Head Office : Sree Sindhi Guru Sangat Sabha Association, \# 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001.
Ph: 040-23234418, 040-2324419, 040-2324420, 040-24750437

ELECTRONICS \& TELECOMMUNICATION ENGINEERING

SUBJECT: CONTROL SYSTEMS, ANALOG ELECTRONICS \& DIGITAL ELECTRONICS AND MICRO-PROCESSORS

1. Ans: (d)

$$
\text { Sol: } \begin{aligned}
\frac{\mathrm{C}}{\mathrm{R}} & =\frac{\mathrm{G}_{1} \mathrm{G}_{2}+\mathrm{G}_{1} \mathrm{G}_{3}}{1-\left(-\mathrm{H}_{1} \mathrm{G}_{1}-\mathrm{H}_{2} \mathrm{G}_{2}+\mathrm{G}_{1} \mathrm{G}_{3} \mathrm{H}_{1} \mathrm{H}_{2}\right)} \\
\frac{\mathrm{C}}{\mathrm{R}} & =\frac{\mathrm{G}_{1} \mathrm{G}_{2}+\mathrm{G}_{1} \mathrm{G}_{3}}{1+\mathrm{H}_{1} \mathrm{G}_{1}+\mathrm{H}_{2} \mathrm{G}_{2}-\mathrm{G}_{1} \mathrm{G}_{3} H_{1} \mathrm{H}_{2}}
\end{aligned}
$$

02. Ans: (a)

Sol: The main objective of drawing the root locus plots are

- To find out closed loop stability of system
- To find the range of K to make the system stable
- To find out relative stability of system
- To obtain a clear picture of the closed loop poles of the system
- To obtain a clear picture of the transient response of the system for varying gain K .
- To find out K-value for undamped, under damped, critical damped, over damped systems.

3. Ans: (c)

Sol:

$$
\begin{aligned}
& \mathrm{CE}=\mathrm{s}^{2}+4 \mathrm{~s}+4=0 \\
& \omega_{\mathrm{n}}^{2}=4 \\
& \omega_{\mathrm{n}}=2 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

04. Ans: (b)

Sol: PD controller is very sensitive to noise.
05. Ans: (b)

Sol: Since the value of resistance is independent of the frequency, the system is stable for all frequencies.
06. Ans: (a)

Sol: Angle condition

$$
\begin{aligned}
\left.\angle \mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})\right|_{\mathrm{s}_{1}=-\frac{1}{2}+\mathrm{j} \frac{\sqrt{3}}{2}} & =\frac{\angle \mathrm{K}}{\angle\left(-\frac{1}{2}+\frac{\mathrm{j} \sqrt{3}}{2}+1\right)^{3}} \\
& =\frac{\angle K}{\angle\left(\frac{1}{2}+\frac{j(\sqrt{3})}{2}\right)^{3}} \\
& =-3 \tan ^{-1}(\sqrt{3})=-180^{\circ}
\end{aligned}
$$

\rightarrow satisfies angle condition
$\rightarrow \mathrm{s}_{1}$ is on root locus

$$
\begin{aligned}
&\left.\angle \mathrm{G}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})\right|_{\mathrm{s}_{2}=\left(-\frac{1}{2}+\mathrm{j} \frac{1}{2}\right)}= \frac{\angle \mathrm{K}}{\angle\left(-\frac{1}{2}+\mathrm{j} \frac{1}{2}+1\right)^{3}} \\
&=\frac{\angle \mathrm{K}}{\angle\left(\frac{1}{2}+\mathrm{j} \frac{1}{2}\right)^{3}} \\
&=-3 \tan ^{-1}(1)=-135^{\circ}
\end{aligned}
$$

\rightarrow Not satisfies angle condition
$\rightarrow \mathrm{s}_{2}$ is not on Root Locus

07. Ans: (a)

Sol: $\xrightarrow{\mathrm{CE}} 1+\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=0$
$\xrightarrow{C E} \mathrm{~s}^{3}+6 \mathrm{~s}^{2}+\mathrm{Ks}^{2}+11 \mathrm{~s}+6+\mathrm{K}=0$
$\xrightarrow{C E}\left(\mathrm{~s}^{3}+6 \mathrm{~s}^{2}+11 \mathrm{~s}+6\right)+\mathrm{K}\left(\mathrm{s}^{2}+1\right)=0$
$G(s) H(s)=\frac{K\left(s^{2}+1\right)}{s^{3}+6 s^{2}+11 s+6}$
No. of Asymptotes $\mathrm{N}=|\mathrm{P}-\mathrm{Z}|=|3-2|=1$
$\theta_{0}=\frac{(2 \ell+1) 180^{\circ}}{(\mathrm{P}-\mathrm{Z})}=\frac{(2 \times 0+1) 180^{\circ}}{1}=180^{\circ}$
08. Ans: (d)

Sol: Option (a) is lag compensator which is wrong
Options (b), (c) \& (d) are lead compensators.
Here required to verify stability with Gain K

$$
\begin{aligned}
& \mathrm{G}(\mathrm{~s})=\frac{1}{\mathrm{~s}-1}, \mathrm{G}_{\mathrm{c}}(\mathrm{~s})=\mathrm{K}\left(\frac{\mathrm{~s}+2}{\mathrm{~s}+10}\right) \\
& \left.\mathrm{G}(\mathrm{~s})\right|_{\omega_{\mathrm{c}}}=\frac{\mathrm{K}(\mathrm{~s}+2)}{(\mathrm{s}-1)(\mathrm{s}+10)}, \mathrm{H}(\mathrm{~s})=1 \\
& \xrightarrow[C E]{ } 1+\left.\mathrm{G}(\mathrm{~s})\right|_{\omega_{\mathrm{c}}}=0 \\
& \xrightarrow[C E]{ } \mathrm{s}^{2}+10 \mathrm{~s}-\mathrm{s}-10+\mathrm{Ks}+2 \mathrm{~K}=0 \\
& \xrightarrow[C E]{ } \mathrm{s}^{2}+9 \mathrm{~s}-10+\mathrm{Ks}+2 \mathrm{~K}=0 \\
& \mathrm{~s}^{2}+\mathrm{s}(\mathrm{~K}+9)+(2 \mathrm{~K}-10)=0
\end{aligned}
$$

$$
\begin{array}{lll}
\mathrm{s}^{2} & 1 & 2 \mathrm{~K}-10 \\
\mathrm{~s}^{1} & (\mathrm{~K}+9) & \\
\mathrm{s}^{0} & (2 \mathrm{~K}-10) &
\end{array}
$$

$(\mathrm{K}+9)>0 \Rightarrow \mathrm{~K}>-9$,
$(2 \mathrm{~K}-10)>0 \Rightarrow \mathrm{~K}>5$
K > 5 Given system with lead compensator becomes stable. Option (d) is correct

09. Ans: (a)

Sol: $\quad \alpha=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{1}{1+1}=\frac{1}{2}$

$$
\begin{aligned}
\phi_{\mathrm{m}} & =\sin ^{-1}\left(\frac{1-\alpha}{1+\alpha}\right)=\sin ^{-1}\left(\frac{1-\frac{1}{2}}{1+\frac{1}{2}}\right) \\
& =\sin ^{-1}\left(\frac{1}{3}\right)
\end{aligned}
$$

10. Ans: (c)

Sol: If the poles are located in left side of s - plane, then the system is stable. (or)
The IR of a causal and stable system must be absolutely integrable between the limits 0 and $\infty \quad \int_{0}^{\infty}|\mathrm{IR}| \mathrm{dt}<\infty$
If the roots are located on imaginary axis which are repeated then the system is unstable. $\int_{0}^{\infty}|\mathrm{IR}| \mathrm{dt}=\infty$
When non-repeated or simple poles poles are located on imaginary axis, then the system is marginally or limitedly or critically or just stable (or) When time $t \rightarrow \infty$ IR is neither approaches to ' 0 ' nor goes to ' ∞ ' and will have fixed IR.
11. Ans: (d)

Sol:

$\omega=0 \quad \angle \mathrm{TF}=-180^{\circ}$

TEST YOUR PREP IN A REAL TEST ENVIRONMENT
 Pre GAIJE - 2020

Date of Exam : $\mathbf{1 8}^{\text {th }}$ January 2020

 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019Highlights:

- Get real-time experience of GATE-20 test pattern and environment.
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for CATE-20 toppers.

SSC-JE (Paper-I) OOnline Test Series

Staff Selection Commission - Junior Engineer

No. of Tests : 20

Subject Wise Tests: 16| Mock Tests - 4
Civil| Electrical | Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination
12. Ans: (c)

Sol: $\quad \angle \frac{e^{\frac{-\pi}{2} \mathrm{j} \omega}}{\mathrm{j} \omega}=-\pi$
$-\left(\frac{\pi}{2} \omega+\frac{\pi}{2}\right)=-\pi$
$\omega_{\mathrm{pc}}=1 \mathrm{rad} / \mathrm{sec}$
$\left|\frac{e^{\frac{-\pi}{2} \mathrm{j} \omega}}{\mathrm{j} \omega}\right|=\frac{1}{\omega}=1$
$\therefore \mathrm{GM}=1$ or 0 dB
$\left|\frac{e^{\frac{-\pi}{2} \mathrm{j} \omega}}{\mathrm{j} \omega}\right|=1$
$\omega_{\mathrm{gc}}=1 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
\mathrm{PM} & =180^{\circ}-90^{\circ}-\frac{\pi}{2} \omega_{\mathrm{gc}} \\
& =180^{\circ}-90^{\circ}-90^{\circ}=0^{\circ} \\
\mathrm{PM} & =0^{\circ}
\end{aligned}
$$

13. Ans: (a)

Sol: $G(s)=\frac{8}{(S+10)^{2}}$
$S=j \omega$
$G(j \omega)=\frac{8}{(j \omega+10)^{2}}$
$|G(j \omega)|=\frac{8}{\left(\sqrt{\omega^{2}+10^{2}}\right)^{2}}$
O / p amplitude $=\mathrm{I} / \mathrm{p}$ amplitude $\times|\mathrm{G}(\omega)|$

$$
=2 \cdot \frac{8}{\left(\sqrt{\omega^{2}+10^{2}}\right)^{2}}
$$

Where $\omega=3 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
\mathrm{o} / \mathrm{p} \text { amplitude } & =\frac{2 \times 8}{(\sqrt{100+9})^{2}} \\
& =\frac{16}{109} \\
& =0.146
\end{aligned}
$$

14. Ans: (a)

Sol:

Number of forward paths $=2$
RabcdY, RacdY
Number of two non touching loops $=1$ aba, cdc
15. Ans: (a)

Sol:

$\mathrm{TF}_{1}=\frac{\mathrm{L} \cdot \mathrm{T}\left[-0.5\left(1+\mathrm{e}^{-2 \mathrm{t}}\right)\right]}{\mathrm{L} \cdot \mathrm{T}[\mathrm{u}(\mathrm{t})]}$
$=\frac{-0.5\left(\frac{1}{\mathrm{~s}}+\frac{1}{\mathrm{~s}+2}\right)}{\frac{1}{\mathrm{~s}}}=\frac{-(\mathrm{s}+1)}{\mathrm{s}+2}$
$\mathrm{TF}_{2}=\frac{1}{\mathrm{~s}+1}$
Overall transfer function of system
$\mathrm{TF}=\mathrm{TF}_{1} \cdot \mathrm{TF}_{2}=\frac{-1}{\mathrm{~s}+2}$

16. Ans: (c)

Sol: There are two loops
Loop gain $1=-\mathrm{H}_{1} \mathrm{G}_{1} \mathrm{G}_{2}$
Loop gain $2=-\mathrm{H}_{2} \mathrm{G}_{3}$

17. Ans: (d)

Sol: $\mathrm{TF}=\frac{\mathrm{R}+\frac{1}{\mathrm{Cs}}}{\mathrm{R}+\mathrm{Ls}+\mathrm{R}+\frac{1}{\mathrm{Cs}}}=\frac{\mathrm{RCs}+1}{\mathrm{LCs}^{2}+2 \mathrm{RCs}+1}$
2 poles, 1 zero.
18. Ans: (b)

Sol: $\mathrm{CE} \rightarrow \mathrm{s}^{2}+3 \mathrm{~s}+2=0$
From above equation,
$2 \xi \omega_{\mathrm{n}}=3$ and $\omega_{\mathrm{n}}=\sqrt{2}$
$\Rightarrow \xi=\frac{3}{2 \sqrt{2}}>1 \Rightarrow$ over damped

Final value
$C(\infty)=\operatorname{Lt}_{\mathrm{s} \rightarrow 0} \frac{2}{(\mathrm{~s}+1)(\mathrm{s}+2)}=1$
19. Ans: (c)

Sol: The bandwidth for first order system,
BW $=\frac{1}{T}$, Here ' T ' is time constant
OLTF: $G(s)=\frac{1}{s+1}$

$$
\mathrm{G}(\mathrm{~s})=\frac{1}{s T+1}
$$

Time constant, $\mathrm{T}=1$
Bandwidth $=\mathrm{G}(\mathrm{s})=\frac{1}{1}=1 \mathrm{rad} / \mathrm{s}$
CLTF $=\frac{1}{s+2}=\frac{\frac{1}{2}}{1+\frac{s}{2}}$
$\mathrm{T}=\frac{1}{2}$
Bandwidth $=\frac{1}{T}=2 \mathrm{rad} / \mathrm{s}$
20. Ans: (a)

Sol:

$+\mathrm{x}^{6}$	1	-2	-16	32
$+\mathrm{x}^{5}$	1	0	-16	0
$-\mathrm{x}^{4}$	-2	0	32	
$-\mathrm{x}^{3}$	$0(-8)$	0	0	
$+\mathrm{x}^{2}$	O(8)	32		
$+\mathrm{x}^{1}$	$\underline{(32)(8)}$			
	ε			
$+\mathrm{x}^{0}$	32			

$$
\mathrm{AE}=-2 \mathrm{x}^{4}+32
$$

$$
\frac{\partial \mathrm{AE}}{\partial \mathrm{x}}=-8 \mathrm{x}^{3}
$$

No. of RH roots $=2$
$j \omega$ roots $=2$
LH roots $=2$
21. Ans: (a)

Sol: Delay time $\rightarrow 0$ to 50% of the final value Rise time $\rightarrow 10$ to 90% of the final value
22. Ans: (b)

Sol: $T(s)=\frac{C(s)}{R(s)}=\frac{\mathrm{G}(\mathrm{s})}{1+\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})}$

$$
\begin{aligned}
& =\frac{\frac{K(s+4)}{s(s+1)}}{1+\frac{1}{s+2} \cdot \frac{K(s+4)}{s(s+1)}} \\
& =\frac{K(s+4)(s+2)}{s(s+1)(s+2)+K(s+4)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C} . E=1+\mathrm{E}(\mathrm{~s}) \mathrm{H}(\mathrm{~s})=0 \\
& \mathrm{~s}^{3}+3 \mathrm{~s}^{2}+2 \mathrm{~s}+\mathrm{Ks}+4 \mathrm{~K}=0 \\
& \mathrm{~s}^{3}+3 \mathrm{~s}^{2}+(2+\mathrm{K}) \mathrm{s}+4 \mathrm{~K}=0
\end{aligned}
$$

RH table:

s^{3}	1	$2+K$
s^{2}	3	$4 K$
s^{1}	$\frac{6+3 K-4 K}{3}$	
s^{0}	$4 K$	

For marginal stable: s^{1}-row must be zero $\frac{6-K}{3}=0$
$K=6$

23. Ans: (a)

Sol: \quad T.F $=\frac{\mathrm{L}[\text { output }]}{\mathrm{L}[\text { input }]}=\frac{\mathrm{L}[\mathrm{c}(\mathrm{t})]}{\mathrm{L}[\text { unit step }]}$

$$
\begin{gathered}
=\frac{\mathrm{L}\left[1-\mathrm{e}^{-10 \mathrm{t}}-10 \mathrm{te}^{-10 \mathrm{t}}\right]}{\mathrm{L}[\mathrm{u}(\mathrm{t})]} \\
=\frac{\frac{1}{\mathrm{~s}}-\frac{1}{\mathrm{~s}+10}-\frac{10}{(\mathrm{~s}+10)^{2}}}{\frac{1}{\mathrm{~s}}} \\
\Rightarrow \frac{\mathrm{C}(\mathrm{~s})}{\mathrm{R}(\mathrm{~s})}=\frac{100}{\mathrm{~s}^{2}+20 \mathrm{~s}+100}=\frac{\omega_{\mathrm{n}}^{2}}{\mathrm{~s}^{2}+2 \zeta \omega_{\mathrm{n}} \mathrm{~s}+\omega_{\mathrm{n}}^{2}} \\
\omega_{\mathrm{n}}=10 \mathrm{rad} / \mathrm{sec} ; 2 \zeta \omega_{\mathrm{n}}=20 \\
2 \zeta(10)=20 \\
\zeta=1
\end{gathered}
$$

Impulse response in time domain
$=\mathrm{L}^{-1}$ [transfer function]
$=L^{-1}\left[\frac{100}{s^{2}+20 s+100}\right]$
$=L^{-1}\left[\frac{100}{(s+10)^{2}}\right]=100 \mathrm{t} \mathrm{e}^{-10 \mathrm{t}}$

24. Ans: (b)

Sol: Given $\mathrm{A}_{\mathrm{v}}=100, \mathrm{Z}_{\mathrm{i}}=1 \mathrm{k} \Omega, \mathrm{Z}_{0}=5 \mathrm{k} \Omega=\mathrm{Z}_{\mathrm{L}}$
Current-Shunt Negative feedback Amplifier gain is Current gain.

$$
\begin{aligned}
& A_{v}=\frac{A_{\mathrm{I}} \cdot \mathrm{Z}_{\mathrm{L}}}{\mathrm{Z}_{\mathrm{i}}} \Rightarrow \mathrm{~A}_{\mathrm{I}}=\frac{\mathrm{A}_{\mathrm{v}} \cdot \mathrm{Z}_{\mathrm{i}}}{\mathrm{Z}_{\mathrm{L}}}=\frac{100 \times 1}{5}=20 \\
& 1+\beta \mathrm{A}_{\mathrm{I}}=1+0.2(20)=5 \\
& \mathrm{Z}_{\mathrm{if}}=\frac{\mathrm{Z}_{\mathrm{i}}}{1+\beta \mathrm{A}_{\mathrm{I}}}=\frac{1}{5} \mathrm{k} \Omega
\end{aligned}
$$

25. Ans: (b)

Sol: The feedback circuit of Wein Bridge oscillator is as below.

$\frac{\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{o}}}{\mathrm{R}+\frac{1}{\mathrm{SC}}+\mathrm{SCV}_{\mathrm{F}}}+\frac{\mathrm{V}_{\mathrm{F}}}{\mathrm{R}}=0$
$\mathrm{~V}_{\mathrm{F}}\left(\frac{1}{\mathrm{R}+\frac{1}{\mathrm{SC}}}+\mathrm{SC}+\frac{1}{\mathrm{R}}\right)=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{R}+\frac{1}{\mathrm{SC}}}$
$\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{F}}}=1+\mathrm{SC}\left(\mathrm{R}+\frac{1}{\mathrm{SC}}\right)+\frac{1}{\mathrm{R}}\left(\mathrm{R}+\frac{1}{\mathrm{SC}}\right)$
$=1+\mathrm{SCR}+1+1+\frac{1}{\mathrm{SCR}}$
$=3+\mathrm{SCR}+\frac{1}{\mathrm{SCR}}$
$\Rightarrow \frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{F}}}=3+\mathrm{j}\left(\omega R \mathrm{C}-\frac{1}{\omega R C}\right)$
At resonant frequency
$\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{F}}}=3(\because$ Imaginary part is zero $)$
\therefore Attention factor (or) feedback factor, $\beta=\frac{\mathrm{V}_{\mathrm{F}}}{\mathrm{V}_{\mathrm{o}}}=\frac{1}{3}$

HEARTY CONGRATULATIONS
 TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33

(EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

 dIcITAL CLASSES for
 ESE 2020/2021 General Studies \& Engineering Aptitude
 Computer Science \&
 Information Technology

26. Ans: (c)

Sol: Given $\mathrm{A}=300, \mathrm{D}=16 \%, \beta=\frac{5}{100}$
$1+\beta \mathrm{A}=1+\frac{5}{100} \times 300=16$
$D_{f}=\frac{D}{1+\beta A}=1 \%$

27. Ans: (b)

Sol: 1. Reverse bias is applied between gate and source \Rightarrow High input resistance in a FET amplifier
2. Minority carrier current is almost zero \Rightarrow Good bias stability
3. In FET's and MOSFET's voltage gain is very less because A_{V} is a function of g_{m} but $g_{m} \propto I_{D}$. Since the channel width is narrow, I_{D} is small \Rightarrow Gain bandwidth product is low
4. Total current is contributed by majority carriers and more over there were no junctions in the current flowing path from source to drain \Rightarrow lower noise
28. Ans: (c)

Sol: Feedback factor $\beta=\frac{-C_{1}}{C_{2}}=\frac{-180}{18}=-10$
29. Ans: (d)

Sol: The equivalent circuit is

When $\frac{\mathrm{V}_{\mathrm{i}}}{2}>0.7 \mathrm{~V}$

$$
\mathrm{D}-\mathrm{ON} \Rightarrow \mathrm{~V}_{0}=0.7 \mathrm{~V}
$$

When $\frac{\mathrm{V}_{\mathrm{i}}}{2} \leq 0.7 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{D}-\mathrm{OFF} \Rightarrow \mathrm{~V}_{0}=\frac{\mathrm{V}_{\mathrm{i}}}{2}=2.5 \sin \omega \mathrm{t} \\
& \Rightarrow \mathrm{~V}_{0 \min }=-2.5 \mathrm{~V} \\
& \therefore\left(\mathrm{~V}_{0}\right)_{\max }=0.7 \mathrm{~V},\left(\mathrm{~V}_{0}\right)_{\min }=-2.5 \mathrm{~V}
\end{aligned}
$$

30. Ans: (b)

Sol: Input power $=\mathrm{V}_{\mathrm{i}} \times \mathrm{I}_{\mathrm{i}}$

$$
=0.5 \times 2 \times 10^{-3}=1 \mathrm{~mW}
$$

Output power $=\mathrm{V}_{0} \times \mathrm{I}_{0}=16 \times 15 \times 10^{-3}$

$$
=240 \mathrm{~mW}
$$

Power gain $=\frac{P_{0}}{P_{i}}=240$
31. Ans: (c)

Sol:

$\mathrm{V}_{\mathrm{b}}=\frac{\mathrm{V}_{0}(1 \mathrm{k})+(1 \mathrm{~V})(9 \mathrm{k})}{10 \mathrm{k}}$
$\mathrm{V}_{\mathrm{b}}=\frac{\mathrm{V}_{0}+9}{10}$
$\mathrm{V}_{0}=\mathrm{A}\left(\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}\right)$
$\mathrm{V}_{0}=10\left(0-\frac{\mathrm{V}_{0}+9}{10}\right)$
$\mathrm{V}_{0}=-\mathrm{V}_{0}-9$
$2 \mathrm{~V}_{0}=-9$
$\therefore \mathrm{V}_{0}=-4.5$ Volts
32. Ans: (a)

Sol:
\rightarrow A BJT acts as amplifier in active region
\rightarrow Transformer coupling reduces the number of stages for achieving same power gain as compared to RC coupled stages.
\rightarrow Direct coupling is preferred to amplify
DC and low frequency signals
33. Ans: (c)

Sol: When diode is OFF,
$\mathrm{V}_{0}=3\left(\frac{2 \mathrm{k}}{2 \mathrm{k}+6 \mathrm{k}}\right)=0.75 \mathrm{~V}$
$\mathrm{V}_{\mathrm{A}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}=0.75 \mathrm{~V}$,
$\Rightarrow \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{C}}=2.25 \mathrm{~V}$
So, $\mathrm{V}_{\mathrm{A}}>\mathrm{V}_{\mathrm{C}} \Rightarrow$ Then Diode is ON .

$\therefore \mathrm{V}_{0}=3-0.7=2.3 \mathrm{~V}$
34. Ans: (c)

Sol:

JFET operating in region ' I ' if $\mathrm{I}_{\mathrm{D}}<\mathrm{I}_{\mathrm{DSS}}, \mathrm{I}_{\mathrm{D}}$ is linearly related to V_{DS}, so it behaviour like a resistor.
35. Ans: (c)

Sol: \rightarrow Placing a BJT around an op-amp provides a logarithmic function.
\rightarrow Placing a diode around an op-amp leads to precision rectifier i.e., a circuit that can rectify very small input swings.
\rightarrow Integrators suffer from op-amp imperfections like DC offsets and input bias currents.
\rightarrow The speed of op-amp circuits is limited by the bandwidth of the op-amps. For large signals, the op-amp suffers from a finite slew rate, distorting the output waveform.
36. Ans: (c)

Sol: The feedback circuit of Wein Bridge oscillator is as below

$\frac{\mathrm{V}_{\mathrm{F}}-\mathrm{V}_{\mathrm{o}}}{\mathrm{R}+\frac{1}{\mathrm{SC}}}+\mathrm{SCV}_{\mathrm{F}}+\frac{\mathrm{V}_{\mathrm{F}}}{\mathrm{R}}=0$
$\mathrm{V}_{\mathrm{F}}\left(\frac{1}{\mathrm{R}+\frac{1}{\mathrm{SC}}}+\mathrm{SC}+\frac{1}{\mathrm{R}}\right)=\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{R}+\frac{1}{\mathrm{SC}}}$
$\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{V}_{\mathrm{F}}}=1+\mathrm{SC}\left(\mathrm{R}+\frac{1}{\mathrm{SC}}\right)+\frac{1}{\mathrm{R}}\left(\mathrm{R}+\frac{1}{\mathrm{SC}}\right)$
$=1+\mathrm{SCR}+1+1+\frac{1}{\mathrm{SCR}}=3+\mathrm{SCR}+\frac{1}{\mathrm{SCR}}$
$\Rightarrow \frac{V_{\mathrm{o}}}{\mathrm{V}_{\mathrm{F}}}=3+\mathrm{j}\left(\omega R C-\frac{1}{\omega R C}\right)$
Feedback factor

$$
\beta=\frac{V_{F}}{V_{o}}=\frac{1}{3+j\left(\omega R C-\frac{1}{\omega C R}\right)}
$$

At frequency of Oscillations, imaginary part is zero, $\beta=1 / 3, \mathrm{~A}=3$

37. Ans: (c)

Sol: Frequency of oscillations generated by the Wein bridge oscillator is

$$
\begin{aligned}
& \mathrm{f}=\frac{1}{2 \pi \sqrt{\left(\mathrm{R}_{1} \mathrm{C}_{1}\right)\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)}} \\
& \text { given } \mathrm{R}_{1}=4 \mathrm{R}, \mathrm{R}_{2}=\mathrm{R}, \mathrm{C}_{1}=\mathrm{C}, \mathrm{C}_{2}=4 \mathrm{C} \\
& \mathrm{f}=\frac{1}{2 \pi \sqrt{(4 \mathrm{RC})(4 \mathrm{RC})}}=\frac{1}{8 \pi \mathrm{RC}}
\end{aligned}
$$

38. Ans: (b)

Sol: The given circuit is a voltage regulator. Then
(i) The unregulated input voltage, V_{S} should be more than the break down voltage of zener diode, V_{Z}
(ii) By applying KCL at node A in the circuit, $\mathrm{I}_{1}=\mathrm{I}_{2}+\mathrm{I}_{\mathrm{L}} \Rightarrow \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{1}-\mathrm{I}_{2}$
(iii) The dynamic resistance of zener diode r_{Z} when it is in break down is very small when compared with the resistance R_{S}.
i.e R_{S} should be more than r_{z}, so that it maintains the current into zener diode between $\mathrm{I}_{\mathrm{Z}_{\text {min }}}$ and $\mathrm{I}_{\mathrm{Z}_{\text {max }}}$
39. Ans: (b)

Sol: A. E-B junction forward bias and C-B junction reverse bias-High gain amplifier
B. Both E-B and C-B junctions forward bias- Saturation condition
C. E-B junction reverse bias and C-B junction forward bias- Very low gain amplifier
D. Both E-B and C-B junctions reverse bias- Cut-off condition

40. Ans: (b)

Sol: $\mathrm{I}_{\mathrm{CQ}}=\frac{\mathrm{V}_{\mathrm{CC}}}{\mathrm{R}_{\mathrm{AC}}+\mathrm{R}_{\mathrm{DC}}}=\frac{\mathrm{V}_{\mathrm{CC}}}{\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{C}}}=\frac{\mathrm{V}_{\mathrm{CC}}}{2 \mathrm{R}_{\mathrm{C}}}$
41. Ans: (a)

Sol: Astable Multivibrator can generate square waveforms.
Mono stable Multivibrator is used for pulse width modulation.
Bi-stable Multivibrator is using to storing binary information.
42. Ans: (d)

Sol:

$\frac{\mathrm{V}_{0} \mathrm{R}_{1}}{\mathrm{R}_{2}+\mathrm{R}_{1}}=\mathrm{V}_{\mathrm{P}} \rightarrow \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{P}}\left[1+\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right]$
$\rightarrow \mathrm{V}_{\mathrm{P}}-\mathrm{V}_{\mathrm{o}}=-\frac{\mathrm{V}_{\mathrm{P}} \mathrm{R}_{2}}{\mathrm{R}_{1}}$
KCL at non inverting terminal
$\frac{\mathrm{V}_{\mathrm{P}}-\mathrm{V}}{\mathrm{R}_{1}}+\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{R}}+\frac{\mathrm{V}_{\mathrm{P}}-\mathrm{V}_{0}}{\mathrm{R}_{2}}=0$
$\frac{\mathrm{V}_{\mathrm{P}}-\mathrm{V}}{\mathrm{R}_{1}}+\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{R}}-\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{R}_{1}}=0$
$\mathrm{V}_{\mathrm{P}}\left[\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}}\right]=\frac{\mathrm{V}}{\mathrm{R}_{1}}$
$\mathrm{V}=\mathrm{V}_{\mathrm{P}}\left[\frac{\mathrm{R}_{1}}{\mathrm{R}}\right]$
$I=\frac{V-V_{P}}{R_{1}}=\frac{V-\frac{V R}{R_{1}}}{R_{1}}$

$$
\therefore \mathrm{R}_{\mathrm{in}}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{\mathrm{R}_{1}}{1-\frac{\mathrm{R}}{\mathrm{R}_{1}}}
$$

43. Ans: (b)

Sol: Conversion time $\mathrm{t}_{\mathrm{A}}=10 \mu \mathrm{~s}$
Sampling frequency $\mathrm{f}_{\mathrm{s}(\max)}=\frac{1}{\mathrm{t}_{\mathrm{A}}}=\frac{1}{10 \mu \mathrm{~s}}$

$$
=0.1 \mathrm{MHz}=100 \mathrm{kHz}
$$

$\mathrm{f}_{\mathrm{s}(\max)}=2 \mathrm{f}_{\mathrm{m}(\max)}$
Maximum input signal frequency

$$
\mathrm{f}_{\mathrm{m}(\max)}=\frac{\mathrm{f}_{\mathrm{s}(\max)}}{2}=\frac{100 \mathrm{kHz}}{2}=50 \mathrm{kHz}
$$

44. Ans: (c)

Sol: Bus idle machine cycles are required for the execution of DAD and TRAP interrupt.
45. Ans: (a)

Sol: Let number of Flip-flops required be N .
$2^{\mathrm{N}} \geq 6000$
$\mathrm{N}=13$
46. Ans: (a)

Sol: No flags will be affected when data transfer instructions are executed.
47. Ans: (c)

Sol: In this $\mathrm{J}_{\mathrm{A}}=\overline{\mathrm{B}}+\overline{\mathrm{C}}, \mathrm{K}_{\mathrm{A}}=\mathrm{BC}, \mathrm{J}_{\mathrm{B}}=\mathrm{A}$,
$\mathrm{K}_{\mathrm{B}}=\overline{\mathrm{A}}, \mathrm{J}_{\mathrm{C}}=\mathrm{B}, \mathrm{K}_{\mathrm{C}}=\overline{\mathrm{B}}$

CLK	$\mathrm{J}_{\mathrm{A}} \mathrm{K}_{\mathrm{A}}$	$\mathrm{J}_{\mathrm{B}} \mathrm{K}_{\mathrm{B}}$	$\mathrm{J}_{\mathrm{C}} \mathrm{K}_{\mathrm{C}}$	A B C	
0					000
1	10	01	01	100	
2	10	10	01	110	
3	10	10	10	111	
4	01	10	10	011	
5	01	01	10	001	
6	10	01	01	100	

Hence, modulus of the counter is 5
48. Ans: (a)

Sol: $\mathrm{x}_{2}=\mathrm{b}_{2} \oplus \mathrm{~b}_{1} \oplus \mathrm{~b}_{1}=\mathrm{b}_{2} \oplus 0=\mathrm{b}_{2}$
$\mathrm{x}_{1}=\mathrm{b}_{2} \oplus \mathrm{~b}_{1}$
$\mathrm{x}_{0}=\mathrm{b}_{0} \oplus \mathrm{~b}_{1}$

b_{2}	$\mathrm{~b}_{1}$	$\mathrm{~b}_{0}$	x_{2}	x_{1}	x_{0}
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0

i.e., binary to gray code converter
49. Ans: (d)

Sol: ADC
Counter type ADC $\quad\left(2^{\mathrm{n}}-1\right) \mathrm{T}_{\text {CLK }}$
Flash type ADC

1. $\mathrm{T}_{\mathrm{CLK}}$

Successive Approx. ADC N.T $\mathrm{T}_{\text {CLK }}$
Dual Slope ADC
So, Dual Slope ADC has maximum conversion time.
50. Ans: (c)

Sol:

MVI C, 0A H	$=7 \mathrm{~T}$
XRA A	$=4 \mathrm{~T}$
LOOP: DCR C	$=4 \mathrm{~T}$
INC A	$=4 \mathrm{~T}$
JNZ LOOP	$=7 \mathrm{~T} / 10 \mathrm{~T}$

So,
Number of T states required

$$
\begin{aligned}
& =7 \mathrm{~T}+4 \mathrm{~T}+(09 \times 18) \mathrm{T}+4 \mathrm{~T}+4 \mathrm{~T}+7 \mathrm{~T} \\
& =7 \mathrm{~T}+4 \mathrm{~T}+162 \mathrm{~T}+4 \mathrm{~T}+4 \mathrm{~T}+7 \mathrm{~T}=188 \mathrm{~T}
\end{aligned}
$$

51. Ans: (d)

Sol: $\sqrt{224_{\mathrm{r}}}=13_{\mathrm{r}} \Rightarrow\left(\sqrt{2 \mathrm{r}^{2}+2 \mathrm{r}+4}\right)_{10}=(\mathrm{r}+3)_{10}$

$$
\begin{gathered}
\Rightarrow 2 r^{2}+2 r+4=r^{2}+6 r+9 \\
\Rightarrow r^{2}-4 r-5=0 \Rightarrow r^{2}-5 r+r-5=0 \\
\\
r(r-5)+1(r-5)=0 \\
(r+1)(r-5)=0
\end{gathered}
$$

i.e. $\operatorname{Radix} r=5$

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

2 FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

2. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm
\checkmark All tests will be conducted in Question Paper Booklet format.
\checkmark Test Series will be conducted at all our centres.

(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

$$
\begin{aligned}
& \text { ONLINE TEST SERIES } \\
& \text { OU }
\end{aligned}
$$

No. of Tests : 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO) Recruitment of Scientist/Engineer 'SC' ELECTRONICS | MECHANICAL | COMPUTER SCIENCE

『 starts from $5^{\text {th }}$ November 2019

 All tests will be available till 12-01-2020.
(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com
52. Ans: (b)

Sol: For odd number of 1 's at the input, the sequential circuit remains in ' S_{1} ' state producing the output 1 .
53. Ans: (d)

Sol: $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum\left(\mathrm{m}_{0}, \mathrm{~m}_{2}, \mathrm{~m}_{7}\right)=\sum \mathrm{m}(0,2,7)$

$$
\begin{aligned}
\mathrm{f}^{\prime}(\mathrm{x}, \mathrm{y}, \mathrm{z}) & =\sum\left(\mathrm{m}_{1}, \mathrm{~m}_{3}, \mathrm{~m}_{4}, \mathrm{~m}_{5}, \mathrm{~m}_{6}\right) \\
& =\Pi\left(\mathrm{M}_{0}, \mathrm{M}_{2}, \mathrm{M}_{7}\right)
\end{aligned}
$$

54. Ans: (d)

Sol: size $=2^{\mathrm{x}} \times \mathrm{y} \times \mathrm{n}$
Let n be the number of chips.;
$\mathrm{x} \rightarrow$ no. of address lines
$y \rightarrow$ no. of data lines
$2^{x} \times y \times n=32 K B$
$2^{12} \times 4 \times \mathrm{n}=32 \times 1024 \times 8$
$\mathrm{n}=\frac{32 \times 1024 \times 8}{2^{12} \times 4}=16$
$\mathrm{n}=16$
55. Ans: (b)

Sol: XOR gate, Half adder, Full subtractor are combinational circuits, register is a sequential circuit.
56. Ans: (c)

Sol: A is connected as negative edge clock input for T-flip-flop. So, for every negative edge B is applied to $\mathrm{FF} . \mathrm{Q}(\mathrm{t}+1)=\mathrm{T} \oplus \mathrm{Q}(\mathrm{t})$

57. Ans: (b)

Sol: If $\mathrm{A}=1$, then irrespective of ' B ' output is ' 0 '. Since transistors are ON
If $\mathrm{A}=0$, then transistors are OFF \&
If $\mathrm{B}=0$, diode $\mathrm{ON} \Rightarrow \mathrm{Y}_{0}=0$
If $\mathrm{B}=1$, diode $\mathrm{OFF} \Rightarrow \mathrm{Y}_{0}=1$

A	B	Y_{0}
1	0	0
1	1	0
0	0	0
0	1	1

$\Rightarrow \mathrm{Y}_{0}=\overline{\mathrm{A}} \mathrm{B}$
58. Ans: (a)

Sol: F(A,B,C,D)
$=\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{D}} \cdot \mathrm{C}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{D}} \cdot 1+\overline{\mathrm{A}} \mathrm{BD} \cdot 1+\mathrm{A} \overline{\mathrm{B}} \mathrm{D} \cdot \overline{\mathrm{C}}$
$=\bar{A} B C \bar{D}+A \bar{B} \bar{D}+\bar{A} B D+A \bar{B} \bar{C} D$
$=\overline{\mathrm{A}} \mathrm{B}(\mathrm{CD}+\mathrm{D})+\mathrm{A} \overline{\mathrm{B}}(\overline{\mathrm{D}}+\overline{\mathrm{C}} \mathrm{D})$
$=\overline{\mathrm{A}} \mathrm{B}(\mathrm{C}+\mathrm{D})+\mathrm{A} \overline{\mathrm{B}}(\overline{\mathrm{C}}+\overline{\mathrm{D}})$

59. Ans: (b)

Sol: A n-bit shift register requires n flip-flops.
A n-bit ripple counter requires n flip-flops.
A n-bit synchronous counter requires n flipflops.
A n -bit ring counter requires n flip-flops.
60. Ans: (c)

Sol: $F=(B \bar{C}+\bar{A} D)(A \bar{B}+C \bar{D})$

$$
\begin{aligned}
& \mathrm{F}=\mathrm{B} \overline{\mathrm{C}} A \overline{\mathrm{~B}}+\mathrm{B} \overline{\mathrm{C}} C \overline{\mathrm{D}}+\overline{\mathrm{A}} D A \overline{\mathrm{~B}}+\overline{\mathrm{A}} \mathrm{DC} \overline{\mathrm{D}} \\
& \mathrm{~F}=0 \\
& \overline{\mathrm{~F}}=1
\end{aligned}
$$

Number of literals in $\overline{\mathrm{F}}=1$ is 0 .
61. Ans: (d)

Sol: (A) 8255-PPI
(B) 8257-DMAC
(C) 8251-USART
(D) 8254-TIMER
(E) 8259-PIC
62. Ans: (a)

Sol: $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{AB}+\overline{\mathrm{A}} \mathrm{C}+\mathrm{BC}$
$=\mathrm{AB}(\mathrm{C}+\overline{\mathrm{C}})+\overline{\mathrm{A}}(\mathrm{B}+\overline{\mathrm{B}}) \mathrm{C}+(\mathrm{A}+\overline{\mathrm{A}}) \mathrm{BC}$
$=\mathrm{ABC}+\mathrm{AB} \overline{\mathrm{C}}+\overline{\mathrm{A} B C}+\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}+\mathrm{ABC}+\overline{\mathrm{A}} \mathrm{BC}$

63. Ans: (c)

Sol: MVI A, 45H : A $\leftarrow 45 \mathrm{H}$
MOV B, A $: \mathrm{B} \leftarrow \mathrm{A} ; \mathrm{A}=\mathrm{B}=45 \mathrm{H}$
STC $: C Y=1$
CMC $\quad: \mathrm{CY}=0$
RAR $: \mathrm{A}=22 \mathrm{H} ; \mathrm{CY}=1$
$\mathrm{XRAB} \quad: \mathrm{A} \oplus \mathrm{B}=22 \mathrm{H} \oplus 45 \mathrm{H}=67 \mathrm{H}$
HLT : Halted
64. Ans: (c)

Sol: $(23 \mathrm{E})_{\mathrm{X}}=2 \mathrm{X}^{2}+3 \mathrm{X}+\mathrm{E}$
In the given number ' E ' is the highest digit so we can take its radix from greater than equal to F . So,
$=2(15)^{2}+3(15)^{1}+\mathrm{E}(15)^{0}$
$=2(225)+3(15)+14=509$
65. Ans: (a)

Sol: For the given circuit to function as an oscillator the number of inverters N should be odd.

$$
\begin{aligned}
\mathrm{f}_{\mathrm{osc}} & =\frac{1}{2 \mathrm{Nt}_{\mathrm{pd}}} \\
\mathrm{t}_{\mathrm{pd}} & =10 \mathrm{n} \mathrm{sec} \\
\mathrm{f}_{\mathrm{osc}} & =\frac{1}{2 \times(10 \mathrm{n} \mathrm{sec}) \times \mathrm{N}} \\
& =\frac{10^{8}}{2 \times 1 \times \mathrm{N}}=\frac{10^{2} \times 10^{6}}{2 \mathrm{~N}}=\frac{50}{\mathrm{~N}} \mathrm{MHz}
\end{aligned}
$$

66. Ans: (c)

Sol: Adding two n-bit numbers,
ROM inputs $=\mathrm{n}+\mathrm{n}=2 \mathrm{n}$
Adding two n -bit numbers largest result size $=(\mathrm{n}+1)$ bits
\therefore ROM size $=2^{2 n} \times(n+1)$ bits
67. Ans: (c)

Sol: ROM, Hard disk \& Magnetic disk are Non-Volatile

RAM is Volatile
68. Ans: (c)

Sol: Given, $\mathrm{N}=10$ and Input-Range $=(0-20) \mathrm{V}$
For proper operation of ADC,
Ripple voltage < Resolution of ADC
Resolution of $\mathrm{ADC}=\frac{\text { Input voltage Range }}{2^{\mathrm{N}}-1}$

$$
=\frac{20}{2^{10}-1} \cong 20 \mathrm{mV}
$$

69. Ans: (c)

Sol: \rightarrow The 8051 microcontroller is a 8 -bit processor and it is based on Harvard architecture.
70. Ans: (c)

Sol: Transfer function applicable for only linear time invariant systems.
71. Ans: (a)

Sol: T.F $=\frac{40}{(s+2)(s+20)}$
DC gain should not change after removing far pole.
DC gain before removing far pole

$$
=\frac{40}{(0+2)(0+20)}=1
$$

T.F after removing far pole $=\frac{\mathrm{K}}{\mathrm{s}+2}$

DC gain $=\frac{K}{0+2}=\frac{K}{2}$
$\therefore \frac{\mathrm{K}}{2}=1 \Rightarrow \mathrm{~K}=2$
T.F $=\frac{2}{\mathrm{~s}+2}$

Comparing with standard $1^{\text {st }}$ order T.F $\frac{\mathrm{A}}{\mathrm{s}+\mathrm{T}}$
\therefore Time constant $=\frac{1}{\mathrm{~T}}=\frac{1}{2}$
2% Settling time, $\mathrm{t}_{\mathrm{s}}=4 \times \frac{1}{2}=2 \mathrm{sec}$ which depends on dominant pole.
72. Ans: (d)

Sol: A fixed bias BJT circuit cannot exhibit better performance as compared to self bias BJT circuit. Hence Statement (I) is false.
73. Ans: (c)

Sol: All Software interrupts of 8085 are Maskable and Vectored. So, Statement (I) is true.

Software interrupts are not random in nature. So, Statement (II) is false.
74. Ans: (b)

Sol: Any Boolean function can be realized by using a suitable multiplexer.
So, statement (I) is true.
A multiplexer can be realized using NAND and NOR gates, which are universal gates. So, statement (II) is true
Statement (I) and Statement (II) are individually true but Statement (II) is not correct explanation for Statement (I).
75. Ans: (a)

Sol: Tri-state logic has three states i.e. logic high, logic low, high impedance.
Tri-state logic is used when more than one input/output devices connected to the same data bus in a digital system by helping in isolating the input/output devices from the data bus.

