Head Office : Sree Sindhi Guru Sangat Sabha Association, \# 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001.
Ph: 040-23234418, 040-2324419, 040-2324420, 040-24750437

FULL LENGTH MOCK TEST - 4 (PAPER - II) SOLUTIONS

01. Ans: (c)

Sol: The flag register of 8086 microprocessor contains three control bits -
TF - Trap flag
IF - Interrupt flag
DF - Direction flag
The trap flag is set to put the 8086 in single step mode.
02. Ans: (b)

Sol: When active low is applied to $\overline{\text { RESET IN }}$, PC sets to 0000 H and resets the interrupt enable and HLDA flip-flops and affects the contents of processor's internal register randomly.

03. Ans: (c)

Sol: $(444)_{3}=\left(4 \times 3^{2}+4 \times 3+4\right)_{10}$

$$
\begin{aligned}
& =4 \times 9+12+4 \\
& =(52)_{10}
\end{aligned}
$$

$(4000)_{3}=\left(4 \times 3^{3}\right)_{10}$
$=(27 \times 4)_{10}$
$=(108)_{10}$
$(4440)_{3}=4 \times 3^{3}+4 \times 3^{2}+4 \times 3+0$
$=108+36+12$

$$
=(156)_{10}
$$

$(2000)_{3}=\left[3^{3} \times 2\right]$
$=27 \times 2$
$=(54)_{10}$
$(0000)_{3}=(00)_{10}$
$\therefore(2000)_{3}$ comes immediately after 444 .
04. Ans: (a)

Sol:

05. Ans: (b)

Sol: Characteristics equation for a $\mathrm{J}-\mathrm{K} F \mathrm{FF}$ is
$\mathrm{Q}(\mathrm{t}+1)=\mathrm{J} \overline{\mathrm{Q}}(\mathrm{t})+\overline{\mathrm{K}} \mathrm{Q}(\mathrm{t}) \quad-(1)$
From the diagram input of D FF can be written as
$\mathrm{D}=\overline{\mathrm{Q}(\mathrm{t})} \mathrm{X}+\mathrm{Q}(\mathrm{t}) \overline{\mathrm{Y}}$
Comparing (1) \& (2)
$\mathrm{J}=\mathrm{X}, \mathrm{K}=\mathrm{Y}$
$\therefore \mathrm{JK}$ FF with $\mathrm{J}=\mathrm{X}, \mathrm{K}=\mathrm{Y}$
06. Ans: (c)
07. Ans: (d)

Sol:

Logic family	TTL	DTL	ECL	CMOS
Fanout	10	9	25	50

ESE - MAINS
 Classes Start from:

 $13^{\text {th }}$ FEB 2020

 $13^{\text {th }}$ FEB 2020}

@ DELHI)
(@ HYDERABAD)

Students who Qualify in Prelims can avail 100 \% Fee Waiver

 ESE-2018, 2019 Prelims Qualified Students are also eligiblefor more details Contact: 040-23234418/19/20, Email: hyderabad@aceenggacademy.com www.aceenggacademy.com

HYDERABAD | | AHMEDABAD I DELHI | PUNE | BHUBANESWAR I LUCKNOW | KOLKATA | VIJAYAWADA I VIZAG | TIRUPATI I CHENNAI | BENGALURU

COAL INDIA LIMITED (CIL) Management Trainees

 Online Test Series6 Full Length Mock Tests Civil | Electrical | Mechanical

Starts From 10 $^{\text {th }}$ Jan 2020
All tests will be available till $28^{\text {th }}$ February 2020
08. Ans: (a)

Sol :

- $(\mathrm{HL})=1234 \mathrm{H}$
- $(\mathrm{H}) \rightarrow(\mathrm{A})=12 \mathrm{H}$
$(\mathrm{A})=12 \mathrm{H}$
- $(\mathrm{A})=12 \mathrm{H}=00010010$
$\underline{(\mathrm{L})}=\underline{34 \mathrm{H}}=\underline{00110100}$
$\underline{(\mathrm{A})}=\underline{46 \mathrm{H}}=\underline{01000110}$
- $\mathrm{CY}=0, \mathrm{P}=0, \mathrm{AC}=0, \mathrm{Z}=0, \mathrm{~S}=0$
(Flag reg) $=00 \times 0 \times 0 \times 0$
$=00000000=00 \mathrm{H}$
- $(\mathrm{TOS}) \leftarrow(\mathrm{PSW})=4600 \mathrm{H}$
(HL) \leftrightarrow (TOS)
$(\mathrm{HL})=4600 \mathrm{H}$
$(\mathrm{TOS})=1234 \mathrm{H}$

9. Ans: (d)

Sol: The waveform at input of $3{ }^{\text {rd }}$ NAND gate is

OUTPUT F

Duty cycle of waveform at $\mathrm{F}=\frac{2}{20} \times 100 \%=10 \%$
10. Ans: (b)

Sol:

11. Ans: (a)

12. Ans: (d)

Sol: Digital output

$$
\begin{aligned}
& =\frac{-1.5}{\left(\frac{4}{2^{8}}\right)}=\frac{-1.5}{\frac{4}{256}}=-1.5 \times 64=-96_{10} \\
& =10100000=\mathrm{A} 0 \mathrm{H}
\end{aligned}
$$

13. Ans: (b)

Sol: The purpose of the state assignment in synchronous sequential circuit is to minimize the logic gates, reduce the number of states and to eliminate output glitches.

14. Ans: (c)

Sol: In an embedded system, the criterion for selection of the processor depends on speed, high code density and energy efficiency.
15. Ans: (c)

Sol: $\mathrm{A} \leftarrow \mathrm{A}+02$ is done 32 times
i.e A value is $64_{10}=40 \mathrm{H}$
16. Ans: (b)

Sol: Bandwidth efficiency $=\frac{\text { Bitrate }}{\text { Bandwidth }} \times 100 \%$

$$
\begin{aligned}
& =\frac{\mathrm{R}_{\mathrm{b}}}{2\left[\frac{\mathrm{R}_{\mathrm{b}}}{2}(1+\alpha)\right]} \\
& \log _{2} \mathrm{M}
\end{aligned} 100 \%
$$

17. Ans: (b)

Sol: $\mathrm{R}_{\mathrm{b}}=80 \mathrm{kpbs} \quad \mathrm{B}=10 \mathrm{kHz}$
$\mathrm{C}=80 \times 10^{3}=\mathrm{B} \log _{2}\left(1+\frac{\mathrm{S}}{\mathrm{N}}\right)$
$\Rightarrow 80 \times 10^{3}=10 \times 10^{3} \log _{2}\left(1+\frac{\mathrm{S}}{\mathrm{N}}\right)$

$$
\begin{aligned}
& \Rightarrow \log _{2}\left(1+\frac{\mathrm{S}}{\mathrm{~N}}\right)=8 \\
& \Rightarrow 1+\frac{\mathrm{S}}{\mathrm{~N}}=2^{8}=256 \\
& \Rightarrow \frac{\mathrm{~S}}{\mathrm{~N}}=256-1=255
\end{aligned}
$$

18. Ans: (b)

Sol: $\mathrm{K}_{\mathrm{a}}=1$

$$
\begin{aligned}
\mu_{1} & =\mathrm{A}_{\mathrm{m}_{1}}=\frac{1}{2} \\
\mu_{2} & =\mathrm{A}_{\mathrm{m}_{2}}=\frac{1}{2} \\
\mu_{\mathrm{f}} & =\sqrt{\frac{1}{4}+\frac{1}{4}} \\
& =\frac{1}{\sqrt{2}} \\
& =0.707
\end{aligned}
$$

19. Ans: (d)

Sol: In A-law companding, the value of A used practically is 87.6
20. Ans: (c)

Sol: The Quantization error in Delta modulation varies from $-\Delta$ to $+\Delta$
21. Ans: (a)

Sol: $\mathrm{f}_{\mathrm{c}}=12 \mathrm{MHz}, \Delta \mathrm{f}=3.2 \mathrm{kHz}, \mathrm{f}_{\mathrm{osc}}=10 \mathrm{MHz}$.
After down conversion $f_{c}-f_{\text {osc }}$ $=12 \mathrm{MHz}-10 \mathrm{MHz}=2 \mathrm{MHz}$
Frequency deviation does not change.
22. Ans: (b)

Sol: For WBPM, Bandwidth $=2(\beta+1) \mathrm{f}_{\mathrm{m}}$ if f_{m} doubles, bandwidth also doubles.
23. Ans: (c)

Sol: $P_{r}=P_{t}-$ Losses $=20-30=-10 \mathrm{~dB}$

$$
P_{r}=10^{-1}=\frac{1}{10}=0.1 \mathrm{~W}
$$

24. Ans: (c)

Sol: $B W=2 \Delta f+2 f_{m} \Rightarrow$ As Δf and f_{m} gets doubled, BW also gets doubled.
25. Ans: (c)

Sol: BW of the modulated signal depends on the message signal frequency only
26. Ans: (d)

Sol: MOSFETs are commonly used in IC technology, operated with a MOS current source and a PMOS active load, or an NMOS active load.
A common drain amplifier also known as a source follower with a sinking source offers unity gain, a very high input resistance and a low output resistance.
27. Ans: (b)

Sol: Here diodes are in parallel so, for positive cycle D_{1} conducts. For negative cycle D_{2} conducts. So, current always flows hence, it contains all harmonics of ' f '.
28. Ans: (b)

Sol: $\frac{\mathrm{dA}_{f}}{d A}=0.2 \frac{\mathrm{~A}_{\mathrm{f}}}{\mathrm{A}} \Rightarrow \frac{\mathrm{dA}_{f}}{\mathrm{dA}}=\frac{1}{1+\beta \mathrm{A}} \times \frac{\mathrm{A}_{\mathrm{f}}}{\mathrm{A}}$
$(1+\beta \mathrm{A})=5 \Rightarrow \beta \mathrm{~A}=4$

$$
\begin{aligned}
\mathrm{A}=\frac{4}{\beta} & =\frac{4}{0.2} \times 100 \\
& =2000 \\
\mathrm{~A}_{\mathrm{f}} & =\frac{\mathrm{A}}{1+\beta \mathrm{A}}=\frac{2000}{5} \\
& =400
\end{aligned}
$$

29. Ans: (b)

Sol: \rightarrow Advantages of crystal oscillator:
i. It is one of the most stable oscillator
ii. High Q - factor of range of 10^{4} to 10^{6} compared to 10^{2} for LC oscillator.
\rightarrow Phase shift oscillator is used in audio range frequency.
30. Ans: (a)

Sol: $\%$ Duty cycle $=\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}+2 \mathrm{R}_{2}} \times 100$
$60=\frac{\mathrm{R}_{1}+200 \mathrm{k} \Omega}{\mathrm{R}_{1}+(2 \times 200 \mathrm{k} \Omega)} \times 100$
$0.6\left(\mathrm{R}_{1}+400 \mathrm{k} \Omega\right)=\left(\mathrm{R}_{1}+200 \mathrm{k} \Omega\right)$
$0.6 \mathrm{R}_{1}+240 \mathrm{k} \Omega=\mathrm{R}_{1}+200 \mathrm{k} \Omega$
$0.4 \mathrm{R}_{1}=40 \mathrm{k} \Omega$
$\mathrm{R}_{1}=100 \mathrm{k} \Omega$.
31. Ans: (c)

Sol: For the given configuration,

Feedback Input impedances
Series-shunt

$$
\mathrm{R}_{\mathrm{i}}(1+\mathrm{A} \beta)
$$

$$
\frac{\mathrm{R}_{\mathrm{i}}}{(1+\mathrm{A} \beta)}
$$

Output impedances
$\frac{R_{0}}{(1+A \beta)}$
$\mathrm{R}_{0}(1+\mathrm{A} \beta)$

So, input impedances of shunt-series impedance is low and output impedance is high compared to series-shunt feedback.
32. Ans: (b)

Sol: $A=250, \beta=0.8$
$\mathrm{A}_{\mathrm{f}}=\frac{\mathrm{A}}{1+\mathrm{A} \beta}=\frac{250}{1+(250 \times 0.8)}=1.2438$
Given, $\frac{\delta \mathrm{A}}{\mathrm{A}}=20 \%$
and $\mathrm{S}_{\mathrm{A}}^{\mathrm{A}_{\mathrm{f}}}=\frac{\delta \mathrm{A}_{\mathrm{f}} / \mathrm{A}_{\mathrm{f}}}{\delta \mathrm{A} / \mathrm{A}}=\frac{1}{1+\beta \mathrm{A}}$
$\frac{\delta \mathrm{A}_{f}}{\mathrm{~A}_{\mathrm{f}}}=\frac{1}{1+\beta \mathrm{A}} \cdot \frac{\delta \mathrm{A}}{\mathrm{A}}=\frac{1}{1+(250 \times 0.8)} \times 20 \%$
$\frac{\delta \mathrm{A}_{f}}{\mathrm{~A}_{\mathrm{f}}}=0.1 \%$
33. Ans: (b)

Sol: In lowpass filter
$\frac{\mathrm{V}_{\mathrm{o}}}{\mathrm{Vi}}=\frac{\frac{1}{\mathrm{SC}}}{\mathrm{R}+\frac{1}{\mathrm{SC}}}=\frac{1}{1+\mathrm{SCR}}$
For pure integrator capacitor should charge quickly and discharge slowly.
So, T is less than discharging time
Here $\mathrm{T} \rightarrow$ Time period
T \ll RC
$\frac{1}{\omega} \ll \mathrm{RC}$
$\omega \tau \gg 1$

34. Ans: (b)

Sol: Gain $=30 \mathrm{~dB}$
$30 \mathrm{~dB}=10 \log _{10}\left(\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{i}}}\right)$
$3=\log _{10}\left(\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{i}}}\right)$
$\frac{\mathrm{P}_{\mathrm{o}}}{\mathrm{P}_{\mathrm{i}}}=10^{3}$
$\mathrm{P}_{0}=10^{3} \times \mathrm{P}_{\mathrm{i}}$
$\mathrm{P}_{0}=10^{3} \times 1 \times 10^{-6}$
$\mathrm{P}_{0}=10^{-3} \mathrm{~W}$
$\mathrm{P}_{0}=1 \mathrm{~mW}$
$P_{0}($ in dB$)=10 \log _{10} 10^{-3}=-30 \mathrm{~dB}$
$P_{0}($ in dBm$)=-30+30=0 \mathrm{dBm}$
35. Ans: (c)

Sol: By definition of I.D.F.T,

$$
\begin{aligned}
& g(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} G\left(e^{j \Omega}\right) e^{j \Omega n} \cdot d \Omega \\
& \because G\left(e^{j \Omega}\right)=-j 2 \Omega \\
& g(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(-j 2 \Omega) e^{j \Omega n} d \Omega
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-j 2}{2 \pi} \int_{-\pi}^{\pi} \Omega \cdot e^{j \Omega n} d \Omega \\
& =\frac{-j}{\pi}\left[\Omega\left(\frac{e^{j \Omega n}}{j n}\right)-1\left(\frac{e^{j \Omega n}}{-n^{2}}\right)\right]_{\Omega=-\pi}^{\Omega=\pi} \\
g(n) & =\frac{-j}{\pi}\left[\left\{\frac{\pi}{j n} e^{j n \pi}+\frac{e^{j n \pi}}{n^{2}}\right\}-\left\{\frac{-\pi}{j n} e^{-j n \pi}+\frac{e^{-j n \pi}}{n^{2}}\right\}\right] \\
g(n) & =\frac{-j}{\pi}\left[\frac{\pi}{j n}(-1)^{n}+\frac{(-1)^{n}}{n^{2}}+\frac{\pi}{j n}(-1)^{n}-\frac{(-1)^{n}}{n^{2}}\right] \\
& =\frac{-j}{\pi}\left(2 \frac{\pi}{j n}(-1)^{n}\right) \\
g(n) & =\frac{-2(-1)^{n}}{n} ; n \neq 0
\end{aligned}
$$

Now,

$$
\begin{aligned}
\sum_{\mathrm{n}=1}^{5} \mathrm{~g}(\mathrm{n}) & =2\left[1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right] \\
& =2 \times \frac{47}{60}=\frac{47}{30}
\end{aligned}
$$

36. Ans: (b)

Sol: $\mathrm{y}(\mathrm{n})=\frac{1}{2}[\mathrm{x}(\mathrm{n})+\mathrm{x}(\mathrm{n}-1)]$

$$
\begin{aligned}
& \mathrm{Y}(\mathrm{z})=\frac{1}{2}\left[\mathrm{X}(\mathrm{z})+\mathrm{z}^{-1} \mathrm{X}(\mathrm{z})\right] \\
& \mathrm{H}(\mathrm{z})=\frac{\mathrm{Y}(\mathrm{z})}{\mathrm{X}(\mathrm{z})}=\frac{1}{2}\left(1+\mathrm{z}^{-1}\right) \\
& \mathrm{H}(\mathrm{z})=\frac{1}{2}\left(1+\mathrm{z}^{-1}\right) \\
& \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\frac{1}{2}\left(1+\mathrm{e}^{-\mathrm{j} \omega}\right)=\frac{1}{2}[1+\cos \omega-\mathrm{j} \sin \omega] \\
& \mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\frac{1}{2}[(1+\cos \omega)-\mathrm{j} \sin \omega] \\
& \left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \sqrt{2(1+\cos \omega)} \\
& =\frac{1}{2} \sqrt{2 \times 2 \cos ^{2}\left(\frac{\omega}{2}\right)}
\end{aligned}
$$

Magnitude spectrum $=\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|=\left|\cos \left(\frac{\omega}{2}\right)\right|$ \&

$$
\begin{aligned}
\theta(\omega) & =\tan ^{-1}\left[\frac{-\frac{\sin \omega}{2}}{\left(\frac{1+\cos \omega}{2}\right)}\right] \\
& =-\tan ^{-1}\left(\frac{2 \sin \frac{\omega}{2} \cdot \cos \frac{\omega}{2}}{2 \cos ^{2} \frac{\omega}{2}}\right) \\
\theta(\omega) & =-\tan ^{-1}\left(\tan \frac{\omega}{2}\right)
\end{aligned}
$$

Phase spectrum $\theta(\omega)=-\frac{\omega}{2}$

37. Ans: (b)

Sol: For a linear phase FIR filter
$\mathrm{h}(\mathrm{n})= \pm \mathrm{h}(\mathrm{M}-1-\mathrm{n}) ; \mathrm{n}=0,1,2$,
\rightarrow For symmetric response
$\mathrm{h}(\mathrm{n})=\mathrm{h}(\mathrm{M}-1-\mathrm{n}) ; \mathrm{n}=0,1,2$, $-----(\mathrm{M}-1)$
if $\mathrm{M}=$ odd then number of filter coefficients $=\frac{\mathrm{M}+1}{2}$
if $\mathrm{M}=$ even then number of filter coefficients $=\mathrm{M} / 2$
\rightarrow For anti-symmetric response,
$h(n)=-h(M-1-n)$
if $M=$ odd, number of filter coefficients $=(\mathrm{M}-1) / 2$
if $M=$ even, number of filter coefficients

$$
=\frac{M}{2}
$$

38. Ans: (b)

Sol: From differentiation in time domain property

$$
\begin{aligned}
\mathrm{x}(\mathrm{t}) & \leftrightarrow \mathrm{C}_{\mathrm{k}} \\
\frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}} & \leftrightarrow\left[\mathrm{jk} \omega_{0}\right] \mathrm{C}_{\mathrm{k}} \\
\frac{\mathrm{dx}(\mathrm{t})}{\mathrm{dt}} & \leftrightarrow[\mathrm{jk} \pi]\left[-\mathrm{k} 2^{-\mathrm{kl}]}\right] \\
& \leftrightarrow-\mathrm{jk} \mathrm{k}^{2} \pi 2^{-|\mathrm{k}|}
\end{aligned}
$$

39. Ans: (c)

Sol: From standard fourier transform pair

$$
\operatorname{sgn}(\mathrm{t}) \leftrightarrow \frac{2}{\mathrm{j} \omega}
$$

From duality property

$$
\begin{gathered}
\frac{2}{\mathrm{jt}} \leftrightarrow 2 \pi \operatorname{sgn}(-\omega) \\
\operatorname{sgn}(-\omega)=-\operatorname{sgn}(\omega) \\
\frac{2}{\mathrm{jt}} \leftrightarrow-2 \pi \operatorname{sgn}(\omega) \\
\frac{1}{\pi \mathrm{t}} \leftrightarrow-\mathrm{j} \operatorname{sgn}(\omega)
\end{gathered}
$$

40. Ans: (c)

Sol:

Assume $\mathrm{y}(\mathrm{n})=\mathrm{x}(-\mathrm{n}-2)$

$$
\begin{aligned}
E_{y(n)} & =\sum_{n=-\infty}^{\infty}|y(n)|^{2}=\sum_{n=-5}^{-2}|y(n)|^{2} \\
& =4+4+16+36 \\
& =60
\end{aligned}
$$

41. Ans: (b)

Sol: Given $s(t)=\left(1-e^{-t}\right) u(t)$
$\mathrm{h}(\mathrm{t})=\frac{\mathrm{ds}(\mathrm{t})}{\mathrm{dt}}$
$\mathrm{h}(\mathrm{t})=\delta(\mathrm{t})-\left\{-\mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})+\mathrm{e}^{-\mathrm{t}} \delta(\mathrm{t})\right\}$
$\mathrm{e}^{-\mathrm{t}} \delta(\mathrm{t})=\mathrm{e}^{-0} \delta(\mathrm{t})=\delta(\mathrm{t})$
$\mathrm{h}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t})$
$H(s)=\frac{1}{s+1}$
Given $y(t)=\left(2-3 e^{-t}+e^{-3 t}\right) u(t)$
Apply Laplace transform

$$
\begin{aligned}
Y(s) & =\frac{2}{s}-\frac{3}{s+1}+\frac{1}{s+3} \\
& =\frac{2 s^{2}+8 s+6-3 s^{2}-9 s+s^{2}+s}{s(s+1)(s+3)}
\end{aligned}
$$

$Y(s)=\frac{6}{s(s+1)(s+3)}$
$\mathrm{X}(\mathrm{s})=\frac{\mathrm{Y}(\mathrm{s})}{\mathrm{H}(\mathrm{s})}$
$X(s)=\frac{6}{s(s+3)}=\frac{2}{s}-\frac{2}{s+3}$
Apply inverse laplace transform
$\mathrm{x}(\mathrm{t})=2\left(1-\mathrm{e}^{-3 \mathrm{t}}\right) \mathrm{u}(\mathrm{t})$
42. Ans: (d)

Sol: Given $\frac{d y(t)}{d t}+y(t)=4 t u(t)$
Apply Laplace transform
$\mathrm{sY}(\mathrm{s})+\mathrm{Y}(\mathrm{s})=\frac{4}{\mathrm{~s}^{2}}$
$Y(s)=\frac{4}{s^{2}(s+1)}=\frac{A}{s^{2}}+\frac{B}{s}+\frac{C}{s+1}$

$$
\begin{aligned}
& Y(s)=\frac{4}{s^{2}}-\frac{4}{s}+\frac{4}{s+1} \\
& y(t)=4 t u(t)-4 u(t)+4 e^{-t} u(t)
\end{aligned}
$$

43. Ans: (b)

Sol: If the input is eigen signal, the output is also same form as eigen signal.
From the given options, if the input is $e^{j \omega_{0} n}$ to an LTI system the output is $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega_{0}}\right) \mathrm{e}^{\mathrm{j} \omega_{0} \mathrm{n}}$.
44. Ans: (d)

Sol: $f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(n \omega_{0} t\right)$

$$
=\mathrm{a}_{0}+\mathrm{A}_{\mathrm{n}} \cos \left(\mathrm{n} \omega_{0} \mathrm{t}+\phi_{\mathrm{n}}\right)
$$

A_{n} and ϕ_{n} (Amplitude and phase spectra) occur at discrete frequencies.

Waveform symmetries (Even, odd, Halfwave) simplify the evaluation of FS coefficients.
45. Ans: (d)

Sol:
1.

Which is non-causal. So, statement (1) is false.
2. The condition for causality is $h(n)=0$ for $\mathrm{n}<0$

The condition for stability is $\sum_{n=-\infty}^{\infty}|\mathrm{h}(\mathrm{n})|<\infty$ So, statement (2) is false.
3.

The above system is non-causal \& stable.
So, statement-3 is false.
4. $\sum_{n=-\infty}^{\infty}|h(n)|=\sum_{n=-\infty}^{10}(3)^{n}=\sum_{n=-10}^{\infty}\left(\frac{1}{3}\right)^{n}<\infty$

So, system is stable system.
46. Ans: (b)

Sol: $W=\sqrt{\frac{2 \in V_{j}}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right)}$
$\mathrm{W} \propto \sqrt{\mathrm{V}_{\mathrm{j}}}$
$\Rightarrow \frac{\mathrm{W}_{1}}{\mathrm{~W}_{2}}=\sqrt{\frac{\mathrm{V}_{0}+\mathrm{V}_{\mathrm{R} 1}}{\mathrm{~V}_{0}+\mathrm{V}_{\mathrm{R} 2}}}$
$\frac{4 \mu \mathrm{~m}}{\mathrm{~W}_{2}}=\sqrt{\frac{0.7+1.3}{0.7+7.3}}=\sqrt{\frac{2}{8}}=\frac{1}{2}$
$\Rightarrow \mathrm{W}_{2}=8 \mu \mathrm{~m}$
47. Ans: (c)

Sol:

$$
\begin{aligned}
& 5=1.7+(15+\mathrm{R}) \times 15 \times 10^{-3}+0.2 \\
& 3.1=15 \times 10^{-3}(15+\mathrm{R}) \\
& \mathrm{R}=191.67 \Omega \\
& \quad \approx 192 \Omega
\end{aligned}
$$

48. Ans: (b)

Sol: $\eta=\frac{\text { Number of EHP generated }}{\text { Number of incident photons }}$

$$
\begin{aligned}
& =\frac{5.4 \times 10^{6}}{6 \times 10^{6}}=0.9 \\
& =90 \%
\end{aligned}
$$

49. Ans: (c)

Sol: Bulk resistance of the diode can be written as
$r_{B}=\frac{V-V_{K}}{I_{f}}$, where $V_{K}=$ knee voltage
$\mathrm{r}_{\mathrm{B}}=\frac{1.3-0.7}{120 \mathrm{~mA}}=\frac{0.6}{120 \mathrm{~mA}}=5 \Omega$
The ac resistance is given by
$R_{a c}=r_{B}+r_{j} \quad$ [where r_{j} is junction resistance]
$\mathrm{r}_{\mathrm{j}}=\frac{25 \mathrm{mV}}{2.5 \mathrm{~mA}}=10 \Omega$
$\mathrm{r}_{\mathrm{ac}}=5+10=15 \Omega$
50. Ans: (c)

Sol: $\mathrm{V}_{\mathrm{Z}}=10 \mathrm{~V}, \mathrm{P}_{\mathrm{Zmax}}=0.15 \mathrm{~W}$
$\Rightarrow I_{Z_{\text {max }}}=\frac{0.15}{10}=15 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{Zmin}}=0 \mathrm{~A}$
$\mathrm{V}_{\mathrm{i}}=\mathrm{IR}+\mathrm{V}_{\mathrm{Z}}$
$\mathrm{I}=\mathrm{I}_{\mathrm{Z}}+\mathrm{I}_{\mathrm{L}}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{L}}=\frac{10}{1 \mathrm{k}}=10 \mathrm{~mA} \\
& \mathrm{I}_{\min }=\mathrm{I}_{\mathrm{Z} \min }+\mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}_{\max }=\mathrm{I}_{\mathrm{Z} \max }+\mathrm{I}_{\mathrm{L}}=25 \mathrm{~mA} \\
& \begin{aligned}
\left(\mathrm{V}_{\mathrm{i}}\right)_{\min } & =\mathrm{I}_{\min } \mathrm{R}+\mathrm{V}_{\mathrm{Z}}=(10 \mathrm{~m})(1 \mathrm{~K})+10 \\
& =20 \mathrm{~V} \\
\left(\mathrm{~V}_{\mathrm{i}}\right)_{\max } & =\mathrm{I}_{\max } \mathrm{R}+\mathrm{V}_{\mathrm{Z}}=(25 \mathrm{~m})(1 \mathrm{~K})+10 \\
& =35 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

51. Ans: (d)

Sol: The Fermi dirac function for hole i.e., probability that at state E is filled (occupied) by hole.

$$
\begin{aligned}
& =1-\mathrm{F}(\mathrm{E}) \\
& =1-\frac{1}{1+\mathrm{e}^{\left(\mathrm{E}-\mathrm{E}_{\mathrm{F}}\right) / \mathrm{KT}}} \\
& =\frac{\mathrm{e}^{\left(\mathrm{E}-\mathrm{E}_{\mathrm{F}}\right) / \mathrm{KT}}}{1+\mathrm{e}^{\left(\mathrm{E}-\mathrm{E}_{\mathrm{F}}\right) / \mathrm{KT}}}
\end{aligned}
$$

52. Ans: (b)

Sol: Given data:
$\tau=20 \mu \mathrm{sec}$
$\mathrm{T}=300 \mathrm{~K}$
$\mathrm{I}=26 \mathrm{~mA}$
Diffusion capacitance

$$
\begin{aligned}
\mathrm{C}_{\mathrm{D}} & =\frac{\mathrm{I} \tau}{\eta \mathrm{~V}_{\mathrm{T}}}\left(\because C_{D}=\tau g\right) \\
& =\frac{26 \times 10^{-3} \times 20 \times 10^{-6}}{1 \times 26 \times 10^{-3}} \\
& =20 \mu \mathrm{~F}
\end{aligned}
$$

53. Ans: (c)

Sol: 1. p-n junction diode is a passive component
2. $\mathrm{W} \propto \mathrm{V}_{\mathrm{j}}^{1 / \mathrm{n}}(\mathrm{n}=2$ for non-linear junction

$$
\mathrm{n}=3 \text { for linear junction) }
$$

and $\mathrm{V}_{\mathrm{j}}=\mathrm{V}_{0}-\mathrm{V}_{\mathrm{B}} \rightarrow$ For forward biasing
3. $\mathrm{I}_{02}=\mathrm{I}_{01} \times 2^{\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{10}}$

So statement (2) and (3) are correct and (1) is false.
54. Ans: (d)

Sol: The drain current in
Saturation region:

$$
\mathrm{I}_{\mathrm{D}}=\frac{1}{2} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{~W}}{\mathrm{~L}}\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2}\left(1+\lambda \mathrm{V}_{\mathrm{DS}}\right)
$$

Linear region:
$\mathrm{I}_{\mathrm{D}}=\frac{1}{2} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{W}}{\mathrm{L}}\left(2\left(\mathrm{~V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2} \mathrm{~V}_{\mathrm{DS}}-\mathrm{V}_{\mathrm{DS}}{ }^{2}\right)$
From the above equations $I_{D} \alpha \frac{1}{L}$
$\frac{\mathrm{I}_{\mathrm{D} 2}}{\mathrm{I}_{\mathrm{D} 1}}=\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}$
$\mathrm{I}_{\mathrm{D} 2}=\mathrm{I}_{\mathrm{D} 1} \frac{\mathrm{~L}_{1}}{2 \mathrm{~L}_{1}}$
$\Rightarrow \mathrm{I}_{\mathrm{D} 2}=\frac{\mathrm{I}_{\mathrm{D} 1}}{2}$
55. Ans: (b)

Sol: $\mathrm{E}_{\mathrm{Fi}}=\frac{\mathrm{E}_{\mathrm{C}}+\mathrm{E}_{\mathrm{V}}}{2}-\frac{\mathrm{kT}}{2} \ln \left(\frac{\mathrm{~N}_{\mathrm{C}}}{\mathrm{N}_{\mathrm{V}}}\right)$
Given,
electron effective mass < hole effective mass

$\left(\mathrm{m}_{\mathrm{n}}\right)$	$\left(\mathrm{m}_{\mathrm{p}}\right)$
$\therefore \mathrm{N}_{\mathrm{C}}<\mathrm{N}_{\mathrm{V}}$	$\because \mathrm{N}_{\mathrm{C}}=4.82 \times 10^{15}\left(\frac{\mathrm{~m}_{\mathrm{n}}}{\mathrm{m}}\right)^{3 / 2} \mathrm{~T}^{3 / 2} / \mathrm{cm}^{3}$
	$\mathrm{~N}_{\mathrm{V}}=4.82 \times 10^{15}\left(\frac{\mathrm{~m}_{\mathrm{p}}}{\mathrm{m}}\right)^{3 / 2} \mathrm{~T}^{3 / 2} / \mathrm{cm}^{3}$

$\therefore \mathrm{E}_{\mathrm{Fi}}>\frac{\mathrm{E}_{\mathrm{C}}+\mathrm{E}_{\mathrm{V}}}{2}$
However the sample is not doped,
$\therefore \mathrm{E}_{\mathrm{F}}$ is not in conduction band or valance band at room temperature.
$\therefore \mathrm{E}_{\mathrm{Fi}}$ is between E_{C} and $\frac{\mathrm{E}_{\mathrm{C}}+\mathrm{E}_{\mathrm{V}}}{2}$.
56. Ans: (d)

Sol: All the given characteristics are belonging to RISC processor.

TEST YOUR PREP IN A REAL TEST ENVIRONMENT
 Pre GAIJE - 2020

Date of Exam : $\mathbf{1 8}^{\text {th }}$ January 2020

 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019Highlights:

- Get real-time experience of GATE-20 test pattern and environment.
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for CATE-20 toppers.

SSC-JE (Paper-I) OOnline Test Series

Staff Selection Commission - Junior Engineer

No. of Tests : 20

Subject Wise Tests: 16| Mock Tests - 4
Civil| Electrical | Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination
57. Ans: (c)

Sol: In set associative mapping, Tag field size $=$ $\log _{2} \frac{M}{S}$, where $M=$ number of blocks in main memory and $S=$ number of sets in cache memory. Here $S=\frac{Q}{4}$
Hence tag field size $\log _{2} \frac{\mathrm{P}}{\mathrm{Q} / 4}=\log _{2} \frac{4 \mathrm{P}}{\mathrm{Q}}$

58. Ans: (c)

Sol:

The above ER model is represented as the following relations
A(a1, a2)
B (b1, b2)
$R\left(\underline{a}_{1} \underline{b}_{1}\right)$, where a_{1}, b_{1} are foreign keys of A and B.
59. Ans: (c)

Sol: The precedence graph contains edges from $\mathrm{T} 1 \rightarrow \mathrm{~T} 2, \mathrm{~T} 3 \rightarrow \mathrm{~T} 1$ and $\mathrm{T} 3 \rightarrow \mathrm{~T} 2$
60. Ans: (c)

Sol: It is necessary to assign name of inner structure at the time of declaration otherwise we cannot access the member of inner structure. So correct declaration is:
struct outer \{
int a;
struct inner \{ char c ;
\} name;
\};
61. Ans: (d)

Sol: Parameters are evaluated from right to left so in abc(++a, a++); first a++ evaluated, later ++a evaluated
\therefore abc $(22,20)$; i.e. passing values 22,20 to $\operatorname{abc}($ int x, int $y)$.

62. Ans: (d)

Sol: Ideal speed up $=$ number of stages $=5$
For 'A', Pipeline time $=(5+99) \times 20 \mathrm{~ns}$

$$
=2080 \mathrm{~ns}
$$

and non pipeline time $=10000 \mathrm{~ns}$
\therefore speed up $=4.8$
then $\eta=\frac{4.8}{5}=96$
For 'B', Pipeline time $=1004 \times 20$

$$
=20080 \mathrm{~ns}
$$

non pipeline time $=1000 \times 5 \times 20=100000$ Speed up $=4.98$
then $\eta=\frac{4.98}{5}=99.6$
63. Ans: (b)

Sol: In virtual memory system CPU generates virtual address, so for translation first of all TLB should be accessed. As given in case of TLB miss, memory system should be accessed. In memory system the first access should be of cache before main memory.
64. Ans: (b)

Sol: Ferromagnetic material susceptibility is positive and large.
Paramagnetic material susceptibility is positive and small.
Diamagnetic material susceptibility is negative and small.
Superconductors are perfect diamagnetic materials having susceptibility as -1 .
65. Ans: (c)

Sol: In Rectangular waveguide $\mathrm{TM}_{00}, \mathrm{TM}_{0 \mathrm{n}}$, $\mathrm{TM}_{\mathrm{m} 0}, \mathrm{TE}_{00}$ modes doesn't exist.
So option (c) is correct.
66. Ans: (b)

Sol: Given:

$$
\mathrm{f}_{\mathrm{c}} \mid \mathrm{TE}_{10}=3 \times 10^{9} \mathrm{~Hz}
$$

$\Rightarrow \frac{\mathrm{c}}{2 \mathrm{a}}=3 \times 10^{9}$
$\Rightarrow \frac{3 \times 10^{10}}{2 \mathrm{a}}=3 \times 10^{9}$
$\Rightarrow \mathrm{a}=\frac{3 \times 10^{10}}{2 \times 3 \times 10^{9}}=5 \mathrm{~cm}$
$\mathrm{f}_{\mathrm{c}} \mid \mathrm{TE}_{01}=6 \times 10^{9} \mathrm{~Hz}$
$\Rightarrow \frac{\mathrm{c}}{2 \mathrm{~b}}=6 \times 10^{9}$
$\Rightarrow \frac{3 \times 10^{10}}{2 \mathrm{~b}}=6 \times 10^{9}$
$\Rightarrow \mathrm{b}=\frac{3 \times 10^{10}}{2 \times 6 \times 10^{9}}=2.5 \mathrm{~cm}$

67. Ans: (a)

Sol: $\left.\mathrm{f}_{\mathrm{c}}\right|_{\mathrm{TM}_{\mathrm{H1}}}=\frac{\mathrm{c}}{2} \sqrt{\left(\frac{1}{\mathrm{a}}\right)^{2}+\left(\frac{1}{\mathrm{~b}}\right)^{2}}$

$$
\begin{aligned}
& =\frac{\mathrm{c}}{2} \sqrt{\left(\frac{1}{2 \mathrm{~b}}\right)^{2}+\left(\frac{1}{\mathrm{~b}}\right)^{2}} \\
& =\frac{\mathrm{c}}{2} \sqrt{\frac{1}{4 \mathrm{~b}^{2}}+\frac{1}{\mathrm{~b}^{2}}} \\
& =\frac{\mathrm{c}}{2} \sqrt{\frac{1+4}{4 \mathrm{~b}^{2}}}=\frac{\mathrm{c}}{2} \times \sqrt{\frac{5}{4 \mathrm{~b}^{2}}} \\
& =\frac{\sqrt{5}}{2} \times \frac{\mathrm{c}}{2 \mathrm{~b}}=\frac{\sqrt{5}}{2} \times\left.\mathrm{f}_{\mathrm{C}}\right|_{\mathrm{TE}_{01}}
\end{aligned}
$$

68. Ans: (d)

Sol: Given:
$\mathrm{Z}_{\mathrm{R}}=\mathrm{X}$ ohm
$\mathrm{Z}_{\text {in }}=\mathrm{Z}_{0}=\mathrm{Y}$ ohm
The required characteristic impedance of quarter wave transmission line is given by
$\mathrm{Z}_{0}^{\prime}=\sqrt{\mathrm{Z}_{\mathrm{in}} \mathrm{Z}_{\mathrm{R}}}$

$$
=\sqrt{\mathrm{Z}_{0} \mathrm{Z}_{\mathrm{R}}}
$$

$\therefore \mathrm{Z}_{0}^{\prime}=\sqrt{\mathrm{XY}}$ ohm
69. Ans: (c)

Sol: Impedance looking into the input end is called input impedance
Given: Transmission line is lossless $\gamma=\mathrm{j} \beta$
length of line $\ell=\frac{\lambda}{8}$

$$
\begin{aligned}
& \beta \ell=\frac{2 \pi}{\lambda} \times \frac{\lambda}{8}=\frac{\pi}{4} \\
& \tan \beta \ell \equiv \tan \frac{\pi}{4}=1 \\
& Z_{\text {in }}= Z_{0}\left(\frac{Z_{R}+j Z_{0} \tan \beta \ell}{Z_{0}+j Z_{R} \tan \beta \ell}\right) \\
& Z_{\text {in }}= Z_{0}\left(\frac{Z_{R}+j Z_{0}}{Z_{0}+j Z_{R}}\right) \\
&= 50\left(\frac{50+\mathrm{j} 25+\mathrm{j} 50}{50+j 50-25}\right) \\
&= 50\left(\frac{50+\mathrm{j} 75}{25+\mathrm{j} 50}\right) \\
&= 50 \times \frac{25(2+\mathrm{j} 3)}{25(1+\mathrm{j} 2)} \\
&= 50 \frac{(2+\mathrm{j} 3)(1-\mathrm{j} 2)}{(1+\mathrm{j} 2)(1-\mathrm{j} 2)} \\
& Z_{\text {in }}= 50 \frac{(2-\mathrm{j} 4+\mathrm{j} 3+6)}{5} \\
&= 10(8-\mathrm{j}) \\
& \therefore Z_{\text {in }}=80-10 \mathrm{j}(\text { or }) 80-\mathrm{j} 10 \Omega
\end{aligned}
$$

70. Ans: (b)

Sol: $\mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{0}\left(\frac{\mathrm{Z}_{\mathrm{R}}+\mathrm{Z}_{0} \tanh \gamma \ell}{\mathrm{Z}_{0}+\mathrm{Z}_{\mathrm{R}} \tanh \gamma \ell}\right)$
$Z_{R} \approx \infty$
$\mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{0} \frac{\mathrm{Z}_{\mathrm{R}}\left(1+\frac{\mathrm{Z}_{0} \tanh \gamma \ell}{\mathrm{Z}_{\mathrm{R}}}\right)}{\mathrm{Z}_{\mathrm{R}}\left(\frac{\mathrm{Z}_{0}}{\mathrm{Z}_{\mathrm{R}}}+\tanh \gamma \ell\right)}$
$\mathrm{Z}_{\text {in }}=\mathrm{Z}_{0} \cot \mathrm{~h} \gamma l$
For lossless line $\alpha=0, \gamma=j \beta$
$\mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{0} \operatorname{coth} \mathrm{~h}(\mathrm{j} \beta l)$
$\therefore \mathrm{Z}_{\mathrm{in}}=-\mathrm{j} \mathrm{Z}_{0} \cot \beta l$

71. Ans: (a)

Sol: Given: $\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \cos \left(2 \pi \times 10^{7} \mathrm{t}-2 \pi \mathrm{z}\right) \hat{\mathrm{a}}_{\mathrm{x}}$

$$
+\mathrm{E}_{0} \cos \left(2 \pi \times 10^{7} \mathrm{t}-3 \pi \mathrm{z}\right) \hat{\mathrm{a}}_{\mathrm{y}}
$$

Direction of propagation: +z

$$
\begin{aligned}
\overrightarrow{\mathrm{E}}_{\mathrm{at}(-2,1,1)}= & \mathrm{E}_{0} \cos \left(2 \pi \times 10^{7} \mathrm{t}-2 \pi\right) \hat{\mathrm{a}}_{\mathrm{x}} \\
& +\mathrm{E}_{0} \cos \left(2 \pi \times 10^{7} \mathrm{t}-3 \pi\right) \hat{\mathrm{a}}_{\mathrm{y}}
\end{aligned}
$$

Let $2 \pi \times 10^{7}=\omega$
$\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \cos (\omega \mathrm{t}-2 \pi) \hat{\mathrm{a}}_{\mathrm{x}}+\mathrm{E}_{0} \cos (\omega \mathrm{t}-3 \pi) \hat{\mathrm{a}}_{\mathrm{y}}$
Amplitude are equal and phase difference is 180°.
Therefore the wave is said to be linearly polarized.

72. Ans: (a)

Sol: Given :
$\overrightarrow{\mathrm{J}}=\mathrm{kx} \quad \hat{\mathrm{a}}_{\mathrm{x}}-5 \mathrm{y} \hat{\mathrm{a}}_{\mathrm{y}}$
Then for a steady current i.e, charge entering and leaving a cross-section of the conductor to be equal at any time,
$\nabla \cdot \overrightarrow{\mathbf{J}}=0$
$\left\{\right.$ Continuity equation, $\nabla \cdot \overrightarrow{\mathbf{J}}=-\frac{\partial \rho_{\mathrm{v}}}{\partial \mathrm{t}}$
but $\rho_{\mathrm{v}}=$ constant $\}$
$\Rightarrow\left(\frac{\partial}{\partial x} \hat{\mathbf{a}}_{x}+\frac{\partial}{\partial y} \hat{\mathbf{a}}_{\mathrm{y}}+\frac{\partial}{\partial \mathrm{z}} \hat{\mathbf{a}}_{\mathrm{y}}\right) \cdot\left(\mathrm{kx} \hat{\mathbf{a}}_{x}-5 \mathrm{y} \hat{\mathrm{a}}_{\mathrm{y}}\right)=0$
$\mathrm{k}-5=0 \Rightarrow \mathrm{k}=5$

73. Ans: (d)

Sol: $A_{e}=k A_{p}$
$\mathrm{A}_{\mathrm{P}}=\frac{\mathrm{A}_{\mathrm{e}}}{\mathrm{k}}=\frac{4}{0.8}$
$\mathrm{A}_{\mathrm{p}}=5 \mathrm{~m}^{2}$

74. Ans: (b)

Sol: Beam area, $\Omega_{\mathrm{A}}=\frac{4 \pi}{\mathrm{D}}$

Where D is directivity
$\Omega_{\mathrm{A}}=\frac{4 \pi}{8 \pi}=0.5 \mathrm{Sr}$

75. Ans: (c)

Sol: Babbit metal (or) bearing metal is any of several alloys used to provide the bearing surface in a plain bearing. Some common compositions are $(90 \% \mathrm{Sn}, 10 \% \mathrm{Cu})$, $(89 \%$ $\mathrm{Sn}, 7 \% \mathrm{Sb}, 4 \% \mathrm{Cu})$, $(80 \% \mathrm{~Pb}, 15 \% \mathrm{Sb}$, $5 \% \mathrm{Sn}$)
76. Ans: (b)

Sol: The total number of atoms per unit cell is given by
$\mathrm{N}=\mathrm{N}_{\text {interior }}+\frac{\mathrm{N}_{\text {face }}}{2}+\frac{\mathrm{N}_{\text {corner }}}{8}$
For simple cubic, BCC and FCC the number of atoms per unit cell are $1,2 \& 4$.
77. Ans: (a)

Sol: Ferrite (α-iron) experiences an allotropic transformation to FCC austenite (or) γ-iron at $912^{\circ} \mathrm{C}$. This austenite persists upto $1394^{\circ} \mathrm{C}$.
78. Ans: (b)

Sol: In superconducting state entropy and thermal conductivity decreases.
79. Ans: (c)

Sol: $\mathrm{H}_{\mathrm{c}}(\mathrm{T})=\mathrm{H}_{\mathrm{c}}(0)\left[1-\left(\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}\right)^{2}\right]$

$$
\begin{aligned}
& =32 \times 10^{3}\left[1-\left(\frac{6}{7.26}\right)^{2}\right] \\
& =10.14 \times 10^{3} \mathrm{~A} / \mathrm{m}
\end{aligned}
$$

80. Ans: (c)

Sol: If the radius ratio $\mathrm{x}=0.414$, a more stable configuration is possible with six anions bonding with a cation. This configuration called the octahedral configuration is stable
for $0.414<x<0.732$. Here the cation occupies the void created by six anions forming an octahedral structure.
81. Ans: (d)

Sol: Volume of unit cell $=a^{3}$
number of atoms per unit cell $=4$
radius of Atoms $=\frac{\mathrm{a} \sqrt{2}}{4}$

$$
\begin{aligned}
\text { packing fraction } & =\frac{4 \times \frac{4}{3} \pi \mathrm{r}^{3}}{\mathrm{a}^{3}} \\
& =4 \times \frac{4}{3} \pi\left(\frac{\sqrt{2}}{4}\right)^{3} \\
& =\frac{\pi \sqrt{8}}{12} \Rightarrow \frac{\pi \times 2 \sqrt{2}}{12} \\
& =\frac{\pi \sqrt{2}}{6}
\end{aligned}
$$

82. Ans: (b)

Sol: In top down technique generally a bulk material is taken and machined it to modify into the desired shape and product. Examples of this type of technique are the manufacturing of integrated circuits using a sequence of steps such as crystal growth, lithography, etching, ion implantation, etc. For nanomaterial synthesis ball-milling is an important top down approach, where microcrystalline structure are broken down to nanocrystalline structures, but original integrity of the material is retained.

83. Ans: (b)

Sol: Consider below circuit,

Initial charge $=\mathrm{C}_{1} \mathrm{~V}_{1}$
Final charge $=\mathrm{C}_{1} \mathrm{~V}+\mathrm{C}_{2} \mathrm{~V}$
By charge conservation principle

$$
\begin{aligned}
& \Rightarrow C_{1} V_{1}=C_{1} V+C_{2} V \\
& \Rightarrow V=\frac{C_{1} V_{1}}{C_{1}+C_{2}}
\end{aligned}
$$

84. Ans: (c)

Sol: $|e|=L \frac{d i}{d t}=L\left[\frac{i_{2}-i_{1}}{\Delta t}\right]$

$$
\begin{aligned}
& =(0.1)\left[\frac{5-(-5)}{10 \times 10^{-3}}\right] \\
& =\frac{1000}{10}=100 \mathrm{Volts}
\end{aligned}
$$

85. Ans: (d)

Sol: $V_{\text {oc }}=V_{\text {th }}=5$ Volts
$\mathrm{I}_{\mathrm{sc}}=\frac{5}{2} \mathrm{~A}=2.5 \mathrm{~A}$
So, $\mathrm{R}_{\mathrm{th}}=\frac{\mathrm{V}_{\mathrm{oc}}}{\mathrm{I}_{\mathrm{sc}}}=\frac{5}{5 / 2}=2 \Omega$

86. Ans: (a)

Sol:

Apply KVL in outer loop
$5-10+\mathrm{V}=0$
$\Rightarrow \mathrm{V}=5$
\therefore Power delivered by 5 A source is $\mathrm{P}_{\text {del }}$
$=5 \times 5$
$=25$ Watts

HEARTY CONGRATULATIONS
 TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33

(EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

 dIcITAL CLASSES for
 ESE 2020/2021 General Studies \& Engineering Aptitude
 Computer Science \&
 Information Technology

87. Ans: (a)

Sol: $\quad M=\frac{N_{2} \phi_{12}}{i_{1}}=\frac{K \phi_{1} N_{2}}{i_{1}}$
$\Rightarrow \mathrm{M}=\frac{(0.6)(0.1) \times 10^{-3} \times 2000}{1}$
$\Rightarrow \mathrm{M}=0.12 \mathrm{H}$
88. Ans: (a)
89. Ans: (a)

Sol: Average Power $=\mathrm{P}_{\mathrm{avg}}=\frac{\mathrm{V}_{\text {rms }}^{2}}{\mathrm{R}}=\frac{\left(\frac{2}{\sqrt{2}}\right)^{2}+\left(\frac{4}{\sqrt{2}}\right)^{2}}{4}$

$$
=\frac{2+8}{4}=\frac{10}{4}=2.5 \mathrm{Watts}
$$

90. Ans: (b)

Sol: Bandwidth $=\frac{1}{\tau}=\frac{1}{\mathrm{RC}}$

$$
\text { So, } \begin{aligned}
R & =\frac{1}{B W \times C}=\frac{1}{10 \times 10^{3} \times 100 \times 10^{-12}} \\
& =\frac{10^{6}}{1}=10^{6} \Omega \\
\Rightarrow R & =1 \mathrm{M} \Omega
\end{aligned}
$$

91. Ans: (b)

Sol: Given, $V=100 \angle 30^{\circ}$

$$
\mathrm{I}=5 \angle-30^{\circ}
$$

We know, $\mathrm{S}=\mathrm{VI}^{*}$

$$
\begin{aligned}
& =\left(100 \angle 30^{\circ}\right)\left(5 \angle 30^{\circ}\right) \\
& =500 \angle 60^{\circ}
\end{aligned}
$$

Here $\phi=60^{\circ}$
\therefore Power factor $=\cos \phi$

$$
\begin{aligned}
& =\cos 60^{\circ} \\
& =0.5(\mathrm{lag})
\end{aligned}
$$

92. Ans: (b)

Sol: $\mathrm{S}_{\mathrm{AC}}=0.9 \times 1 \mathrm{k} \Omega / \mathrm{V}$

$$
\begin{aligned}
& =0.9 \mathrm{k} \Omega / \mathrm{V} \\
& =900 \Omega / \mathrm{V}
\end{aligned}
$$

93. Ans: (a)

94. Ans: (b)

95. Ans: (a)

Sol: Error: Error is defined as the difference between the measured value and true value.
Resolution: The smallest change in measured value to which the instrument will respond is called resolution.
Sensitivity: Sensitivity of an instrument is defined as the ratio of magnitude of the output signal or response to the magnitude of input signal or response of the quantity being measured.
96. Ans: (a)

Sol: Meter constant to given data
$K=\frac{40 \times 60 \times 60}{5 \times 60}=480 \mathrm{rev} / \mathrm{kWh}$
But it is given that meter constant is 500 .
Therefore \% error in meter constant

$$
=\frac{480-500}{500} \times 100
$$

$=-4 \%$
97. Ans: (d)

Sol: Thermocouple voltmeter measures true rms voltage

$$
\begin{aligned}
\mathrm{V}_{\text {rms (true) })} & =\sqrt{1^{2}+\left(\frac{2}{\sqrt{2}}\right)^{2}} \mathrm{~V} \\
& =\sqrt{3} \mathrm{~V}
\end{aligned}
$$

98. Ans: (c)

Sol: Schering Bridge is used for measurement of capacitance, Dielectric loss, D-factor.
99. Ans: (a)

Sol: $\frac{2 \mathrm{dT}_{\mathrm{i}}}{\mathrm{dt}}+\mathrm{T}_{\mathrm{i}}=\mathrm{T}_{\mathrm{a}}$
Apply Laplace transform on both sides
$\frac{\mathrm{T}_{\mathrm{i}}(\mathrm{s})}{\mathrm{T}_{\mathrm{a}}(\mathrm{s})}=\frac{1}{2 \mathrm{~S}+1}$

$$
\begin{aligned}
& \frac{\mathrm{T}_{\mathrm{i}}(\mathrm{~s})}{\mathrm{T}_{\mathrm{a}}(\mathrm{~s})}=\frac{0.5}{\mathrm{~S}+0.5} \\
& \omega_{\mathrm{c}}=0.5 \\
& \mathrm{f}_{\mathrm{c}}=\frac{1}{4 \pi} \mathrm{~Hz}
\end{aligned}
$$

100. Ans: (a)

Sol. $\mathrm{f}_{\text {new }}=\frac{\mathrm{f}_{\text {old }}}{2} \quad \because$ Cablelength $\propto \frac{1}{\mathrm{f}}$
101. Ans: (b)

Sol: $\mathrm{T}_{\text {sweep }}=2 \times \mathrm{T}_{\text {signal }}$ (since 2 cycles displayed $)$

$$
\begin{aligned}
& =2 \times \frac{1}{100 \mathrm{~Hz}}=2 \times 10 \mathrm{~ms} \\
& =20 \mathrm{~ms}
\end{aligned}
$$

102. Ans: (b)

Sol: If P is the power, I current and R resistance, then $I=\sqrt{\frac{P}{R}}=\sqrt{\frac{4}{10000}}=0.02 \mathrm{~A}$
So, voltage across R is $10000 \times 0.02=200 \mathrm{~V}$ Sensitivity $=200 / 50=4.0 \mathrm{~V} / \mathrm{mm}$.
103. Ans: (a)

Sol: For all positive values of ' K ' roots are left side of s-plane.
104. Ans: (c)

Sol: $\quad \mathrm{GM}=\frac{1}{0.4}=2.5$
$\mathrm{PM}=180^{\circ}-30^{\circ}=150^{\circ}$.
105. Ans: (b)

Sol: For option (a) Break point is -6 and $\sigma=-6$
For option (b) Break point is -4 and $\sigma=-4$ [BP= $\sigma=-4]$
For option (c) \& (d) Break point \& Centroid are not same.
106. Ans: (c)

Sol: $\quad G(s)=\frac{10}{(s-1)(s+2)}$

So, $G(s)$ is unstable

$$
\begin{array}{rl}
\begin{aligned}
\frac{C(s)}{R(s)} & =\frac{G(s)}{1+G(s)}=\frac{10}{(s-1)(s+2)+10} \\
& =\frac{10}{s^{2}-2+2 s-s+10} \\
& =\frac{10}{s^{2}+s+8}
\end{aligned} \\
\text { C.E } & =s^{2}+s+8=0 \\
s^{2} & 1 \\
s^{1} & 8 \\
s^{0} & 8
\end{array}
$$

There is no sign changes in the first column of RH criteria table. Therefore the closed loop $\frac{\mathrm{C}(\mathrm{s})}{\mathrm{R}(\mathrm{s})}$ is stable
107. Ans: (d)

Sol: Let us assume, $G(s)=\frac{K}{s(s+a)}$
$\mathrm{s}=0$ and $\mathrm{s}=-\mathrm{a}$ are open loop poles
Characteristics Equation is $s^{2}+$ as $+K=0$
Roots of characteristics equation are $\mathrm{s}_{1}, \mathrm{~s}_{2}=\frac{-\mathrm{a}}{2} \pm \sqrt{\left[\left(\frac{\mathrm{a}}{2}\right)^{2}-\mathrm{K}\right]}$
When $\mathrm{K}=0$, the roots are $\mathrm{s}_{1}=0$ and $\mathrm{s}_{2}=-\mathrm{a}$.i.e., they coincides with the open loop poles of system.
108. Ans: (c)

Sol:

TF

$$
\begin{aligned}
\mathrm{TF} & =\frac{\mathrm{L} \cdot \mathrm{~T}[\text { output }]}{\mathrm{L} \cdot \mathrm{~T}[\text { input }]} \\
& =\frac{\mathrm{L} \cdot \mathrm{~T}\left[\mathrm{te}^{-\mathrm{t}}\right]}{\mathrm{L} \cdot \mathrm{~T}[\mathrm{u}(\mathrm{t})]} \\
& =\frac{\frac{1}{(\mathrm{~s}+1)^{2}}}{\frac{1}{\mathrm{~s}}} \\
\mathrm{TF} & =\frac{\mathrm{s}}{(\mathrm{~s}+1)^{2}}
\end{aligned}
$$

109. Ans: (c)

Sol: \quad TransferFunction $=\left.\frac{5}{s^{2}+s+5}\right|_{s=j \omega}$

$$
=\frac{5}{-\omega^{2}+j \omega+5}=\frac{-5}{\omega^{2}-j \omega-5}
$$

110. Ans: (d)

Sol: $\quad|20 \log 2 \zeta|=\left|\left(20 \log 2 \frac{1}{8}\right)\right|=12 \mathrm{~dB}$
111. Ans: (b)

Sol: Shifting the take off point before the block.
112. Ans: (c)

Sol: PI compensator is equivalent to adding the pole at origin.
113. Ans: (b)

Sol: By applying Mason's gain formula

$$
\begin{aligned}
\frac{\mathrm{C}(\mathrm{~s})}{\mathrm{R}(\mathrm{~s})} & =\frac{\mathrm{K}}{\mathrm{~s}^{2}(\mathrm{~s}+25)+\mathrm{KK}_{\mathrm{t}} \mathrm{~s}+\mathrm{K}(1+0.02 \mathrm{~s})} \\
\mathrm{R}(\mathrm{~s}) & =\frac{1}{\mathrm{~s}}(\text { step input }) \\
\mathrm{C}(\mathrm{~s}) & =\frac{\mathrm{K}}{\mathrm{~s}\left(\mathrm{~s}^{2}(\mathrm{~s}+25)+\mathrm{KK}_{\mathrm{t}} \mathrm{~s}+\mathrm{K}(1+0.02 \mathrm{~s})\right)} \\
\mathrm{C}(\infty) & =\lim _{\mathrm{s} \rightarrow 0} \mathrm{SC}(\mathrm{~s}) \\
& =\lim _{\mathrm{s} \rightarrow 0} \mathrm{~s} \frac{\mathrm{~K}}{\mathrm{~s}\left(\mathrm{~s}^{2}(\mathrm{~s}+25)+\mathrm{KK}_{\mathrm{t}} \mathrm{~s}+\mathrm{K}(1+0.02 \mathrm{~s})\right)}
\end{aligned}
$$

$$
=1
$$

114. Ans: (c)

Sol: $\mathrm{k}=0.8$
Power transferred inductively from primary to secondary

$$
\begin{aligned}
& =(1-\mathrm{k}) \text { times of total load } \\
& =(1-0.8) \times 10 \mathrm{~kW}=2 \mathrm{~kW}
\end{aligned}
$$

115. Ans: (c)

Sol: Core losses $=150 \mathrm{~W}$ (Constant)
Copper loss at full load $=220 \mathrm{~W}$
\therefore Copper loss at halt full load

$$
=\left(\frac{1}{2}\right)^{2} 220 \mathrm{~W}=55 \mathrm{~W}
$$

\therefore Total losses at half full load

$$
\begin{aligned}
& =150+55 \\
& =205 \mathrm{~W}
\end{aligned}
$$

Efficiency at half full load

$$
=\frac{\frac{1}{2} \times 10^{3} \times 1}{\frac{1}{2} \times 10 \times 10^{3}+205} \times 100=96.06 \%
$$

116. Ans: (b)

Sol:

The intersection ' Q ' of the extrapolated curve on the Y -axis will give mechanical losses (friction and windage loss)
117. Ans: (b)

Sol: Induction motor is a constant flux machine. As statement 3 is false, option (b) is correct answer.
118. Ans: (d)

Sol: Speed $\propto \mathrm{N}_{\mathrm{s}}=\frac{120 \mathrm{f}}{\mathrm{P}}$ as $\mathrm{f} \downarrow$, speed \downarrow

Motor output $=$ Torque \times speed
But torque $=$ constant
So motor output decreases as speed decreases
$\mathrm{T}_{\text {max }} \propto \frac{1}{\mathrm{X}}(\mathrm{X} \downarrow$ as $\mathrm{f} \downarrow)$
So $T_{\text {max }} \uparrow$
119. Ans: (c)

Sol: For cylindrical motor synchronous machine $\mathrm{P}=\frac{\mathrm{EV}}{\mathrm{X}} \sin \delta$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\sin \delta_{1}}{\sin \delta_{2}}$
$\frac{\mathrm{P}}{2 \mathrm{P}}=\frac{\sin 30^{\circ}}{\sin \delta_{2}}$
$\sin \delta_{2}=1 \Rightarrow \delta_{2}=90^{\circ}$
120. Ans: (b)

Sol: $\quad \mathrm{E}=\frac{\phi \mathrm{ZN}}{60}\left(\frac{\mathrm{P}}{\mathrm{A}}\right)=\frac{1.5 \times 10^{-3} \times 55 \times 19 \times 1500}{60}\left(\frac{4}{2}\right)$

$$
=78.375 \mathrm{~V}
$$

121. Ans: (d)

Sol: Given data, $V=250 \mathrm{~V}, \mathrm{~N}_{1}=900 \mathrm{rpm}$, $\mathrm{I}_{\mathrm{a}}=30 \mathrm{~A}, \mathrm{R}_{\mathrm{a}}=0.4 \Omega, \quad \mathrm{I}_{\mathrm{a} 2}=20 \mathrm{~A}$ and $\mathrm{N}_{2}=600 \mathrm{rpm}$
$\frac{\mathrm{E}_{\mathrm{b} 1}}{\mathrm{E}_{\mathrm{b} 2}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}$
$\Rightarrow \frac{\mathrm{V}-\mathrm{I}_{\mathrm{a} 1} \mathrm{R}_{\mathrm{a}}}{\mathrm{V}-\mathrm{I}_{\mathrm{a} 2}\left(\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{se}}\right)}=\frac{900}{600}$
$\Rightarrow \frac{250-(30 \times 0.4)}{250-20\left(0.4+\mathrm{R}_{\text {se }}\right)}=\frac{900}{600}$
$\Rightarrow 20\left(0.4+\mathrm{R}_{\mathrm{se}}\right)=250-158.6$
$\Rightarrow R_{\text {se }}=4.17 \Omega$
122. Ans: (b)

Sol: Load angle/torque angle:
It is the angle between the internal induced emf and the terminal voltage.
Or,

It is the angle between rotor rotating flux and reference rotating flux.

123. Ans: (a)

Sol: If first octet number of is between

1	-	126	-
128	-191	-	Class A
$192-223$	-	Class B C	
$224-239$	-	Class D	
$240-255$	-	Class E	

124. Ans: (c)

Sol: In RSA, decryption is performed under modulo n (RSA modulus). If x's value is taken more than n then correctness of decryption will not be maintained.
125. Ans: (d)
126. Ans: (c)

Sol: In Selective Repeat protocol
Senders window size
= Receivers window size
$S W S+R W S=2^{n}$
Then maximum window size

$$
=2^{n} / 2=2^{4} / 2=2^{3}
$$

127. Ans: (b)

Sol: $\mathrm{HLEN}=8$ words $=(8 \times 4)$ Bytes
TL = 308 Bytes
Payload size $=(308-8 \times 4)$ Bytes

$$
=276 \text { Bytes }
$$

Payload size is not multiple of 8 , definitely it is last fragment $(\mathrm{M}=0)$.
276 Bytes and $\mathrm{M}=0$
: 21 : ESE - 2020 (Prelims) Offline Test Series

128. Ans: (d)

Sol: HDL: Hardware Description Language
EDA: Electronic Design Automation SPLD: Simple Programmable Logic Device RTL: Register Transfer Level

129. Ans: (b)

Sol: \rightarrow Oxides used for masking are usually grown by wet oxidation.
\rightarrow A typical growth cycle consists of a sequence of dry-wet-dry oxidations. Most of the growth in such a sequence occurs in the wet phase, since growth rate is much higher.

130. Ans: (d)

Sol: \rightarrow To generate a stuck-at-fault at a node, the node must be both $0 \& 1$ controllable
\rightarrow To propagate a stuck-at-fault at a node, that node must be observable.
\rightarrow Sequential circuits have poor controllability and observability, as it requires a sequence of input vectors to control and observe a signal value at majority of the nodes.

131. Ans: (c)

Sol: For unipolar return-to-zero transmissions, the maximum data transmission rate in bits per second (bps) is expressed as
$\mathrm{f}_{\mathrm{b}(\text { bps })}=\frac{1}{\Delta \mathrm{t} \times \mathrm{L}}=\frac{1}{5 \mathrm{~ns} / \mathrm{km} \times 10 \mathrm{~km}}=20 \mathrm{Mbps}$

132. Ans: (c)

133. Ans: (a)

Sol: Because there is no limitation on the bandwidth, CDMA is sometimes referred to as spread spectrum multiple access.
134. Ans: (b)
135. Ans: (a)

Sol: MMU is a hardware device which maps virtual address to physical address. Mapping is done by adding the value in the base
register to every address generated by a user process, it is treated as offset at the time it is sent to memory.
136. Ans: (c)

Sol: Armature core is laminated to reduce eddy current loss to lower value.
137. Ans: (b)

Sol: $\mathrm{E}=4.44 \mathrm{~K}_{\mathrm{p}} . \mathrm{K}_{\mathrm{d}} \phi_{\text {/pole.f. }}$. $\mathrm{T}_{\text {phase }}$
$\Rightarrow \operatorname{airgap}$ flux $(\phi) \propto \frac{\mathrm{E}}{\mathrm{f}} \propto \frac{\mathrm{V}}{\mathrm{f}}$
As V , f are constants
$\Rightarrow \phi_{\text {airgap }}$ is constant.
138. Ans: (a)

Sol: Nyquist stability criteria states that ($-1, \mathrm{j} 0$) critical point should be encircled in the counter clock wise direction as many number of times as the number of right half of s-plane poles of loop transfer function.
Nyquist contour encircles the right half of s-plane and drawn in the clockwise direction.
Both statements are correct. Statement (II) is correct explanation for statement (I).
139. Ans: (a)
140. Ans: (d)
141. Ans: (a)

Sol: Diode is a nonlinear and unilateral device. Hence, Thevenin's theorem cannot be applied. Both Statement I and Statement II are true and Statement II is the correct explanation of Statement I.
142. Ans: (a)

Sol: The Curie temperature is the critical point where a material's intrinsic magnetic moments change direction. Magnetic moments are permanent dipole moments within the atom which originate from electrons angular momentum and spin. Materials have different structures of intrinsic magnetic moments that depend on
temperature. At a material's Curie Temperature those intrinsic magnetic moments change direction.

143. Ans: (d)

Sol: Resistance inversely proportional to the area of cross section of the wires, so the thicker wire has low resistance. Since heat produced is directly related to resistance $\left(H=i^{2} R_{t}\right)$, it should be less in the thicker wire.

144. Ans: (d)

Sol: Statement I is incorrect as

Maxwell equation: \oint B.ds $=0$
i.e., net flux leaving closed surface is zero.

When surface is open
\int B.ds $=\psi_{\mathrm{m}} \rightarrow$ weber

Statement II is correct as

Tubes of magnetic flux have no source (or) sink i.e. monopoles do not exist in case of magnetic field.
145. Ans: (c)

Sol: Aliasing occurs when the sampling frequency is less than twice the maximum frequency in the signal. So, Statement-I is true.
Aliasing is a irreversible process. So, Statement-II is false.
146. Ans: (a)
147. Ans: (d)

Sol: Quantization error depends on the step size only.
148. Ans: (b)
149. Ans: (d)
150. Ans: (b)

Sol: Both are correct, but statement II is not the reason for statement I.

- In both PAL \& PLAs outputs of OR gates are directly connected to output pins of the chip.
This kind of configuration will limit us to use PAL (or) PLA for only combinational circuit design, as there are no flipflops. To design a sequential circuit, we must add the flipflops externally to the chip.

ISRO

ONLINE TEST SERIES

No. of Tests: 15
Subject Wise Tests: 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO) Recruitment of Scientist/Engineer 'SC'
ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
Starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.

