SUBJECT: ANALOG, DIGITAL ELECTRONICS AND BASIC ELECTRONICS ENGINEERING - SOLUTIONS

1. Ans: (d)

Sol: $\mathrm{V}_{\mathrm{rms}}=\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{2}}$
$\mathrm{V}_{\mathrm{m}}=\sqrt{2} \mathrm{~V}_{\mathrm{rms}}=50 \sqrt{2}$ volts
PIV of diode in centre tapped is $2 \mathrm{~V}_{\mathrm{m}}$
PIV $=2 \times 50 \times \sqrt{2}$
$=100 \sqrt{2}$ volts
$=141.4 \mathrm{~V}$
02. Ans: (c)

Sol: For +ve cycle, D_{1} is forward biased.
C_{1} starts charging.
C_{1} charges till 1 V .
For -ve cycle, D_{2} is forward biased.
$\mathrm{V}_{\mathrm{C}}=-\mathrm{V}_{\mathrm{i}}-(-1)=-(-1)+1=2 \mathrm{~V}$
03. Ans: (c)

Sol: $\quad A_{I}=\frac{\mathrm{h}_{\mathrm{fe}}}{\sqrt{1+\left(\mathrm{f} / \mathrm{f}_{\beta}\right)^{2}}}, \mathrm{f}_{\beta}=\frac{1}{2 \pi \mathrm{r}_{\pi}\left(\mathrm{C}_{\pi}+\mathrm{C}_{\mu}\right)}$
Current gain of BJT drops at high frequency due to junction capacitor
04. Ans: (a)

Sol: $\mathrm{V}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{C}}=0.2 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=\frac{10-0.2}{2 \mathrm{k}}=4.9 \mathrm{~mA}$
To operate transistor remain in saturation is $\mathrm{I}_{\mathrm{B}}>\frac{\mathrm{I}_{\mathrm{C}}}{\beta}$
$\frac{\mathrm{V}_{\mathrm{i}}-0.7-2-0.7}{5 \mathrm{k}}>\frac{4.9 \times 10^{-3}}{50}$
$\left(\mathrm{V}_{\mathrm{i}}-3.4\right)>0.49$
$\mathrm{V}_{\mathrm{i}}>3.89 \mathrm{~V}$
05. Ans: (c)

Sol: $\mathrm{I}_{\mathrm{C}}=1.3 \mathrm{~mA}$
$\mathrm{r}_{\mathrm{e}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{C}}}=\frac{26 \mathrm{mV}}{1.3 \mathrm{~mA}}=20 \Omega$,
$A_{v}=-\frac{R_{L}}{r_{e}}, R_{L}=2 k \| 2 k=1 k \Omega$
$\mathrm{A}_{\mathrm{v}}=-\frac{1000}{20}$
$A_{v}=-50$
06. Ans: (c)

Sol: Increasing order of input impedance
(1) CB (Common base)
(2) CE (Common emitter)
(3) CC (common collector or emitter follower / Buffer)
(4) Emitter follower using darlington pair
07. Ans: (d)

Sol: $\mathrm{A}_{\mathrm{v}}=\mathrm{A}_{\mathrm{v} 1} . \mathrm{A}_{\mathrm{v} 2}$

$$
\begin{gathered}
=200 \times 500=10^{5} \\
\left(\mathrm{~A}_{\mathrm{v}}\right)_{\mathrm{dB}}=20 \log _{10}\left(10^{5}\right) \\
=100
\end{gathered}
$$

8. Ans: (a)

Sol: Due to voltage series feedback, input resistance increased by the factor of $(1+\mathrm{A} \beta)$
$\Rightarrow \mathrm{Z}_{\mathrm{IF}}=\mathrm{Z}_{\mathrm{i}}(1+\mathrm{A} \beta)$
$Z_{\mathrm{IF}}=2 \times 10^{3}\left(1+\frac{4}{100} \times 100\right)$
$\mathrm{Z}_{\mathrm{IF}}=10 \mathrm{k} \Omega$
09. Ans: (c)

Sol: In the circuit shown Voltage sampling (output) \& Current mixing (input). So it is a trans-resistance Amplifier.
10. Ans: (a)

Sol: : Emitter follower (CC amplifier), (voltage series amplifier)
: It acts as Buffer amplifier
: Good impedance matching
: High input impedance
: Low output impedance
$: \mathrm{A}_{\mathrm{v}} \simeq 1$
: A_{I} (current gain) is high
: Power gain = current gain

11. Ans: (c)

Sol: $\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{c}}\right)$ of diode is 1 V
Diode is ON state

$$
\begin{aligned}
\mathrm{I} & =\frac{-2-0.6+3}{1100} \\
& =\frac{0.4}{1100}=0.36 \mathrm{~mA} \\
\Rightarrow & \mathrm{~V}_{0}=-0.36 \mathrm{~mA} \times 10^{3} \\
& \mathrm{~V}_{0}=-0.36 \mathrm{~V}
\end{aligned}
$$

12. Ans: (d)

Sol: Since base and collector are short circuited the transistor will act as a diode and hence diode equation is used.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}} \approx \mathrm{I}_{0} \cdot \mathrm{e}^{\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{T}}} \\
& \begin{aligned}
\Rightarrow \mathrm{V}_{\mathrm{D}} & =\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{E}}}{\mathrm{I}_{0}}\right) \\
& =26 \times 10^{-3} \ln \left(\frac{3 \times 10^{-3}}{10^{-9}}\right) \\
& =26 \times 10^{-3} \ln \left(3 \times 10^{6}\right) \\
& =26 \times 10^{-3}\left[\ln 3+\ln 10^{6}\right) \\
& =26 \times 10^{-3}[1.1+2.3 \times 6] \\
& =26 \times 10^{-3}(14.9) \\
\mathrm{V}_{\mathrm{X}} & =0.39 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

13. Ans: (c)

Sol: Gain of Amplifier $=-\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
Feedback factor is $\beta=\frac{-L_{1}}{L_{2}}$
Condition for oscillation is $\mathrm{A} \beta=1$
$\left(-\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)\left(\frac{-\mathrm{L}_{1}}{\mathrm{~L}_{2}}\right)=1$
$\frac{-\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{-\mathrm{L}_{2}}{\mathrm{~L}_{1}} \Rightarrow \frac{\mathrm{~L}_{1}}{\mathrm{R}_{1}}=\frac{\mathrm{L}_{2}}{\mathrm{R}_{2}}$
14. Ans: (d)

Sol: The bias stability of an Emitter-Bias Amplifier circuit improves by decreasing the value of R_{B} and increasing the value of R_{E}.

15. Ans: (a)

Sol: Wien bridge oscillator generates Audio frequency range oscillations.
Crystal oscillator generates RF frequency range oscillations.
The output impedance of Voltage shunt feedback amplifier is low.
The output impedance of Current shunt feedback amplifier is high.

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

2. FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

2. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm
\checkmark All tests will be conducted in Question Paper Booklet format.
\checkmark Test Series will be conducted at all our centres.

(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

ISRO -- -
 ONLINE TEST SERIES

No. of Tests : 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO)
Recruitment of Scientist/Engineer 'SC'
ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
『 starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.

(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com
16. Ans: (b)

Sol: For a rectifier with inductor filter, ripple factor $\gamma \alpha \mathrm{R}_{\mathrm{L}}$ for ' γ ' to be low, load of less resistance should be selected and hence a rectifier with ' L ' filter is more suitable for high load current.
\rightarrow similarly, for a rectifier with ' C ' filter. $\gamma \alpha \frac{1}{\mathrm{R}_{\mathrm{L}}}$
\therefore This filter is suitable for low load currents
\rightarrow For LC filter, ' γ ' independent of load.

17. Ans:(d)

Sol: In an RC coupled amplifier, the external capacitors establish the lower 3-dB frequency and the device junction capacitors are responsible for upper 3-dB frequency.
Case (i): As the amplifier is an RC coupled circuit, the coupling capacitors will establish the lower 3-dB frequency $\left(f_{L}=\frac{1}{2 \pi R_{i} C_{B}}\right.$ or $\left._{L}=\frac{1}{2 \pi R_{L} C_{C}}\right)$.
Case (ii): If the device junction capacitors are open for the frequency range of input signal, the gain of the amplifier is constant from mid-frequencies to high frequencies.
18. Ans: (a)

Sol: The main difference between BJT and MOSFET is current is quadratic with V_{GS} for MOSFET and exponential with V_{BE} for BJT.
In MOSFET,
$\mathrm{I}_{\mathrm{D}}=\frac{1}{2} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{W}}{\mathrm{L}}\left[\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)\right]^{2}$
In BJT, $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{0}\left[\mathrm{e}^{\mathrm{V}_{\mathrm{BE}} / \eta \mathrm{V}_{\mathrm{T}}}-1\right]$
19. Ans: (b)

Sol: Hysteresis in a comparator makes immune to false triggering caused by noisy input signal.
20. Ans: (d)

Sol: Given circuit is integrator circuit. If square wave is applied to integrator, it produces triangular waveform.
21. Ans: (d)

Sol:

D_{2} is always RB
$V_{\text {in }}>6 V\left(\mathrm{D}_{1} \mathrm{FB}\right)$
22. Ans: (c)

Sol:

23. Ans: (b)

Sol: A_{v} in $d B=20 \log _{10} A_{v}=80 \mathrm{~dB}$
$\Rightarrow \mathrm{A}_{\mathrm{v}}=10^{4}$
Bandwidth $\mathrm{f}_{\mathrm{H}}=30 \mathrm{~Hz}$
Gain-Bandwidth product $=10^{4} \times 30 \mathrm{~Hz}$

$$
=300 \mathrm{kHz}
$$

24. Ans: (a)

Sol: For start input $\rightarrow \mathrm{J}=1, \mathrm{~K}=0 \rightarrow$ Then Q becomes 1 .

CLK	Counter Output	J	K	Q
0	$000(0)$	1	0	1
1	$001(0)$	0	0	1
2	$010(0)$	0	0	1
3	$011(0)$	0	0	1
4	$100(0)$	0	0	1
5	$101(0)$	0	0	1
6	$110(0)$	0	0	1
7	$111(1)$	0	1	1
8	-	-	-	0

K Input becomes 1 after $7^{\text {th }}$ clock pulse
$\left[\because \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=111\right]$
Thus output is cleared i.e., Q is 0 after $8^{\text {th }}$ clock pulse
width of pulse $=8 \mathrm{~T}=\frac{8}{\mathrm{f}}=\frac{8}{5 \mathrm{MHz}}=1.6 \mu \mathrm{~s}$

25. Ans: (a)

Sol: Given 2 numbers 1011 and 0110
1011 is in 2 's complement form. Its decimal representation is $(-5)_{10}$
0110 is in true binary form. Its decimal representation is $(6)_{10}$
Its addition results $(+1)_{10}=(0001)_{2}$
26. Ans: (b)

Sol: ALE (Address Latch Enable) signal is used for differentiating AD_{7} to AD_{0} multiplexed data, whether it is address or data.
27. Ans: (b)

Sol: $D_{A}=\overline{Q_{A}} \cdot \overline{Q_{B}}, D_{B}=Q_{A}, D_{C}=Q_{B}$

So, it is a Divide by 3 circuit, with 50%, Duty cycle.
28. Ans: (a)

Sol:

$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum \mathrm{m}(0,2,3,6)+\mathrm{d}(4,5)$

$$
\begin{aligned}
& \mathrm{F}=\overline{\mathrm{C}}+\overline{\mathrm{A} B} \\
& \mathrm{~F}=\overline{\overline{\mathrm{F}}}=\overline{\mathrm{C}} \overline{\overline{\mathrm{~A}} \cdot \mathrm{~B}}
\end{aligned}
$$

So, 2 number of two input NAND gates are required.
29. Ans: (a)

Sol: Given $\mathrm{D}_{\mathrm{A}}=\mathrm{X} . \mathrm{B}$

$$
\mathrm{D}_{\mathrm{B}}=\overline{\mathrm{A}}
$$

P.S	Input	FF	Inputs	N.S		Output	
A	B	X	D_{A}	D_{B}	A	B	Y
0	0	0	0	1	0	1	0
0	0	1	0	1	0	1	0
0	1	0	0	1	0	1	0
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0
1	1	0	0	0	0	0	1
1	1	1	1	0	1	0	1

The value of X at - ve edges of all clock pulses are $1,1,0,1,0,0,0$ Thus the state transitions are

Number of times output is high equals to 1.
30. Ans: (c)

Sol:

$3 \mathrm{t}_{\mathrm{pi}}=15 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{pi}}=5 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{p}} \leq 15 \mathrm{~ns}$ to avoid Race around condition $\left(\mathrm{t}_{\mathrm{p}}<\mathrm{t}_{\mathrm{FF}}<\mathrm{T}\right)$
i.e., $\mathrm{t}_{\mathrm{p}}, \max =15 \mathrm{~ns}$ which is equal to 3 inverters propagation delay

TEST YOUR PREP IN A REAL TEST ENVIRONMENT

 Pre

 Pre GA GA TE TE 2020

2020}

Date of Exam: 18 ${ }^{\text {th }}$ January 2020 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019

Highlights:

- Get real-time experience of GATE-20 test pattern and environment
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for GATE-20 toppers.

SSC-JE (Paper-I) OOnline Test Series

Staff Selection Commission - Junior Engineer
No. of Tests : 20
Subject Wise Tests: 16|Mock Tests - 4
Civil|Electrical|Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination

31. Ans: (d)

Sol:

Initially when test input is low output is high (assume identical non zero delay)
When test becomes high:-
$\mathrm{x}=$ high, y remains high till the 3 NOT gate combination, make the input logic low. So, Output goes to low. After some delay Y becomes logic low. Then output becomes high.
So, output switches from high to low to high and remains high.
Option (d) is correct.

32. Ans: (d)

Sol: From state diagram x-FF Truth table is

x	$\mathrm{Q}(\mathrm{t}+1)$				
0	$\overline{\mathrm{Q}(\mathrm{t})}$				
1	$\mathrm{Q}(\mathrm{t})$				
i.e., $\mathrm{Q}(\mathrm{t}+1)=\overline{\mathrm{x} \oplus \mathrm{Q}(\mathrm{t})}$		\Rightarrow	x	$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$
:---:	:---:	:---:			
0	0	1			
0	1	0			
1	0	0			
1	1	1			

33. Ans: (b)

Sol:

(OR)

34. Ans: (a)

Sol: Delay of a k-bit Carry-Lookahead Adder $\mathrm{T}_{\text {lookahead-adder }}=4\left[\log _{4} \mathrm{k}\right]$

k	$\mathrm{T}_{\text {lookahead-adder }}$
4	4
16	8
32	12
64	12
128	16
256	16

Delay in Carry Look Adder

$$
\begin{aligned}
\mathrm{T}_{\mathrm{CLK}} & =4 \log _{4} \mathrm{~K} \\
\mathrm{~T}_{\mathrm{CLK}} & =4 \log _{4} 128 \\
& =16
\end{aligned}
$$

35. Ans: (c)

Sol: let us assume two numbers as 1011 and 111, then its multiplication is

1011
$\times 111$
1011
1011
1011
1001101

So, we require two number of 4-bit binary adders.
36. Ans: (b)

Sol:

$$
\begin{aligned}
& \mathrm{F}=\mathrm{A} \cdot \mathrm{~B}(\overline{\overline{\mathrm{~A}}+\mathrm{BC}}) \\
& \mathrm{F}=\mathrm{AB} \overline{\mathrm{C}}
\end{aligned}
$$

37. Ans: (a)

Sol: $\mathrm{F}=(\overline{\mathrm{A}} \overline{\mathrm{D}}+\mathrm{B} \overline{\mathrm{D}})(\mathrm{A}+\mathrm{B}+\mathrm{D})$

$$
\begin{aligned}
\mathrm{F} & =\overline{\mathrm{A}} \mathrm{~B} \overline{\mathrm{D}}+\mathrm{AB} \overline{\mathrm{D}}+\mathrm{B} \overline{\mathrm{D}} \\
& =\mathrm{B} \overline{\mathrm{D}}[\overline{\mathrm{~A}}+\mathrm{A}+1] \\
\mathrm{F} & =\mathrm{B} \overline{\mathrm{D}}
\end{aligned}
$$

38. Ans: (d)

Sol: $\mathrm{V}_{\mathrm{FS}}=5 \mathrm{~V}$

$$
\begin{aligned}
\text { Resolution } & =\frac{\mathrm{V}_{\mathrm{FS}}}{2^{\mathrm{n}}-1}=\frac{5 \mathrm{~V}}{2^{10}-1}=0.00488 \mathrm{~V} \\
& =4.88 \mathrm{mV}
\end{aligned}
$$

39. Ans: (a)

Sol: $\mathrm{J}_{\mathrm{A}}=\mathrm{BC}, \mathrm{K}_{\mathrm{A}}=\overline{\mathrm{B}}, \mathrm{J}_{\mathrm{C}}=\mathrm{K}_{\mathrm{C}}=\overline{\mathrm{A}}$ and B Toggles when C changes from 1 to 0

PS			FF	Inputs	NS				
A	B	C	$\mathrm{J}_{\mathrm{A}} \mathrm{K}_{\mathrm{A}}$	$\mathrm{J}_{\mathrm{C}} \mathrm{K}_{\mathrm{C}}$	A	B	C		
1	0	1	0	1	0	0	0	0	1

40. Ans: (c)

Sol: RST $\mathrm{n} \Rightarrow \mathrm{n} \times 8 \Rightarrow(\mathrm{n} \times 8)_{10} \Rightarrow$ XXXXH
RST $4.5 \Rightarrow 4.5 \times 8=(36)_{10} \Rightarrow 0024 \mathrm{H}$
43. Ans: (b)

Sol:

$$
\begin{aligned}
& \mathrm{A}=37 \mathrm{H}=0011 \quad 0111 \\
& 56 \mathrm{H}=0101 \quad 0110 \\
& +1 \text { - carry generated from previous executions } \\
& 1000 \quad 1110=8 \mathrm{EH}
\end{aligned}
$$

44. Ans: (c)

Sol: \rightarrow flip-flop is used to store 1 -bit of information.
\rightarrow Race-around condition occurs in J-K flip-flop when both the inputs are 1.
\rightarrow A transparent latch consists of D type flip-flop.
\rightarrow Master-slave configuration is used to prevent race around condition.
45. Ans: (c)

Sol: LXI H,4000H -Immediate Addressing mode
RNZ - Implicit Addressing mode
XRA B - Register Addressing mode
LDA 1560H - Direct Addressing mode
46. Ans: (d)

Sol: Conversion time of Successive Approximation ADC is nT
$\mathrm{T}_{\mathrm{A}}=\mathrm{nT}_{\mathrm{clk}}=5 \times \frac{1}{10 \mathrm{M}}=0.5 \mu \mathrm{~s}$
$\mathrm{f}_{\mathrm{s}} \rightarrow$ Sampling frequency
$\mathrm{f}_{\mathrm{m}} \rightarrow$ Input signal frequency
$\mathrm{f}_{\mathrm{s}(\max)}=\frac{1}{0.5 \mu \mathrm{~s}}=2 \mathrm{MHz}$
$\mathrm{f}_{\mathrm{s}(\max)}=2 \mathrm{f}_{\mathrm{m}(\max)}$
$\mathrm{f}_{\mathrm{m}(\max)}=\frac{\mathrm{f}_{\mathrm{s}(\max)}}{2}=\frac{2 \mathrm{MHz}}{2}=1 \mathrm{MHz}$
47. Ans: (a)

Sol: Step size $\Delta=\frac{\mathrm{V}_{\text {max }}-\mathrm{V}_{\text {min }}}{2^{\mathrm{n}}}=\frac{10 \mathrm{~V}-0 \mathrm{~V}}{2^{10}}$ maximum possible error
$=\frac{\Delta}{2}=\frac{10 \mathrm{~V}}{2^{11}}=0.00488 \mathrm{~V}=4.88 \mathrm{mV}$
48. Ans: (c)

Sol: $\mathrm{V}_{0}=-\mathrm{V}_{\mathrm{R}}\left(\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}}\right)\left(\mathrm{d}_{1} 2^{-1}+\mathrm{d}_{2} 2^{-2}+\ldots . \mathrm{d}_{\mathrm{n}} 2^{-\mathrm{n}}\right)$
$\mathrm{V}_{0}=-8 \mathrm{~V}\left(\frac{10 \mathrm{k}}{10 \mathrm{k}}\right)\left(\frac{1}{2}+0+\frac{1}{2^{3}}\right)=-5 \mathrm{~V}$
49. Ans: (c)

Sol:

A	B	P	Q
0	0	Invalid	
0	1	1	0
1	0	0	1
1	1	No Change	

When $\mathrm{A}=1, \mathrm{~B}=0$
$\Rightarrow \mathrm{P}=0, \mathrm{Q}=1$
50. Ans: (c)

Sol: EPI is a PI which contains at least one '1' which can't be covered by any other PI is called EPI.
The K map for $F(A, B, C, D)$ is

So, 3 EPI's
51. Ans: (d)

Sol: Base - 6 number of system
The numbers present are
$0 \rightarrow 000$
$1 \rightarrow 001$
$2 \rightarrow 010$
$3 \rightarrow 101$
$4 \rightarrow 110$
$5 \rightarrow 111$
As the code is given to be self complementary, code of $0 \& 5$ are complementary to each other.
Similarly the code of 1 \& 4 are complementary to each other.
\therefore Code of $4=110$
52. Ans: (d)

Sol: $f(A, B, C)=\Sigma m(0,2,6,7)$ in SOP form
$=\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}}+\mathrm{AB} \overline{\mathrm{C}}+\mathrm{ABC}$
Its complement $=\overline{\mathrm{f}}(\mathrm{A}, \mathrm{B}, \mathrm{C})$
$=\bar{A} \bar{B} C+\bar{A} B C+A \bar{B} \bar{C}+A \bar{B} C$
53. Ans: (b)

Sol: Image frequency, $f_{i}=f_{s}+2$ IF
where IF (intermediate frequency)
$=10.7 \mathrm{MHz}, \mathrm{f}_{\mathrm{s}}=90.6 \mathrm{MHz}$
$\mathrm{f}_{\mathrm{i}}=90.6+21.4=112 \mathrm{MHz}$
54. Ans: (c)

Sol: $\mu=1$ given
$P_{t}=P_{C}\left[1+\frac{\mu^{2}}{2}\right]$
$\Rightarrow \mathrm{P}_{\mathrm{t}}=\frac{3}{2} \mathrm{P}_{\mathrm{C}}=1.5 \mathrm{P}_{\mathrm{C}}$

55. Ans: (b)

Sol: Bandwidth of $\mathrm{FM}=2(\beta+1) \mathrm{f}_{\mathrm{m}}$
For WBFM $\beta \gg 1$. So, Bandwidth $\approx 2 \beta \mathrm{f}_{\mathrm{m}}$
$\beta=\frac{B W}{2 f_{m}}$
f_{m} is constant. As transmission bandwidth increases, β also increases proportionally.

Thus if bandwidth is doubled β also gets doubled.
But figure of merit of FM
$\mathrm{FOM}=\frac{\mathrm{SNR}_{\mathrm{O} / \mathrm{P}}}{\mathrm{SNR}_{\mathrm{I} / \mathrm{P}}}=\frac{3}{2} \beta^{2}$
Thus when β is doubled FOM increases four fold.

56. Ans: (b)

Sol: An Envelope detector is a diode half wave rectifier followed by an RC-low pass detector. The output of the detector represents the envelope of the incoming high frequency signal. It is used for FSK signals.
Envelope detector is also called as non synchronous detector since local oscillatory circuit is not implemented in detection.

57. Ans: (d)

Sol: RF amplifier is used to improve the rejection of the image frequency.
58. Ans: (b)

Sol: Bandwidth
$=\frac{1}{2} \times$ sampling rate \times Number of unit code
$=\frac{1}{2} \times 10 \mathrm{k} \times 7$
$=35 \mathrm{kHz}$

59. Ans: (c)

Sol: The use of non-uniform quantizer leads to the increase in SNR for low level signals.
60. Ans: (b)

Sol:

- The bandwidth of the AM depends on the bandwidth of the modulating system i.e $B . W=2 f_{m}$.
- The bandwidth of the AM cannot depend on the modulation index.
- Practically FM bandwidth depends upon percentage of modulation index.

61. Ans: (d)

Sol: $m(t)_{\text {max }}=1$
$\mathrm{f}_{\mathrm{i}}=\mathrm{f}_{\mathrm{c}}+\mathrm{k}_{\mathrm{f}} \mathrm{m}(\mathrm{t})=1 \mathrm{MHz}+1 \mathrm{kHz} / \mathrm{V} \times \mathrm{V}$
$=1.001 \mathrm{MHz}$
62. Ans: (d)

Sol: $\quad \mathrm{V}_{\mathrm{T}}=\frac{\sqrt{2 \mathrm{qN}_{\mathrm{A}} \in_{\mathrm{S}}\left(2 \phi_{\mathrm{B}}\right)}}{\mathrm{C}_{\mathrm{OX}}}+2 \phi_{\mathrm{B}}+\mathrm{V}_{\mathrm{FB}}$,
where $\mathrm{C}_{\mathrm{ox}}=\frac{\varepsilon_{\mathrm{ox}}}{\mathrm{t}_{\mathrm{ox}}}$
Threshold voltage can be decreased by decreasing the channel dopant concentration and reducing the gate-oxide thickness and decreasing source to body voltage. So, option (d) is correct.
63. Ans: (d)

Sol: Darlington amplifier: High input impedance \& low output impedance
Differential amplifier: CMRR is very high Cascode amplifier (FET): Low input capacitance but high R_{in}.
Common gate amplifier: Low input impedance \& high output impedance.
64. Ans: (c)

Sol: Since, drain and gate are shorted, the MOSFET operates in saturation region
$\frac{\mathrm{I}_{\mathrm{D} 2}}{\mathrm{I}_{\mathrm{D} 1}}=\frac{\left(\mathrm{V}_{\mathrm{GS} 2}-\mathrm{V}_{\mathrm{T}}\right)^{2}}{\left(\mathrm{~V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{T}}\right)^{2}}=\frac{(4 \mathrm{~V}-1 \mathrm{~V})^{2}}{(3 \mathrm{~V}-1 \mathrm{~V})^{2}}$
$\Rightarrow \mathrm{I}_{\mathrm{D} 2}=\frac{9}{4} \mathrm{I}_{\mathrm{D} 1}=9 \mathrm{~mA}$

65. Ans: (b)

Sol: Gallium Arsenide phosphide (GaAsP) is a direct band gap semiconductor and hence is used in LEDs.
66. Ans: (a)

Sol: (i) Intrinsic semiconductors have negative temperature co-efficient. Therefore conductivity of germanium increases by 6% per ${ }^{\circ} \mathrm{C}$ rise in temperature.

HEARTY CONGRATULATIONS TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33 (EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

DGITAL CLASSES for
 ESE 2020/2021
 General Studies \&
 Engineering Aptitude
 BATE 2020/2021
 Computer Science \&
 Information Technology

(ii) The conductivity of silicon increases by 8% per ${ }^{\circ} \mathrm{C}$ rise in temperature.
(iii) Metals have positive temperature coefficient, so the resistance of metals increases by 0.4% per ${ }^{\circ} \mathrm{C}$ rise in temperature.

67. Ans: (b)

Sol: With negative gate to source $\left(-\mathrm{V}_{\mathrm{GS}}\right)$ voltage an n-channel JFET operated as an amplifier. So, gate-source junction should be reverse biased.
68. Ans: (c)

Sol: $\mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{D} 2}$
$\Rightarrow \mathrm{K}_{1}\left[\mathrm{~V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{T}}\right]^{2}=\mathrm{K}_{2}\left[\mathrm{~V}_{\mathrm{GS} 2}-\mathrm{V}_{\mathrm{T}}\right]^{2}$
$\sqrt{\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}}\left[\mathrm{~V}_{\mathrm{GS} 1}-\mathrm{V}_{\mathrm{T}}\right]=\mathrm{V}_{\mathrm{GS} 2}-\mathrm{V}_{\mathrm{T}}$
$2\left[5-\mathrm{V}_{\mathrm{o}}-1\right]=\mathrm{V}_{\mathrm{o}}-1$
$\Rightarrow 2\left(4-V_{0}\right)=V_{o}-1$
$\Rightarrow \mathrm{V}_{\mathrm{o}}=3$ Volts
69. Ans: (c)

Sol: $\quad r_{o}=\frac{1}{\lambda . \mathrm{I}_{\mathrm{D}}}=\frac{1}{0.05 \mathrm{~V}^{-1} \times 1 \times 10^{-3} \mathrm{~A}}=20 \mathrm{k} \Omega$
70. Ans: (b)

Sol: Zener diode is a breakdown diode, it has to be operated in reverse bias to produce breakdown.
Solar cell produces current when carriers are generated by solar power so solar cell is forward biased.
LED \& LASER are light emitting diodes with direct recombination of majority concentration of carrier must be forward biased.
Photo diodes must be producing photo conduction possible only in reverse bias.
71. Ans: (d)

Sol: Beyond Critical Wavelength, photo electric emission can not take place.
72. Ans: (a)

Sol: In a CE amplifier if the bypass capacitor is open, the unbypassed emitter resistor provides
negative feedback and will reduce the voltage gain and increase the input resistance.
73. Ans: (a)

Sol: Slew Rate $(\mathrm{SR})=\left.\frac{\mathrm{dV}_{0}}{\mathrm{dt}}\right|_{\max }$
In ideal Op-Amp Slew Rate is very high.
74. Ans: (b)

Sol: Master slave JK Flip Flop suffers from ones catching problem. So, statement I is true.
Negative Edge Triggered Flip Flop ignores the pulses that occur when clock pulse is high. So, statement II is true. But Statement II is not correct explanation for statement I.
75. Ans: (d)

Sol: FM has better noise performance than AM. So, statement I is false.
In WBFM the number of signal components decided by the modulation index β.
As β increases signal strength increases but this is not the case in AM. The drawback is as we increase β in WBFM, the corresponding bandwidth also increases. So, in WBFM always the trade off present between bandwidth and SNR.

