CIVIL ENGINEERING

SUBJECT : FLUID MECHANICS \& OPEN CHANNEL FLOW, HYDRAULIC MACHINES AND HYDRO POWER + HYDROLOGY \& WATER RESOURCES ENGINEERING AND SURVEYING \& GEOLOGY SOLUTIONS

1. Ans: (b)

Sol:

$$
\begin{aligned}
\mathrm{H} & =750 \mathrm{~mm} \\
& =75 \mathrm{~cm}
\end{aligned}
$$

$$
C_{v}=\sqrt{\frac{x^{2}}{4 H y}}
$$

$$
=\sqrt{\frac{30^{2}}{4 \times 3 \times 75}}=1
$$

$$
\therefore \mathrm{C}_{\mathrm{v}}=1
$$

2. Ans: (a)

Sol:
Due to negative pressure, Nappe pulls down more flow rate.
03. Ans: (b)

Sol: By sudden lifting of gates

- ve Surge moving U/S

By lifting of gate, more discharge travel towards d/s. Hence + ve surge moving d/s and water levels falls on u / s, so -ve surge moving u / s.
04. Ans: (d)

Sol:For efficient trapezoidal: Half of regular Hexagon
$\mathrm{m}=\frac{1}{\sqrt{3}}$
$B+2 m y=2 y \sqrt{1+m^{2}}$
$B=\frac{2 y}{\sqrt{3}}$
$\therefore \frac{\mathrm{B}}{\mathrm{y}}=\frac{2}{1.73}=1.155$

 \section*{Classes Start from:

 \section*{Classes Start from:

 \section*{Classes Start from:

 $13^{\prime \prime}$ FEB 2020

 $13^{\prime \prime}$ FEB 2020

 $13^{\prime \prime}$ FEB 2020

 ESE - MAIIS}

 ESE - MAIIS}

Students who Qualify in Prelims can avail 100 \% Fee Waiver

ESE-2018, 2019 Prelims Qualified Students are also eligible
for more details Contact: 040-23234418/19/20, Email: hyderabad@aceenggacademy.com

www.aceenggacademy.com

5. Ans: (c)

Sol: Hydraulically efficient rectangle:
Semi circular section:

$$
\begin{aligned}
\mathrm{B} & =2 \mathrm{y} \\
\mathrm{R} & =\frac{\mathrm{d}}{4} \\
\mathrm{R} & =\frac{\mathrm{y}}{2}
\end{aligned}
$$

$$
\therefore \mathrm{y}=\frac{\mathrm{d}}{2}
$$

If discharge passing through both are same
$\mathrm{Q}_{1}=\mathrm{Q}_{2}$
Slope \rightarrow same
'n' \rightarrow same
$\frac{1}{\mathrm{n}} \mathrm{A}_{1} \mathrm{R}_{1}^{2 / 3} \cdot \mathrm{~s}_{1}^{1 / 2}=\frac{1}{\mathrm{n}_{2}} \cdot \mathrm{~A}_{2} \mathrm{R}_{2}^{2 / 3} \cdot \mathrm{~S}_{2}^{1 / 2}$

$$
\begin{aligned}
& \mathrm{A}_{1} \mathrm{R}_{1}^{2 / 3}=\mathrm{A}_{2} \cdot \mathrm{R}_{2}^{2 / 3} \\
& 2 \mathrm{y}_{1}^{2} \cdot\left(\frac{\mathrm{y}_{1}}{2}\right)^{2 / 3}=\frac{\pi}{4} \mathrm{~d}^{2} \cdot\left(\frac{\mathrm{~d}}{4}\right)^{2 / 3} \\
& \frac{2 \mathrm{y}_{1}^{8 / 3}}{2^{2 / 3}}=\frac{\pi}{4} \times\left(2 \mathrm{y}_{2}\right)^{2} \cdot\left(\frac{2 \mathrm{y}_{2}}{4}\right)^{2 / 3} \\
& \frac{2 \mathrm{y}_{1}^{8 / 3}}{2^{2 / 3}}=\frac{\pi}{4} \times 4 \mathrm{y}_{2}^{2} \times \frac{\mathrm{y}_{2}^{2 / 3}}{2^{2 / 3}} \\
& \left(\frac{\mathrm{y}_{1}}{\mathrm{y}_{2}}\right)^{8 / 3}=\frac{\pi}{2} \\
& \frac{\mathrm{y}_{1}}{\mathrm{y}_{2}}=\left(\frac{\pi}{2}\right)^{\frac{3}{8}}
\end{aligned}
$$

06. Ans: (b)

Sol:
If frictional resistance is neglected, total energy remain constant as it depends on arbitrary down for non-uniform flow. But when channel bottom transition occur, specific energy will not remain constant at all section for non-uniform flow.

07. Ans: (d)

Sol: Applying principle of linear momentum in the direction along the inclined plate,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{t}} & =\rho \alpha \mathrm{QV}-\rho(1-\alpha) \mathrm{QV}-\rho \mathrm{QV} \cos \theta \\
& =0 \quad[\text { No friction }]
\end{aligned}
$$

Thus, simplifying

$$
\begin{aligned}
& \rho \alpha \mathrm{QV}-\rho \mathrm{QV}+\rho \alpha \mathrm{QV}-\rho \mathrm{QV} \cos \theta=0 \\
& 2 \rho \alpha \mathrm{QV}=\rho \mathrm{QV}(1+\cos \theta) \\
& \Rightarrow \alpha=\frac{1}{2}(1+\cos \theta)
\end{aligned}
$$

08. Ans: (b)

Sol: $u=x-4 y \quad ; \quad v=-(y+4 x)$
$\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=1 \quad ; \quad \frac{\partial \mathrm{v}}{\partial \mathrm{y}}=-1$
$\frac{\partial u}{\partial y}=-4 \quad ; \quad \frac{\partial v}{\partial x}=-4$
Now, $\frac{\partial u}{\partial \mathrm{x}}+\frac{\partial \mathrm{v}}{\partial \mathrm{y}}=1-1=0$;
\Rightarrow Continuity equation for incompressible flow is satisfied.
Also, $\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}=-4-(-4)=0$
\Rightarrow Irrotational condition is also satisfied.
09. Ans: (b)

Sol: Piezometric head $=\frac{P}{\rho g}+z$

$$
=\frac{29.43}{10^{-4}} \times \frac{1}{10^{3} \times 9.81}+5=30+5=35 \mathrm{~m}
$$

10. Ans: (d)

Sol: Given data:

$$
\begin{aligned}
& \mathrm{Q}=0.2 \mathrm{~m}^{3} / \mathrm{s}, \quad \mathrm{~A}_{\mathrm{A}}=0.05 \mathrm{~m}^{2} \\
& \mathrm{~A}_{\mathrm{B}}=0.1 \mathrm{~m}^{2}, \quad \mathrm{P}_{\mathrm{A}}=100 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2} \\
& \mathrm{P}_{\mathrm{B}}=60 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}, \quad \gamma_{\mathrm{w}}=10^{4} \mathrm{~N} / \mathrm{m}^{3} \\
& \mathrm{~V}_{\mathrm{A}}=\frac{0.2}{0.05}=4 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~V}_{\mathrm{B}}=\frac{0.2}{0.1}=2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Total energy at A :

$$
\begin{aligned}
\mathrm{E}_{\mathrm{A}}=\frac{\mathrm{P}_{\mathrm{A}}}{\gamma_{\mathrm{w}}}+\frac{\mathrm{V}_{\mathrm{A}}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{\mathrm{A}} & =\frac{100 \times 10^{3}}{10^{4}}+\frac{16}{2 \times 10}+0 \\
& =10+0.8=10.8
\end{aligned}
$$

Total energy at B:

$$
\begin{aligned}
\frac{\mathrm{P}_{\mathrm{B}}}{\gamma_{\mathrm{w}}}+\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}+\mathrm{z}_{\mathrm{B}} & =\frac{60 \times 10^{3}}{10^{4}}+\frac{4}{2 \times 10}+5 \\
& =6+0.2+5=11.2 \mathrm{~m}
\end{aligned}
$$

Since $E_{B}>E_{A}$, the flow is from B to A and energy loss $=11.2-10.8=0.4 \mathrm{~m}$
11. Ans: (b)

Sol: Velocity of sound in a medium, $\mathrm{C}=\sqrt{\mathrm{kRT}}$
$\mathrm{C} \propto \sqrt{\mathrm{T}}$
$\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}=\sqrt{\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}}=\sqrt{\frac{600}{400}}=\sqrt{1.5}$
$\Rightarrow \mathrm{C}_{2}=400 \times \sqrt{1.5}=490 \mathrm{~m} / \mathrm{s}$
12. Ans: (c)

Sol:

From the figure, height of liquid from the lower edge of the door,

$$
\mathrm{h}=1 \times \sin 45^{\circ}=\frac{1}{\sqrt{2}} \mathrm{~m}
$$

The resultant hydrostatic force on the submerged door due to the liquid of density ρ, is

$$
\begin{aligned}
\mathrm{F}_{\mathrm{R}} & =\mathrm{P}_{\mathrm{c}} \mathrm{~A}=\rho \mathrm{g} \overline{\mathrm{~h}}(1 \times 1) \\
& =\rho g \times \frac{\mathrm{h}}{2}=\rho g \times \frac{1}{2 \sqrt{2}}
\end{aligned}
$$

13. Ans: (d)

Sol: Applying Bernoulli's equation between sections (1) and (2), we write

$$
\frac{\mathrm{P}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1}=\frac{\mathrm{P}_{2}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{2}+\mathrm{h}_{\mathrm{L}}
$$

But $\mathrm{P}_{1}=\mathrm{P}_{2}$ (Given), $\mathrm{V}_{1}=\mathrm{V}_{2}\left(\right.$ as $\left.\mathrm{d}_{1}=\mathrm{d}_{2}\right)$
Thus, $\mathrm{h}_{\mathrm{L}}=\mathrm{Z}_{1}-\mathrm{Z}_{2}$

$$
\frac{\mathrm{fLV}^{2}}{2 \mathrm{gd}}=\left(\mathrm{Z}_{1}-\mathrm{Z}_{2}\right)=3 \times \sin 30^{\circ}=1.5
$$

$$
\frac{\mathrm{fLV}^{2}}{2 \mathrm{gd}}=1.5
$$

$$
\frac{8 \mathrm{f} \mathrm{LQ}^{2}}{\pi^{2} \mathrm{gd}^{5}}=1.5
$$

$$
\begin{aligned}
\frac{\mathrm{Q}^{2}}{\pi^{2}} & =\frac{1.5 \times \mathrm{g} \times \mathrm{d}^{5}}{8 \mathrm{f} \mathrm{~L}} \\
& =\frac{1.5 \times 10 \times 2^{5} \times 10^{-10}}{8 \times 0.02 \times 3}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{20}{0.02} \times 10^{-10} \\
&=1000 \times 10^{-10} \\
&=10^{-7}=\frac{10^{-6}}{10} \\
& \frac{\mathrm{Q}}{\pi}=\frac{10^{-3}}{\sqrt{10}} \\
& \mathrm{Q}=\frac{\pi}{\sqrt{10}} \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\
&=\frac{\pi}{\sqrt{10}} \mathrm{lit} / \mathrm{s} \cong 1 \mathrm{lit} / \mathrm{s}
\end{aligned}
$$

14. Ans: (a)

Sol: The volume displaced,

$$
\begin{aligned}
\forall & =\frac{500 \times 10^{6}}{10^{3} \times 10}=50000 \mathrm{~m}^{3} \\
\mathrm{I} & =\frac{1}{12} \times 200 \times 25^{3} \times 0.6=156,250 \mathrm{~m}^{4} \\
\overline{\mathrm{BM}} & =\frac{\mathrm{I}}{\forall}=\frac{156,250}{50,000}=3.125 \mathrm{~m}
\end{aligned}
$$

The metacentric height,

$$
\begin{aligned}
\overline{\mathrm{GM}} & =\overline{\mathrm{BM}}-\overline{\mathrm{BG}} \\
& =3.125-2.5=0.625 \mathrm{M}
\end{aligned}
$$

The metacentre is 0.625 m above the centre of gravity and the ocean liner is stable.
15. Ans: (c)
16. Ans: (a)

Sol: $\delta_{t}=\frac{0.38 \mathrm{x}}{\left(\operatorname{Re}_{\mathrm{x}}\right)^{1 / 5}} \propto \mathrm{x}^{4 / 5}$

$$
\begin{aligned}
& \delta_{\ell}=\frac{5 \mathrm{x}}{\sqrt{\operatorname{Re}_{\mathrm{x}}}} \propto \mathrm{x}^{1 / 2} \\
& \frac{\delta_{\mathrm{t}}}{\delta_{\ell}} \propto \frac{\mathrm{x}^{4 / 5}}{\mathrm{x}^{1 / 2}} \propto \mathrm{x}^{0.3}
\end{aligned}
$$

TEST YOUR PREP IN A REAL TEST ENVIRONMENT
 Pre GAIJE - 2020

Date of Exam : $\mathbf{1 8}^{\text {th }}$ January 2020

 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019Highlights:

- Get real-time experience of GATE-20 test pattern and environment.
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for CATE-20 toppers.

SSC-JE (Paper-I) OOnline Test Series

Staff Selection Commission - Junior Engineer

No. of Tests : 20

Subject Wise Tests: 16| Mock Tests - 4
Civil| Electrical | Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination
17. Ans: (b)

Sol:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{A}} & =\mathrm{P}_{\mathrm{B}} \\
800 \times \mathrm{g} \times 10 & =1000 \times(\mathrm{x}+\mathrm{x} \sin \theta) \times \mathrm{g} \\
\mathrm{x} & +\frac{\mathrm{x}}{2}=8 \Rightarrow \frac{3}{2} \mathrm{x}=8 \\
\mathrm{x} & =\frac{16}{3}=5.33 \mathrm{~cm}
\end{aligned}
$$

18. Ans: (d)

Sol:

The force exerted by water will be due to the pressure on upper face as shown in the figure.

$$
\begin{aligned}
\mathrm{F}=\mathrm{PA}= & 1000 \times 10 \times 5 \times 10^{-2} \times 10 \times 10^{-4} \\
& =0.5 \mathrm{~N}(\text { downward })
\end{aligned}
$$

19. Ans: (a)

Sol: Irrotational flow is not a necessary assumption for Bernoulli's equation. In fact if flow is irrotational, Bernoulli's equation can be applied between any two points even though they are not on the same streamline.
20. Ans: (a)

Sol: The curve $(x-1)^{2}+(y+2)^{2}=16$ represents a circle with centre $(1,-2)$ and radius ' 4 '.

$$
\Gamma=\oint \overrightarrow{\mathrm{V}} \cdot \overrightarrow{\mathrm{ds}}=\iint \vec{\Omega} \cdot \overrightarrow{\mathrm{dA}}=\iint \Omega_{\mathrm{z}} \mathrm{dA}
$$

$\left[\because \Omega_{\mathrm{x}}=\Omega_{\mathrm{y}}=0\right.$ for flow in xy plane]

$$
\begin{aligned}
\Omega_{\mathrm{z}} & =\frac{\partial \mathrm{v}}{\partial \mathrm{x}}-\frac{\partial \mathrm{u}}{\partial \mathrm{y}}=5-3=2 \mathrm{rad} / \mathrm{s} \\
\Gamma & =2 \times \iint \mathrm{dA} \\
& =2 \times \pi \times 4^{2} \\
& =32 \pi
\end{aligned}
$$

21. Ans: (d)

Sol: The capillary depression is given by:

$$
\mathrm{h}=\frac{4 \sigma \cos \theta}{\gamma_{\mathrm{Hg}} \times \mathrm{d}}
$$

$\Rightarrow \mathrm{h} \alpha \frac{1}{\mathrm{~d}}$ if σ, θ remain same
Thus, $\frac{\mathrm{h}_{2}}{\mathrm{~h}_{1}}=\frac{\mathrm{d}_{1}}{\mathrm{~d}_{2}}=\frac{3}{2}=1.5$
Percentage increases in capillary depression is

$$
\begin{aligned}
& =\left(\frac{\mathrm{h}_{2}}{\mathrm{~h}_{1}}-1\right) \times 100 \\
& =(1.5-1) \times 100=50 \%
\end{aligned}
$$

22. Ans: (a)

Sol: Stone weight in air $=392.4 \mathrm{~N}$
Stone weight in water $=$ Stone weight in air Buoyancy force

$$
196.2=392.4-\rho_{\mathrm{w}} \forall_{\text {stone }} \times \mathrm{g}
$$

or,

$$
\begin{aligned}
& \forall_{\text {stone }}=\frac{392.4-196.2}{10^{3} \times 9.81}=\frac{196.2}{10^{3} \times 9.81}=0.02 \mathrm{~m}^{3} \\
& \begin{aligned}
\rho_{\text {stone }}=\left(\frac{\text { mass }}{\forall}\right)_{\text {stone }} & =\frac{392.4}{9.81 \times 0.02} \\
& =2000 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
\end{aligned}
$$

Thus, $(\mathrm{S} . \mathrm{G})_{\text {stone }}=\frac{2000}{10^{3}}=2$

23. Ans: (c)

Sol: $\mathrm{N}_{\mathrm{S}}=\frac{\mathrm{N} \cdot \sqrt{\mathrm{P}}}{(\mathrm{H})^{5 / 4}}$
$325=\frac{1040 \sqrt{\mathrm{P}}}{(16)^{1.25}}$
$325=\frac{1040 \sqrt{\mathrm{P}}}{32}$
$325=32.5 \sqrt{\mathrm{P}}$
$\sqrt{\mathrm{P}}=10$
$\therefore \mathrm{P}=100 \mathrm{~kW} /$ runner
No. of units required $=\frac{400}{100}$

$$
=4
$$

24. Ans: (b)

Sol: Speed ratio $(\phi)=\frac{\mathrm{U}}{\sqrt{2 \mathrm{gH}}}$

$$
\begin{aligned}
& 0.41=\frac{\frac{\pi \times D \times 420}{60}}{\sqrt{2 \times 10 \times 320}} \\
& 0.41 \times \sqrt{6400}=\frac{\pi \times \mathrm{D} \times 420}{60} \\
& 0.41 \times 80=7 \pi \mathrm{D} \\
& D=1.5 \mathrm{~m}
\end{aligned}
$$

25. Ans: (a)

Sol: N.P.S.H $=\frac{P}{\rho . g}+\frac{V^{2}}{2 g}-\frac{P_{v}}{\rho g}$

$$
\begin{aligned}
&=\frac{20000}{1000 \times 9.81}+\frac{\left(\frac{0.15}{\frac{\pi}{4}(0.25)^{2}}\right)^{2}}{2 \times 9.81}-\frac{12.5 \times 1000}{1000 \times 9.81} \\
&=2.04+0.48-1.27=1.25 \mathrm{~m}
\end{aligned}
$$

26. Ans: (a)

Sol: Deriaz turbine is adjustable blade diagonal flow reaction turbine. The flow of water against the turbine blades is neither axial nor radial, but at an angle.
27. Ans: (d)

Sol: Power of the runner of Impulse turbine $=$ $\dot{\mathrm{m}}\left(\mathrm{V}_{\mathrm{w}_{1}} \mathrm{U}_{1}+\mathrm{V}_{\mathrm{w}_{2}} \mathrm{U}_{2}\right)$
Absolute velocity $\left(\mathrm{V}_{2}\right)$ of jet Angle $\left(=90^{\circ}\right)$
i.e radial discharge $\quad \therefore \mathrm{V}_{\mathrm{w}_{2}}=0$

$$
\mathrm{P}_{\text {RUNNER }}=\dot{\mathrm{m}} \mathrm{~V}_{\mathrm{w}_{1}} \mathrm{U}_{1}
$$

Head Extracted by runner $=\frac{\dot{\mathrm{m}} \mathrm{V}_{\mathrm{w}_{1}} \mathrm{U}_{1}}{\dot{\mathrm{~m} g}}$

$$
\begin{aligned}
& =\frac{\mathrm{V}_{\mathrm{w}_{1}} \mathrm{U}_{1}}{\mathrm{~g}} \\
& =\frac{100 \times 40}{10} \\
& =400 \mathrm{~m}
\end{aligned}
$$

28. Ans: (d)
29. Ans: (d)

Sol: $N_{S}=\frac{N \sqrt{P}}{(H)^{5 / 4}}=\frac{N \sqrt{3600}}{(81)^{5 / 4}}$

$$
60=\frac{N \times 60}{243}
$$

$\therefore \mathrm{N}=243 \mathrm{rpm}$
$\mathrm{N}_{\text {sym }}=\frac{120 \mathrm{f}}{\mathrm{P}}$
$243=\frac{120 \times 50}{P}$
$\therefore \mathrm{P}=25$

30. Ans: (c)

Sol: Convective Rainfall - short duration heavy rainfall.

31. Ans: (d)

Sol: $2 \mathrm{~cm} / \mathrm{hr}=20 \mathrm{~mm} / \mathrm{hr}$

32. Ans: (a)

Sol:
$E_{L} \propto\left(e_{w}-e_{a}\right)$
$E_{L}=k\left(e_{w}-e_{a}\right)$
33. Ans: (d)

Sol:

$$
\begin{aligned}
& \mathrm{F}=\frac{\mathrm{f}_{\mathrm{o}}-\mathrm{f}_{\mathrm{c}}}{\mathrm{k}} \times \mathrm{f}_{\mathrm{ct}} \\
& 36=\frac{(15-1)}{\mathrm{k}}+(1 \times 8) \\
& \mathrm{K}=0.5 / \mathrm{hr}
\end{aligned}
$$

34. Ans: (b)

Sol:
$\mathrm{i}=2.5 \mathrm{~cm} / \mathrm{hr}$
$\mathrm{t}=4 \mathrm{hr}$
$\mathrm{p}=\mathrm{i} \times \mathrm{t}=10 \mathrm{~cm}$
C. A $=100 \mathrm{ha}$
R.V $=0.03 \times 10^{6} \mathrm{~m}^{3}$
$\mathrm{R}=\frac{\mathrm{R} . \mathrm{V}}{\mathrm{C} . \mathrm{A}}=\frac{0.03 \times 10^{6}}{100 \times 10^{4}}=0.03 \mathrm{~m}=3 \mathrm{~cm}$
$\mathrm{F}=\mathrm{P}-\mathrm{R}=10-3=7 \mathrm{~cm}$
35. Ans: (b)

Sol:

36. Ans: (c)

Sol:

Time	$\mathbf{1 - h r}$ $\mathbf{V H}$	S- curve addition Lag $\mathbf{1 ~ h r}$	$\mathbf{S}_{\mathbf{1}}$ - curve
0	0	-	0
1	3	0	3
2	8	3	11
3	12	11	23
4	6	23	29
5	3	29	32
6	0	32	32

37. Ans: (c)

Sol: Peak of UH $=\frac{(\text { Peak of } \mathrm{FH}-\mathrm{BF})}{\mathrm{Rcm}} \times 1 \mathrm{~cm}$

$$
\begin{aligned}
& =\frac{(180-30)}{3} \times 1 \mathrm{~cm} \\
& =50 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

38. Ans: (b)

Sol: $S_{y}=\frac{V_{w y}}{A x Z}$

$$
\begin{aligned}
0.2 & =\frac{\mathrm{V}_{\mathrm{wy}}}{100 \times 10^{4} \times 5} \\
\mathrm{~V}_{\mathrm{wy}} & =1 \times 10^{6} \mathrm{~m}^{3} \\
\mathrm{~V}_{\mathrm{wy}} & =1 \mathrm{Mm}^{3}
\end{aligned}
$$

39. Ans: (a)

Sol: Definition of tortuosity

HEARTY CONGRATULATIONS
 TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33

(EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

 dIcITAL CLASSES for
 ESE 2020/2021 General Studies \& Engineering Aptitude
 Computer Science \&
 Information Technology

40. Ans: (a)

Sol: $\quad \forall_{\text {plant }}=A \Delta$

$$
\begin{aligned}
\forall_{\text {reservoir }} & =\frac{\mathrm{A} \Delta}{\eta_{\mathrm{a}} \eta_{\mathrm{c}} \eta_{\mathrm{r}}} \\
& =\frac{\frac{60}{100}(20,000) \times 10^{4}\left(\frac{120}{100}\right) \times 10^{-6}}{0.8 \times 0.9 \times 0.82} \\
& =\frac{6 \times 2 \times 12}{0.8 \times 0.9 \times 0.82}=243.9 \mathrm{Mm}^{3}
\end{aligned}
$$

41. Ans: (c)

Sol: \quad At $B, x=\frac{-b}{4}$

$$
\begin{aligned}
\phi_{\mathrm{B}} & =\frac{100}{\pi} \cos ^{-1}\left(\frac{2 \mathrm{x}}{\mathrm{~b}}\right) \\
& =\frac{100}{\pi} \cos ^{-1}\left(\frac{2}{b}\left(\frac{-b}{4}\right)\right) \\
& =66.66 \%
\end{aligned}
$$

42. Ans: (c)

Sol: $\alpha=\frac{40}{10}=4$
$\lambda=\frac{1+\sqrt{1+\alpha^{2}}}{2}=2.56$
$\mathrm{G}_{\mathrm{E}}=\frac{\mathrm{H}}{\mathrm{d}} \frac{1}{\pi \sqrt{\lambda}}=\frac{8}{10} \frac{1}{\pi \sqrt{2.56}}=0.16=\frac{1}{6}$
43. Ans: (d)

Sol: Options (a) ,(b) \& (c) are valid essentially for Lacey's theory for silt of any size
44. Ans: (c)

Sol: $V=\frac{Q}{A}=\frac{Q}{y^{2}(\theta+\cot \theta)}=2.3 \mathrm{~m} / \mathrm{s}$
$\mathrm{P}=2 \mathrm{y}(\theta+\cot \theta)=10.44 \mathrm{~m}$

45. Ans: (b)

Sol: $\mathrm{P}_{\mathrm{s}}=\frac{1}{2} \mathrm{k}_{\mathrm{a}} \gamma_{\mathrm{sub}} \mathrm{H}_{\mathrm{s}}^{2}$
$\mathrm{P}_{\mathrm{w}}=2 \mathrm{wh}_{\mathrm{w}}{ }^{2} \quad \mathrm{P}_{\mathrm{s}}>\mathrm{P}_{\mathrm{w}}$
But lever arm of P_{w} is $H_{1}+\frac{3}{8} h_{w}$

$$
\therefore \mathrm{M}_{\mathrm{s}} \ll \mathrm{M}_{\mathrm{w}}
$$

46. Ans: (d)

Sol:

- Upstream face is equipotential line.
- Top most flow line is phreatic line so, phreatic line is a streamline.
- Streamline \& equipotential lines are always mutually perpendicular

47. Ans: (c)

Sol: By concept of contour irrigation answer is ' c ' obviously
48. Ans: (c)

Sol: Most sedimentary rocks are deposited under conditions which favour development of distinct layers piled up one above another, from bottom to top. These layers also called beds or strata.

49. Ans: (c)

Sol: The key words in the definition are fracture and movement. The exact significance of these key words must be clearly understood.
50. Ans: (a)

Sol: Dams are constructed for achieving any one or more of the following objectives: generation of hydropower energy; providing water for irrigation facilities; providing water
supply for domestic and industrial purposes; fighting droughts and controlling of floods; providing navigational facilities.

51. Ans: (b)

52. Ans: (d)

53. Ans: (a)
54. Ans: (b)
55. Ans: (c)
56. Ans: (c)
57. Ans: (d)
58. Ans: (d)

Sol: Planimeter constant $\mu=2 \pi \mathrm{rL}$
$\mu=2 \pi \times 1.06 \times 15=100 \mathrm{~cm}^{2}$
59. Ans: (c)
60. Ans: (a)
61. Ans: (c)

Sol:

FB of $\mathrm{AB}=80^{\circ} 30^{\prime}$
FB of $\mathrm{BC}=\mathrm{BB}$ of $\mathrm{AB}-\angle \mathrm{B}$
$=\left(80^{\circ} 30^{\prime}+180^{\circ} 0^{\prime}\right)-60^{\circ} 0^{\prime}$
$=260^{\circ} 30^{\prime}-60^{\circ} 0^{\prime}=200^{\circ} 30^{\prime}$
FB of $\mathrm{CA}=\mathrm{BB}$ of $\mathrm{BC}+$ exterior $\angle \mathrm{C}$

$$
\begin{aligned}
& =\left(200^{\circ} 30^{\prime}-180^{\circ} 0^{\prime}\right)+\left(360^{\circ} 0^{\prime}-60^{\circ} 0^{\prime}\right) \\
& =20^{\circ} 30^{\prime}+300^{\circ} 0^{\prime}=320^{\circ} 30^{\prime}
\end{aligned}
$$

62. Ans: (b)
63. Ans: (b)
64. Ans: (b)
65. Ans: (a)

Sol:

66. Ans: (d)
67. Ans: (d)

Sol: When ' m ' is integer, then method of super position is used other wise S-curve technique is used.
68. Ans: (c)

Sol: Statement (1) True
Statement (2) False
69. Ans: (a)

Sol: If $\left(\mathrm{q}_{\mathrm{m}}\right)_{\text {incoming }} \neq\left(\mathrm{q}_{\mathrm{m}}\right)_{\text {out going }}$, aggradation \& degradation takes place
\Rightarrow Regime condition is not possible
70. Ans: (c)

Sol: $\quad C_{d}=C_{c} \times C_{v}$

$$
\left[\because \mathrm{C}_{\mathrm{d}}=\frac{\mathrm{Q}}{\mathrm{Q}_{\mathrm{th}}}=\frac{\mathrm{A} \cdot \mathrm{~V}}{\mathrm{~A}_{\mathrm{th}} \mathrm{~V}_{\mathrm{th}}}=\mathrm{C}_{\mathrm{c}} \times \mathrm{C}_{\mathrm{v}}\right]
$$

71. Ans: (d)

Sol: Even though turbulence created by rough surface has high friction drag overall drag will be less due to reduction in pressure drag. Turbulence delays flow separation and reduces size of wake due to which pressure drag reduces.

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

2. FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

2. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm
\checkmark All tests will be conducted in Question Paper Booklet format.
\checkmark Test Series will be conducted at all our centres.

(2) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

ISRO - -
 ONLINE TEST SERIES

No. of Tests : 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO)
Recruitment of Scientist/Engineer 'SC'
ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
『 starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.
© 040-48539866 / 040-40136222 \& testseries@aceenggacademy.com

72. Ans: (d)

Sol: Angular velocity $\left(\omega_{z}\right)$ in polar coordinate system is given by

$$
\begin{aligned}
\omega_{\mathrm{z}} & =\frac{1}{2 \mathrm{r}}\left[\frac{\partial}{\partial \mathrm{r}}\left(\mathrm{ru}_{\theta}\right)-\frac{\partial \mathrm{u}_{\mathrm{r}}}{\partial \theta}\right] \\
& =\frac{1}{2 \mathrm{r}}\left[\frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r} \times \frac{\mathrm{k}}{\mathrm{r}}\right)-\frac{\partial}{\partial \theta}(0)\right] \\
& =0
\end{aligned}
$$

\Rightarrow Free vortex is irrotational.
In irrotational flow Bernoulli's equation can be applied between any two points even though they are not on same streamline.
73. Ans: (a)

Sol: In turbulent flow effective viscosity is sum of dynamic viscosity and eddy viscosity.

The eddy viscosity is present due to Reynolds stresses.
74. Ans: (d)

Sol: For turbulent flow through smooth pipe,

$$
\mathrm{f}=\frac{0.3164}{\operatorname{Re}^{0.25}} \propto \frac{1}{\mathrm{~V}^{0.25}}
$$

Hence statement (II) is correct.

$$
h_{f}=\frac{f^{L V^{2}}}{2 g D}=\frac{0.3164}{\operatorname{Re}^{0.25}} \times \frac{{L V^{2}}_{2 g D}^{2}}{V^{1.75}}
$$

Hence, statement (I) is wrong.
75. Ans: (a)

Sol: Air vessels maintain constant velocity in the pipe. As acceleration of the fluid in pipe is zero the acceleration head is eliminated. Therefore, the minimum pressure at the beginning of suction stroke is increased.

