Engineering Academy

Head Office : Sree Sindhi Guru Sangat Sabha Association, \# 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001.
Ph: 040-23234418, 040-2324419, 040-2324420, 040-24750437

CIVIL ENGINEERING

FULL LENGTH MOCK TEST-4 (PAPER-II) SOLUTIONS

1. Ans: (c)
2. Ans: (a)
3. Ans: (c)

$$
\begin{array}{rlrl}
\text { Sol: } P & =200 \mathrm{~mm} & A=6 \mathrm{~km}^{2} \\
K & =0.6 & T=20 \text { hours }
\end{array}
$$

Runoff (R) $=\mathrm{K} \times \mathrm{P}$

$$
=0.6 \times 200=120 \mathrm{~mm}
$$

$$
\mathrm{Q}=\frac{\mathrm{V}}{\mathrm{~T}}=\frac{\mathrm{A} \times \mathrm{R}}{\mathrm{~T}}=\frac{6 \times 10^{6} \times 120 \times 10^{-3}}{20 \times 60}
$$

$$
=600 \mathrm{~m}^{3} / \mathrm{min}
$$

4. Ans: (b)

Sol: D = 10 hrs
$\mathrm{A}=10000 \mathrm{ha}=100 \mathrm{~km}^{2}$
$\mathrm{Q}_{\mathrm{e}}=2.778 \frac{\mathrm{~A}}{\mathrm{D}}$
$\mathrm{Q}_{\mathrm{e}}=2.778 \times \frac{100}{10}$
$\mathrm{Q}_{\mathrm{e}}=27.78 \mathrm{~m}^{3} / \mathrm{sec}$
05. Ans: (d)
06. Ans: (b)

Sol: In alignment of hilly roads
More number of hill drains are preferred to provide adequate drainage to the roads.

Since the construction of cross drainage structure is not economical, its number should be kept minimum
Resisting length is the effective length considering the total work done against resistance. i.e ineffective rise and fall should be kept minimum. Hence resisting length has to be minimum.
07. Ans: (a)

Sol: A good joint must not allow infiltration of rain water.
08. Ans: (b)

Sol: Spacing between the contraction joints

$$
\begin{aligned}
=2 \mathrm{~S}_{\mathrm{c}} / \mathrm{Wf} & =2 \times 1 \times 10^{4} /(2400 \times 1.4) \\
& =5.95 \mathrm{~m}
\end{aligned}
$$

As per IRC maximum spacing is 4.5 m . Hence adopt spacing of 4.5 m .
09. Ans: (b)

Sol: Actual specific gravity $=1080 / 450=2.4$
$\mathrm{VMA}=\mathrm{V}_{\mathrm{v}} \%+\mathrm{V}_{\mathrm{b}} \%$
VMA $=100$ - Percent volume of aggregates and filler

$$
=100-\left[\frac{\frac{W_{\text {agg+filler }}}{G_{\text {agg+tiller }}}}{\frac{W_{\text {total }}}{G_{\text {actual }}}}\right] \times 100
$$

Specific gravity of aggregates + filler :

$$
\frac{\mathrm{W}_{\text {agg+filler }}}{\mathrm{G}_{\text {agg+filler }}}=\frac{2000}{2.5}+\frac{480}{2.4}=1000
$$

VMA $=100-\left[\frac{1000}{\frac{2000+480+120}{2.4}}\right] \times 100=7.69 \%$

10. Ans: (c)

Sol: Peak hour factor considering peak 10 minute flow rate
$=$ peak hour volume/(6*volume during peak 10 minutes)
$=\frac{4000}{(6 \times 800)}=0.833$

11. Ans: (d)

Sol: Traffic volume data can be presented in the form of
AADT or ADT
Trend charts
Variation harts
Traffic flow maps
Volume flow diagram
30th highest hourly volume

12. Ans: (b)

Sol: Deviation angle $\mathrm{N}=\left|\left(\frac{-1}{20}\right)-\left(\frac{1}{40}\right)\right|=|-0.075|$

$$
=0.075
$$

Hence valley curve is provided.
Design speed $V=80 \mathrm{kmph}$
Length of the curve $=\mathrm{L}=200 \mathrm{~m}$

Impact factor

$$
=\frac{1.59 \mathrm{NV}^{2}}{\mathrm{~L}}=\frac{1.59 \times 0.075 \times 80^{2}}{200}=3.816
$$

13. Ans: (b)

Sol: Temporary bench marks are fixed in detailed survey at all drainage and under ground drainage structures.
When the area to be covered for preliminary survey is large, aerial photographic survey is suitable.
Soil survey can be done using geo physical method and electrical sensitivity methods.
Index map shows the general topography of the area.

14. Ans: (a)

Sol: Number of axles $=\frac{8}{2}=4$
Hauling capacity $=$ no. of axles \times axle load \times coefficient of friction
$=4 \times 24 \times 0.25$
$=24 \mathrm{tn}$
15. Ans: (c)

Sol: Docks which are used for repair and maintenance purpose are
Dry dock or graving dock
Floating dry dock
Slipway and marine railway
Ship lift
Moorings are anchors for ships.

ESE - MAINS
 Classes Start from:

 $13^{\text {th }}$ FEB 2020

 $13^{\text {th }}$ FEB 2020}

@ DELHI)
(@ HYDERABAD)

Students who Qualify in Prelims can avail 100 \% Fee Waiver

 ESE-2018, 2019 Prelims Qualified Students are also eligiblefor more details Contact: 040-23234418/19/20, Email: hyderabad@aceenggacademy.com www.aceenggacademy.com

HYDERABAD | | AHMEDABAD I DELHI | PUNE | BHUBANESWAR I LUCKNOW | KOLKATA | VIJAYAWADA I VIZAG | TIRUPATI I CHENNAI | BENGALURU

COAL INDIA LIMITED (CIL) Management Trainees

 Online Test Series6 Full Length Mock Tests Civil | Electrical | Mechanical

Starts From 10 $^{\text {th }}$ Jan 2020
All tests will be available till $28^{\text {th }}$ February 2020
16. Ans: (c)

Sol: Due to symmetry the force in $\operatorname{rod} \mathrm{A}$ and C will be equal. i.e $\mathrm{F}_{\mathrm{A}}=\mathrm{F}_{\mathrm{C}}$

$\therefore \mathrm{F}_{\mathrm{A}}+\mathrm{F}_{\mathrm{B}}+\mathrm{F}_{\mathrm{C}}=100 \mathrm{kN}$
$\Rightarrow 2 \mathrm{~F}_{\mathrm{C}}+\mathrm{F}_{\mathrm{B}}=100 \rightarrow(1)$
Deflection will be constant as the bar is rigid
$\Rightarrow \frac{F_{A}}{A_{A}}=\frac{F_{B}}{A_{B}}$
$\Rightarrow \frac{\mathrm{F}_{\mathrm{A}}}{20 \times 20}=\frac{\mathrm{F}_{\mathrm{B}}}{10 \times 10}$
$\Rightarrow \mathrm{F}_{\mathrm{A}}=4 \mathrm{~F}_{\mathrm{B}}=\mathrm{F}_{\mathrm{C}}$
\therefore From $(1) \Rightarrow 2\left(4 \mathrm{~F}_{\mathrm{B}}\right)+\mathrm{F}_{\mathrm{B}}=100$
$\Rightarrow \mathrm{F}_{\mathrm{B}}=\frac{100}{9}$
Stress $=\frac{\mathrm{F}_{\mathrm{B}}}{\mathrm{A}}=\frac{100 \times 10^{3}}{9 \times 10 \times 10}$

$$
\sigma=\frac{1000}{9} \mathrm{MPa}
$$

Maximum shear stress $=\frac{\sigma}{2}=\frac{500}{9} \mathrm{MPa}$

17. Ans: (a)

Sol: $\sigma_{1}=18 \mathrm{MPa}$
$\sigma_{2}=-8 \mathrm{MPa}$
$\tau_{\theta}=5 \mathrm{MPa}$
$\tau_{\theta}=\left(\frac{\sigma_{1}-\sigma_{2}}{2}\right) \sin 2 \theta-\tau_{\mathrm{xy}} \cos 2 \theta$
$\Rightarrow 5=\left(\frac{18-(-8)}{2}\right) \sin 2 \theta$
$\Rightarrow \sin 2 \theta=\frac{5}{13}$
$\therefore \cos 2 \theta=\frac{12}{13}$
$\sigma_{\theta}=\left(\frac{\sigma_{x}+\sigma_{y}}{2}\right) \pm\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right) \cos 2 \theta+\tau_{\mathrm{xy}} \sin 2 \theta$
$\Rightarrow \sigma_{\theta}=\left(\frac{18-18}{2}\right) \pm\left(\frac{18-(-8)}{2}\right) \times \frac{12}{13}+0$
$=5 \pm 12$
$=17 \mathrm{MPa}$ (or) -7 MPa
18. Ans: (c)

Sol:For a given cross-section, rectangle has maximum flexural strength
$\therefore \mathrm{y}^{2}+\mathrm{b}^{2}=\mathrm{D}^{2}$
$\Rightarrow \mathrm{y}^{2}=\mathrm{D}^{2}-\mathrm{b}^{2}$
Section modulus $=\frac{\mathrm{by}^{2}}{6}=\frac{\mathrm{b}\left(\mathrm{D}^{2}-\mathrm{b}^{2}\right)}{6}$
$\frac{d z}{d b}=\frac{D^{2}-3 b^{2}}{6}=0$
$\Rightarrow \mathrm{b}=\frac{\mathrm{D}}{\sqrt{3}}$
$\therefore \mathrm{y}=\mathrm{D} \sqrt{\frac{2}{3}}$

Area $=$ by $=\frac{\sqrt{2} D^{2}}{3}$
19. Ans: (d)

Sol: Maximum tensile stress due to eccentricity

$$
=\frac{\mathrm{P}}{\mathrm{~A}}-\frac{\mathrm{M}}{\mathrm{Z}}=\left(\frac{\mathrm{P}}{\frac{\pi \mathrm{~d}^{2}}{4}}\right)-\frac{\mathrm{Pe}}{\left(\frac{\pi \mathrm{~d}^{3}}{32}\right)}
$$

Stress due to direct compression $=\frac{P}{A}=\frac{P}{\frac{\pi}{4} d^{2}}$
$\frac{\mathrm{P}}{\frac{\pi \mathrm{d}^{2}}{4}}-\frac{\mathrm{Pe}}{\frac{\pi \mathrm{d}^{3}}{32}}=\frac{1}{2}\left[\frac{\mathrm{P}}{\frac{\pi \mathrm{d}^{2}}{4}}\right]$
$\Rightarrow \mathrm{e}=\frac{\mathrm{d}}{16}$
\therefore Diameter of core or kern $=2 \mathrm{e}=\frac{d}{8}$
20. Ans: (b)

Sol:

Rotation $=\frac{\mathrm{P} \ell^{2}}{16 \mathrm{EI}}=\frac{\mathrm{P} \ell^{2}}{16 \mathrm{E} \times \frac{\mathrm{bd}^{3}}{12}}$
$\therefore \theta_{1}=\mathrm{K} \frac{\ell^{2}}{\mathrm{bd}^{3}}$
$\theta_{2}=\frac{\mathrm{K} \times\left(\frac{\ell}{2}\right)^{2}}{(4 \mathrm{~b})\left(\frac{\mathrm{d}}{2}\right)^{3}}$
$=\frac{\theta_{1}}{2}$
21. Ans: (a)

Sol: $\delta=\frac{\mathrm{w} \ell^{4}}{8 \mathrm{EI}}=30 \mathrm{~mm}$

$$
\begin{aligned}
& \theta=\frac{\mathrm{w} \ell^{3}}{6 \mathrm{EI}}=0.01 \\
& \frac{\delta}{\theta}=\frac{6 \ell}{8}=\frac{30}{0.01} \\
& \Rightarrow l=4000 \mathrm{~mm} \\
& \quad=4 \mathrm{~m}
\end{aligned}
$$

22. Ans: (c)

Sol:

$\mathrm{M}_{\mathrm{B}}-\mathrm{M}_{\mathrm{A}}=$ Area under SFD between A,B

$$
=\frac{1}{2} \times \frac{\ell}{2} \times \frac{\mathrm{w} \ell}{2}=\frac{\mathrm{w} \ell^{2}}{8}=\mathrm{x}
$$

Difference between the moments at the point B \& C

$$
\begin{aligned}
\mathrm{M}_{\mathrm{C}}-\mathrm{M}_{\mathrm{B}} & =\frac{1}{2} \times \frac{\ell}{2} \times\left(\mathrm{w} \ell+\frac{\mathrm{w} \ell}{2}\right) \\
& =\frac{3 \mathrm{w} \ell^{2}}{8}=3 \mathrm{x}
\end{aligned}
$$

23. Ans: (d)

Sol: $\mathrm{E}=2 \mathrm{G}(1+\mu)$
Range of poisons ratio is from -1 to 0.5
Maximum $\mathrm{E}=2 \mathrm{G}(1.5)=3 \mathrm{G}$
Minimum $\mathrm{E}=2 \mathrm{G}(1-1)=0$
24. Ans: (c)

Sol: For buckling failure $\frac{2 \sqrt{2} \pi r}{\sqrt{\alpha} T}$
$\mathrm{P}=\frac{\pi^{2} \mathrm{EI}}{\ell_{\mathrm{eff}^{2}}}$
For fixed beam $l_{\text {eff }}=\frac{\ell}{2}$
$\Rightarrow \mathrm{P}=\frac{4 \pi^{2} \mathrm{EI}}{\ell^{2}}$
Stress $=\frac{\mathrm{P}}{\mathrm{A}}=\frac{4 \pi^{2} \mathrm{EI}}{\ell^{2} \times \mathrm{A}}=4 \pi^{2} \mathrm{E}\left(\frac{\mathrm{r}}{\ell}\right)^{2}$

FOS $=2$, Permissible stress $=2 \pi^{2} \mathrm{E}\left(\frac{\mathrm{r}}{\ell}\right)^{2}$
Stress due to thermal stress expansion $=\mathrm{E} \alpha \mathrm{T}$
$\therefore 2 \pi^{2} \mathrm{E}\left(\frac{\mathrm{r}}{\ell}\right)^{2}=(\mathrm{E} \alpha \mathrm{T})$
$\Rightarrow \ell^{2}=\frac{2 \pi^{2} \mathrm{r}^{2}}{\alpha \mathrm{~T}}$
$\Rightarrow \ell=\left[\frac{2 \pi^{2} \mathrm{r}^{2}}{\alpha \mathrm{~T}}\right]^{1 / 2}$
$\Rightarrow \ell=\frac{\sqrt{2} \pi \mathrm{r}}{\sqrt{\alpha \mathrm{T}}}$

25. Ans: (a)

Sol: Deflection of prismatic bar under self weight
$=\frac{\gamma \mathrm{L}^{2}}{2 \mathrm{E}}=3 \mathrm{~mm}$
Deflection of conical bar under self weight $=$

$$
\begin{aligned}
\frac{\gamma \mathrm{L}^{2}}{6 \mathrm{E}} & =\frac{\left(\frac{\gamma}{3}\right)(3 \mathrm{~L})^{2}}{6 \times\left(\frac{\mathrm{E}}{3}\right)}=\frac{3 \gamma \mathrm{~L}^{2}}{2 \mathrm{E}} \\
& =3 \times 3=9 \mathrm{~mm}
\end{aligned}
$$

26. Ans: (c)

Sol: Equivalent Young's modulus $=\frac{\Sigma \mathrm{AE}}{\Sigma \mathrm{A}}$

$$
\begin{aligned}
& =\frac{(\mathrm{AE})+(2 \mathrm{~A} \times 2 \mathrm{E})+(3 \mathrm{~A} \times 3 \mathrm{E})}{\mathrm{A}+2 \mathrm{~A}+3 \mathrm{~A}} \\
& =\frac{14 \mathrm{AE}}{6 \mathrm{~A}} \\
& =\frac{7}{3} \mathrm{E}
\end{aligned}
$$

27. Ans: (b)

Sol: Equivalent steel beam

Depth of neutral axis from top $=$

$$
\begin{gathered}
\frac{(200 \times 20 \times 10)+[20 \times 200 \times(20+100)]+(200 \times 10 \times 225)}{(200 \times 20)+(20 \times 200)+(200 \times 10)} \\
=97 \mathrm{~mm}
\end{gathered}
$$

28. Ans: (b)

Sol: Strain energy $=\frac{1}{2} \mathrm{~T} \theta=\frac{\tau^{2}}{4 \mathrm{G}} \times$ Volume

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \times 2 \times 2 \times 10^{-2}=\frac{\tau^{2} \times 10^{-3}}{4 \times 2 \times 10^{5} \times 10^{6}} \\
& \Rightarrow \tau^{2}=16 \times 10^{12} \\
& \Rightarrow \tau=4 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \\
& \quad=4 \mathrm{MPa}
\end{aligned}
$$

29. Ans: (c)

Sol: Net deflection $=0$

$$
\begin{gathered}
\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{C}}=100 \mathrm{kN} \\
\therefore \frac{\mathrm{R}_{\mathrm{A}} \times\left(\frac{\ell}{4}\right)}{\mathrm{AE}}+\frac{\left(\mathrm{R}_{\mathrm{C}}\right)\left(\frac{3 \ell}{4}\right)}{\mathrm{AE}}=0
\end{gathered}
$$

$\Rightarrow \mathrm{R}_{\mathrm{A}}=-3 \mathrm{R}_{\mathrm{C}} \rightarrow(2)$
From (1) \& (2)
$\Rightarrow-3 R_{C}+R_{C}=100$
$\Rightarrow R_{C}=-50 \mathrm{kN}$
$\Rightarrow \mathrm{R}_{\mathrm{A}}=150 \mathrm{kN}$

30. Ans: (a)

Sol: Using unit load method:
Apply vertical unit load at joint C in vertical direction

31. Ans: (a)

Sol: Using unit load method

$$
\theta_{\mathrm{c}}=\int_{0}^{\mathrm{L}} \frac{\mathrm{M}_{\mathrm{x}} \mathrm{~m}_{\mathrm{x}}}{\mathrm{EI}} \mathrm{dx}
$$

Where,
$\mathrm{M}_{\mathrm{x}}=$ Bending moment at a section $\mathrm{x}-\mathrm{x}$ due to actual load
$\mathrm{m}_{\mathrm{x}}=$ Bending moment at a section $\mathrm{x}-\mathrm{x}$ due to unit moment applied where we want to find the displacement.

Sagging $B M$ is positive \& hogging $B M$ is negative

Member	$\begin{aligned} & \mathbf{M}_{\mathbf{x}}- \\ & \text { values } \end{aligned}$	$\mathbf{m}_{\mathbf{x}}-$ Values	$\int_{0}^{\mathrm{L}} \frac{\mathrm{M}_{\mathrm{x}} \mathrm{m}_{\mathrm{x}}}{\text { EI }} \mathrm{dx}$
CB	$-\mathrm{M}_{0}$	- 1	$\int_{0}^{\mathrm{L}} \frac{\left(-\mathrm{M}_{\mathrm{o}}\right)(-1)}{\text { EI }} \mathrm{dx}$
BA	$-\mathrm{M}_{0}$	-1	$\int_{0}^{\mathrm{L}} \frac{\left(-\mathrm{M}_{0}\right)(-1)}{\mathrm{EI}} \mathrm{dx}$
$\begin{aligned} \theta_{c} & =\int_{0}^{L} \frac{M_{o}}{E I} d x+\int_{o}^{L} \frac{M_{o}}{E I} d x \\ & =\frac{M_{0} L}{E I}+\frac{M_{0} L}{E I} \\ \theta_{c} & =\frac{2 M_{0} L}{E I} \end{aligned}$			

TEST YOUR PREP IN A REAL TEST ENVIRONMENT
 Pre GAIJE - 2020

Date of Exam : $\mathbf{1 8}^{\text {th }}$ January 2020

 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019Highlights:

- Get real-time experience of GATE-20 test pattern and environment.
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for CATE-20 toppers.

SSC-JE (Paper-I) OOnline Test Series

Staff Selection Commission - Junior Engineer

No. of Tests : 20

Subject Wise Tests: 16| Mock Tests - 4
Civil| Electrical | Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination
32. Ans: (b)

Sol: $\Sigma \mathrm{H}=0$

$30 \mathrm{kN}-\mathrm{m}$
$\Sigma \mathrm{M}_{\mathrm{C}}=0 \quad\llcorner-\mathrm{ve} \quad \downharpoonleft+\mathrm{ve}$
$\mathrm{H}_{\mathrm{D}} \times 3+30=0$
$\mathrm{H}_{\mathrm{D}}=-10 \mathrm{kN}(\rightarrow)$
$\mathrm{H}_{\mathrm{A}}=10 \mathrm{kN}(\leftarrow)$
$\Sigma \mathrm{M}_{\mathrm{B}}=0\llcorner-\mathrm{ve} d+\mathrm{ve}$
$10 \times 4-\mathrm{M}_{\mathrm{BA}}=0$
$\mathrm{M}_{\mathrm{BA}}=40 \mathrm{kN}-\mathrm{m}$
($~(~) ~$

33. Ans: (a)

Sol: By performing elastic analysis:

$$
\mathrm{M}_{\mathrm{AB}}=\frac{3 \mathrm{~W} \ell}{16}=\mathrm{M}_{\mathrm{p}}
$$

\rightarrow First plastic hinge formation

The value of collapse load for propped cantilever beam carrying concentrated load at mid span is

$$
\begin{gathered}
=\mathrm{W}_{\mathrm{c}}=\frac{6 \mathrm{M}_{\mathrm{p}}}{\ell}=\frac{6}{\ell}\left[\frac{3 \mathrm{~W} \ell}{16}\right]=\frac{9 \mathrm{~W}}{8} \\
\text { Thus, } \quad \mathrm{W}_{\mathrm{c}}=\frac{9 \mathrm{~W}}{8}
\end{gathered}
$$

34. Ans: (a)

Sol:

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{p}} & =\mathrm{A}_{1} \mathrm{y}_{1}+\mathrm{A}_{2} \mathrm{y}_{2} \\
& =\left\{\frac{1}{2} \times \mathrm{x} \sqrt{2} \times \frac{\mathrm{x}}{\sqrt{2}} \times \frac{\mathrm{x}}{3 \sqrt{2}}\right\} \times 2=\frac{\mathrm{x}^{3}}{3 \sqrt{2}}
\end{aligned}
$$

35. Ans: (c)

Sol: Deflected shape of the beam is

Conjugate beam of AB with $\frac{\mathrm{M}}{\mathrm{EI}}$ diagram
$\therefore \theta_{\mathrm{BA}}=$ shear force at B
$\therefore \mathrm{R}_{\mathrm{B}} \times \mathrm{L}=\frac{1}{2} \frac{\mathrm{M}}{\mathrm{EI}} \times \mathrm{L} \times \frac{\mathrm{L}}{3}$
$\therefore \mathrm{R}_{\mathrm{B}}=\frac{\mathrm{ML}}{6 \mathrm{EI}}$
$\therefore \theta_{B A}=R_{B}=\frac{M L}{6 E I}$
$\therefore \theta_{\mathrm{BA}}=\theta_{\mathrm{BD}}=\frac{\mathrm{ML}}{6 \mathrm{EI}}$ (Anticlockwise)
36. Ans: (c)

Sol:

$\mathrm{H}_{\mathrm{A}}=\mathrm{H}_{\mathrm{B}}$
Take $\quad \mathrm{M}_{\mathrm{A}}=0$
$\mathrm{V}_{\mathrm{B}} \times \ell=\mathrm{w} \times \frac{\ell^{2}}{2}$
$\mathrm{V}_{\mathrm{B}}=\frac{\mathrm{w} \ell}{2}=\mathrm{V}_{\mathrm{A}}$

$$
\mathrm{M}_{\mathrm{C}}=0
$$

$$
\frac{\mathrm{w} \ell}{2} \times \frac{\ell}{2}=\mathrm{w} \times \frac{\ell}{2} \times \frac{\ell}{4}+\mathrm{H} \times \mathrm{r}
$$

$$
\frac{\mathrm{w} \ell^{2}}{4}-\frac{\mathrm{w} \ell^{2}}{8}=\mathrm{H} \times \mathrm{r}
$$

$$
\begin{aligned}
\Rightarrow \frac{\mathrm{w} \ell^{2}}{8} & =\mathrm{H} \times \mathrm{r} \quad(\ell=2 \mathrm{r}) \\
\mathrm{H} & =\frac{\mathrm{wr}}{2}
\end{aligned}
$$

37. Ans: (a)
38. Ans: (c)
39. Ans: (a)
40. Ans: (b)

Sol: $D=\sqrt{\frac{C}{0.06735}}=\sqrt{\frac{40}{0.06735}}$
$\mathrm{D}=24.37 \mathrm{~km}$
Dip of horizon $\theta=\frac{D}{R}=\frac{24.37}{6370}=0.0038$
41. Ans: (a)

Sol: $\frac{\delta \mathrm{D}}{\mathrm{D}}=\frac{-\delta \beta}{\beta}$

$$
\begin{aligned}
& \beta=615^{\prime \prime} ; \delta \beta=120^{\prime \prime} \\
& \delta_{D}=-500 \times \frac{120}{615}=-97.561 \mathrm{~m}
\end{aligned}
$$

$$
\therefore \text { Correct horizontal distance }=500-97.561
$$

$$
=402.44 \mathrm{~m}
$$

42. Ans: (d)
43. Ans: (b)

Sol: $\mathrm{W}=\left(1-\mathrm{p}_{\mathrm{w}}\right) \times \frac{\mathrm{W}}{\mathrm{S}}$

$$
=(1-0.4) \times \frac{\left(25 \times 10^{-2}\right)}{\left(\frac{1}{10,000}\right)}=1500 \mathrm{~m}=1.5 \mathrm{~km}
$$

44. Ans: (b)
45. Ans: (d)

Sol :
R :

RL of bottom of beam	$=\mathrm{RL}$ of $\mathrm{A}+\mathrm{BS}+\mathrm{FS}$
	$=100+1.04+2.42 \mathrm{~m}$
	$=103.46 \mathrm{~m}$

46. Ans: (d)

Sol: $\mathrm{V}=\left(\frac{\mathrm{Qf}^{2}}{140}\right)^{1 / 6}, \mathrm{~S}=\frac{\mathrm{f}^{5 / 3}}{3340 \mathrm{Q}^{1 / 6}}$

$$
\begin{align*}
& \mathrm{V}=\sqrt{\frac{2}{5} \cdot \mathrm{f} \cdot \mathrm{R}} \Rightarrow \mathrm{~V} \propto \mathrm{f}^{1 / 2} \tag{1}\\
& \mathrm{~V}=\left(\frac{\mathrm{Qf}^{2}}{140}\right)^{1 / 6} \Rightarrow \mathrm{~V} \propto \mathrm{Q}^{1 / 6} \mathrm{f}^{1 / 3} \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{S}=\frac{\mathrm{f}^{5 / 3}}{3340 \mathrm{Q}^{1 / 6}} \Rightarrow \mathrm{Q}^{1 / 6} \propto \frac{\mathrm{f}^{5 / 3}}{\mathrm{~S}_{\mathrm{o}}} \tag{3}
\end{equation*}
$$

From (2) and (3)
$V \propto \frac{f^{5 / 3}}{S_{o}} \cdot f^{1 / 3}$
$V \propto \frac{\mathrm{f}^{2}}{\mathrm{~S}_{\mathrm{o}}}$
By using (1)

$$
\begin{aligned}
& \mathrm{V} \propto \frac{\mathrm{~V}^{4}}{\mathrm{~S}_{\mathrm{o}}} \\
& \mathrm{~S}_{\mathrm{o}} \propto \mathrm{~V}^{3} \\
& \therefore \mathrm{~V} \propto \mathrm{~S}_{\mathrm{o}}^{1 / 3}
\end{aligned}
$$

Sol:

- Streamlines are confocal ellipsi
- if $d=0, G_{E}$ is ∞
- Khosla's theory must be used to calculate u anywhere

48. Ans: (b)

Sol: Siphon will dispose off large heads of water comfortably.
49. Ans: (c)

Sol: Area of soil cut $=$ Area of soil filled

$$
\begin{gathered}
\frac{(\mathrm{B}+\mathrm{B}+2 \mathrm{my})}{2}=2(\mathrm{H}-\mathrm{y})[\mathrm{T}+\mathrm{n}(\mathrm{H}-\mathrm{y})] \\
\Rightarrow \mathrm{y}^{2}-12.6 \mathrm{y}+10.4=0 \\
\mathrm{y}=0.9 \mathrm{~m} \text { and } 11.7 \mathrm{~m} \\
11.7 \mathrm{~m} \text { is absurd } \\
\Rightarrow 0.9 \mathrm{~m} \text { is correct }
\end{gathered}
$$

50. Ans: (d)

Sol: According to Mitra's transition theory

$$
B_{x}=\frac{B_{n} B_{f} L_{f}}{L_{f} B_{n}-\left(B_{n}-B_{f}\right)}
$$

\therefore Depth and discharge remains constant and rate of change of velocity per meter length is constant.
51. Ans: (c)

Sol: Lever arm $=H_{1}+\frac{3}{8} h_{w}$

$$
\begin{aligned}
& \quad=\mathrm{H}_{1}+\frac{3}{8} 0.032 \sqrt{\mathrm{VF}} \\
& =(240-120)+\frac{3}{8}(0.032) \sqrt{100(100)} \\
& =121.2 \mathrm{~m}
\end{aligned}
$$

47. Ans: (d)

52. Ans: (b)

Sol: looseness factor $=\frac{\text { Actual width }}{\text { Re gime width }}$
Actual width

$$
\begin{aligned}
& =\text { looseness factor } \times \text { Regime width } \\
& =\text { looseness factor } \times 4.75 \sqrt{\mathrm{Q}} \\
& =311.6 \mathrm{~m} \approx 312 \mathrm{~m}
\end{aligned}
$$

53. Ans: (a)

Sol: $\mathrm{L}_{\mathrm{R}}=\frac{\mathrm{E}_{\mathrm{ci}}}{\mathrm{E}_{\mathrm{cd}}} \times 100=\frac{1.8}{24} \times 100=7.5 \%$

$$
\mathrm{D}_{\mathrm{i}}=\frac{\mathrm{D}_{\mathrm{c}}}{1-\mathrm{L}_{\mathrm{R}}}=\frac{60}{1-0.075}=64.86 \mathrm{~mm} \approx 65 \mathrm{~mm}
$$

54. Ans: (c)
55. Ans: (b)
56. Ans: (b)

Sol: When everything else is constant, the workability of concrete increases with increase in size of aggregates. As larger aggregates have less total surface area compared to same mass of smaller aggregates.
57. Ans: (d)

Sol: For consistency test vicat apparatus fitted with a cylindrical plunger is used. Le Chatelier's test is used to determine the soundness of cement due to free lime only. In sieve analysis of cement, \% reside is determined not specific surface area. Hence, all the three statements are incorrect.

58. Ans: (c)

Sol: Though the heat of hydration of $\mathrm{C}_{3} \mathrm{~A}$ is high, its proportion in cement is very less (around 10%). Hence, we can say that weightage of $\mathrm{C}_{3} \mathrm{~A}$ in the heat of hydration of cement not high.

59. Ans: d)

Sol:Internal partition walls are generally constructed with Stretcher Bond.
60. Ans: (b)

Sol: The colour of cement is because of Iron oxide in the raw material. White cement is prepared using raw materials which has very low proportion of Iron Oxide. Since, Iron Oxide is not present, Sodium Alumino Ferrite is used as catalyst in the fusion of ingredients.

61. Ans: (a)

Sol: Retarder, generally increase the setting times and also the workability of concrete.

62. Ans: (b)

Sol:High strength concrete has high density values and hence less Pulse Velocity.
63. Ans: (d)

Sol: Phenol Formaldehyde increases the electrical insulation property of timber, not the fire resistance of timber.
64. Ans: (d)

Sol: Aluminium has high strength to weight ratio, even better than steel. Hence, it is very suitable for aircraft manufacturing.

HEARTY CONGRATULATIONS
 TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33

(EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

 dIcITAL CLASSES for
 ESE 2020/2021 General Studies \& Engineering Aptitude
 Computer Science \&
 Information Technology

65. Ans: (c)

Sol: Type C fly ash has both Pozzolanic as well as Cementitious properties. Type-F fly ash has only Pozzolanic properties.
66. Ans: (c)

Sol: Both Flakiness and Elongation index test are done only on coarse aggregates.
67. Ans: (d)

Sol: E-coli Index $=\frac{1}{0.1}=10 \mathrm{no} / 100 \mathrm{~m} l$
68. Ans: (d)

Sol: $\eta=\frac{C_{\text {in }}-C_{\text {out }}}{C_{\text {in }}} \times 100=\frac{200-40}{200} \times 100=80 \%$

$$
\begin{aligned}
\eta & =\frac{V_{s}}{V_{o}} \times 100 \Rightarrow 80=\frac{0.8 \times 10^{-3}}{V_{o}} \times 100 \\
V_{o} & =\frac{0.8 \times 10^{-3} \times 100}{80}=10^{-3} \mathrm{~m} / \mathrm{sec} \\
& =0.001 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

69. Ans: (c)

Sol: Alum is not effective as $\mathrm{pH}<6.5$ and $\mathrm{pH}>$ 8.0

Alum removes colour, odour and improve taste of water.

70. Ans: (a)

Sol: Dose of quick lime $=\frac{56}{100} \times$ Alkalinity deficiency.

$$
=\frac{56}{100} \times 5=2.8 \mathrm{mg} / l
$$

71. Ans: (b)

Sol: $\mathrm{Z}_{\mathrm{c}}=\mathrm{Z}+\frac{20}{100} \times \mathrm{Z}=1.2 \mathrm{Z}$
$\frac{\mathrm{Z}_{\mathrm{e}}}{\mathrm{Z}}=\frac{1-\mathrm{n}}{1-\mathrm{n}_{\mathrm{e}}}$
$\frac{1.2 \times \mathrm{Z}}{\mathrm{Z}}=\frac{1-0.4}{1-\mathrm{n}_{\mathrm{e}}} \Rightarrow 1-\mathrm{n}_{\mathrm{e}}=\frac{0.6}{1.2}=0.5$
$\mathrm{n}_{\mathrm{e}}=1-0.5=0.5$
72. Ans: (c)

Sol: Total Bleaching power (BP) consumed $=\mathrm{Q}$ \times dose of $\mathrm{BP}=20 \mathrm{~kg} /$ day
$10 \times$ dose of $\mathrm{BP}=20 \mathrm{~kg} /$ day
Dose of BP $=\frac{20}{10}=2 \mathrm{mg} / 1$
$C l_{2}$ dose $=\mathrm{BP}$ dose \times Available Cl_{2} in BP

$$
=2 \times \frac{35}{100}=0.7 \mathrm{mg} / l
$$

$$
\begin{aligned}
C l_{2} \text { demand } & =C l_{2} \text { dose }- \text { Residual } C l_{2} \\
& =0.7-0.2=0.5 \mathrm{mg} / l
\end{aligned}
$$

73. Ans: (b)

Sol: Population equivalent
$=\frac{\text { Total BOD }}{\text { Per Capita BOD }}=\frac{1600}{80 \times 10^{-3}}=20000$
74. Ans: (a)

Sol: Grit chamber remove \rightarrow Sand Particles (Grid)
Screen \rightarrow Large floating objects
Skimming tank \rightarrow Oil and grease
Primary Clarifier \rightarrow Organic solids
75. Ans: (c)

Sol: $\mathrm{Q}=10000 \mathrm{~m}^{3} /$ day, $\mathrm{y}_{\mathrm{i}}=150 \mathrm{mg} / l, \mathrm{X}=3000$ $\mathrm{mg} / l, \frac{\mathrm{~F}}{\mathrm{M}}=0.2 \mathrm{~d}^{-1}$
$\because y_{e}$ is not given $\quad \therefore y_{e}=0$
$\frac{F}{M}=\frac{Q\left(y_{i}-y_{e}\right)}{V X}$
$0.2=\frac{10000 \times(150-0)}{\mathrm{V} \times 3000}$
$\mathrm{V}=\frac{10000 \times 150}{0.2 \times 3000}=\frac{500}{2} \times 10=2500 \mathrm{~m}^{3}$
76. Ans: (c)

Sol: Fanning plume behaviour occurs during inversion.
77. Ans: (c)

Sol: $\mathrm{L}_{1}-\mathrm{L}_{2}=20$

$$
x=0
$$

$\mathrm{L}_{\mathrm{T}}=\mathrm{L}_{1}+\mathrm{x}=60+0=60 \mathrm{~dB}$
78. Ans: (c)

Sol: $\mathrm{Q}=3$ MLD $\quad y_{i}=300 \mathrm{mg} / \mathrm{l}$
BOD loading factor $=300 \mathrm{~kg} / \mathrm{m} /$ day
Plan area $=\frac{\mathrm{Qy}_{\mathrm{i}}}{\mathrm{OLR}}=\frac{3 \times 300}{300}$ ha $(\mathrm{OCR})=3 \mathrm{ha}$
79. Ans: (c)

Sol: $C_{\text {min }}=\frac{Q_{R} C_{R}+Q_{w} C_{W}}{Q_{R}+Q_{W}}$

$$
=\frac{18 \times 0+2 \times 10}{18+2}=\frac{20}{20}=1 \mathrm{mg} / \mathrm{l}
$$

Time taken to dissipate

$$
\begin{aligned}
& =\frac{\mathrm{C}_{\min }}{\text { Rate of dissipatio } \mathrm{n}} \\
& =\frac{1}{0.25} \frac{\mathrm{mg} / \ell}{\mathrm{mg} / \ell / \text { day }}=4 \text { days }
\end{aligned}
$$

80. Ans: (b)

Sol:

As two jets intersect at same point with same horizontal distance $\left(\mathrm{x}_{1}=\mathrm{x}_{2}\right)$
$\mathrm{C}_{\mathrm{V}_{1}}=\mathrm{C}_{\mathrm{V}_{2}}$
$\sqrt{\frac{x_{1}^{2}}{4 \mathrm{H}_{1} \mathrm{y}_{1}}}=\sqrt{\frac{\mathrm{x}_{2}^{2}}{4 \mathrm{H}_{2} \mathrm{y}_{2}}}$
$\mathrm{H}_{1} \times \mathrm{y}_{1}=\mathrm{H}_{2} \times \mathrm{y}_{2}$
$5 \times(3+y)=8 \times y$
$15+5 y=8 y \Rightarrow 3 y=15 m$
$y=3 \mathrm{~m}$
81. Ans: (d)

Sol:

1. For non - uniform velocity distribution

$$
\begin{aligned}
& \alpha>1 \text { and always } \alpha>\beta \\
& \beta>1 \\
& \therefore \alpha>\beta>1
\end{aligned}
$$

2. For uniform velocity distribution, no correction is required $\alpha=\beta=1$
3. For large and deep channels with fairly straight channels, velocity distribution variation is very less, so α, β exhibit lower values, whereas in natural/unlined canals, due to more irregularities α, β exhibit high value upto 2 and average of $\alpha=1.75$ and $\beta=1.25$
4. Ans: (b)

Sol: $\mathrm{y}=0.75 \mathrm{~m}$
$\mathrm{F}_{\mathrm{r}}=2$
Rectangle
$F_{r}=\frac{V}{\sqrt{g y}}$
$\mathrm{F}_{\mathrm{r}}^{2}=\frac{\mathrm{V}^{2}}{\mathrm{gy}}$
$\frac{\mathrm{F}_{\mathrm{r}}^{2} \cdot \mathrm{y}}{2}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}$
$\therefore \frac{\mathrm{V}^{2}}{2 \mathrm{~g}}=\frac{2^{2} \times 0.75}{2}=1.5$
$\mathrm{E}=\mathrm{y}+\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}$
$\mathrm{E}=0.75+1.5$
$\mathrm{E}=2.25 \mathrm{~m}$

83. Ans: (d)

Sol:

Given
Same ' c_{d} ' and H

$\mathrm{Q}_{\text {Rectangle }}=\mathrm{Q}_{\mathrm{V} \text { - notch }}$
$\tan \frac{\theta}{2}=\frac{\mathrm{x}}{2 \mathrm{H}}$
$\frac{2}{3} \mathrm{C}_{\mathrm{d}} \sqrt{2 \mathrm{~g}} \mathrm{~L} \cdot \mathrm{H}^{3 / 2}=\frac{8}{15} \mathrm{C}_{\mathrm{d}} \sqrt{2 \mathrm{~g}} \tan \frac{\theta}{2} \mathrm{H}^{5 / 2}$
$\mathrm{LH}^{3 / 2}=\frac{4}{5} \times \frac{\mathrm{x}}{2 \mathrm{H}} \cdot \mathrm{H}^{5 / 2}$
$\frac{\mathrm{x}}{\mathrm{L}}=\frac{10}{4}=2.5$
84. Ans: (c)

Sol: In triangular notch, there is no base to cause contraction and contraction is due to sides only and wetted perimeter also depends on length of sides, in turn depends on head. So,
C_{d} is fairly constant for all heads in a triangular notch.
On other hand, wetted perimeter does not vary directly as the head because the length of base. Hence, the C_{d} will not be constant for all heads in rectangular notch.
A triangular notch is very accurate for measurement of low discharge

submerged weir

In submerged weir, liquid level in the channel on the downstream is above the crest of weir /notch.
85. Ans: (c)

Sol:Newtonian fluids: water, air, kerosene mercury Glycerin
86. Ans: (d)
87. Ans: (d)

Sol: Hydrostatic pressure force $(\mathrm{F})=\gamma \cdot A \bar{x}$

$$
=\gamma \times \mathrm{L}^{2} \times \mathrm{L} / 2=\frac{\gamma L^{3}}{2}
$$

\therefore This hydrostatic pressure force acting a distance $\mathrm{L} / 3$ from bottom edge.
Moment at the bottom edge

$$
=\mathrm{F} \times \frac{\mathrm{L}}{3}=\gamma L^{3} \times \frac{L}{3}=\frac{\gamma L^{4}}{6}
$$

88. Ans: (a)

Sol: $\mathrm{V}_{\mathrm{f}}=\psi \sqrt{2 \mathrm{gH}}$

$$
=0.65 \times \sqrt{2 \times 10 \times 5}=6.5 \mathrm{~m} / \mathrm{s}
$$

89. Ans: (b)

Sol: $\eta_{\mathrm{o}}=\frac{P_{\text {water }}}{\mathrm{P}_{\text {shaft }}}=\frac{\gamma \cdot \mathrm{Q} \cdot\left(\mathrm{H}+\mathrm{h}_{\mathrm{f}}\right)}{\mathrm{P}_{\text {shaft }}}$
$0.8=\frac{10 \times 0.1 \times(15+5)}{\mathrm{P}_{\text {shaft }}}$
$\therefore \mathrm{P}_{\text {shaft }}=25 \mathrm{~kW}$
90. Ans: (c)
91. Ans: (a)

Sol: $N_{s}=\frac{N \sqrt{P}}{H^{\frac{5}{4}}} \Rightarrow \frac{400 \sqrt{1444}}{(256)^{\frac{5}{4}}}$
$=14.84$ which is less than 30 .
So, turbine is Pelton turbine.
92. Ans: (c)
93. Ans: (c)

Sol: The equation $\frac{\delta u}{\delta \mathrm{x}}+\frac{\delta \mathrm{v}}{\delta \mathrm{y}}+\frac{\delta \mathrm{w}}{\delta \mathrm{z}}=0$ is valid for both steady and unsteady flow.
94. Ans: (a)
95. Ans: (d)

Sol: As per codal priovision minimum reinforcement
$A_{\text {st }}=\frac{0.15}{100} \times b \times D($ For mid steel $)$
96. Ans: (a)
97. Ans: (d)
98. Ans: (c)
99. Ans: (b)
100.Ans: (c)
101.Ans: (a)
102.Ans: (b)

Sol: Minimum pitch $=2.5 \mathrm{~d}=2.5 \times 16=40 \mathrm{~mm}$
Maximum pitch for comp. member
$=12 \mathrm{t}$ or 200 mm whichever is less
$=12 \times 12=144 \mathrm{~mm}$
(or) 200 mm whichever is less
103. Ans. (b)

Sol: Bearing Strength of the bolt

$$
\mathrm{P}_{\mathrm{b}}=\mathrm{dt} \sigma_{\mathrm{pf}}
$$

$\mathrm{d}=16 \mathrm{~mm}$ (Effective diameter (or) hole diameter)
$=16 \times 5 \times 250$
$=20 \times 10^{3} \mathrm{~N}=20 \mathrm{kN}$

104.Ans: (c)

105.Ans: (c)

Sol: Strength of solid plate per pitch length

$$
\begin{aligned}
& =\text { p.t. } \sigma_{\mathrm{at}} \\
& =60 \times 14 \times 0.6 \times \mathrm{f}_{\mathrm{y}} \\
& =126 \mathrm{kN} \\
\eta= & \frac{\text { strength of joint per pitch length }}{\text { strength of solid plate per pitch length }} \times 100
\end{aligned}
$$

Strength of joint per pitch length is lesser of $88 \mathrm{kN}, 98 \mathrm{kN}, 78 \mathrm{kN}$

$$
\begin{aligned}
\therefore \eta & =\frac{78}{126} \times 100=61.9 \% \\
& \simeq 62 \%
\end{aligned}
$$

106.Ans: (c)

107.Ans: (c)

Sol: Minimum size of fillet weld (for 16 mm gusset plate) $=5 \mathrm{~mm}$
$\mathrm{t}_{\mathrm{t}}=\mathrm{K} . \mathrm{S}=0.7 \times 5=3.5 \mathrm{~mm}$
$\mathrm{P}_{\mathrm{s}}=\mathrm{L}_{\mathrm{w}} \times \mathrm{t}_{\mathrm{t}} \times \tau_{\mathrm{vf}}$
$150 \times 10^{3}=\mathrm{L}_{\mathrm{w}} \times 3.5 \times 100$
$\therefore \mathrm{L}_{\mathrm{w}}=428.57 \mathrm{~mm}$

$$
\simeq 430
$$

Overall length $=430+2 \times S$

$$
=430+2 \times 5
$$

Overall length $=440 \mathrm{~mm}$

108. Ans: (c)

109. Ans: (b)

Sol:

C.G of weld at middle (i.e 150 mm from weld)

$$
\begin{aligned}
\therefore \mathrm{M} & =\mathrm{P} . \mathrm{e}=100 \times 10^{3} \times(150+200) \\
& =35 \times 10^{6} \mathrm{~N}-\mathrm{mm}
\end{aligned}
$$

Shear stress in weld due to twisting moment at heavily stressed point is

$$
\begin{aligned}
\mathrm{q}_{2} & =\frac{\mathrm{M}}{\mathrm{I}_{\mathrm{p}}} \times \mathrm{r}_{\max } \\
& =\frac{35 \times 10^{6} \times \sqrt{150^{2}+150^{2}}}{150 \sqrt{2} \times 10^{6}} \\
& =\frac{35 \times 10^{6} \times \sqrt{2} \times 150}{150 \times \sqrt{2} \times 10^{6}} \\
\mathrm{q}_{2} & =35 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

110.Ans: (a)

Sol: A square slab with $\left(\frac{\ell_{\mathrm{y}}}{\ell_{\mathrm{x}}}=1\right)$ will also act as one way slab if it supported only on two opposite edges.
111. Ans: (d)

Sol: In a two-way simply supported slab corners are allowed to lift freely therefore no torsion at corners.
112.Ans: (c)

Sol:

Maximum negative span moment on span E.
113. Ans: (b)

Sol: As per IS 456-2000
114.Ans: (d)

115.Ans: (b)

Sol:

$$
\begin{aligned}
& \overbrace{30}^{15} t^{t_{i j}=20} \overbrace{50}^{35} \\
& \mathrm{~T}_{\mathrm{E}}^{\mathrm{i}}=15 \quad \mathrm{~T}_{\mathrm{L}}^{\mathrm{i}}=30 \\
& \mathrm{~T}_{\mathrm{E}}^{\mathrm{j}}=35 \quad \mathrm{~T}_{\mathrm{L}}^{\mathrm{j}}=50
\end{aligned}
$$

Total float $=\left(T_{L}^{j}-T_{E}^{i}\right)-t_{i j}$

$$
=(50-15)-20=15
$$

Free float $=\left(T_{E}^{j}-T_{E}^{i}\right)-t_{i j}$

$$
=(35-15)-20=0
$$

Independent float $=\left(T_{E}^{j}-T_{L}^{i}\right)-t_{i j}$

$$
\begin{aligned}
& =(35-30)-20 \\
& =-15=0
\end{aligned}
$$

\therefore Total float \times Free float \times independent float

$$
\begin{aligned}
& =15 \times 0 \times-15 \\
& =0
\end{aligned}
$$

116.Ans: (d)

Joint venture helps in combining the past projects data, incumbent technology and financial data of two or more separate companies to satisfy the prequalification.

117.Ans: (b)

Sol: Variance, $\sigma^{2}=\left(\frac{\mathrm{t}_{\mathrm{p}}-\mathrm{t}_{\mathrm{o}}}{6}\right)^{2}$

$$
\begin{aligned}
& \sigma^{2}=\left(\frac{10-6}{6}\right)^{2} \\
& =0.444 \text { months } \\
& =0.444 \times 30=13.33 \text { days }
\end{aligned}
$$

118.Ans: (a) 119.Ans: (b)
120. Ans (a)
121.Ans: (d)

122.Ans: (d)

Sol: Negative skin friction is the downward drag on the piles due to compaction and consolidation of the surrounding freshly placed fill.
Lowering of ground water table will increase the effective stress and cause consolidation of strata.

123.Ans: (b)

Sol: Ratio of pore water pressure developed to the applied confining pressure is called B parameter.
124.Ans: (d)

Sol: $\mathrm{D}_{\min }=\frac{\mathrm{q}}{\gamma}\left(\frac{1-\sin \phi}{1+\sin \phi}\right)^{2}$

$$
\begin{aligned}
& \mathrm{D}_{\min }=\frac{36}{18}\left(\frac{1-\sin 30^{\circ}}{1+\sin 30^{\circ}}\right)^{2}=\frac{36}{18} \times \frac{1}{9} \\
& \mathrm{D}_{\min }=0.22 \mathrm{~m}
\end{aligned}
$$

125.Ans: (b)

Sol: In cantilever sheet pile, the point of rotation is below the dredge line. Hence the statement 2 is correct.
126.Ans: (b)

Sol: Hydrometer test is used to calculate specific gravity of liquids.
Pycnometer method is used for calculating specific gravity of soils/ solids.

127.Ans: (c)

Sol: $\mathrm{I}_{\mathrm{p}}=$ liquid limit - plastic limit

$$
=96 \%-16 \%=80 \%
$$

$\%$ clay $=40 \%$

$$
\text { Activity } \begin{aligned}
\mathrm{A}_{\mathrm{c}} & =\frac{\mathrm{I}_{\mathrm{p}}}{\% \text { clay }} \\
& =\frac{80 \%}{40 \%}=2>1.25
\end{aligned}
$$

Soil is very active
Most probable mineral would be montmorillonite
128.Ans: (d)

Sol: Providing sheet piles which act as impervious blanket to lengthen the flow path.

Providing protective filters for preventing the migration of finer particles with very little loss in head.
Provide a cutoff wall or trenches to stop seepage.
129.Ans: (b)

Sol: We know that
$T_{v}=C_{v} \times \frac{t}{d^{2}}$
Given the layer has a double drainage

$$
\therefore \mathrm{d}=\frac{4 \mathrm{~m}}{2}=2 \mathrm{~m}
$$

$$
\mathrm{C}_{\mathrm{v}}=\mathrm{T}_{\mathrm{v}} \times \frac{\mathrm{d}^{2}}{\mathrm{t}}
$$

$$
=0.196 \times \frac{2^{2}}{1}
$$

$\mathrm{C}_{\mathrm{v}}=0.784 \mathrm{~m}^{2} /$ year

130.Ans: (c)

Sol: Toughness index helps in analyzing shear strength of soil at plastic limit.
131.Ans: (d)

132.Ans: (b)

Sol: We know

$$
\mathrm{Q}=\mathrm{k} . \mathrm{i} . \mathrm{A}
$$

Seepage velocity, $V_{s}=\frac{V}{n}$

$$
\mathrm{V}=\text { average velocity }=\mathrm{k} . \mathrm{i}
$$

$$
\begin{aligned}
\therefore \quad \mathrm{k} . \mathrm{i} & =\frac{\mathrm{Q}}{\mathrm{~A}}=\frac{\left(\frac{450 \mathrm{~cm}^{3}}{10 \mathrm{~min}}\right)}{50 \mathrm{~cm}^{2}} \\
\Rightarrow \quad \mathrm{v} & =\mathrm{k} . \mathrm{i}=\frac{45}{50} \mathrm{~cm} / \mathrm{min} \\
\mathrm{v}_{\mathrm{s}} & =\frac{\mathrm{v}}{\mathrm{n}}=\frac{45}{50 \times 0.4} \\
& =2.25 \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

133.Ans: (d)

Sol: $\mathrm{F}=\frac{\tau_{\mathrm{c}}}{\tau}=\frac{\tan \phi}{\tan \mathrm{i}}=\frac{\tan 30^{\circ}}{\tan 12^{\circ}}=2.72$

134.Ans: (b)

Sol: Permeability $(k)=D_{10}^{2} \frac{e^{3}}{1+e} \frac{\gamma}{\mu}$
135.Ans: (b)
136. Ans (a)
137.Ans: (c)

Sol: Statement I True
Statement II False

138.Ans: (a)

Sol: With increase in the elevation, the air density reduces, hence lift on the aircraft wing reduces. So the aircraft requires more speed to rise. To achieve more speed, the length of the runway must be increased
139.Ans: (a)

Sol: Principle of superposition is valid for linearly elastic systems upto proportionality limit, stress is proportional to strain. Hence principle of superposition can be applied.

Beyond proportionality limit, since stressstrain variation is not linear, it is not valid.

140.Ans: (b)

Sol: In plane stress situation $\sigma_{2}=0 ; \sigma_{\mathrm{x}} \neq 0$;

$$
\sigma_{y} \neq 0
$$

In plane strain situation $\varepsilon_{\mathrm{z}}=0$
$\Rightarrow \frac{\sigma_{z}-\mu\left(\sigma_{x}+\sigma_{y}\right)}{E}=0$
For a plane stress to give a plane strain condition;
$\Rightarrow \frac{\sigma_{z}-\mu\left(\sigma_{x}+\sigma_{y}\right)}{E}=0$
$\Rightarrow 0-\frac{\mu\left(\sigma_{x}+\sigma_{y}\right)}{\mathrm{E}}=0$
$\Rightarrow \mu=0$
In hydrostatic pressure system
$\sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}=\sigma_{\mathrm{z}}=\sigma$
Volumetric strain $=\frac{\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)}{E}(1-2 \mu)$
$\Rightarrow 0=\frac{3 \sigma}{\mathrm{E}}(1-2 \mu)$
$\Rightarrow \mu=0.5$
141.Ans: (c)

Sol: Both statement (I) and statement (II) are individually true and statement (II) is the correct explanation o statement (I).
143.Ans: (c)

Sol: Both the samples are not slender. The strength difference between these two samples is because of end friction effect in cube testing. End friction effect does not influence the test results of cylinder sample. Because of this, cube strength measurement comes out to be more than that of cylinder strength measurement, for the same concrete.

144. Ans:(a)

Sol:Intakes are located deep inside to collect constant amount of water.
145.Ans: (c)
146.Ans: (c)

Sol: For rapid sand filters $C_{u} \simeq 1$ therefore uniformly graded sand is used as filter media. Uniformly graded sand improve ROF not water quality.
147. Ans: (d)
148. Ans: (c)
149. Ans: (c)
150. Ans: (d)
142. Ans: (d)

Sol: In the preparation of fiber-reinforc concrete, only discreet fibers of steel, gla ad polymers are allowed. Continuous she and meshes are not allowed.

ISRO *

ONLINE TEST SERIES

