Engineering Academy

Head Office : Sree Sindhi Guru Sangat Sabha Association, \# 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001.
Ph: 040-23234418, 040-2324419, 040-2324420, 040-24750437

ESE- 2020 (Prelims) - Offline Test Series
 Test- 5
 ELECTRONICS \& TELECOMMUNICATION ENGINEERING

SUBJECT: CONTROL SYSTEMS AND ELECTROMAGNETICS - SOLUTIONS

1. Ans: (b)

Sol: $C=a R-C \beta$
$C(1+\beta)=a R$
$\frac{C}{R}=\frac{a}{1+\beta}$
02. Ans: (b)

Sol:

Number of individual loops $=6$
\rightarrow aba, bcb, cdc, abcda, acda, acba

03. Ans: (a)

Sol: Human body system is a complex multi variable feedback system.
04. Ans: (d)

Sol: $\mathrm{TF}=\frac{\mathrm{C}(\mathrm{s})}{\mathrm{R}(\mathrm{s})}=\frac{\mathrm{s}+\omega}{\mathrm{s}^{2}+\omega^{2}}$

$$
\begin{aligned}
& \mathrm{r}(\mathrm{t})=\delta(\mathrm{t}), \mathrm{R}(\mathrm{~s})=1 \\
& \mathrm{C}(\mathrm{~s})=\frac{\mathrm{s}+\omega}{\mathrm{s}^{2}+\omega^{2}}=\frac{\mathrm{s}}{\mathrm{~s}^{2}+\omega^{2}}+\frac{\omega}{\mathrm{s}^{2}+\omega^{2}}
\end{aligned}
$$

Apply inverse Laplace transform
$\mathrm{c}(\mathrm{t})=\cos (\omega \mathrm{t})+\sin (\omega \mathrm{t})$

$$
\begin{aligned}
& =\sqrt{2}\left[\frac{1}{\sqrt{2}} \cos (\omega \mathrm{t})+\frac{1}{\sqrt{2}} \cdot \sin (\omega \mathrm{t})\right] \\
& =\sqrt{2}\left[\sin 45^{\circ} \cos (\omega \mathrm{t})+\cos 45^{\circ} \cdot \sin (\omega \mathrm{t})\right] \\
& =\sqrt{2}\left(\sin \left(\omega \mathrm{t}+45^{\circ}\right)\right)=\sqrt{2} \sin \left(\omega \mathrm{t}+\frac{\pi}{4}\right)
\end{aligned}
$$

5. Ans: (b)

Sol:

$\frac{C}{R}=\frac{s+4}{s^{2}+7 s+13}$
$G(s)=\frac{s+4}{s^{2}+6 s+9}$
DC gain $\mathrm{s}=0 \Rightarrow \mathrm{G}(0)=\frac{4}{9}$
06. Ans: (a)

Sol: DC gain $=1.5$
$\mathrm{TF}=\frac{\mathrm{K}(\mathrm{s}+3)}{(\mathrm{s}+2)(\mathrm{s}+4)} \Rightarrow \underset{\mathrm{s} \rightarrow 0}{\mathrm{Lt}} \frac{\mathrm{K}(\mathrm{s}+3)}{(\mathrm{s}+2)(\mathrm{s}+4)}=1.5$
$\therefore \mathrm{K}=4$
07. Ans: (c)

Sol: Characteristic Equation
$=(\mathrm{s}+1)^{2}(\mathrm{~s}+2)+\left(\mathrm{s}^{2}+2 \mathrm{~s}+3\right)=0$
\therefore Order of system is 3

08. Ans: (d)

Sol: $\mathrm{TF}=\frac{\mathrm{k}}{\left(\mathrm{s}^{2}+1^{2}\right)^{2}}$
$\mathrm{IR}=\mathrm{L}^{-1}\left[\frac{\mathrm{k}}{\left(\mathrm{s}^{2}+1^{2}\right)^{2}}\right]$
$\mathrm{IR}=\mathrm{kt} \sin \mathrm{t}$
09. Ans: (c)

Sol: \Rightarrow PI controller is equivalent to lag compensator
$\Rightarrow \mathrm{PD}$ controller is equivalent to lead compensator
\Rightarrow PID controller is equivalent to lead - lag compensator.
\Rightarrow ON-OFF controller is also known as relay controller
10. Ans: (b)

Sol: $\mathrm{CE}=1+\mathrm{G}(\mathrm{s})=0$
$C E=s^{2}+2 s+K+1=0$
$G(s)=\frac{K}{s^{2}+2 s+1}=\frac{K}{(s+1)^{2}}$

11. Ans: (c)

Sol: $G(s) H(s)=\frac{K}{s(s+8)}$

12. Ans: (c)

Sol:

Break point does not exist
13. Ans: (c)

Sol: type 0 system: open loop pole at origin.
14. Ans: (b)

Sol: $\mathrm{TF}=\frac{\mathrm{K}\left(1+\frac{\mathrm{s}}{2}\right)}{\mathrm{s}\left(1+\frac{\mathrm{s}}{10}\right)}=\frac{5 \mathrm{~K}(\mathrm{~s}+2)}{\mathrm{s}(\mathrm{s}+10)}$

15. Ans: (c)

Sol: $\frac{V_{0}(s)}{V_{i}(s)}=\frac{1 M+\frac{1}{s 1 \mu}}{1 M+1 M+\frac{1}{s 1 \mu}}=\left(\frac{s+1}{2 s+1}\right)$
16. Ans: (b)

Sol:

As K_{p} increases $\Rightarrow e_{\text {ss }}$ decreases
CLTF $=\frac{\mathrm{KK}_{\mathrm{P}}}{\mathrm{sT}+1+\mathrm{KK}_{\mathrm{p}}}$
$S=\frac{-\left(1+\mathrm{KK}_{\mathrm{p}}\right)}{\mathrm{T}}$

$$
\mathrm{T}_{\mathrm{CL}}=\frac{\mathrm{T}}{\left(1+\mathrm{KK}_{\mathrm{p}}\right)}
$$

K_{p} increases \rightarrow Time constant of closed loop system decreases.
17. Ans: (a)

Sol: $\mathrm{N}=\mathrm{P}-\mathrm{Z}$
$\mathrm{N}=0, \mathrm{P}=0$
$\therefore \mathrm{Z}=0$
18. Ans: (a)

Sol:

1. One pole at origin \Rightarrow slope of bode plot $\frac{\mathrm{K}}{\mathrm{s}}$ is $-20 \mathrm{~dB} / \mathrm{dec}$
2. $\mathrm{G}(\mathrm{s})=\frac{1-\mathrm{s}}{1+\mathrm{s}}$
$G(j \omega)=\frac{1-j \omega}{1+j \omega}$
$\omega=0 \Rightarrow 1 \angle 0^{\circ}$
$\omega=\infty \Rightarrow-1 \angle-180^{\circ}$
\therefore Nyquist plot not a straight line
3. $G(j \omega)=\frac{1}{1-\mathrm{j} \omega}$

At $\omega=0 \Rightarrow \phi=-\tan ^{-1} \omega=-\tan ^{-1}(0)=0^{\circ}$
19. Ans: (d)

Sol: Since the system is unstable, the steady state output is unbounded.
20. Ans: (a)

Sol: $\angle \frac{10}{j \omega(j \omega+4)(j \omega+6)}=-180^{\circ}$
$\omega=\sqrt{24} \mathrm{rad} / \mathrm{sec}$
$\left|\frac{10}{j \omega(j \omega+4)(j \omega+6)}\right|=\frac{10}{240}$
$G M=\frac{240}{10}=24$
21. Ans: (c)

Sol: Minimum phase system: It is a system in which poles and zeros will not lie in the right side of S-plane. For a minimum phase system
Eg: $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{\mathrm{K}(\mathrm{s}+10)}{\mathrm{s}(\mathrm{s}+1)\left(\mathrm{s}^{2}+2 \mathrm{~s}+2\right)}$
Non minimum phase system: It is a system in which some of the poles and zeros may lie in the right side of s-plane. In particular zeros lie in the right side of s-plane.
Eg: $G(s) H(s)=\frac{K(s-10)}{s(s+20)}$
All pass system: It has constant gain at all frequencies, hence all frequencies are transmitted.
Eg: $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{1-\mathrm{aTs}}{1+\mathrm{aTs}}$
22. Ans: (c)

Sol: $G(s)=\frac{k}{s\left(1+\frac{s}{2}\right)\left(1+\frac{s}{8}\right)}$

$$
=\frac{\mathrm{k}}{\mathrm{~s}\left(1+\mathrm{sT}_{1}\right)\left(1+\mathrm{sT}_{2}\right)}
$$

$20 \log \mathrm{k}=26 \mathrm{~dB}$ $\mathrm{k}=20$
point of intersection $=\frac{\mathrm{kT}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}+\mathrm{T}_{2}}=2$
23. Ans: (d)

Sol: $|G(j \omega)|$ at $\omega=40=60-12=48 \mathrm{~dB}$
$|\mathrm{G}(\mathrm{j} \omega)|$ at $\omega=160=48-(6 \times 2)=36 \mathrm{~dB}$

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

2. FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

5. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm
\checkmark All tests will be conducted in Question Paper Booklet format.
\checkmark Test Series will be conducted at all our centres.

(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

ISRO -- -
 ONLINE TEST SERIES

No. of Tests: 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO)
Recruitment of Scientist/Engineer 'SC'
ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
『 starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.
(C) 040-48539866 / 040-40136222 © testseries@aceenggacademy.com

24. Ans: (d)

Sol: For system to be unstable

- One or more poles must lie in the right half of s - plane
- Repeated poles lie on the imaginary axis
- Repeated poles lie at the origin.

25. Ans: (a)

Sol: Characteristic Equation $=1+\frac{8 \mathrm{k}}{\mathrm{s}(\mathrm{s}+10)}=0$

s^{2}	1	8 k
s^{1}	10	
$\mathrm{~s}^{0}$	8 k	

$$
s^{2}+10 s+8 k=0
$$

$8 \mathrm{k}>0$
$\mathrm{k}>0$
For any value of $k>0$ system is stable

26. Ans: (b)

Sol:

$+s^{5}$	1	1	1
$+s^{4}$	1	1	1
$+s^{3}$	$0(2)$	$0(1)$	0
$+s^{2}$	$\frac{1}{2}$	1	0
$-s^{1}$	-3	0	
$+s^{0}$	1		

$$
\begin{aligned}
\begin{aligned}
\mathrm{AE} & =s^{4}+\mathrm{s}^{2}+1=0 \\
\frac{\mathrm{dA}}{\mathrm{ds}} & =4 s^{3}+2 \mathrm{~s} \\
& =2 \mathrm{~s}^{3}+\mathrm{s}
\end{aligned} .
\end{aligned}
$$

Two sign changes in the 1 st column
\therefore Number of RHP $=2$

$$
\left.\begin{array}{r}
\text { RHP }=2 \\
\text { j } \omega \mathrm{P}=0 \\
\mathrm{LHP}=3
\end{array}\right\} \text { unstable }
$$

27. Ans: (b)

Sol:

s^{3}	1	16
$\mathrm{~s}^{2}$	10	k
s^{1}	$\frac{160-\mathrm{k}}{10}$	
$\mathrm{~s}^{0}$	k	

$160-\mathrm{k}=0$
$\mathrm{k}=160$
28. Ans: (c)

Sol: Given block diagram is shown in below figure,

Characteristic equation is $\mathrm{s}(\mathrm{s}+3)+\mathrm{K}_{\mathrm{C}}=0$
$\mathrm{s}^{2}+3 \mathrm{~s}+\mathrm{K}_{\mathrm{C}}=0$
Poles to be on left of $s=-1, \quad$ put $s+1=z$
$(\mathrm{z}-1)^{2}+3(\mathrm{z}-1)+\mathrm{K}_{\mathrm{C}}=0 \quad \Rightarrow \mathrm{~s}=\mathrm{z}-1$
$z^{2}+z+K_{C}-2=0$
by applying Routh's criteria we get,

z^{2}	1	$K_{C}-2$
z^{1}	1	
z^{0}	$K_{C}-2$	

$K_{C}-2>0$
$\Rightarrow K_{C}>2$ for the poles to be on left of $\mathrm{s}=-1$
29. Ans: (a)

Sol: Poles of the output are input and system poles i.e., $-4,-1$ and -10
\therefore Time constants are $\frac{1}{4}, 1$ and $\frac{1}{10} \mathrm{sec}$
30. Ans: (c)

Sol: $M_{p}=\left(e^{\frac{-n \zeta \pi}{\sqrt{1-\zeta^{2}}}}\right)=e^{\left(-\frac{\pi \zeta^{\zeta}}{\sqrt{1-\zeta^{2}}}\right)^{n}}$
$1^{\text {st }}$ under shoot $=\left(\mathrm{e}^{\frac{-\zeta \pi}{\sqrt{1-\zeta^{2}}}}\right)^{2}=0.25$
$1^{\text {st }}$ over shoot $=e^{\frac{-\pi \zeta}{\sqrt{1-\zeta^{2}}}}=0.5$
$2^{\text {nd }}$ over shoot $\left(\mathrm{e}^{\frac{-\zeta \pi}{\sqrt{1-\zeta^{2}}}}\right)^{3}=(0.5)^{3}=0.125$

31. Ans: (d)

Sol: Let $\mathrm{a}=2, \mathrm{~b}=6 \frac{\mathrm{~s}+\mathrm{a}}{\mathrm{s}+\mathrm{b}}$

$$
\mathrm{aT}=1 / 2, \mathrm{~T}=1 / 6, \mathrm{a}=3, \sin ^{-1} \frac{\mathrm{a}-1}{\mathrm{a}+1}=30^{\circ}
$$

32. Ans: (d)

Sol: $\operatorname{CLTF}: \frac{C(s)}{R(s)}=\frac{6}{s+11}$
The unit step response is given by
$C(s)=\frac{6}{s(s+11)}=\frac{6 / 11}{s}-\frac{6 / 11}{s+11}$
$c(t)=\left(\frac{6}{11}-\frac{6}{11} e^{-11 t}\right) u(t)$
33. Ans: (d)

Sol: - Root loci starts at poles and ends at zero of the loop transfer function $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$

- At poles of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ the value of $\mathrm{k}=0$
- At zeros of $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ the value of $\mathrm{k}=\infty$

34. Ans: (b)

Sol: $\mathrm{TF}=\frac{\frac{100}{\mathrm{~s}(1+4 \mathrm{~s})}}{1-\left[\frac{100(-1)}{\mathrm{s}(1+4 \mathrm{~s})}+\frac{\mathrm{K}_{0} \mathrm{~s}(-1)}{\mathrm{s}(1+4 \mathrm{~s})}\right]}$
$\frac{\mathrm{C}(\mathrm{s})}{\mathrm{R}(\mathrm{s})}=\frac{100}{\mathrm{~s}(1+4 \mathrm{~s})+\mathrm{K}_{0} \mathrm{~s}+100}$
Characteristic Equation is
$\mathrm{s}^{2}+\frac{\left(1+\mathrm{K}_{0}\right)}{4} \mathrm{~s}+25=0$
$\omega_{\mathrm{n}}=5 \mathrm{rad} / \mathrm{sec} \quad 2 \zeta \omega_{\mathrm{n}}=\frac{1+\mathrm{K}_{0}}{4}$
$2 \times 0.5 \times 5=\frac{\left(1+\mathrm{K}_{0}\right)}{4}$
$\mathrm{K}_{0}=19$
35. Ans: (c)

Sol: $\mathrm{D}=4 \pi \frac{\mathrm{~A}_{\mathrm{e}}}{\lambda^{2}}$
$\mathrm{A}_{\text {emax }}=\frac{\mathrm{D} \lambda^{2}}{4 \pi}=\frac{4 \pi}{4 \pi} \lambda^{2}$
$\therefore \mathrm{A}_{\text {emax }}=\lambda^{2}$

36. Ans: (d)

Sol: For lossless transmission line, input impedance, $\mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{0}\left[\frac{\mathrm{Z}_{\mathrm{R}}+\mathrm{j} \mathrm{Z}_{0} \tan \beta \ell}{\mathrm{Z}_{0}+\mathrm{j} \mathrm{Z}_{\mathrm{R}} \tan \beta \ell}\right]$
Given: length of the line $\ell=\frac{\lambda}{2}$
$\ell=\frac{\lambda}{2} \Rightarrow \beta \ell=\frac{2 \pi}{\lambda} \times \frac{\lambda}{2}=\pi$
$\tan \beta l \equiv \tan \pi=0$
$\mathrm{Z}_{\mathrm{in}}=\mathrm{Z}_{0}\left(\frac{\mathrm{Z}_{\mathrm{R}}+\mathrm{j} 0}{\mathrm{Z}_{0}+\mathrm{j} 0}\right)$
$\therefore \mathrm{Z}_{\text {in }}=\mathrm{Z}_{\mathrm{R}}=(40+\mathrm{j} 30) \Omega$
37. Ans: (b)

Sol: Far electric field intensity, $\mathrm{E} \propto \frac{1}{\mathrm{r}}$
$\frac{\mathrm{E}_{2}}{\mathrm{E}_{1}}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}$
Given
$\mathrm{r}_{1}=100 \mathrm{~m} \quad \mathrm{E}_{1}=200 \mathrm{~V} / \mathrm{m}(\mathrm{rms})$
$\mathrm{r}_{2}=1000 \mathrm{~m}$
$\frac{\mathrm{E}_{2}(\mathrm{rms})}{\mathrm{E}_{1}(\mathrm{rms})}=\frac{100}{1000}$
$\mathrm{E}_{2}(\mathrm{rms})=\frac{100}{1000} \times 200=20 \mathrm{~V} / \mathrm{m}$
Average power density, $\quad \mathrm{W}_{\mathrm{avg}}=\frac{\mathrm{E}_{2}^{2}(\mathrm{rms})}{\eta_{0}}$
$\mathrm{W}_{\mathrm{avg}}=\frac{400}{\eta_{0}} \mathrm{~W} / \mathrm{m}^{2}$

38. Ans: (a)

Sol: Consider lossless transmission line, with $\mathrm{R}=0$ and $\mathrm{G}=0$.

Propagation constant,
$P \equiv \alpha+j \beta=\sqrt{(0+j \omega L)(0+j \omega C)}$
$P \equiv \alpha+j \beta=j \omega \sqrt{L C}$
\rightarrow Propagation constant is purely imaginary
\rightarrow Attenuation constant $\alpha=0$
\rightarrow No attenuation for the wave and hence there is no frequency distortion
\rightarrow Phase shift constant $\beta=\omega \sqrt{\text { LC }}$
Phase velocity, $\mathrm{v}_{\mathrm{p}} \equiv \frac{\omega}{\beta}=\frac{\omega}{\omega \sqrt{\mathrm{LC}}}$

$$
=\frac{1}{\sqrt{\mathrm{LC}}}
$$

\rightarrow Phase velocity is independent of frequency
\rightarrow Characteristic impedance,

$$
\begin{aligned}
& Z_{0}=\sqrt{\frac{0+j \omega L}{0+j \omega C}} \\
& Z_{0}=\sqrt{\frac{L}{C}}=R_{0}
\end{aligned}
$$

Therefore for the given positive real values of L and C, characteristic impedance is purely resistive.
39. Ans: (c)

Sol: Propagation constant of distortionless transmission line is given by

$$
P \equiv \alpha+j \beta=\frac{R}{L} \sqrt{L C}+j \omega \sqrt{L C}
$$

(or) $\frac{G}{C} \sqrt{L C}+j \omega \sqrt{L C}$
$\alpha=\frac{\mathrm{R}}{\mathrm{L}} \sqrt{\mathrm{LC}}$ (or) $\frac{\mathrm{G}}{\mathrm{C}} \sqrt{\mathrm{LC}}$
\rightarrow independent of frequency.
$\beta=\omega \sqrt{L C}($ or $) \beta \alpha \omega$, phase is linear with frequency and phase velocity is independent of frequency.
\rightarrow when the phase shift constant is linearly varying with frequency (or) phase velocity is independent of frequency then the delay distortion (or) phase distortion on the transmission line can be eliminated.
40. Ans: (d)

Sol: Given: line is lossless, $\alpha=0, \mathrm{P}=\mathrm{j} \beta$
$\mathrm{v}_{\mathrm{p}}=2 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
$\mathrm{f}=50 \mathrm{MHz}$
$\mathrm{Z}_{0}=50 \Omega$
$Z_{R}=(30+j 40)$ ohm
wavelength, $\lambda=\frac{v_{\mathrm{p}}}{\mathrm{f}}=\frac{2 \times 10^{8}}{50 \times 10^{6}}=4 \mathrm{~m}$
$l=1 \mathrm{~m}$
$\lambda=4 \mathrm{~m}$
and hence $\ell=\frac{\lambda}{4}$ (quarter wave transmission line)
for $\mathrm{QWT}, \mathrm{Z}_{\mathrm{in}}=\frac{\mathrm{Z}_{0}^{2}}{\mathrm{Z}_{\mathrm{R}}}=\frac{50^{2}}{(30+\mathrm{j} 40)}$

$$
=\frac{2500(30-\mathrm{j} 40)}{(30+\mathrm{j} 40)(30-\mathrm{j} 40)}
$$

$$
=\frac{2500(30-\mathrm{j} 40)}{(900+1600)}
$$

$\therefore \mathrm{Z}_{\text {in }}=(30-\mathrm{j} 40)$ ohm
41. Ans: (a)

Sol: Given:
$20 \log \mathrm{~S}=40$
$\log S=2$
S = 100
Reflection coefficient, $|\mathrm{K}|=\frac{\mathrm{S}-1}{\mathrm{~S}+1}$

$$
|\mathrm{K}|=\frac{100-1}{100+1}
$$

$\therefore|\mathrm{K}|=0.98$

TEST YOUR PREP IN A REAL TEST ENVIRONMENT
 Pre GAIIE - 2020

Date of Exam : 18 ${ }^{\text {th }}$ January 2020 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019

Highlights:

- Get real-time experience of GATE-20 test pattern and environment.
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for GATE-20 toppers.

SSC-JE (Paper-I) =Online Test Series

Staff Selection Commission - Junior Engineer

No. of Tests: 20

Subject Wise Tests : 16|Mock Tests - 4
Civil|Electrical| Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination

42. Ans: (c)

Sol: Given: transmission line is open-circuited $\left[Z_{R} \approx \infty\right]$ and lossless.
$\mathrm{Z}_{\mathrm{in}} \equiv \mathrm{Z}_{\mathrm{oc}}=\mathrm{Z}_{0} \operatorname{coth} \mathrm{P} \ell$
as line is lossless, $\alpha=0, \mathrm{P}=\mathrm{j} \beta$
$\mathrm{Z}_{\mathrm{in}} \equiv \mathrm{Z}_{\mathrm{oc}}=-\mathrm{j} \mathrm{Z}_{0} \cot \beta l$
Consider the variation of Z_{oc} :
$\frac{\mathrm{Z}_{\mathrm{oc}}}{\mathrm{Z}_{0}}=-j \cot \beta \ell$
Let
$\ell=0, \frac{\lambda}{4}, \frac{2 \lambda}{4}, \frac{3 \lambda}{4}, \frac{4 \lambda}{4}, \cdots-\cdots$ and
$\beta \ell=0, \frac{\pi}{2}, \frac{2 \pi}{2}, \frac{3 \pi}{2}, \frac{4 \pi}{2}$,

\rightarrow At $\ell=\frac{5 \lambda}{8}\left[\frac{2 \lambda}{4}<\ell<\frac{3 \lambda}{4}\right]$,

input impedance $\left(\mathrm{Z}_{\mathrm{oc}}\right)$ is negative reactive impedance and hence the equivalent resonant component is capacitor.
\rightarrow At $\ell=\frac{3 \lambda}{8}\left[\frac{\lambda}{4}<\ell<\frac{2 \lambda}{4}\right]$,
input impedance $\left(\mathrm{Z}_{\mathrm{oc}}\right)$ is positive reactive impedance and hence the equivalent resonant component is inductor.
\rightarrow When the length of the line is even multiples of $\frac{\lambda}{4}$, the OC line exhibits parallel resonance. Hence the equivalent resonant circuit is parallel combination of L and C .
ex. at $\ell=\frac{6 \lambda}{4}$ (or) $\frac{3 \lambda}{2} \rightarrow \stackrel{\square}{\square}$
\rightarrow When the length of the line is odd multiples of $\frac{\lambda}{4}$, then OC line exhibits series resonance.
Hence the equivalent resonant circuit is series combination of L and C .
Therefore the correct matching code is $\mathrm{A}-4, \mathrm{~B}-1, \mathrm{C}-2, \mathrm{D}-3$
43. Ans: (d)

Sol: $\oiint \overline{\mathrm{D}} . \overline{\mathrm{dS}}=\iiint \rho_{\mathrm{v}} \mathrm{dv}$
$\oint \overline{\mathrm{E}} \cdot \mathrm{d} \bar{\ell}=-\iint \frac{\partial \overline{\mathrm{B}}}{\partial \mathrm{t}} \cdot \overline{\mathrm{CS}}$
$\oint \overline{\mathrm{H}} \cdot \mathrm{d} \bar{\ell}=\iint\left(\overline{\mathrm{J}}+\frac{\partial \overline{\mathrm{D}}}{\partial \mathrm{t}}\right) . \overline{\mathrm{dS}}$
$\oiint \overline{\mathrm{B}} \cdot \overline{\mathrm{dS}}=$ zero
44. Ans: (b)

Sol: The equation of a plane wave travelling in y-direction is given by $\frac{\partial^{2} \mathrm{E}_{\mathrm{x}}}{\partial \mathrm{y}^{2}}=\mu \varepsilon \frac{\partial^{2} \mathrm{E}_{\mathrm{x}}}{\partial \mathrm{t}^{2}}$
45. Ans: (b)

Sol: Given: $\mathrm{Z}_{\mathrm{R}}=\mathrm{Z}_{0}$ (or) $\mathrm{R}_{\mathrm{R}}=\mathrm{R}_{0}(\because$ for lossless transmission line $\mathrm{Z}_{0}=\mathrm{R}_{0}$)
This line is said to be matched transmission line

$$
\begin{aligned}
& \mathrm{K}=\frac{\mathrm{Z}_{\mathrm{R}}-\mathrm{Z}_{0}}{\mathrm{Z}_{\mathrm{R}}+\mathrm{Z}_{0}}=\frac{\mathrm{R}_{0}-\mathrm{R}_{0}}{\mathrm{R}_{0}+\mathrm{R}_{0}}=0 \\
& \therefore \mathrm{VSWR}=\frac{1+|\mathrm{K}|}{1-|\mathrm{K}|}=1
\end{aligned}
$$

46. Ans: (b)

Sol: $\frac{E_{x}}{H_{y}}=\eta_{o}=120 \pi$
$H_{y}=\frac{E_{x}}{120 \pi}=\frac{10}{120 \pi} \cos \left(3 \pi \times 10^{8} t-\pi z\right)$
$\mathrm{H}_{\mathrm{y}}=\frac{1}{12 \pi} \cos \left(3 \pi \times 10^{8} \mathrm{t}-\pi \mathrm{z}\right)$
$B_{y}=\mu_{o} H_{y}=\frac{4 \pi \times 10^{-7}}{12 \pi} \cos \left(3 \pi \times 10^{8} t-\pi z\right)$
$B_{y}=\frac{1}{3} \times 10^{-7} \cos \left(3 \pi \times 10^{8} t-\pi z\right)$
$\overline{\mathrm{B}}=\frac{1}{3} \times 10^{-7} \cos \left(3 \pi \times 10^{8} \mathrm{t}-\pi \mathrm{z}\right) \hat{\mathrm{y}}$
47. Ans: (c)

Sol: $\nabla^{2} \overline{\mathrm{E}}$ and $\mu \varepsilon \frac{\partial^{2} \overline{\mathrm{E}}}{\partial \mathrm{t}^{2}}$ are the term for wave phenomenon.
48. Ans: (b)

Sol: +ve x
-ve x
$\frac{E_{y}}{H_{z}}=\frac{-E_{z}}{H_{y}}=\eta_{0} \quad-\frac{E_{y}}{H_{z}}=\frac{E_{z}}{H_{y}}=\eta_{0}$
$\bar{H}=\left(\frac{1}{\eta_{0}} \hat{z}-\frac{1}{\eta_{0}} \hat{y}\right) f(x-v t)+\left(\frac{-\hat{z}}{\eta_{0}}+\frac{\hat{y}}{\eta_{0}}\right) f(x+v t)$
$\bar{H}=(\hat{z}-\hat{y}) \frac{f(x-v t)}{\eta_{0}}+(\hat{y}-\hat{z}) \frac{f(x+v t)}{\eta_{o}}$
49. Ans: (b)

Sol: $\nabla \times \overrightarrow{\mathrm{H}}=\overrightarrow{\mathrm{J}}$
$\vec{J}=\left|\begin{array}{ccc}\hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 4 & -2 y & 3\end{array}\right|=0$
50. Ans: (b)

Sol: A. $\alpha=0 \quad \rightarrow$ 1. No-loss
B. $\alpha \approx \frac{\sigma}{2} \sqrt{\frac{\mu}{\varepsilon}} \rightarrow 2$. Low-loss
C. $\alpha \approx \sqrt{\frac{\omega \mu \sigma}{2}} \rightarrow 3$. High-loss
D. $\alpha=\omega \sqrt{\frac{\mu \varepsilon}{2}}\left[\sqrt{1+\frac{\sigma^{2}}{\omega^{2} \varepsilon^{2}}}-1\right]^{1 / 2} \rightarrow 4$.

Material medium.
51. Ans: (c)

Sol: Electric field at a point $\mathrm{p}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is given as, $\overrightarrow{\mathrm{E}}=\frac{\rho_{\mathrm{L}}}{2 \pi \varepsilon_{0} \rho} \hat{\mathrm{a}}_{\mathrm{p}}$
here, $\rho=\sqrt{(6)^{2}+(8)^{2}}=10 \mathrm{~m}$

$$
\begin{aligned}
\Rightarrow \overrightarrow{\mathrm{E}} & =\frac{100 \times 10^{-9}}{2 \pi \times \frac{1}{36 \pi} \times 10^{-9} \times 10} \hat{\mathrm{a}}_{\rho} \\
& =180 \hat{\mathrm{a}}_{\rho} \mathrm{V} / \mathrm{m} \\
|\overrightarrow{\mathrm{E}}| & =180 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

52. Ans: (c)

Sol: $\frac{|\overline{\mathrm{E}}|}{|\overline{\mathrm{H}}|}=\eta_{\mathrm{o}}=120 \pi$
$\frac{40 \pi}{|\overline{\mathrm{H}}|}=120 \pi \quad|\overline{\mathrm{H}}|=\frac{40 \pi}{120 \pi}=\frac{1}{3} \mathrm{~A} / \mathrm{m}$
53. Ans: (d)

Sol: Let $\mathrm{z}=0$

54. Ans: (d)

Sol: A. $\operatorname{curl}(\overrightarrow{\mathrm{F}})=0 \quad \rightarrow \quad$ 2. Irrotational
B. $\operatorname{Div}(\overrightarrow{\mathrm{F}})=0 \quad \rightarrow \quad$ 3. Solenoidal
C. Div $\operatorname{Grad}(\phi)=0 \rightarrow 1$. Laplace equation
D. Div $\operatorname{Div}(\phi)=0 \rightarrow 4$. Not defined.
55. Ans: (a)

Sol: As $\overrightarrow{\mathrm{P}}$ and $\overrightarrow{\mathrm{Q}}$ are solenoidal, hence,
$\nabla \cdot \overrightarrow{\mathrm{P}}=0, \nabla \cdot \overrightarrow{\mathrm{Q}}=0$
Also, $\nabla \times(\overrightarrow{\mathrm{P}} \times \overrightarrow{\mathrm{Q}})=(\nabla \cdot \overrightarrow{\mathrm{Q}}) \overrightarrow{\mathrm{P}}-(\nabla \cdot \overrightarrow{\mathrm{P}}) \overrightarrow{\mathrm{Q}}=0$
Now, $\because \nabla \times(\overrightarrow{\mathrm{P}} \times \overrightarrow{\mathrm{Q}})=0$,
Therefore $(\overrightarrow{\mathrm{P}} \times \overrightarrow{\mathrm{Q}})$ is conservative.
56. Ans: (d)

Sol: Magnetic vector potential is defined as,
$\overrightarrow{\mathrm{B}}=\nabla \times \overrightarrow{\mathrm{A}}$
Consider the Maxwell's equation,
$\nabla \cdot \overrightarrow{\mathrm{B}}=0$ (always)

$$
\begin{align*}
& \Rightarrow \nabla .(\nabla \times \overrightarrow{\mathrm{A}})=0 \ldots \ldots .(2) \\
& \because \nabla \times \overrightarrow{\mathrm{E}}=-\frac{\partial \overrightarrow{\mathrm{B}}}{\partial \mathrm{t}}=-\frac{\partial}{\partial \mathrm{t}}(\nabla \times \overrightarrow{\mathrm{A}}) \\
& \Rightarrow \nabla \times \overrightarrow{\mathrm{E}}+\nabla \times \frac{\partial \overrightarrow{\mathrm{A}}}{\partial \mathrm{t}}=0 \\
& \Rightarrow \nabla \times\left(\overrightarrow{\mathrm{E}}+\frac{\partial \overrightarrow{\mathrm{A}}}{\partial \mathrm{t}}\right)=0 \ldots \ldots .(3) \\
& \text { Again } \therefore \nabla \times \overrightarrow{\mathrm{H}}=\overrightarrow{\mathrm{J}} \\
& \Rightarrow \nabla \times \overrightarrow{\mathrm{B}}=\mu_{0} \overrightarrow{\mathrm{~J}} \quad\left(\because \overrightarrow{\mathrm{~B}}=\mu_{0} \overrightarrow{\mathrm{H}}\right) \\
& \Rightarrow(\nabla \times(\nabla \times \overrightarrow{\mathrm{A}}))=\mu_{0} \overrightarrow{\mathrm{~J}} \ldots \ldots(4) \tag{4}
\end{align*}
$$

57. Ans: (a)

Sol: Let $\mathrm{P}(\mathrm{r}, \theta, \phi)$ in spherical coordinate system and $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ in Cartesian coordinate system, then
$\mathrm{x}=\mathrm{r} \sin \theta \cos \phi$
$y=r \sin \theta \sin \phi$
$\mathrm{z}=\mathrm{r} \cos \theta$
$\because r=5, \theta=60^{\circ}, \phi=30^{\circ}$
$\therefore \mathrm{x}=5 \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}=\frac{15}{4}$
$y=5 \times \frac{\sqrt{3}}{2} \times \frac{1}{2}=\frac{5 \sqrt{3}}{4}$
$\mathrm{z}=5 \times \frac{1}{2}=\frac{5}{2}$
58. Ans: (b)

Sol: The magnetic field is non-conservative,
$\because \oint \overrightarrow{\mathrm{B}} \cdot \overrightarrow{\mathrm{d} \ell}=\mu \mathrm{I}$ (non-zero)
The magnetic flux is conserved.
\because The total net flux through a closed surface (incoming and outgoing) is zero. $(\nabla \cdot \overrightarrow{\mathrm{B}}=0)$
The magnetic field is rotational $(\because \nabla \times B=$ $\mathrm{J} \mu \neq 0$)
59. Ans: (d)

Sol: Given:
$\mathrm{L}=625 \times 10^{-9} \mathrm{H} / \mathrm{m}$
$\mathrm{C}=250 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
Characteristic impedance of lossless transmission line is given by

$$
\begin{aligned}
\mathrm{Z}_{0} & =\sqrt{\frac{\mathrm{L}}{\mathrm{C}}}=\sqrt{\frac{625 \times 10^{-9}}{250 \times 10^{-12}}} \\
& =\sqrt{2.5 \times 10^{3}} \\
& =5 \times 10
\end{aligned}
$$

$\therefore \mathrm{Z}_{0}=50 \Omega$
60. Ans: (d)

Sol: In TE_{10} mode
$P=$ (constant times) $\int_{x=0}^{a} \int_{y=0}^{b}\left|E_{y}\right|^{2} d x d y$
(or) $\mathrm{P}=\left(\right.$ constant times) $\int_{x=0}^{a} \int_{y=0}^{b}\left|H_{x}\right|^{2} d x d y$
\therefore both (1) and (2) are wrong
61. Ans: (b)

Sol: In a parallel plane waveguide, cutoff frequency $\mathrm{f}_{\mathrm{cm}}=\frac{\mathrm{mc}}{2 \mathrm{a} \sqrt{\varepsilon_{\mathrm{r}}}}$.
For the modes to propagate inside the waveguide then their cutoff of frequencies must be less than the operating frequency $\mathrm{f}=1 \mathrm{GHz}$

$$
\text { (i.e) } \mathrm{f}_{\mathrm{cm}}<\mathrm{f}
$$

$$
\begin{aligned}
& \frac{\mathrm{mc}}{2 \mathrm{a} \sqrt{\varepsilon_{\mathrm{r}}}}<1 \times 10^{9} \\
& \therefore \mathrm{~m}<\frac{1 \times 10^{9} \times 2 \mathrm{a} \sqrt{\varepsilon_{\mathrm{r}}}}{\mathrm{c}} \\
& \mathrm{~m}<\frac{1 \times 10^{9} \times 2 \times 50 \times 3}{3 \times 10^{10}} \\
& \Rightarrow \mathrm{~m}<10
\end{aligned}
$$

highest cut-off frequency is for $\mathrm{m}=9$
(i.e) $\mathrm{f}_{\mathrm{C}_{9}}=\frac{9 \mathrm{c}}{2 \mathrm{a} \sqrt{\varepsilon_{\mathrm{r}}}}=\frac{9 \times 3 \times 10^{10}}{2 \times 50 \times 3}=0.9 \mathrm{GHz}$

62. Ans: (b)

Sol: $\frac{E_{y}}{H_{x}}=\eta_{\mathrm{TE}_{10}}$
$\mathrm{E}_{\mathrm{y}}=\eta_{\mathrm{TE}_{10}} \mathrm{H}_{\mathrm{x}}$
where $\eta_{\mathrm{TE}_{10}}=\frac{\eta_{0}}{\sqrt{1-\left(\frac{\mathrm{f}_{\mathrm{C}_{10}}}{\mathrm{f}}\right)^{2}}}$
(or) $\eta_{\mathrm{TE}_{10}}=\frac{120 \pi}{\sqrt{1-(0.8)^{2}}}=\frac{120 \pi}{0.6}=200 \pi \Omega$
$\therefore \mathrm{E}_{\mathrm{y}}=200 \pi \times 0.05 \sin \left(\frac{\pi}{\mathrm{a}} \mathrm{x}\right) \hat{\mathrm{a}}_{\mathrm{y}}$
$\mathrm{E}_{\mathrm{y}}=10 \pi \sin \left(\frac{\pi}{\mathrm{a}} \mathrm{x}\right) \hat{\mathrm{a}}_{\mathrm{y}} \mathrm{V} / \mathrm{m}$
inside waveguide consider the medium as (1)
outside waveguide consider the medium as (2)

at $y=b$ and $x=\frac{a}{2}$
from B.C's
$\overline{\mathrm{E}}_{\mathrm{y}} \cdot \hat{\mathrm{a}}_{\mathrm{n}_{21}}=\frac{\rho_{\mathrm{s}}}{\varepsilon_{0}}$
(i.e) $\mathrm{E}_{\mathrm{y}} \hat{\mathrm{a}}_{\mathrm{y}} \cdot\left(-\hat{a}_{\mathrm{y}}\right)=\frac{\rho_{\mathrm{s}}}{\varepsilon_{0}}$

$$
\begin{aligned}
\therefore \rho_{\mathrm{s}} & =-\varepsilon_{0} \mathrm{E}_{\mathrm{y}}=-\frac{10^{-9}}{36 \pi} \times 10 \pi \sin \left(\frac{\pi}{\mathrm{a}} \times \frac{\mathrm{a}}{2}\right) \\
& =-0.28 \mathrm{nC} / \mathrm{m}^{2}
\end{aligned}
$$

HEARTY CONGRATULATIONS TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33 (EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

DGITAL CLASSES for
 ESE 2020/2021
 General Studies \&
 Engineering Aptitude
 BATE 2020/2021
 Computer Science \&
 Information Technology

63. Ans: (c)

Sol: From the boundary condition
(1) The normal component of E-field and tangential component of H -field are non zero at the walls of waveguide and hence E_{x} and H_{z} will exist
So, statement (1) is correct
(2) From B.C's

The tangential component of E-field and normal component of H -field are zero at the walls of waveguide and hence E_{z} and H_{x} are zero
\therefore So, statement (2) is wrong
(3) If TEM wave is propagating along y direction then longitudinal components $\mathrm{E}_{\mathrm{y}}=0$ and $\mathrm{H}_{\mathrm{y}}=0$ and for this to happen E and H fields must be function of only "y"
\therefore Statement (3) is correct

64. Ans: (b)

Sol: If $1<\frac{\mathrm{a}}{\mathrm{b}}<2$, then the operating frequency range for single mode is $\mathrm{f}_{\mathrm{c}_{10}}<\mathrm{f}<\mathrm{f}_{\mathrm{c}_{01}}$ (or) $\frac{\mathrm{c}}{2 \mathrm{a}}<\mathrm{f}<\frac{\mathrm{c}}{2 \mathrm{~b}}$.

If $\frac{a}{b} \geq 2$, the operating frequency range for single mode is $\mathrm{f}_{\mathrm{c}_{10}}<\mathrm{f}<\mathrm{f}_{\mathrm{c}_{20}}$ (or) $\frac{\mathrm{c}}{2 \mathrm{a}}<\mathrm{f}<\frac{\mathrm{c}}{\mathrm{a}}$ From the above we can say that operating bandwidth is maximum if $\frac{a}{b} \geq 2$ (i.e.) $\mathrm{b} \leq \frac{\mathrm{a}}{2}$ (i.e.) $\mathrm{b}_{\max }=\frac{\mathrm{a}}{2}$
Given $\mathrm{f}_{\mathrm{c}_{10}}=\frac{\mathrm{c}}{2 \mathrm{a}}=5 \times 10^{9}$
$\Rightarrow \mathrm{a}=\frac{\mathrm{c}}{2 \mathrm{f}_{\mathrm{c}_{10}}}=\frac{3 \times 10^{10}}{2 \times 5 \times 10^{9}}=3 \mathrm{~cm}$
$\therefore \mathrm{b}_{\text {max }}=\frac{\mathrm{a}}{2}=\frac{3}{2}=1.5 \mathrm{~cm}$

65. Ans: (c)

Sol: Antenna is a reciprocal device whose characteristics are the same when it is transmitting (or) receiving. It is a transducer
66. Ans: (c)

Sol: Power gain $\left(G_{p}\right)$, efficiency (η) and directivity are related as
$G_{p}=\eta D$
For lossless antenna, efficiency $=1$
$\mathrm{G}_{\mathrm{p}}=\mathrm{D}$
\therefore Directivity, $\mathrm{D}=10$
In $\mathrm{dB} D=10 \log 10=10 \mathrm{~dB}$

67. Ans: (c)

Sol: In phase lead compensator, compensating pole is located left of the compensating zero hence Statement (II) is wrong
68. Ans: (a)

Sol: For stability $(-1, j 0)$ should not be enclosed by the Nyquist plot
69. Ans: (b)

Sol: Block diagram techniques used for simplification of control system, but for complicated systems, the block diagram reduction is tedious and time consuming hence signal flow graphs are used.
Signal flow graph is a graphical representation for the variables representing the output of the various blocks of the control system.
70. Ans: (a)

Sol: For a minimum phase system to be stable, both PM and GM must be positive.

$$
\left.\begin{array}{l}
\mathrm{GM}=10 \mathrm{~dB} \\
\mathrm{PM}=20^{\circ}
\end{array}\right\} \text { both positive }
$$

Thus, Statement (II) is correct explanation to Statement (I).
71. Ans: (b)

Sol: Steady state error of a type 1 system to a Ramp input is finite. Position error coefficient of type-1 system is infinite both Statements are correct but Statement (II) is not correct explanation for Statement (I).
72. Ans: (a)

Sol: Let $\mathrm{dW}_{\text {mag }}$ be the work done by a magnetic field, displacing a charge Q by $\overrightarrow{\mathrm{d} \ell}$ distance then,
$\mathrm{dW}_{\text {mag }}=\overrightarrow{\mathrm{F}}_{\text {mag }} \cdot \overrightarrow{\mathrm{d} \ell}$
\because Lorentz force law gives,
$\stackrel{\rightharpoonup}{\mathrm{F}}_{\text {mag }}=\mathrm{Q}(\vec{v} \times \overrightarrow{\mathrm{B}})$
$\mathrm{dW}_{\text {mag }}=\mathrm{Q}(\vec{v} \times \overrightarrow{\mathrm{B}}) \cdot(\vec{v} \mathrm{dt})$
$\Rightarrow \mathrm{dW}_{\text {mag }}$ is perpendicular to both \vec{v} and $\overrightarrow{\mathrm{B}}$,
$\therefore \mathrm{W}_{\text {mag }}=0$

73. Ans: (d)

Sol: If load impedance, $\mathrm{Z}_{\mathrm{R}}=\infty$ (open-circuit)
then reflection coefficient, $K=\frac{Z_{R}-Z_{0}}{Z_{R}+Z_{0}}$

$$
\begin{aligned}
& \mathrm{K}=1 \\
& |\mathrm{~K}|=1
\end{aligned}
$$

Hence magnitude of reflection coefficient is unity
$\operatorname{VSWR}=\frac{1+|\mathrm{K}|}{1-|\mathrm{K}|}=\frac{1+1}{1-1}=\infty$
when the line is terminated by open-circuit(infinitely large impedance), then the magnitude of reflection coefficient is unity and VSWR is infinity.
Therefore S 1 is false and S 2 is true
74. Ans: (a)

Sol: $\because \mathrm{I}=-\frac{\mathrm{dQ}}{\mathrm{dt}}$
but, $\mathrm{Q}=\int_{\mathrm{v}} \rho_{\mathrm{v}} \cdot d v$
$\Rightarrow \mathrm{I}=-\int_{\mathrm{v}} \frac{\mathrm{d} \rho_{\mathrm{v}}}{\mathrm{dt}} \mathrm{dv}$
also, $\mathrm{I}=\oint_{\mathrm{s}} \overrightarrow{\mathrm{J}} . \overrightarrow{\mathrm{dS}}$
$\Rightarrow \oint_{\mathrm{s}} \overrightarrow{\mathrm{J}} \cdot \overrightarrow{\mathrm{dS}}=-\int_{\mathrm{v}} \frac{\mathrm{d} \rho_{\mathrm{v}}}{\mathrm{dt}} \cdot \mathrm{dv}$
Applying Gauss's diversion theorem,
$\oint_{\mathrm{s}} \overrightarrow{\mathrm{J}} \cdot \overrightarrow{\mathrm{dS}}=\int_{\mathrm{v}}(\nabla \cdot \overrightarrow{\mathrm{J}}) \cdot \mathrm{dv}$
$\Rightarrow \nabla \cdot \overrightarrow{\mathrm{J}}=-\frac{\mathrm{d} \rho_{\mathrm{v}}}{\mathrm{dt}}$
For steady current,
$\rho_{\mathrm{v}}=$ constant(charge entering the volume is equal to charge leaving, so that net charge in the volume is constant with respect to time)
$\Rightarrow \frac{\mathrm{d} \rho_{\mathrm{v}}}{\mathrm{dt}}=0$
$\Rightarrow \nabla \cdot \overrightarrow{\mathrm{J}}=0 \Rightarrow \oint \overrightarrow{\mathrm{~J}} \cdot \overrightarrow{\mathrm{ds}}=0$
i.e, net flow of current through a closed volume is zero.
75. Ans: (a)

Sol: Consider a boundary as shown in the figure, Using Maxwell's equation, $\oint_{c} \overrightarrow{\mathrm{~B}} \cdot \overrightarrow{\mathrm{ds}}=0$ (net flux through a closed surface is zero)

$\Rightarrow \mathrm{B}_{\mathrm{N}_{1}}(\Delta \mathrm{~S})-\mathrm{B}_{\mathrm{N}_{2}}(\Delta \mathrm{~S})=0$
$\Rightarrow \mathrm{B}_{\mathrm{N}_{1}}=\mathrm{B}_{\mathrm{N}_{2}}$

