{V}_{\mathrm{L}}\left(0^{+}\right)=-20$ Volts
30. Ans: (b)

Sol: Hence, $Y_{C}+Y_{A}=4$
$\Rightarrow Y_{A}=4-Y_{C}=4+5=9 J$
$Y_{C}=-5 \mho$
$Y_{B}+Y_{C}=8$
$\Rightarrow Y_{B}=8-Y_{C}=8+5=13 \mho$
31. Ans: (c)

Sol:

By KVL, $9-2 \mathrm{I}_{1}-25 \mathrm{I}_{1}=0$
$\Rightarrow 27 \mathrm{I}_{1}=9$
$\Rightarrow I_{1}=\frac{9}{27}=\frac{1}{3}$
$\therefore \mathrm{P}_{2 \Omega}=\mathrm{I}_{1}^{2} \mathrm{R}=\left(\frac{1}{3}\right)^{2} \times 2=\frac{2}{9} \mathrm{~W}$
$=0.22$ Watts

32. Ans: (d)

Sol: By KCL, $8=I+I+4 I+\frac{I}{2}$

$$
\Rightarrow \mathrm{I}=\frac{8}{6.5}=\frac{80}{65}=\frac{16}{13} \mathrm{~A}
$$

33. Ans: (d)

Sol: Q-factor $=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{L}}{\mathrm{C}}}=\frac{1}{10} \sqrt{\frac{25 \times 10^{-3}}{0.1 \times 10^{-6}}}$

$$
=\frac{1}{10} \sqrt{\frac{25 \times 10^{-2+6}}{1}}=\frac{5 \times 100}{10}=50
$$

34. Ans: (d)

Sol: $V(0)=5 \times 10=50$ Volts

$$
\begin{aligned}
& \mathrm{V}(\infty)=\frac{15 \times 10}{15}=10 \text { Volts } \\
& \tau=\mathrm{R}_{\mathrm{eq}} \mathrm{C}=\frac{50}{15} \times 10^{3} \times 3 \times 10^{-6} \\
& =10 \times 10^{-3}=10^{-2} \mathrm{sec} \\
& \therefore \mathrm{~V}(\mathrm{t})=\mathrm{V}(\infty)+[\mathrm{V}(0)-\mathrm{V}(\infty)] \mathrm{e}^{-\mathrm{t} / \tau} \\
& =10+[50-10] \mathrm{e}^{-100 \mathrm{t}} \\
& =10+40 \mathrm{e}^{-100 t} \\
& V(t)=10\left(1+4 \mathrm{e}^{-100 t}\right) \text { Volts }
\end{aligned}
$$

35. Ans: (a)

Sol: Equivalent Voltage,
V $=40-15+20-15=30$ Volts
Equivalent Resistance,
$R=5+8+7+5+3=28 \Omega$
36. Ans: (b)
37. Ans: (d)

Sol: Using bridge balance condition given circuit can be modified as

$$
\begin{aligned}
\mathrm{R}_{\mathrm{eq}} & =50+[100 / / 50] \\
& =50+\frac{100 \times 50}{150}=50+\frac{100}{3} \\
& =50+33.33=83.33 \Omega
\end{aligned}
$$

38. Ans: (a)

Sol: $\mathrm{L}_{1}=4-2+1=3 \mathrm{H}$
$\mathrm{L}_{2}=8-2+4=2 \mathrm{H}$
$\mathrm{L}_{3}=11+1-4=8 \mathrm{H}$
$\therefore \mathrm{L}_{\mathrm{eq}}=3+2+8=13 \mathrm{H}$
39. Ans: (d)

Sol: By observing figure (A) \& (B) we can directly say that figure (B) is derivative of figure (A)
$\mathrm{V}(\mathrm{t})$ waveform is derivative of $\mathrm{i}(\mathrm{t})$ waveform $V(t)=k \frac{d}{d t} i(t)---(1) k=$ constant (any)
This equation exactly similar to inductive nature element response
$\mathrm{V}_{\mathrm{L}}(\mathrm{t})=\mathrm{L} \frac{\mathrm{di}(\mathrm{t})}{\mathrm{dt}}$
$L=\frac{\mathrm{V}_{\mathrm{L}}(\mathrm{t})}{\frac{\mathrm{di}_{\mathrm{L}}(\mathrm{t})}{\mathrm{dt}}}$
$\mathrm{L}=\left.\frac{\mathrm{V}_{\mathrm{L}}(\mathrm{t})}{\frac{\mathrm{di}_{\mathrm{L}}(\mathrm{t})}{\mathrm{dt}}}\right|_{\mathrm{t}=10 \text { to } 15}$
$\Rightarrow \mathrm{L}=\frac{-20}{\frac{\mathrm{~d}}{\mathrm{dt}}[-4(\mathrm{t}-15)]}=5 \mathrm{H}$
40. Ans: (d)

Sol: Network at $\mathrm{t}=0^{-}$inductor short circuit capacitor open circuit

$\mathrm{V}_{\mathrm{C}}\left(0^{-}\right)=100 \mathrm{~V}$
$\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=1 \mathrm{~A}$
network at $\mathrm{t}=0^{+}$

$-100+(50 \times 1)+(100 \times 1)+\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)=0$
$\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)=-50 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)=\mathrm{L} \frac{\mathrm{di}_{\mathrm{L}}\left(0^{+}\right)}{\mathrm{dt}}$
$\frac{\mathrm{di}_{\mathrm{L}}\left(0^{+}\right)}{\mathrm{dt}}=\frac{\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)}{\mathrm{L}}=\frac{-50}{1}$
$\frac{\mathrm{di}_{\mathrm{L}}\left(0^{+}\right)}{\mathrm{dt}}=-50\left(\frac{\mathrm{~A}}{\mathrm{sec}}\right)$
41. Ans: (c)
42. Ans: (d)

Sol: $\mathrm{V}_{1}=-20 \cos \left(\omega \mathrm{t}+70^{\circ}\right)=20 \cos \left(\omega \mathrm{t}+70-180^{\circ}\right)$
$=20 \cos \left(\omega t-110^{\circ}\right)$
$\mathrm{V}_{2}=40 \sin \left(\omega \mathrm{t}-20^{\circ}\right)=40 \cos \left(\omega \mathrm{t}-20-90^{\circ}\right)$
$=40 \cos \left(\omega \mathrm{t}-110^{\circ}\right)$

Hence the phase angle between V_{1} and V_{2} is $110-110=0^{0}$
43. Ans: (d)

Sol: By applying superposition theorem
$\mathrm{i}_{\mathrm{x}}=5 \mathrm{~A}, \mathrm{i}_{\mathrm{y}}=10 \mathrm{~A}$
44. Ans: (c)

Sol: $I_{s}=\frac{6}{6}+\frac{6}{12}+\frac{6}{3}$
$\mathrm{I}_{\mathrm{s}}=1+\frac{1}{2}+2=3.5 \mathrm{~A}$
45. Ans: (a)

Sol: By KVL $18-2 \mathrm{I}-3 \mathrm{~V}_{0}+7-4 \mathrm{I}=0$
$18+7=6 \mathrm{I}+3 \mathrm{~V}_{0}$
Here $\mathrm{V}_{0}=4 \mathrm{I}$
$6 \mathrm{I}+12 \mathrm{I}=25$
$\mathrm{I}=\frac{25}{18} \mathrm{~A}$
46. Ans: (b)

Sol:

Hence $V_{a b}=0$

$$
\begin{aligned}
& \therefore \mathrm{I}=\frac{12}{6}=2 \mathrm{~A} \\
& \mathrm{I}_{\mathrm{N}}=-80 \mathrm{I} \\
& \mathrm{I}_{\mathrm{N}}=-160 \mathrm{~A}
\end{aligned}
$$

47. Ans: (a)

Sol: In active filter inductor is absent which is bulky and expensive at lower frequency.
48. Ans: (b)

Sol: In the given circuit R_{3} decrease means increase the current through R_{3} and decrease the current through R_{2} because R_{2} and R_{3}
are parallel connection, so power dissipated in R_{2} decrease.
49. Ans: (b)
50. Ans: (a)

Sol: Calculation for $\mathrm{V}_{\text {th }}$

$\therefore \frac{\mathrm{V}_{\mathrm{th}}-20}{6}+\frac{\mathrm{V}_{\mathrm{th}}-10}{6}=0$
$\Rightarrow \mathrm{V}_{\mathrm{th}}=15$ Volts
Calculation for $\mathbf{R}_{\text {th }}$

$$
\begin{aligned}
& \therefore \mathrm{R}_{\mathrm{th}}=6 / / 6=\frac{6}{2}=3 \Omega \\
& \therefore \mathrm{P}_{\max }=\frac{\mathrm{V}_{\mathrm{th}}}{4 \mathrm{R}_{\mathrm{th}}}=\frac{15^{2}}{4 \times 3}=\frac{15 \times 15}{4 \times 3} \\
& =
\end{aligned}
$$

51. Ans: (c)

Sol: In an Opto-electronic communication system, the system component in which free electrons are involved in its operation is Photo detector
52. Ans: (c)

Sol: The correct statement is
Maximum velocity of electrons increases with decreasing wavelength.
53. Ans: (b)

Sol: Due to body effect, V_{SB} change and as a result threshold voltage change.
54. Ans: (b)

Sol: $\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}=3 \mathrm{~V}-0.5 \mathrm{~V}=2.5 \mathrm{~V}$
55. Ans: (c)

Sol: 1: TRUE
2: FALSE, as channel length reduces, output resistance reduces
3: FALSE, as channel length reduces, threshold voltage reduces
4: TRUE
56. Ans: (d)

Sol: $r_{d s}=\frac{1}{\mu_{n} c_{o x} \frac{W}{L}\left[V_{G S}-V_{T}\right]}$
As V_{GS} increases, resistance decreases, therefore option (d) is not correct.
57. Ans: (d)

Sol: The electrical properties of dry oxidation is better than wet oxidation. But it is slow process.
58. Ans: (a)

Sol: The N-channel MOSFETs having inputs A, B are parallel and C is in series.
Hence output, $\mathrm{Y}=\overline{(\mathrm{A}+\mathrm{B}) \mathrm{C}}=\overline{\mathrm{A}} \overline{\mathrm{B}}+\overline{\mathrm{C}}$
59. Ans: (c)

Sol: Fermi level of p-type semiconductor \rightarrow Very close to the valence band

Continuity equation
\rightarrow Law of conservation of charge
Ohm's low for conduction in metal

$$
\rightarrow \sigma E
$$

Conductivity of intrinsic semiconductor

$$
\rightarrow \mathrm{n}_{\mathrm{i}} \mathrm{q}\left(\mu_{\mathrm{n}}+\mu_{\mathrm{p}}\right)
$$

HEARTY CONGRATULATIONS
 TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33

(EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

DIGITAL CLASSES for
 ESE 2020/2021 General Studies \& Engineering Aptitude

60. Ans: (a)

Sol: \rightarrow TRIAC is a bidirectional switch equivalent to 2 separate SCR devices connected in inverse parallel. So, 1 is false.
\rightarrow Shockley diode is a four-layered pnpn diode with only two external terminals. So, 2 is correct.
\rightarrow Silicon-controlled switch (SCS) is a Unidirectional device with characteristics similar to SCR. So, 3 is correct.
\rightarrow DIAC is a two-terminal AC switch mainly used to trigger the SCR. So, 4 is false.
61. Ans: (d)

Sol: $\quad R_{H}=\frac{1}{q n}$

$$
\begin{aligned}
\Rightarrow \mathrm{n} & =\frac{1}{\mathrm{qR}_{\mathrm{H}}}=\frac{1}{1.6 \times 10^{-19} \times 15 \times 10^{5}} \\
& =4.167 \times 10^{12} \mathrm{~cm}^{-3}
\end{aligned}
$$

62. Ans: (a)

Sol: Fill factor (ff) $=\frac{V_{m} I_{m}}{V_{o c} I_{s c}}=\frac{P_{m}}{V_{o c} I_{s c}}$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{m}} & =(\mathrm{ff}) \mathrm{V}_{\mathrm{oc}} \mathrm{I}_{\mathrm{sc}} \\
& =(0.7)(0.9)(80 \mathrm{~m}) \\
& =50.4 \mathrm{~mW} .
\end{aligned}
$$

63. Ans: (b)

Sol:

$$
\begin{aligned}
& I_{o}=A q\left(\frac{D_{p}}{L_{p} N_{D}}+\frac{D_{n}}{L_{n} N_{A}}\right) n_{i}^{2} \\
& =10^{-4} \times 1.6 \times 10^{-19}\left(\frac{10}{5 \times 10^{-4} \times 10^{16}}+\frac{18}{10 \times 10^{-4} \times 10^{18}}\right)\left(1.5 \times 10^{10}\right)^{2} \\
& =7.26 \times 10^{-15} \mathrm{~A}
\end{aligned}
$$

64. Ans: (a)

Sol: $\mathrm{p}_{\mathrm{p}} \approx \mathrm{N}_{\mathrm{A}}=10^{18} / \mathrm{cm}^{3}$

$$
\begin{aligned}
\mathrm{p}_{\mathrm{no}} & =\frac{\mathrm{n}_{1}^{2}}{\mathrm{~N}_{\mathrm{D}}}=\frac{\left(1.5 \times 10^{10}\right)^{2}}{10^{16}} \\
& =2.25 \times 10^{2} / \mathrm{cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{n}} \approx \mathrm{~N}_{\mathrm{D}}=10^{16} / \mathrm{cm}^{3} \\
& \begin{aligned}
\mathrm{n}_{\mathrm{po}} & =\frac{\mathrm{n}_{\mathrm{i}}^{2}}{\mathrm{~N}_{\mathrm{A}}}=\frac{\left(1.5 \times 10^{10}\right)^{2}}{10^{18}} \\
& =2.25 \times 10^{4} / \mathrm{cm}^{3}
\end{aligned}
\end{aligned}
$$

65. Ans: (c)

Sol: The dielectric constant of the vacuum is less than that of any other medium.
66. Ans: (a)

Sol: Assume the line is terminated by a reactive (capacitive or inductive) load.
i.e. $Z_{R}= \pm j X$
$+\mathrm{jX} \rightarrow$ for inductive load
$-\mathrm{jX} \rightarrow$ for capacitive load
Reflection coefficient,
$K=\frac{Z_{R}-Z_{0}}{Z_{R}+Z_{0}}=\frac{ \pm j X-Z_{0}}{ \pm j X+Z_{0}}$
$|\mathrm{K}|=\frac{\sqrt{\mathrm{X}^{2}+\mathrm{Z}_{0}^{2}}}{\sqrt{\mathrm{X}^{2}+\mathrm{Z}_{0}^{2}}}=1$
Therefore for reactive loads magnitude of reflection coefficient is unity.
$\operatorname{VSWR}=\frac{1+|\mathrm{K}|}{1-|\mathrm{K}|}=\infty$
Hence for reactive load VSWR is unity.
Therefore both S1 and S2 are true and S2 is the correct explanation of S1.
67. Ans: (a)

Sol: As magnetic monopole does not exist, always magnetic flux lines are continuously closed loops.
Therefore magnetic flux leaving any closed surface is equal to zero
$\left.\phi\right|_{\text {closedurface }}=\oint_{\mathrm{s}} \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{ds}}=0$
From divergence theorem
$\oint_{v} \nabla \cdot \vec{B} \cdot d v=0$
$\nabla \cdot \overrightarrow{\mathrm{B}}=0$

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

2. FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

2. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm
\checkmark All tests will be conducted in Question Paper Booklet format.
\checkmark Test Series will be conducted at all our centres.

(6) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

ISRO *
 ONLINE TEST SERIES

No. of Tests : 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO)
Recruitment of Scientist/Engineer 'SC'
ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
『 starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.
(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

Hence magnetic flux density is said to be solenoidal.
68. Ans: (d)

Sol: BaTiO_{3} can not be used as an amplifier because it is an insulator.
69. Ans: (d)

Sol: The change in dimension of material (i.e. strain produced in it) when it is magnetized is called 'Magnetostiction'. The deformation is different along different directions and is independent of direction of field.
Based on weiss-Domain Theory, the magnetic

1. Expand at initial field. If is a reversible process
2. Rotate the dipoles in domains in the direction of fields high magnetic field. It is an irreversible process.
3. Ans: (a)

Sol: Entropy and thermal conductivity decreases with decreasing temperature.
71. Ans: (c)

Sol: The electrical resistivity of silver is lower than that copper. So the statement II is incorrect.
The electrical conductivity of metal decreases by adding impurities to the host material, even though by adding high conductivity (silver) atoms added to copper as an impurity, it's overall conductivity decreases than pure host material.
72. Ans: (a)
73. Ans: (b)
74. Ans: (c)

Sol: Reciprocity theorem cannot applied to the non linear network.
75. Ans: (d)

Sol: For same drain current rating p-channel MOSFET occupies more area than nchannel MOSFET.

