SUBJECT: COMPUTER ORGANIZATION \& ARCHITECTURE, ADVANCED COMMUNICATION \& ADV ANCED ELECTRONICS - SOLUTIONS

1. Ans: (c)
2. Ans: (d)

Sol: Ready Queue $\rightarrow \mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{3} \mathrm{P}_{1} \mathrm{P}_{3}$

P_{1}	P_{2}	P_{1}	P_{3}	P_{2}	P_{1}	P_{3}	P_{1}	P_{3}
0	2	4	6	8	10	12	14	16

Process	Arrival time	Burst Time	Finish Time	Turn round time =F.T - A.T	Waiting time =TAT- Burst time
P_{1}	0	8	16	$16-0=16$	$16-8=8$
P_{2}	1	4	10	$10-1=9$	$9-4=5$
P_{3}	3	5	17	$17-3=14$	$14-5=9$

Average waiting time $=\frac{8+5+9}{3}=\frac{22}{3}=7.33$.
03. Ans: (b)
04. Ans: (b)

Sol: Banker's algorithm is used in Deadlock Avoidance Technology
05. Ans: (a)

Sol:

Number of page faults $=37$.

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

2. FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

2. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm
\checkmark All tests will be conducted in Question Paper Booklet format.
\checkmark Test Series will be conducted at all our centres.

(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

$$
\begin{aligned}
& \text { ISRO } \\
& \text { ONLINE TEST SERIES }
\end{aligned}
$$

No. of Tests: 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO) Recruitment of Scientist/Engineer 'SC'

ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
『 starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.
(C) 040-48539866 / 040-40136222 \searrow testseries@aceenggacademy.com
06. Ans: (d)

Sol: Only one process should be allowed in critical section at a time to avoid race condition.
07. Ans: (c)

Sol: In implied Addressing Mode Instruction; the operand is implicit.
$\begin{array}{ll}\text { Ex: } & \text { HLT } \\ & \text { NOP }\end{array}$
08. Ans: (c)

Sol: Except for Strict Alternation remaining suffers from Bounded Waiting.
09. Ans: (c)

Sol: By increasing associativity, the number of conflict misses in cache can be reduced
10. Ans: (d)

Sol: Maximum average turn around time leads by Round Robin.
11. Ans: (b)

Sol: $\mathrm{h}_{\mathrm{b}}=0.8, \mathrm{t}_{\mathrm{b}}=2 \mathrm{~ns}, \mathrm{t}_{\mathrm{m}}=10 \mathrm{~ns}, \mathrm{n}=3$
EAT $=h_{b} \times\left(\mathrm{t}_{\mathrm{b}}+\mathrm{t}_{\mathrm{m}}\right)+\left(1-\mathrm{h}_{\mathrm{b}}\right) \times\left(\mathrm{t}_{\mathrm{b}}+(\mathrm{n}+1) \mathrm{t}_{\mathrm{m}}\right)$

$$
=0.8 \times 12 \mathrm{~ns}+0.2 \times 42 \mathrm{~ns}
$$

$$
=9.6 \mathrm{~ns}+8.4 \mathrm{~ns}=18 \mathrm{~ns}
$$

12. Ans: (c)

Sol: Minimum instance of
$\mathrm{R}=(5-1)+(4-1)+(6-1)+1=13$
13. Ans: (b)
14. Ans: (c)

Sol:

Number of context switches $=8$
15. Ans: (b)

Sol: $\mathrm{h}_{\mathrm{b}}=0.8, \mathrm{t}_{\mathrm{b}}=2 \mathrm{~ns}, \mathrm{t}_{\mathrm{m}}=10 \mathrm{~ns}, \mathrm{~N}=2, \mathrm{P}=\frac{1}{10^{5}}$

$$
\begin{aligned}
\text { EAT } & =\mathrm{h}_{\mathrm{b}} *\left(\mathrm{t}_{\mathrm{b}}+\mathrm{t}_{\mathrm{m}}\right)+\left(1-\mathrm{h}_{\mathrm{b}}\right) *\left[(1-\mathrm{P}) *\left(\mathrm{t}_{\mathrm{b}}+(\mathrm{N}+1) * \mathrm{t}_{\mathrm{m}}\right)+\mathrm{P} * \text { service time }\right] \\
& =0.8 *(2+10) \mathrm{ns}+0.2 *\left[\left(1-\frac{1}{10^{5}}\right) *(2+3 * 10) \mathrm{ns}+\frac{1}{10^{5}} * 10 * 10^{6} \mathrm{~ns}\right] \\
& =9.6 \mathrm{~ns}+0.2 *(131.99968) \\
& =35.999936 \mathrm{~ns}
\end{aligned}
$$

16. Ans: (c)

Sol:

TAT $=$ Finish time - Arrival time
$\mathrm{P}_{1}=41-0=41$
$P_{2}=10-3=7$
$\mathrm{P}_{3}=32-7=25$
Average TAT $=\frac{41+7+25}{3}=\frac{73}{3}=24.33$
17. Ans: (c)

Sol: Offset $\Rightarrow 7$ bits, page no. $\Rightarrow 12-7=5$ bits
$\mathrm{ABC} \Rightarrow$ (21), $7 \mathrm{~A} 4 \Rightarrow$ (15), $\mathrm{A} 5 \mathrm{~A} \Rightarrow$ (20),
$\mathrm{ACD} \Rightarrow$ (21), $75 \mathrm{C} \Rightarrow$ (7), 7B3 \Rightarrow (15),
$5 \mathrm{AC} \Rightarrow{ }^{(11)}, \mathrm{A} 2 \mathrm{D} \Rightarrow{ }^{(20)}, 5 \mathrm{BD} \Rightarrow$ (11).
$21,15,20,21,7,1511,20,11$

21	21 15	21 15 20	7 15 20	11 20

18. Ans: (c)

Sol: Cache hit ratio is high because of spatial and temporal locality of reference.
19. Ans: (a)
20. Ans: (a)

Sol: Replacement policy does not apply on direct mapped cache organization.
21. Ans: (b)
22. Ans: (b)
23. Ans: (b)

Sol: fun(4) \rightarrow fun(3) \rightarrow fun(2) \rightarrow fun(1) \rightarrow fun(0)
print $4 \leftarrow$ print $3 \leftarrow$ print $2 \leftarrow$ print $1 \leftarrow$ return
24. Ans: (b)

Sol: It swap the values.
25. Ans: (b)

Sol: $\mathrm{i}=0 \Rightarrow(5), \mathrm{i}=1 \Rightarrow(4), \mathrm{i}=2 \Rightarrow(3), \mathrm{i}=3$
$\Rightarrow(2), \mathrm{i}=4 \Rightarrow(1)$
Ans $=5+4+3+2+1=15$
26. Ans: (a)

Sol: DMA controller steals the bus service when buses are not used by the system only.
27. Ans: (a)

Sol: \rightarrow In LRU, Hit rate is excellent but Hardware design cost is more expensive.
\rightarrow Hit rate of optimal is closer to LRU
\rightarrow In FIFO, Hit rate is poor but design cost is also cheap.
28. Ans: (c)

Sol: In C programming language 'sizeof' is considered as an operator
29. Ans: (c)

Sol: Maximum size of virtual memory $=$ Size of disk
30. Ans: (b)

Sol: Return type of printf function is integer and value of this integer is exactly equal to number of characters including white space,
printf function prints. So, printf("Hello world") will return 11.

31. Ans: (c)

Sol: Compiler is accessed by user directly and need not be the part of an OS.
32. Ans: (b)

Sol: Segmentation suffers from external fragmentation \& the essential content in page table entry is frame number.
33. Ans: (b)
34. Ans: (b)
35. Ans: (a)

Sol: Here,
$\mathrm{m}=$ number of rows $=2$
$\mathrm{n}=$ number of columns $=3$
$*(\mathrm{~A}[0]+0)=\mathrm{A}[0][0]=10$

* $(\mathrm{A}[1]+0)=\mathrm{A}[1][0]=13$

Similarly all the elements are accessed
$\therefore 101311141215$ is the output
36. Ans (a)

Sol:

- Each variable type takes different amount of memory. So, void pointers can't be used for dereferencing
- Arithmetic operations can't be performed as compiler cannot know after how many bytes next variable is located
- An extern value can be declared many times, but can be initialized only once.

37. Ans: (a)

Sol: The candidate keys are
F, AB, CB
38. Ans: (c)

Sol: The query that returns infinite number of rows is said to be an unsafe query.
39. Ans: (c)

Sol: Candidate keys are A and C. A relation is in BCNF if every LHS of a FD is either candidate or super key.
40. Ans: (d)

Sol: $\mathrm{BC} \rightarrow \mathrm{CD}$ is a transitive dependency
41. Ans: (b)
42. Ans: (b)

Sol: Dependency preserving decomposition is not always possible for R .

43. Ans: (b)

Sol: Descriptive attributes are used to Record information about relationships
44. Ans: (c)

Sol: In dense index, index record is created on every key value. Secondary index requires index entry on every key value.
45. Ans: (d)

Sol: Preamble - It is used for synchronization purpose which alerts receiving stations that a frame is coming.
46. Ans: (a)

Sol: AND 220.10.11.144
255.255.255.224

Base ID 220.10 . 11 . 128
144: 10010000
224: 11100000
128: 10000000

$$
\begin{aligned}
\text { IP address of first host } & =\text { Base ID }+1 \\
& =.128+1 \\
& =.129
\end{aligned}
$$

47. Ans: (b)

Sol: Data + Header size in datagram $\leq \mathrm{MTU}$
Three fragments 1360, 1360, 280 bytes
With MF $(1,1,0)$
Offset($0,1360 / 8,170+170)$
$=170=340$

TEST YOUR PREP IN A REAL TEST ENVIRONMENT

Pre GATE - 2020

Date of Exam : $\mathbf{1 8}^{\text {th }}$ January 2020 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019

Highlights:

- Get real-time experience of GATE-20 test pattern and environment
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for GATE-20 toppers.

PAN INDIA
persthet avanalit in moer then

SSC-JE (Paper-I)

Staff Selection Commission - Junior Engineer

No. of Tests : 20

Subject Wise Tests: $16 \mid$ Mock Tests -4
Civil|Electrical|Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination

48. Ans: (b)

Sol: Number of nodes $=\mathrm{N}=7$
Number of links $={ }^{\mathrm{N}} \mathrm{C}_{2}={ }^{7} \mathrm{C}_{2}=21$

49. Ans: (c)

Sol: TCP is preferred over UDP because it provides Reliable and Connection oriented service.
50. Ans: (c)

Sol: $\mathrm{P}=(\mathrm{c})^{\mathrm{d}} \bmod (\mathrm{n})=(6)^{7} \bmod (77)$

$$
=41
$$

51. Ans: (c)

Sol: (a) 127 is used for loop back addressing i.e. inter process communication
(b) 192.248.16.255 it is Direct Broadcast Address
(c) 150.7.0.0 it represents the Network id of the Network.
52. Ans: (b)

Sol: Number of hosts $\mathrm{N}=3$
Each host transmitting probability $\mathrm{P}=0.8$
Probability that only one host can transmit in an idle slot (throughput of channel)

$$
\begin{aligned}
& =\mathrm{N} * \mathrm{P} *(1-\mathrm{P})^{(\mathrm{N}-1)} \\
& =3 \times 0.8 \times(0.2)^{(3-1)} \\
& =0.096
\end{aligned}
$$

53. Ans: (d)

Sol: Offset is 0 for the first fragment
Offset 200 means there are 200 fragments before this 8 bytes for each fragment 1600 bytes.
54. Ans: (c)

Sol: $128.56 .24 .0 \Rightarrow 00011000$
$128.56 .25 .0 \Rightarrow 00011001$
$128.56 .26 .0 \Rightarrow 00011010$
$128.56 .27 .0 \Rightarrow \quad \frac{00011011}{8+8+6=22}$
Resulting prefix $128.56 .24 .0 / 22$

55. Ans: (d)

Sol: Under class A \{10.0.0.0 to 10.255.255.255\}, Any address within this range belongs to private.
56. Ans: (c)

Sol: The top 4 layers: TL, SL, PL and AL The bottom 3 layers in the communication subnet are physical layer, data link layer and network layer.
57. Ans: (d)

Sol: In microwave frequency range, communication is neither possible through ionosphere (the signal penetrates the ionosphere) nor through earth's surface (very high attenuation at such frequencies.
\rightarrow Due to curvature of earth, the maximum permissible distance between transmitter and receiver is 50 km .
58. Ans: (c)

Sol: Apogee : Largest radius of the elliptical orbit
Perigee : Smallest radius of the elliptical orbit.
first man-made satellite sputnik-1 launched by The Soviet Union in 1957
59. Ans: (b)

Sol: Transponder consists of a receiving antenna whose frequency is equal to uplink frequency and transmitting antenna whose frequency is equal to downlink frequency. \rightarrow There are 4 domains that are used for achieving multiple access, namely frequency, time, code and space.
60. Ans: (b)

Sol: The losses offered by fibre cable are too small compared to copper cable and radio links.
Typical comparative loss values are:
Copper $=50 \mathrm{~dB} / \mathrm{km}$, satellite $=20 \mathrm{~dB} / \mathrm{km}$, optical $=0.1 \mathrm{~dB} / \mathrm{km}$.
61. Ans: (d)

Sol: \rightarrow Angles are always taken with respective to the normal, Therefore,

$\rightarrow \alpha=\frac{10 \log _{10}\left(\frac{\mathrm{P}_{\text {in }}}{\mathrm{P}_{\text {out }}}\right)}{\mathrm{L}}$
62. Ans: (c)

Sol: \rightarrow Dark current is in the order of nA.
\rightarrow LASERs have a shorter life time than LEDs because of their high operating power.
63. Ans: (c)

Sol: Propagation time $=\frac{2 \times \text { distance between earth and geo }- \text { stationary satellite }}{\text { Velocity of light in vaccum }}$

$$
=\frac{2 \times 36000 \mathrm{~km}}{3 \times 10^{8} \mathrm{~m} / \mathrm{sec}} \cong 300 \mathrm{~ms}
$$

64. Ans: (c)

Sol: The microwave frequency bands are
L - band - $1 \mathrm{GHz} \rightarrow 2 \mathrm{GHz}$
S - band - $2 \mathrm{GHz} \rightarrow 4 \mathrm{GHz}$
C - band $-\quad 4 \mathrm{GHz} \rightarrow 8 \mathrm{GHz}$
$\mathrm{X}-$ band $-\quad 8 \mathrm{GHz} \rightarrow 12 \mathrm{GHz}$
$\mathrm{Ku}-$ band $-\quad 12 \mathrm{GHz} \rightarrow 18 \mathrm{GHz}$
$\mathrm{K}-$ band $-\quad 18 \mathrm{GHz} \rightarrow 24 \mathrm{GHz}$
$\mathrm{Ka}-$ band $-\quad 24 \mathrm{GHz} \rightarrow 30 \mathrm{GHz}$

65. Ans: (d)

Sol: Skip distance, $d_{\text {skip }}=2 h \sqrt{\left(\frac{f_{\text {muf }}}{f_{\mathrm{CR}}}\right)^{2}-1}$
h : height at which reflection occurs
$\mathrm{f}_{\text {muf }}$: maximum useable frequency
f_{CR} : Critical frequency of layer of ionosphere
66. Ans: (c)

Sol: Considering obliqueness of the earth
The maximum possible link distance

$$
\mathrm{d} \approx 4.12\left(\sqrt{\mathrm{~h}_{\mathrm{t}}}+\sqrt{\mathrm{h}_{\mathrm{r}}}\right)
$$

Where h_{t}, h_{r} in meters and ' d ' in kilometer
$\mathrm{d} \approx 4.12(\sqrt{200}+\sqrt{80})$
$\mathrm{d} \approx 4.12(14.14+9) \approx 96 \mathrm{~km}$
:9:
ESE-2020 (Prelims) Offline Test Series

67. Ans: (b)

Sol: Fault coverage $=\frac{\text { Number of detectable faults }}{\text { Total number of faults possible in the circuit }}$
\rightarrow Total number of faults possible is ' $2 n$ ' for ' n ' nodes because at every node of the circuit, 2 stuck-at-faults are possible.
\rightarrow Number of detectable faults $=$ Total faults possible in the circuit

- Number of non-detectable faults
$=20-6=14$
\rightarrow fault coverage $=\frac{14}{20}=70 \%$

68. Ans: (d)

Sol: To generate a stuck at fault at a node, the node must be both 0 and 1 controllable
To propagate a stuck at fault at a node, that node must be observable.
69. Ans: (a)

Sol: TPI is an Ad hoc DFT technique used for improving the controllability and observability of internal nodes
70. Ans: (d)

Sol: Sequential circuits have poor controllability and observability i.e., sequential circuits are difficult to test.
71. Ans: (b)

Sol: Optical fibres have broader bandwidth compared to conventional copper and coaxial cables. In single mode optical fibres, Rayleigh scattering serves as the dominant mechanism for optical loss because of exponential increasing bandwidth demand.
Thus, both the statements are true and statement (II) is not the reason for statement (I).

72. Ans: (d)

Sol: In a satellite transponder LNA (Low Noise Amplifier) is must thus statement (I) is wrong.

73. Ans: (a)

Sol: High fault coverage needs to be achieved for a circuit. So, Statement (I) is true The lower the fault coverage, the higher the chance of handling over a detective piece to the customer. So, Statement (II) is true

Statement I and Statement II are correct and Statement II is the reason for Statement I.

74. Ans: (A)

Sol: In linked file allocation the directory entry of file contains a pointer to starting and ending file block only. Each block contains a pointer to the next block occupied by the file. Hence only sequential access is possible.
75. Ans: (C)

HEARTY CONGRATULATIONS
 TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33

(EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

DIGITAL CLASSES for
 ESE 2020/2021 General Studies \& Engineering Aptitude

