ESE- 2020 (Prelims) - Offline Test Series
 Test- 3 ELECTRICAL ENGINEERING

SUBJECT: ELECTRICAL MACHINES, SYSTEMS \& SIGNAL PROCESSING SOLUTIONS

01. Ans: (a)

Sol: Damper winding is made with low resistance copper, Aluminium or Brass. They are inserted in the slots made under the pole shoes. Damper winding also improves the stability.
\therefore Option (a) given is wrong.
02. Ans: (c)

Sol: Synchronous speed, $N_{s}=\frac{120 f}{P}$
$\therefore \mathrm{N}_{\mathrm{s}} \propto \mathrm{f} \Rightarrow$ Linear
03. Ans: (b)

Sol: In alternator the field poles leads the air gap field and air gap field leads the armature field.

$$
\begin{aligned}
Z_{s} & =\frac{E_{o c}}{I_{s c}}\left(I_{f} \text { is same both for } E_{o c} \& I_{s c}\right) \\
& =\frac{220}{10}=22 \Omega
\end{aligned}
$$

5. Ans: (a)

Sol: synchronizing power coefficient $P_{\text {sy }}$ gives the change in power delivered or received by the machine per unit change in the torque angle or load angle. A large $\mathrm{P}_{\text {sy }}$ means more power for a given change in the angle. The coupling between the stator and rotor magnetic fields is called stiffer if a small change in the angle between the axes of these fields leads to a large change in power delivered or received. Thus, synchronizing power coefficient and the stiffness of coupling are the same.
04. Ans: (b)

Sol: At $\mathrm{I}_{\mathrm{f}}=1 \mathrm{~A} \Rightarrow \mathrm{I}_{\mathrm{sc}}=5 \mathrm{~A}$
At $\mathrm{I}_{\mathrm{f}}=2 \mathrm{~A} \Rightarrow \mathrm{I}_{\mathrm{sc}}=10 \mathrm{~A}$

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

2. FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

2. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm
\checkmark All tests will be conducted in Question Paper Booklet format.
\checkmark Test Series will be conducted at all our centres.

(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

ISRO -- -
 ONLINE TEST SERIES

No. of Tests : 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO)
Recruitment of Scientist/Engineer 'SC'
ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
『 starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.

(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com
06. Ans: (b)

Sol: $E=4.44 K_{p} K_{d} \phi$ f.T
$E \propto f \propto N$
$\mathrm{N} \uparrow$ by 10%, So E_{2} also Increases by 10%
I_{SC} is independent of speed. So I_{SC} remains constant.

07. Ans: (b)

Sol: For motor
Re active Power $=\frac{V_{t}}{X_{s}}\left(V_{t}-E_{f} \cos \delta\right)$.
And given,
Terminal voltage $=\mathrm{V}_{\mathrm{t}}=1.0 \mathrm{p} . \mathrm{u}$
Synchronous reactance $=X_{s}=1.25$
Excitation Emf $=\mathrm{E}_{\mathrm{f}}=2.0 \mathrm{pu}$
By substituting above values in (1) we get

$$
\begin{aligned}
\mathrm{Q} & =\frac{\mathrm{V}_{\mathrm{t}}}{\mathrm{X}_{\mathrm{s}}}\left(\mathrm{~V}_{\mathrm{t}}-\mathrm{E}_{\mathrm{f}} \cos \delta\right) \\
& =\frac{1}{1.25}(1-2 \times \cos \delta)
\end{aligned}
$$

As the motor is on no load take $\delta=0^{\circ} \Rightarrow \cos \delta=1$
$\mathrm{Q}=\frac{1}{1.25}(1-2 \times 1)=\frac{-1}{1.25}=-0.8$

08. Ans: (c)

Sol: Synchronous speed of motor $N_{s}=\frac{120 f}{f}$
For motor-generates set,

$$
\mathrm{N}_{\mathrm{set}}=\frac{120(50)}{\mathrm{P}_{\mathrm{m}}}=\frac{120(60)}{\mathrm{P}_{\mathrm{G}}}
$$

$\frac{\mathrm{P}_{\mathrm{G}}}{\mathrm{P}_{\mathrm{m}}}=\frac{6}{5}=\frac{12}{10}$
\therefore A 10-pole synchronous motor must be coupled to a 12-pole alternator.
09. Ans: (d)

Sol: Disadvantages of synchronous motor:

1. The requirement of dc supply for field excitation. (DC field to be excited nearer to synchronous speed of motor)
2. The starting synchronizing and control devices are more expensive.
3. The motor is more sensitive to system disturbances.

Advantages:

1. An over excited synchronous motor can generate reactive power to improve the system power factor and at the same time drive a constant speed load.
2. It has high operating efficiency and constant speed.
3. For operating speeds less than about 500 rpm and for power requirements from 35 kW upto about 2500 kW size, weight and cost of synchronous motor are much less those of induction motors of the same speed and kW rating.
4. Ans: (a)

Sol: $E=4.44 K_{P} K_{d} \phi T$

Therefore, $\mathrm{E} \alpha \mathrm{K}_{\mathrm{d}} \mathrm{fT}$

$$
\begin{aligned}
& \frac{E_{A}}{E_{B}}=\frac{K_{d(3-\phi)}}{K_{d(2-\phi)}} \times \frac{T_{p h(3-\phi)}}{T_{p h}(2-\phi)} \times \frac{f_{(3-\phi)}}{f_{(2-\phi)}} \\
& =\frac{\sin \frac{60}{3}}{\sin \frac{90}{2}} \times \frac{90}{60} \times \frac{\frac{T}{3}}{\frac{T}{2}} \times \frac{50}{25} \\
& =1.414
\end{aligned}
$$

11. Ans: (c)

Sol: Slip $S=\frac{1500-1425}{1500}=0.05$

$$
\begin{aligned}
\mathrm{R}_{2} & =7.8 \Omega \\
\mathrm{R}_{\mathrm{b}}^{\prime} & =\mathrm{R}_{2} \mid 2(2-\mathrm{s}) \\
& =\frac{7.8}{2(1.95)}=\frac{7.8}{3.9}=2 \Omega
\end{aligned}
$$

12. Ans: (c)

Sol: Since the I.M is fitted with Y- Δ starter, the motor is designed to develop 5 kW with its stator winding in Δ.
$\mathrm{P}_{1}=3 \mathrm{~V}_{1} \mathrm{I}_{1} \cos \theta_{1}=5 \mathrm{~kW}$
When the motor winding in star, per phase voltage is $\frac{V_{1}}{\sqrt{3}}$ and per phase current is I_{1}.
(1) becomes, $3 \times \frac{V_{1}}{\sqrt{3}} \times I_{1} \cos \theta_{1}=5 \mathrm{~kW}$

$$
\mathrm{P}_{2}=\frac{5}{\sqrt{3}}=2.9 \mathrm{~kW}
$$

13. Ans: (d)

Sol:

The maximum torque developed under running condition is higher than starting torque as well as full load torque. This can observed in figure as shown above.

14. Ans: (d)

Sol: Even though induction generator delivers active power it draws lagging reactive power from the grid for the establishment of rotating magnetic field. i.e it delivers leading reactive power to grid. So statement-1 is correct.

An over excited synchronous motor draws current at leading p.f. So statement-2 is correct.

Statement -3 is correct

Load angle of a synchronous machine is the angle between the excitation voltage and the terminal voltage. So statement - 4 is wrong.

15. Ans: (a)

Sol: 1. The tendency of squirrel cage induction motor to run at one seventh of the synchronous speed when connected to supply mains is called crawling. This is due to the space harmonics in the air gap flux wave. (1- wrong)
2. Statement is correct.
3. Most of the rotor current at starting flows in the top cage having much lower leakage impedance. Since the top cage, sharing most of the rotor current at starting, has higher resistance, it results in higher starting torque. (3-wrong)

16. Ans: (d)

Sol:

Cross-section
(Two pole machine assumed)
Fig. 1

Electrical connections
Fig. 2
Reversing the direction of rotation: Initially, I_{a} leads I_{m} by 90°. Thus direction of rotation is acw (or rotation is from auxaxis to main axis). To reverse this direction,

1. Connection to the terminals of the capacitor are reversed: Capacitance is a bilateral element. This does not have any effect on the circuit, and direction of rotation is not reversed.
2. Changing the capacitor position from aux. winding circuit to main winding circuit:
Now it is I_{m} that leads I_{a}. So direction of rotation is from main-axis towards aux-axis, or cw. Direction of rotation is reversed.
3. Reversing supply connection to main winding (C assumed to be in the aux. circuit):
We are interchanging the connections to terminals M_{1} and M_{2}. So I_{m} now enters main winding at M_{2} and leaving at M_{1}. Hence current entering main winding at M_{1} is,$-I_{m}$.
I_{m} lags I_{a} by 90°. So ${ }^{\prime}-I_{m}{ }^{\prime}$ leads I_{a} by 90°. Direction of rotation becomes CW and so is reversed.
4. Reversing supply connection to the auxiliary circuit (C assumed to be in the auxiliary circuit):

Now auxiliary winding current is ' $-I_{a}{ }^{\prime}$. I_{a} leads I_{m} and so ' $-I_{a}{ }^{\prime}$ lags I_{m}. Direction rotation becomes CW and so is reversed.

17. Ans: (d)

Sol: A induction voltage regulator enables a smooth variation of the output voltage, where as in a tap changer transformer, the output voltage can be controlled only in discrete steps. In induction voltage regulator, the output voltage is controlled by varying the angle between the magnetic axes of primary \& secondary windings.

18. Ans: (a)

Sol: The resultant mmf is distributed in both space and time. It can be termed as a rotating magnetic field with sinusoidal space distribution, whose space phase angle changes linearly with time as $\omega \mathrm{t}$. Therefore it rotates at a constant angular speed of ω $\operatorname{rad}($ elect.)/sec. This angular speed is called synchronous angular speed $\left(\omega_{\mathrm{s}}\right)$.
19. Ans: (b)

Sol: Capacitor start, capacitor run motor: This type of motor employs two capacitors: a large one for starting and a smaller one for running. The starting capacitor gets disconnected after starting.

Fig: capacitor-start and run motor torque speed characteristic.
20. Ans: (d)

Sol: In two winding transformer,

$$
\mathrm{Z}_{\mathrm{eq}}=\mathrm{Z}_{1}+\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)^{2} \mathrm{Z}_{2}
$$

When this transformer is connected as an auto transformer, the circuit is shown in figure. If the output winding of the auto
transformer is shorted, the voltage V_{H} (and hence V_{1}) will be zero.
The voltage V_{LV} will be $\mathrm{V}_{\mathrm{LV}}=\mathrm{I}_{1} \mathrm{Z}_{\text {eq }}$
Z_{eq} is the impedance of ordinary transformer $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$

$$
\begin{aligned}
& =I_{1}+\left(\frac{N_{1}}{N_{2}}\right) I_{1} \\
I & =I_{1}\left[\frac{\mathrm{~N}_{1}+\mathrm{N}_{2}}{\mathrm{~N}_{2}}\right]
\end{aligned}
$$

$$
\mathrm{I}_{1}=\mathrm{I}\left(\frac{\mathrm{~N}_{2}}{\mathrm{~N}_{1}+\mathrm{N}_{2}}\right)
$$

$$
\mathrm{V}_{\mathrm{LV}}=\mathrm{I}_{1} \mathrm{Z}_{\mathrm{eq}}
$$

$$
=\mathrm{I}\left[\frac{\mathrm{~N}_{2}}{\mathrm{~N}_{1}+\mathrm{N}_{2}}\right] \mathrm{Z}_{\mathrm{eq}}
$$

$$
\mathrm{Z}_{\mathrm{eq}}^{\prime}=\frac{\mathrm{V}_{\mathrm{LV}}}{\mathrm{I}}=\left(\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}+\mathrm{N}_{2}}\right) \mathrm{Z}_{\mathrm{eq}}
$$

21. Ans: (a)

Sol: With respect to transformers, by convention we have

Primary \rightarrow winding which receives electrical supply.

Secondary \rightarrow winding to which load is connected.

Step up \rightarrow secondary turns > primary turns.
Hence secondary voltage is higher and secondary current is smaller, compared to primary values.
Hence in this question, the primary has a lesser voltage and higher current.
22. Ans: (a)

Sol:

$\frac{\mathrm{V}_{\mathrm{x}}}{60}=\frac{1}{3} \Rightarrow \mathrm{~V}_{\mathrm{x}}=20 \mathrm{~V}$
$\mathrm{V}_{\mathrm{y}}=\frac{1}{2} \times 60=30 \mathrm{~V}$
$\mathrm{V}_{2}=30-20=10 \mathrm{~V}$
$\mathrm{I}_{2}=\frac{\mathrm{V}_{2}}{\mathrm{R}_{2}}=\frac{10}{10}=1 \mathrm{~A}$
$\mathrm{I}_{\mathrm{x}} \times 3=1 \times 1 \Rightarrow \mathrm{I}_{\mathrm{x}}=\frac{1}{3}$
$\mathrm{I}_{\mathrm{y}} \times 2=1 \times 1 \Rightarrow \mathrm{I}_{\mathrm{y}}=\frac{1}{2}$
$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{x}}-\mathrm{I}_{\mathrm{y}}=\frac{1}{3}-\frac{1}{2}=\frac{-1}{6} \mathrm{~A}$
23. Ans (d)

Sol: $3000=\frac{60}{\mathrm{k}^{2}}$

$$
\begin{aligned}
3000 & =\left(\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}\right)^{2} \times 60 \\
& =\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\sqrt{50}
\end{aligned}
$$

24. Ans: (c)

Sol: Given 20 kVA , single phase transformer Iron loss, $\mathrm{W}_{\mathrm{i}}=250 \mathrm{~W}$

Copper loss, $\mathrm{W}_{\mathrm{cu}}=500 \mathrm{~W}$
Let the maximum efficiency occur at x times of full load. We can write
$\mathrm{x}=\sqrt{\frac{\mathrm{W}_{\mathrm{i}}}{\mathrm{W}_{\mathrm{cu}}}}=\sqrt{\frac{250}{500}}=\sqrt{\frac{1}{2}}=0.707$
Maximum efficiency occurs at 70.7% of full load.

Output at unity power factor is

$$
\mathrm{P}_{\mathrm{out}}=0.707 \times 20 \times 1=14.14 \mathrm{~kW}
$$

25. Ans: (a)

Sol: During open circuit and short circuit tests all the losses do not occur simultaneously, therefore the exact temperature rise can not determined. In order to get exact temperature rise sumpners test should be conducted. In this test core losses and copper losses are obtained, by using these results winding impedance and exciting current can be determined.
26. Ans: (c)

Sol: $\mathrm{P}_{\mathrm{i}}=\mathrm{Af}+\mathrm{Bf}^{2}$
$\Rightarrow \frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{f}}=\mathrm{A}+\mathrm{Bf}$
By using graph, $\mathrm{A}=0.01$

$$
\mathrm{B}=0.001
$$

Hysteresis Loss at $100 \mathrm{~Hz}=\mathrm{Af}=1 \mathrm{~W}$
Eddy current loss at $100 \mathrm{~Hz}=\mathrm{Bf}^{2}$

$$
\begin{aligned}
& =(0.001) 10^{4} \\
& =10 \mathrm{~W}
\end{aligned}
$$

27. Ans: (c)

Sol: Let maximum efficiency occur at a fraction x of full load. But at this load, the copper loss is $\left(\frac{x^{2}}{0.9^{2}}\right) 81=100 x^{2} \mathrm{~W}$. So $100 x^{2}=64$ and the fraction x is 0.8 .
28. Ans: (d)

Sol: Back pitch $Y_{b}=\frac{2 C}{P} \pm K$
Where $\mathrm{C}=$ Number of coils $=40$

$$
\mathrm{P}=\text { Number of poles }=6
$$

K is a number (integer or fraction) added to $\frac{2 \mathrm{C}}{\mathrm{P}}$ to make Y_{b} an odd integer.
$\mathrm{Y}_{\mathrm{b}}=\frac{2 \times 40}{6} \pm \mathrm{K}=\frac{40}{3} \pm \frac{1}{3}$
$\therefore \mathrm{Y}_{\mathrm{b}}=\frac{40}{3}-\frac{1}{3}=13$
But $Y_{b}-Y_{f}= \pm 2$

$$
\mathrm{Y}_{\mathrm{f}}=13-2=11 \text { for progressive }
$$

winding
$=13+2=15$ for retrogressive winding
29. Ans: (b)

Sol: 1. At the trailing pole tip the armature flux adds main field flux and at the leading pole tip opposes, therefore strengthening effect at trailing at pole tip and weakening effect at leading pole tip.
2. Resistance commutation: This method will be suitable for small fractional kW machines.

Voltage/EMF commutation: (By using interpoles/commutating poles/compoles) This method is suitable for normal and large rating machines except for fractional kW machines.
3. The polarity of the interpole is same a that of the main field pole ahead in the direction of generator rotation (statement 3 is wrong).

30. Ans: (b)

Sol: The inter poles are tapering in shape i.e., having broad base and less pole shoe area, to reduce the extra air gap flux under trailing pole tip. The air gap under inter poles is more than the air gap under the main field poles to avoid the saturation.

31. Ans: (a)

Sol: When the machine is delivering (generator action) a purely leading current, armature reaction is magnetizing. Thus the armature mmf of 3 A (interms of field current) must be added to be actual field current 7A to get an effective field current of 10 A . From graph, with 7 A and 10 A , induced emf/ph is 480 V \& 500 V respectively. So, increase in
induced emf on load is 20 V or reduction is -20 V .

32. Ans: (c)

Sol: Separately excited dc machine, means we are supplying field current and we are varying it flow by using separated source

So it's field control operation
For field control machine will operate under constant power conditions

33. Ans: (d)

Sol: Given data, $\mathrm{I}_{\mathrm{a} 1}=1 \mathrm{~A}, \mathrm{I}_{\mathrm{a} 2}=0.5 \mathrm{~A}$
In D.C series motor, $E_{b} \propto N \phi$ and $\phi \propto I_{a}$
$\therefore \frac{\mathbf{N}_{1}}{\mathrm{~N}_{2}} \times \frac{\phi_{1}}{\phi_{2}}=$ constant
$\Rightarrow \mathrm{N}_{2}=\mathrm{N}_{1}\left(\frac{\mathrm{I}_{\mathrm{a} 1}}{\mathrm{I}_{\mathrm{a} 2}}\right)=\mathrm{N}_{1}\left(\frac{1}{0.5}\right) \Rightarrow 2 \mathrm{~N}_{1}$
The percentage increase in speed is

$$
\begin{aligned}
& =\frac{\mathrm{N}_{2}-\mathrm{N}_{1}}{\mathrm{~N}_{1}} \times 100 \\
& =\frac{2 \mathrm{~N}_{1}-\mathrm{N}_{1}}{\mathrm{~N}_{1}} \times 100 \\
& =100 \%
\end{aligned}
$$

34. Ans: (a)

Sol: from fig, slope, $\mathrm{R}_{\mathrm{a}}=\frac{80-60}{80} \Rightarrow 0.25 \Omega$
Copper loss of the system

$$
\begin{aligned}
& =\mathrm{I}_{\mathrm{a}}^{2} \mathrm{R}_{\mathrm{a}}=40^{2} \times 0.25 \\
& =400 \mathrm{~W}
\end{aligned}
$$

35. Ans: (c)

Sol: For generator operation, the polarity of the inter pole must be the same as that of the main pole ahead of it in the direction of rotation (to help commutation). For a motor operation, the inter pole polarity must be opposite to the above.

Considering generator operation, a crosssection of the 2 -pole machine is shown below.

From the figure we see that flux quadrants 1 $\& 3$ is $\left(\phi_{\mathrm{m}}-\phi_{\mathrm{i}}\right) / 2$ and flux in quadrants $2 \&$ 4 is $\left(\phi_{\mathrm{m}}+\phi_{\mathrm{i}}\right) / 2$.

36. Ans: (a)

Sol: $\mathrm{r}_{\mathrm{xh}}(\tau)=\mathrm{x}(\tau) * \mathrm{~h}(-\tau)=\mathrm{e}^{-\tau} \mathbf{u}(\tau) * \mathrm{e}^{\tau} \mathbf{u}(-\tau)$
Apply Fourier transform
Convolution in time domain gives multiplication in frequency domain
$\mathrm{e}^{-\tau} \mathbf{u}(\tau) \leftrightarrow \frac{1}{1+j \omega}$

$$
\begin{aligned}
\mathrm{e}^{\tau} \mathrm{u}(-\tau) & \leftrightarrow \frac{1}{1-\mathrm{j} \omega} \\
\mathrm{~S}_{\mathrm{xh}}(\omega) & =\frac{1}{(1+\mathrm{j} \omega)(1-\mathrm{j} \omega)}=\frac{1}{2}\left[\frac{2}{\omega^{2}+1}\right]
\end{aligned}
$$

Apply inverse fourier transform

$$
\begin{aligned}
& \mathrm{e}^{-\mathrm{a}|t|} \leftrightarrow \frac{2 \mathrm{a}}{\mathrm{a}^{2}+\omega^{2}} \\
& \mathrm{r}_{\mathrm{xh}}(\mathrm{t})=\frac{1}{2} \mathrm{e}^{-|t|}
\end{aligned}
$$

37. Ans: (b)

Sol: $X(f)=1-\operatorname{rect}(f-0.5)$
Apply inverse Fourier transform

$$
\delta(\mathrm{t}) \leftrightarrow 1
$$

$$
\operatorname{sinc}(\mathrm{t}) \leftrightarrow \operatorname{rect}(\mathrm{f})
$$

$$
\mathrm{x}(\mathrm{t}) \mathrm{e}^{\mathrm{j} 2 \pi \mathrm{f}_{0} \mathrm{t}} \leftrightarrow \mathrm{X}\left(\mathrm{f}-\mathrm{f}_{0}\right)
$$

$$
\mathrm{e}^{\mathrm{j} \pi \mathrm{t}} \operatorname{Sinc}(\mathrm{t}) \leftrightarrow \operatorname{rect}(\mathrm{f}-0.5)
$$

$$
\mathrm{x}(\mathrm{t})=\delta(\mathrm{t})-\operatorname{sinc}(\mathrm{t}) \mathrm{e}^{\mathrm{j} \pi \mathrm{t}}
$$

38. Ans: (c)

Sol: $\operatorname{Tri}(\mathrm{t}) \leftrightarrow \operatorname{sinc}^{2}(\mathrm{f})$

$$
\operatorname{rect}(\mathrm{t}) \leftrightarrow \operatorname{sinc}(\mathrm{f})
$$

From plancheral's relation

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \mathrm{x}(\mathrm{t}) \mathrm{y}(\mathrm{t}) \mathrm{dt}=\int_{-\infty}^{\infty} \mathrm{X}(\mathrm{f}) \mathrm{Y}(\mathrm{f}) \mathrm{df} \\
& \int_{-\infty}^{\infty} \operatorname{Sinc}^{2}(\mathrm{f}) \cdot \operatorname{Sinc}(\mathrm{f}) \mathrm{df}=\int_{-\infty}^{+\infty} \operatorname{Tri}(\mathrm{t}) \operatorname{rect}(\mathrm{t}) \mathrm{dt}
\end{aligned}
$$

$$
\begin{array}{rl}
\operatorname{Tri}(\mathrm{t})=1+\mathrm{t} & -1<\mathrm{t}<0 \\
1-\mathrm{t} & 0<\mathrm{t}<1 \\
\begin{aligned}
\int_{-\infty}^{\infty} \operatorname{Tri}(\mathrm{t}) \operatorname{rect}(\mathrm{t}) \mathrm{dt} & =\int_{-1 / 2}^{0}(1+\mathrm{t}) \mathrm{dt}+\int_{0}^{1 / 2}(1-\mathrm{t}) \mathrm{dt} \\
= & \mathrm{t}+\left.\frac{\mathrm{t}^{2}}{2}\right|_{-1 / 2} ^{0}+\mathrm{t}-\left.\frac{\mathrm{t}^{2}}{2}\right|_{0} ^{1 / 2} \\
= & -\left(-\frac{1}{2}+\frac{1}{8}\right)+\left(\frac{1}{2}-\frac{1}{8}\right) \\
= & \frac{3}{8}+\frac{3}{8} \\
= & \frac{3}{4}
\end{aligned}
\end{array}
$$

39. Ans: (c)

Sol: Given $\mathrm{x}(\mathrm{t})=\sin (10 \pi \mathrm{t})$
and $\mathrm{y}(\mathrm{t})=\mathrm{x}^{3}(\mathrm{t})=\sin ^{3}(10 \pi \mathrm{t})$

$$
\begin{gathered}
y(t)=\frac{3}{4} \sin (10 \pi t)-\frac{1}{4} \sin (30 \pi t) \\
\omega_{0}=10 \pi \\
y(t)=\frac{3}{4} \sin \left(\omega_{0} t\right)-\frac{1}{4} \sin \left(3 \omega_{0} t\right)
\end{gathered}
$$

So, I \& III harmonics are present.

40. Ans: (b)

Sol: The Exponential Fourier series expansion of
$x(t)$ is $x(t)=\sum_{n=-\infty}^{\infty} C_{n} e^{j n \omega_{0} t}$
Given $x(t)=\sum_{n=-\infty}^{\infty} \frac{1}{1+j \pi n} e^{j \frac{3 \pi}{2} n t}$
Compare (1) \& (2)

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{n}}=\frac{1}{1+\mathrm{j} \pi \mathrm{n}}, \quad\left|\mathrm{C}_{\mathrm{n}}\right|=\frac{1}{\sqrt{1+(\pi n)^{2}}} \\
& \left|\mathrm{C}_{3}\right|=\frac{1}{\sqrt{1+9 \pi^{2}}}, \quad\left|C_{-3}\right|=\frac{1}{\sqrt{1+9 \pi^{2}}}
\end{aligned}
$$

So, the amplitude of third harmonic component is

$$
\begin{aligned}
& =\left|\mathrm{C}_{3}\right|+\left|\mathrm{C}_{-3}\right| \\
& =\frac{2}{\sqrt{1+9 \pi^{2}}}
\end{aligned}
$$

41. Ans: (c)

Sol: $H(\omega)=\frac{1+\mathrm{j} 2 \omega+(\mathrm{j} \omega)^{2}}{\left.\left\{1+(\mathrm{j} \omega)^{2}\right\} 4+(\mathrm{j} \omega)^{2}\right\}}$

$$
=\frac{1+\mathrm{j} 2 \omega+(\mathrm{j} \omega)^{2}}{4+5(\mathrm{j} \omega)^{2}+(\mathrm{j} \omega)^{4}}=\frac{\mathrm{Y}(\omega)}{\mathrm{X}(\omega)}
$$

$$
\begin{aligned}
& 4 Y(\omega)+ 5(j \omega)^{2} Y(\omega)+(j \omega)^{4} Y(\omega) \\
&=X(\omega)+j 2 \omega X(\omega)+(j \omega)^{2} X(\omega)
\end{aligned}
$$

Apply IFT
$4 y(t)+\frac{5 d^{2} y(t)}{{d t^{2}}^{2}}+\frac{d^{4} y(t)}{d t^{4}}=x(t)+2 \frac{d x(t)}{d t}+\frac{d^{2} x(t)}{{d t^{2}}^{2}}$

42. Ans: (a)

Sol: Constant $y(0)$ is added. So, it is a non-linear system. Present output depends on past and future inputs. So, dynamic system.
For a bounded input, Unbounded output results. So, unstable system.

TEST YOUR PREP IN A REAL TEST ENVIRONMENT

 Pre GAIE - 2020

 Pre GAIE - 2020}

Date of Exam : $\mathbf{1 8}^{\text {th }}$ January 2020 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019

Highlights:

- Get real-time experience of GATE-20 test pattern and environment
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for GATE-20 toppers.

SSC-JE (Paper-I)

I=Online Test Series
Staff Selection Commission - Junior Engineer

No. of Tests : 20

Subject Wise Tests: 16|Mock Tests - 4

Civil|Electrical|Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination
43. Ans: (b)

Sol: The signal extending from 0 to 3 . So, it is multiplied with $[u(n)-u(n-4)]$.

The signal is $x(n)=4(1 / 2)^{n}[u(n)-u(n-4)]$
Given $\mathrm{x}(\mathrm{n})=\mathrm{A} \alpha^{\mathrm{n}}[\mathrm{u}(\mathrm{n})-\mathrm{u}(\mathrm{n}-\mathrm{N})]$

$$
\begin{aligned}
& \mathrm{A}=4, \alpha=1 / 2, \mathrm{~N}=4 \\
& \mathrm{~A}+\alpha+\mathrm{N}=8.5
\end{aligned}
$$

44. Ans: (b)

Sol: (1) Assume $x(t)=x_{1}(t) x_{2}(t)$

$$
x(-t)=x_{1}(-t) x_{2}(-t)
$$

Assume $\mathrm{x}_{1}(\mathrm{t})$ is even $\Rightarrow \mathrm{x}_{1}(-\mathrm{t})=\mathrm{x}_{1}(\mathrm{t})$
Assume $\mathrm{x}_{2}(\mathrm{t})$ is odd $\Rightarrow \mathrm{x}_{2}(-\mathrm{t})=-\mathrm{x}_{2}(\mathrm{t})$
So, $x(-t)=-x_{1}(t) x_{2}(t)=-x(t)$.
So, $x(t)$ is odd.
So, statement(1) is false.
(2) $\omega_{0}=4$
$\mathrm{T}_{0}=\frac{2 \pi}{\omega_{0}}=\frac{2 \pi}{4}=\frac{\pi}{2}$
So, statement(2) is false.
(3)It is a periodic signal. So, power signal

So, statement(3) is true.
(4) $y_{1}(t)=x\left(3 t-t_{0}\right)$
$\mathrm{y}\left(\mathrm{t}-\mathrm{t}_{0}\right)=\mathrm{x}\left(3\left(\mathrm{t}-\mathrm{t}_{0}\right)\right)=\mathrm{x}\left(3 \mathrm{t}-3 \mathrm{t}_{0}\right)$
$\mathrm{y}_{1}(\mathrm{t}) \neq \mathrm{y}\left(\mathrm{t}-\mathrm{t}_{0}\right)$
So, time variant system.
So, statement(4) is false.

45. Ans: (b)

Sol: $\omega_{1}=\frac{2}{3}, \omega_{2}=\frac{1}{2}, \quad \omega_{3}=\frac{1}{3}$
$\omega_{0}=\mathrm{GCD}\left(\frac{2}{3}, \frac{1}{2}, \frac{1}{3}\right)=\frac{1}{6} \mathrm{rad} / \mathrm{sec}$

46. Ans: (b)

Sol: From product property $\mathrm{x}(\mathrm{n}) \delta\left(\mathrm{n}-\mathrm{n}_{0}\right)=\mathrm{x}\left(\mathrm{n}_{0}\right)$ $\delta\left(\mathrm{n}-\mathrm{n}_{0}\right)$

$$
\begin{aligned}
z(n)=x(n) y(n) & =2^{n} \delta(n-3) \\
& =2^{3} \delta(n-3)=8 \delta(n-3) \\
\sum_{n=-\infty}^{\infty} z(n)=\sum_{n=-\infty}^{\infty} 8 \delta & (n-3)=8
\end{aligned}
$$

47. Ans: (c)

Sol: For the input $\delta(\mathrm{n})$,
$\mathrm{h}(\mathrm{n})=\delta(\mathrm{n}+2)-\delta(\mathrm{n}-2)$
\therefore For the input $\mathrm{x}(\mathrm{n}), \mathrm{y}(\mathrm{n})$ is the output.
$\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n}) * \mathrm{~h}(\mathrm{n})$
$\therefore \mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n}+2)-\mathrm{x}(\mathrm{n}-2)$

48. Ans: (c)

Sol: $\mathrm{f}_{\text {max }}=50 \mathrm{~Hz} \Rightarrow \mathrm{~N} . \mathrm{R}=2(50)=100 \mathrm{~Hz}$
2 times the N.R $=200 \mathrm{~Hz}=200$ Samples $/ \mathrm{sec}$
The number of samples obtained in 3 sec

$$
\begin{aligned}
& =(200)(3) \\
& =600 \text { samples }
\end{aligned}
$$

49. Ans: (b)

Sol: Given $y(n)=x(n)-0.5 x(n-1)$
Apply Z-transform

$$
\begin{aligned}
& \mathrm{Y}(\mathrm{z})=\mathrm{X}(\mathrm{z})-0.5 \mathrm{z}^{-1} \mathrm{X}(\mathrm{z}) \\
& \frac{\mathrm{Y}(\mathrm{z})}{\mathrm{X}(\mathrm{z})}=\mathrm{H}(\mathrm{z})=1-0.5 \mathrm{z}^{-1}
\end{aligned}
$$

$$
\mathrm{H}_{\mathrm{INV}}(\mathrm{z})=\frac{1}{\mathrm{H}(\mathrm{z})}=\frac{1}{1-0.5 \mathrm{z}^{-1}}=\frac{\mathrm{Y}(\mathrm{z})}{\mathrm{X}(\mathrm{z})}
$$

$$
\mathrm{Y}(\mathrm{z})-0.5 \mathrm{z}^{-1} \mathrm{Y}(\mathrm{z})=\mathrm{X}(\mathrm{z})
$$

Apply IZT

$$
y(n)-0.5 y(n-1)=x(n)
$$

50. Ans: (c)

Sol: Given $\mathrm{x}(\mathrm{t})=\cos (\mathrm{t}) \mathrm{u}(\mathrm{t}-\pi / 4)$

$$
\begin{aligned}
x(t)= & \cos \left(t-\frac{\pi}{4}+\frac{\pi}{4}\right) u\left(t-\frac{\pi}{4}\right) \\
x(t)= & \cos \left(t-\frac{\pi}{4}\right) u\left(t-\frac{\pi}{4}\right) \frac{1}{\sqrt{2}}-\sin \left(t-\frac{\pi}{4}\right) u\left(t-\frac{\pi}{4}\right) \frac{1}{\sqrt{2}} \\
& \cos (t) u(t) \leftrightarrow \frac{s}{s^{2}+1} \\
& \cos \left(t-\frac{\pi}{4}\right) u\left(t-\frac{\pi}{4}\right) \leftrightarrow \frac{e^{-s \frac{\pi}{4}} \cdot s}{s^{2}+1} \\
& \sin (t) u(t) \leftrightarrow \frac{1}{s^{2}+1} \\
& \sin \left(t-\frac{\pi}{4}\right) u\left(t-\frac{\pi}{4}\right) \leftrightarrow \frac{e^{-s} \frac{\pi}{4}}{s^{2}+1} \\
X(s)= & \frac{e^{-s} \frac{\pi}{4}}{\sqrt{2}\left(s^{2}+1\right)}-\frac{e^{-s \frac{\pi}{4}}}{\sqrt{2}\left(s^{2}+1\right)}=\frac{e^{-s \frac{\pi}{4}}(s-1)}{\sqrt{2}\left(s^{2}+1\right)}
\end{aligned}
$$

51. Ans: (a)

Sol: $X(s)=\frac{2 s+4}{s^{2}+4 s+3}$

$$
\begin{aligned}
& X(s)=\frac{2 s+4}{(s+1)(s+3)} \\
& X(s)=\frac{A}{s+1}+\frac{B}{s+3} \\
& X(s)=\frac{1}{s+1}+\frac{1}{s+3},-3<\operatorname{Re}\{s\}<-1
\end{aligned}
$$

Apply ILT

$$
\begin{aligned}
& -\mathrm{e}^{-\mathrm{t}} \mathrm{u}(-\mathrm{t}) \leftrightarrow \frac{1}{\mathrm{~s}+1}, \operatorname{Re}\{\mathrm{~s}\}<-1 \\
& \mathrm{e}^{-3 \mathrm{t}} \mathrm{u}(\mathrm{t}) \leftrightarrow \frac{1}{\mathrm{~s}+3}, \operatorname{Re}\{\mathrm{~s}\}>-3
\end{aligned}
$$

So, $x(t)=-e^{-t} u(-t)+e^{-3 t} u(t)$

52. Ans: (b)

Sol: Step response $s(t)=e^{-t} u(t)$
\therefore Output due to $\mathrm{r}(\mathrm{t})$ is $\mathrm{y}(\mathrm{t})=\dot{\mathrm{s}}(\mathrm{t}) * \mathrm{r}(\mathrm{t})$

$$
\begin{aligned}
\mathrm{y}(\mathrm{t}) & =\mathrm{s}(\mathrm{t}) * \dot{r}(\mathrm{t}) \\
& =\mathrm{e}^{-\mathrm{t}} \mathrm{u}(\mathrm{t}) * \mathrm{u}(\mathrm{t})[\mathrm{x}(\mathrm{t}) * \dot{y}(\mathrm{t})=\dot{\mathrm{x}}(\mathrm{t}) * \mathrm{y}(\mathrm{t})]
\end{aligned}
$$

Apply Laplace transform

$$
\begin{aligned}
& \mathrm{Y}(\mathrm{~s})=\frac{1}{\mathrm{~s}+1} \frac{1}{\mathrm{~s}} \\
& \mathrm{Y}(\mathrm{~s})=\frac{1}{\mathrm{~s}}-\frac{1}{\mathrm{~s}+1}
\end{aligned}
$$

Apply inverse Laplace transform

$$
\mathrm{y}(\mathrm{t})=\left(1-\mathrm{e}^{-\mathrm{t}}\right) \mathrm{u}(\mathrm{t})
$$

53. Ans: (c)

Sol: Two point average filter is
$\mathrm{y}(\mathrm{n})=\frac{1}{2}[\mathrm{x}(\mathrm{n})+\mathrm{x}(\mathrm{n}-1)]$
Apply Z-transform
$\mathrm{Y}(\mathrm{z})=\frac{\mathrm{X}(\mathrm{z})+\mathrm{z}^{-1} \mathrm{X}(\mathrm{z})}{2}$
$\mathrm{H}(\mathrm{z})=\frac{\mathrm{Y}(\mathrm{z})}{\mathrm{X}(\mathrm{z})}=\frac{1}{2}+\frac{1}{2} \mathrm{Z}^{-1}$
Apply IZT

$$
\mathrm{h}(\mathrm{n})=\left\{\frac{1}{2}, \frac{1}{2}\right\}=\frac{1}{2}\{1,1\}
$$

54. Ans: (b)

Sol: Given $h(t)=\left(1-e^{-2 t}\right) u(t)$
$h(t)=0, \mathrm{t}<0$. So, causal system.

$$
\begin{aligned}
\int_{-\infty}^{\infty} \mathrm{h}(\mathrm{t}) \mid \mathrm{dt} & =\int_{-\infty}^{\infty}\left[\mathrm{u}(\mathrm{t})-\mathrm{e}^{-2 t} \mathrm{u}(\mathrm{t})\right] \mathrm{dt} \\
& =\int_{0}^{\infty} 1 \mathrm{dt}-\int_{0}^{\infty} \mathrm{e}^{-2 t} d t \\
& =\infty+\frac{1}{2}=\infty
\end{aligned}
$$

Unstable system
55. Ans: (d)

Sol: By using matrix method

$$
\begin{aligned}
y(n)=x(n) * h(n) & =\{8,22,11,31,4,12\} \\
y(0) & =31
\end{aligned}
$$

56. Ans: (b)

Sol: $x(n)=\{1,0,0,1\}$ and $h(n)=\{4,, 32,1\}$

$$
\mathrm{x}(\mathrm{n}) \mathbb{N} \mathrm{h}(\mathrm{n})=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right]=\{7,5,3,5\}
$$

57. Ans: (d)

Sol: Zero's of linear-phase FIR filter are
$Z_{1}=3+4 j$
$\mathrm{Z}_{2}=\mathrm{Z}_{1}^{*} \Rightarrow 3-4 \mathrm{j}$
$\mathrm{Z}_{3}=\frac{1}{\mathrm{Z}_{1}} \Rightarrow \frac{3}{25}-\frac{4}{25} \mathrm{j}$
$Z_{4}=Z_{3}^{*} \Rightarrow \frac{3}{25}+\frac{4}{25} \mathrm{j}$
$\left(\frac{1}{3}-\frac{1}{4} \mathrm{j}\right)$ is not a zero of linear phase FIR filter.
58. Ans: (b)

Sol: Type-1 chebyshev filters are all pole filters and exhibits equiripple characteristics in the pass band and monotonic characteristics in stop band
Therefore only statement 2 is correct

59. Ans: (c)

Sol: Given, $h(n)=\{5,0,10,0,7,-11,3,0,0,0,0,4\}$
By the definition of D.T.F.T

$$
\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\mathrm{F}\{\mathrm{~h}(\mathrm{n})\}=\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{h}(\mathrm{n}) \cdot \mathrm{e}^{-\mathrm{j} \omega \mathrm{n}}
$$

Put $\omega=0$,

$$
\begin{aligned}
& \begin{aligned}
\mathrm{H}\left(\mathrm{e}^{\mathrm{j} 0}\right) & =\sum_{\mathrm{n}=-\infty}^{\infty} \mathrm{h}(\mathrm{n})=\sum_{\mathrm{n}=-4}^{7} \mathrm{~h}(\mathrm{n}) \\
\quad= & 5+10+7+(-11)+3+4 \\
\quad & =18
\end{aligned} \\
& \mathrm{H}\left(\mathrm{e}^{\mathrm{j} 0}\right)=18
\end{aligned}
$$

60. Ans: (a)

Sol: $\because h(n)=\{1,2,3\} \quad \& y(n)=\{1,1,2,-1,3\}$

$$
\begin{aligned}
& \mathrm{H}(\mathrm{z})=1+2 \mathrm{z}^{-1}+3 \mathrm{z}^{-2} \\
& \mathrm{Y}(\mathrm{z})=1+\mathrm{z}^{-1}+2 \mathrm{z}^{-2}-\mathrm{z}^{-3}+3 \mathrm{z}^{-4} \\
& \because \mathrm{Y}(\mathrm{z})=\mathrm{X}(\mathrm{z}) \cdot \mathrm{H}(\mathrm{z}) \\
& \Rightarrow \mathrm{X}(\mathrm{z})=\frac{\mathrm{Y}(\mathrm{z})}{\mathrm{H}(\mathrm{z})} \\
& \quad=\frac{1+\mathrm{z}^{-1}+2 \mathrm{z}^{-2}-\mathrm{z}^{-3}+3 \mathrm{z}^{-4}}{1+2 \mathrm{z}^{-1}+3 \mathrm{z}^{-2}} \\
& \quad \mathrm{X}(\mathrm{z})=1-\mathrm{z}^{-1}+\mathrm{z}^{-2} \\
& \Rightarrow \mathrm{x}(\mathrm{n})=\{1,-1,1\}
\end{aligned}
$$

$$
\mathrm{H}(\mathrm{z})=\frac{\mathrm{az}-1}{\mathrm{a}(\mathrm{z}-\mathrm{a})}=\frac{\mathrm{z}-\frac{1}{\mathrm{a}}}{\mathrm{z}-\mathrm{a}}
$$

Pole of $H(z)=' a$ '
Given system is causal. So, For a causal system, to be stable, all the poles must lies inside the unit circle. So $|\mathrm{a}|<1$.

62. Ans: (a)

Sol: For an LTI system, output,
$y(t)=$ input $x(t) *$ impulse response $h(t)$

$$
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau
$$

So, statement (1) is true.
A causal LTI system, need not be always stable. $E x: h(t)=e^{2 t} u(t-3)$
So, statement (2) is false.
For a stable LTI system, $\int_{-\infty}^{+\infty} h(\lambda) d \lambda$ is finite. So, statement (3) is true.
61. Ans: (a)

Sol: $\mathrm{H}(\mathrm{z})=\frac{1-\mathrm{a}^{-1} \mathrm{z}^{-1}}{1-\mathrm{az}^{-1}}$

$$
=\frac{1-\frac{1}{a z}}{1-\frac{a}{z}}=\frac{a z-1}{a z} \times \frac{z}{z-a}
$$

HEARTY CONGRATULATIONS TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33 (EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

DGITAL CLASSES for
 ESE 2020/2021
 General Studies \&
 Engineering Aptitude
 BATE 2020/2021
 Computer Science \&
 Information Technology

63. Ans: (d)

Sol:

$h(n) \neq 0$ for $\mathrm{n}<0$. So, non causal system.

$$
\sum_{\mathrm{n}=-\infty}^{\infty}|\mathrm{h}(\mathrm{n})|<\infty . \text { So, stable system }
$$

64. Ans: (d)

Sol: 1. $\mathrm{x}(\mathrm{t}) \rightarrow \mathrm{a}_{\mathrm{k}}$

$$
\begin{aligned}
\mathrm{b}_{\mathrm{k}} & =\frac{1}{\mathrm{~T}} \int_{\mathrm{T}} \mathrm{x}\left(\mathrm{t}-\mathrm{t}_{0}\right) \mathrm{e}^{-\mathrm{jk} \omega_{0} \mathrm{t}} \mathrm{dt} \\
\tau & =\mathrm{t}-\mathrm{t}_{0} \\
\mathrm{~d} \tau & =\mathrm{dt} \\
\mathrm{~b}_{\mathrm{k}} & =\frac{1}{\mathrm{~T}} \int_{\mathrm{T}} \mathrm{x}(\tau) \mathrm{e}^{-\mathrm{jk} \mathrm{\omega}_{0}\left(\tau+\mathrm{t}_{0}\right)} \mathrm{d} \tau \\
& =\mathrm{e}^{-\mathrm{jk} \omega_{0} t_{0}} \frac{1}{\mathrm{~T}} \int_{\mathrm{T}} \mathrm{x}(\tau) \mathrm{e}^{-\mathrm{jk} \mathrm{\omega}_{0} \tau \mathrm{~d} \tau}
\end{aligned}
$$

$$
b_{k}=\mathrm{e}^{-\mathrm{jk} \omega_{0} \mathrm{t}_{0}} \cdot \mathrm{a}_{\mathrm{k}}
$$

$\left|\mathrm{b}_{\mathrm{k}}\right|=\left|\mathrm{a}_{\mathrm{k}}\right| \quad$ [Statement (1) is correct]
2. $\mathrm{x}(-\mathrm{t})=\sum_{\mathrm{k}=-\infty}^{\infty} \mathrm{a}_{\mathrm{k}} \mathrm{e}^{-\mathrm{jk} \omega_{0} \mathrm{t}}$
$\mathrm{k}=-\mathrm{m}$
$y(t) \rightarrow b_{k}$
then $y(t)=x(-t)=\sum_{k=-\infty}^{\infty} a_{-m} e^{j m \omega_{0} t}$
$\mathrm{b}_{\mathrm{k}}=\mathrm{a}_{-\mathrm{k}} \quad$ [Statement (2) is correct]
3. If $x(t)$ is even $(x(-t)=x(t))$

Then fourier series coefficients also even.
$a_{-k}=a_{k}$ [Statement (3) is correct]
4. If $x(t)$ is odd $(x(-t)=-x(t))$

Then fourier series coefficients also odd.
$\mathrm{a}_{\mathrm{k}}=-\mathrm{a}_{\mathrm{k}}$ [Statement (1) is correct]

65. Ans: (b)

Sol: The correct statements are

1. Analog system poles in the left half splane map on to digital system poles inside the circle $|Z|=1$ in z-plane.
2. Analog system poles on the imaginary axis of S-plane map on to digital system poles on the unit circle $|Z|=1$ in z-plane.

66. Ans: (b)

Sol: (1) LT $[\delta(t)]=s^{2} \operatorname{LT}[r(t)]$
So, statement (1) is false
(2) $\delta(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{u}(\mathrm{t})$

So, statement (2) is false
(3) $\operatorname{LT}[\delta(\mathrm{t})]=\mathrm{sLT}[\mathrm{u}(\mathrm{t})]$

So, statement (3) is true
(4) $\delta(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}}(\mathrm{u}(\mathrm{t}))$

So, statement (4) is true
67. Ans: (c)

Sol: $X(s)=\frac{1}{s}-\frac{1}{s} \mathrm{e}^{-\mathrm{sT}}$
Apply inverse laplace transform

$$
=\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-\mathrm{T})
$$

68. Ans: (b)

Sol: For $\mathrm{x}(\mathrm{t})=\mathrm{e}^{\mathrm{t}} \mathrm{u}(\mathrm{t})$, exponentially growing function.

Only Laplace transform exists.
$\mathrm{e}^{\mathrm{t}} \mathrm{u}(\mathrm{t}) \rightarrow \frac{1}{\mathrm{~s}-1}, \sigma>1$
Fourier transform doesn't exist. $\because \mathrm{x}(\mathrm{t})$ is not absolutely integrable.
i.e., $\int_{-\infty}^{\infty}|x(t)| d t<\infty$ is not satisfied
69. Ans: (c)

Sol: $\mathrm{T}_{\max }=\frac{180}{2 \pi N_{s}} \frac{E_{20}^{2}}{2 x_{20}}$
$\mathrm{S}_{\mathrm{Tmax}}=\frac{\mathrm{R}_{2}}{\mathrm{X}_{20}} ;$
$\mathrm{N}_{\mathrm{Tmax}}=\mathrm{N}_{\mathrm{s}}\left(1-\frac{\mathrm{R}_{2}}{\mathrm{X}_{20}}\right)$
By adding additional resistance in the rotor circuit $\mathrm{R}_{2} / \mathrm{S}_{\mathrm{T} \text { max }}$ remains constant, hence rotor current and rotor input power at maximum torque conditions. Therefore maximum torque remains constant. But slip and speed at which maximum torque occurs depends on rotor resistance and they change. Statement (I) is correct and Statement (II) is wrong.

70. Ans: (a)

Sol: Distribution transformers (in India) usually have the ratings of 3 -phase, $11 \mathrm{kV} / 400-440$ $\mathrm{V} ; 50 \mathrm{~Hz}$. They are installed near residential colonies, small-scale industries etc.

A particular feature of these loads is that they vary periodically, with a period of one day. During the course of a day there will be periods when the load is maximum and periods when there is no load (or very light load).

However, the transformer must remain energized all through the day (no one
knows)when some connected load might be switched on). Even when on no load, such transformer would therefore be drawing energy for its core losses, thus wasting energy. This energy waste can be reduced if these transformers are designed to have low core losses. This is achieved by operating them at low flux density.
Both ' Statement-I' and 'Statement-II ' are true 'Statement-II' is the correct explanation for the ' Statement-I'.

71. Ans: (b)

Sol: If normal excitation is used in this test, the resulting induced emf may circulate more than the rated current in the phases. Hence a reduced excitation is used.

It is also true that the phase currents lag their respective induced voltages by 90° (neglecting phase resistances) and hence the armature mmf directly opposes the field mmf . But this is not the reason for using reduced excitation. This reduced excitation is used to prevent the possible damage to the machine under short circuit test.

72. Ans: (d)

Sol: Here, Statement (I) is not correct because due to the armature reaction effect, depending upon load the resultant magnetic field axis shift backwards in case of motor
and shift's forwards in case of generator. Here Statement (II) is individually correct.

73. Ans: (b)

Sol: Rotational losses consist of friction and windage losses and eddy current and hysterisis(core losses). Since the two machines are mechanically coupled, friction and windage losses are the same for both machines. But the generator has more excitation and so has more core losses. This is compensated by the larger armature current, larger field distortion, and hence the larger stray losses of motor. Thus, both Statement (I) and Statement (II) are true but Statement (II) is not the correct reason for Statement (I).

74. Ans: (a)

Sol: The total energy of an energy signal falls between the limits 0 and ∞.

So, Statement (I) is true.

The average power of an energy signal is zero.

So, Statement (II) is true.
Both Statement (I) and Statement (II) are individually true and Statement (II) is the correct explanation of Statement (I)
75. Ans: (d)

Sol: For a real valued periodic function $f(t)=$ $\mathrm{f}^{*}(\mathrm{t})$

And from exponential Fourier series

$$
\mathrm{C}_{\mathrm{n}}=\mathrm{C}_{-\mathrm{n}}^{*}
$$

Statement (I) is False but statement (II) is True because the discrete magnitude spectrum of real function $f(t)$ is even and phase spectrum is odd.

