ESE- 2020 (Prelims) - Offline Test Series
 Test- 1
 ELECTRONICS \& TELECOMMUNICATION ENGINEERING

SUBJECT: ANALOG ELECTRONICS, DIGITAL ELECTRONICS AND MICRO-PROCESSORS - SOLUTIONS

1. Ans: (d)

Sol: $\mathrm{V}_{\mathrm{rms}}=\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{2}}$
$\mathrm{V}_{\mathrm{m}}=\sqrt{2} \mathrm{~V}_{\mathrm{rms}}=50 \sqrt{2}$ volts
PIV of diode in centre tapped is $2 \mathrm{~V}_{\mathrm{m}}$
PIV $=2 \times 50 \times \sqrt{2}$

$$
=100 \sqrt{2} \text { volts }=141.4 \mathrm{~V}
$$

02. Ans: (c)

Sol: For +ve cycle, D_{1} is forward biased.
C_{1} starts charging.
C_{1} charges till 1 V
For -ve cycle, D_{2} is forward biased.
$\mathrm{V}_{\mathrm{C}}=-\mathrm{V}_{\mathrm{i}}-(-1)=-(-1)+1=2 \mathrm{~V}$.

03. Ans: (c)

Sol: $\quad A_{I}=\frac{\mathrm{h}_{\mathrm{fe}}}{\sqrt{1+\left(\mathrm{f} / \mathrm{f}_{\beta}\right)^{2}}}, \mathrm{f}_{\beta}=\frac{1}{2 \pi \mathrm{r}_{\pi}\left(\mathrm{C}_{\pi}+\mathrm{C}_{\mu}\right)}$
Current gain of BJT drops at high frequency due to junction capacitor.
04. Ans: (a)

Sol: $\mathrm{V}_{\mathrm{E}}=0, \mathrm{~V}_{\mathrm{C}}=0.2 \mathrm{~V}$
$I_{C}=\frac{10-0.2}{2 k}=4.9 \mathrm{~mA}$
To operate transistor remain in saturation is $\mathrm{I}_{\mathrm{B}}>\frac{\mathrm{I}_{\mathrm{C}}}{\beta}$
$\frac{\mathrm{V}_{\mathrm{i}}-0.7-2-0.7}{5 \mathrm{k}}>\frac{4.9 \times 10^{-3}}{50}$
$\left(\mathrm{V}_{\mathrm{i}}-3.4\right)>0.49$
$\mathrm{V}_{\mathrm{i}}>3.89 \mathrm{~V}$
05. Ans: (c)

Sol: $\mathrm{I}_{\mathrm{C}}=1.3 \mathrm{~mA}$
$\mathrm{r}_{\mathrm{e}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{I}_{\mathrm{C}}}=\frac{26 \mathrm{mV}}{1.3 \mathrm{~mA}}=20 \Omega$,
$A_{v}=-\frac{R_{L}}{r_{e}}, R_{L}=2 k \| 2 k=1 k \Omega$
$\mathrm{A}_{\mathrm{v}}=-\frac{1000}{20}$
$A_{v}=-50$
06. Ans: (c)

Sol: increasing order of input impedance
(1) CB (Common base)
(2) CE (Common emitter)
(3) CC (common collector or emitter follower / Buffer)
(4) Emitter follower using darlington pair
07. Ans: (d)

Sol: $\mathrm{A}_{\mathrm{v}}=\mathrm{A}_{\mathrm{v} 1} . \mathrm{A}_{\mathrm{v} 2}$

$$
=200 \times 500=10^{5}
$$

$$
\begin{aligned}
\left(\mathrm{A}_{\mathrm{v}}\right)_{\mathrm{dB}} & =20 \log _{10}\left(10^{5}\right) \\
& =100
\end{aligned}
$$

8. Ans: (a)

Sol: Due to voltage series feedback, input resistance increased by the factor of $(1+\mathrm{A} \beta)$
$\Rightarrow \mathrm{Z}_{\mathrm{IF}}=\mathrm{Z}_{\mathrm{i}}(1+\mathrm{A} \beta)$
$Z_{\mathrm{IF}}=2 \times 10^{3}\left(1+\frac{4}{100} \times 100\right)$
$\mathrm{Z}_{\mathrm{IF}}=10 \mathrm{k} \Omega$
09. Ans: (c)

Sol: In the circuit shown Voltage sampling (output) \& Current mixing (input). So it is a trans resistance Amplifier.
10. Ans: (a)

Sol: : Emitter follower (CC amplifier), (voltage series amplifier)
: It acts as Buffer amplifier
: Good impedance matching
: High input impedance
: Low output impedance
$: \mathrm{A}_{\mathrm{v}} \simeq 1$
: A_{I} (current gain) is high
: Power gain = current gain

11. Ans: (c)

Sol: $\left(\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{c}}\right)$ of diode is 1 V
Diode is ON state

$$
\begin{aligned}
& \mathrm{I}=\frac{-2-0.6+3}{1100} \\
&=\frac{0.4}{1100}=0.36 \mathrm{~mA} \\
& \Rightarrow \mathrm{~V}_{0}=-0.36 \mathrm{~mA} \times 10^{3} \\
& \mathrm{~V}_{0}=-0.36 \mathrm{~V}
\end{aligned}
$$

12. Ans: (d)

Sol: Since base and collector are short circuited the transistor will act as a diode and hence diode equation is used.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{E}} \approx \mathrm{I}_{0} \cdot \mathrm{e}^{\mathrm{V}_{\mathrm{D}} / \mathrm{V}_{\mathrm{T}}} \\
& \begin{aligned}
\Rightarrow \mathrm{V}_{\mathrm{D}} & =\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{T}} \ln \left(\frac{\mathrm{I}_{\mathrm{E}}}{\mathrm{I}_{0}}\right) \\
& =26 \times 10^{-3} \ln \left(\frac{3 \times 10^{-3}}{10^{-9}}\right) \\
& =26 \times 10^{-3} \ln \left(3 \times 10^{6}\right) \\
& =26 \times 10^{-3}\left[\ln 3+\ln 10^{6}\right) \\
& =26 \times 10^{-3}[1.1+2.3 \times 6] \\
& =26 \times 10^{-3}(14.9) \\
\mathrm{V}_{\mathrm{X}} & =0.39 \mathrm{~V}
\end{aligned}
\end{aligned}
$$

13. Ans: (c)

Sol: Gain of Amplifier $=-\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
Feedback factor is $\beta=\frac{-L_{1}}{L_{2}}$
Condition for oscillation is $\mathrm{A} \beta=1$
$\left(-\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)\left(\frac{-\mathrm{L}_{1}}{\mathrm{~L}_{2}}\right)=1$
$\frac{-\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{-\mathrm{L}_{2}}{\mathrm{~L}_{1}} \Rightarrow \frac{\mathrm{~L}_{1}}{\mathrm{R}_{1}}=\frac{\mathrm{L}_{2}}{\mathrm{R}_{2}}$

14. Ans: (d)

Sol: The disadvantage of a typical MOSFET as compared to BJT is reduced voltage handling levels.

15. Ans: (c)

Sol: In a RC-phase shift oscillator using FET, the condition for sustained oscillations.
$A_{V}>-\left[29+23 n+4 n^{2}\right]$
Where $\mathrm{n}=\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{i}}}=\frac{\mathrm{R}_{\mathrm{D}}}{\mathrm{R}}$
But $A_{V}=\frac{-\beta R_{L}}{R_{i}}$

$$
\begin{align*}
& \Rightarrow \frac{\beta R_{\mathrm{L}}}{\mathrm{R}_{\mathrm{i}}}>29+23 n+4 n^{2} \tag{3}\\
& \quad \beta \mathrm{n}>29+23 n+4 n^{2} \tag{4}\\
& \therefore \beta>\frac{29}{n}+23+4 n \tag{5}
\end{align*}
$$

16. Ans: (d)

Sol: The bias stability of an Emitter-Bias Amplifier circuit improves by decreasing the value of R_{B} and increasing the value of R_{E}.

17. Ans: (a)

Sol: Wien bridge oscillator generates Audio frequency range oscillations.
Crystal oscillator generates RF frequency range oscillations.
The output impedance of Voltage shunt feedback amplifier is low.
The output impedance of Current shunt feedback amplifier is high.
18. Ans: (b)

Sol: For a rectifier with inductor filter, ripple factor $\gamma \alpha \mathrm{R}_{\mathrm{L}}$
for ' γ ' to be low, load of less resistance should be selected and hence a rectifier with 'L' filter is more suitable for high load current.
\rightarrow similarly, for a rectifier with ' C ' filter.

$$
\gamma \alpha \frac{1}{\mathrm{R}_{\mathrm{L}}}
$$

\therefore This filter is suitable for low load currents
\rightarrow For LC filter, ' γ ' independent of load.

19. Ans: (a)

Sol: $\quad \mathrm{I}_{10 \mathrm{k}}=\frac{20-5}{10 \mathrm{k}}=\frac{15}{10} \mathrm{~mA}$
$\mathrm{V}_{2}=\mathrm{V}_{1}=15 \mathrm{~V}, \mathrm{~V}_{1}=20-\mathrm{I}_{\mathrm{c}}(1 \mathrm{k})$
$\therefore I_{c}=\frac{20-15}{1 \mathrm{k}}=5 \mathrm{~mA}$
as β is not given, assume $\beta \rightarrow \infty$
$\therefore \mathrm{I}_{0}=5 \mathrm{~mA}$.
20. Ans: (d)

Sol: In an RC coupled amplifier, the external capacitors establish the lower 3-dB frequency and the device junction capacitors are responsible for upper $3-\mathrm{dB}$ frequency.

Case (i): As the amplifier is an RC coupled circuit, the coupling capacitors will establish the lower 3-dB frequency $\left(f_{L}=\frac{1}{2 \pi R_{i} C_{B}}\right.$ or $\left.f_{L}=\frac{1}{2 \pi R_{L} C_{C}}\right)$.

Case (ii): If the device junction capacitors are open for the frequency range of input signal, the gain of the amplifier is constant from mid-frequencies to high frequencies.

21. Ans: (a)

Sol: The main difference between BJT and MOSFET is current is quadratic with V_{GS} for MOSFET and exponential with V_{BE} for BJT.
In MOSFET,
$\mathrm{I}_{\mathrm{D}}=\frac{1}{2} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \frac{\mathrm{W}}{\mathrm{L}}\left[\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{TH}}\right)\right]^{2}$
In BJT, $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{0}\left[\mathrm{e}^{\mathrm{V}_{\mathrm{BE}} / \eta \mathrm{V}_{\mathrm{T}}}-1\right]$
22. Ans: (b)

Sol: $\mathrm{C}_{\mathrm{in}}=\mathrm{C}_{\mathrm{F}}[1+\mathrm{A}]$
Calculation of A

$\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=-\mathrm{A}=-\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{o}}$
$\therefore \mathrm{A}=\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{o}}$
$C_{\text {in }}=C_{F}\left[1+g_{m} r_{o}\right]$

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

2. FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

2. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm
\checkmark All tests will be conducted in Question Paper Booklet format.
\checkmark Test Series will be conducted at all our centres.

(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

ISRO -- -
 ONLINE TEST SERIES

No. of Tests : 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO)
Recruitment of Scientist/Engineer 'SC'
ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
『 starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.

(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com
23. Ans: (a)

Sol: Ac equivalent

$\tau=\mathrm{R}_{\mathrm{S}} \mathrm{C}_{\mathrm{in}}$
$\omega_{\mathrm{p}}[$ pole frequency $]=\frac{1}{\tau}$
$\therefore \omega_{\mathrm{p}}=\frac{1}{\mathrm{R}_{\mathrm{S}} \mathrm{C}_{\text {in }}}$
24. Ans: (b)

Sol: Hysteresis in a comparator makes immune to false triggering caused by noisy input signal.
25. Ans: (d)

Sol: Given circuit acts as integrator circuit for given condition. If square wave is applied to integrator, it produces triangular waveform.
26. Ans: (d)

Sol:

D_{2} is always RB
$\mathrm{V}_{\text {in }}>6 \mathrm{~V}\left(\mathrm{D}_{1} \mathrm{FB}\right)$
27. Ans: (c)

Sol:

28. Ans: (b)

Sol: $\quad A_{v}$ in $d B=20 \log _{10} A_{v}=80 \mathrm{~dB}$

$$
\Rightarrow \mathrm{A}_{\mathrm{v}}=10^{4}
$$

Bandwidth $\mathrm{f}_{\mathrm{H}}=30 \mathrm{~Hz}$
Gain-Bandwidth product $=10^{4} \times 30 \mathrm{~Hz}$

$$
=300 \mathrm{kHz}
$$

29. Ans: (a)

Sol: For start input $\rightarrow \mathrm{J}=1, \mathrm{~K}=0 \rightarrow$ Then Q becomes 1

CLK	Counter Output	\mathbf{J}	K	\mathbf{Q}
0	$000(0)$	1	0	1
1	$001(0)$	0	0	1
2	$010(0)$	0	0	1
3	$011(0)$	0	0	1
4	$100(0)$	0	0	1
5	$101(0)$	0	0	1
6	$110(0)$	0	0	1
7	$111(1)$	0	1	1
8	-	-	-	0

K Input becomes 1 after $7^{\text {th }}$ clock pulse

$$
\left[\because \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=111\right]
$$

Thus output is cleared i.e., Q is 0 after $8^{\text {th }}$ clock pulse
width of pulse $=8 \mathrm{~T}=\frac{8}{\mathrm{f}}=\frac{8}{5 \mathrm{MHz}}=1.6 \mu \mathrm{~s}$

30. Ans: (a)

Sol: Given 2 numbers 1011 and 0110
1011 is in 2 's complement form. Its decimal representation is $(-5)_{10}$
0110 is in true binary form. Its decimal representation is $(6)_{10}$
Its addition results $(+1)_{10}=(0001)_{2}$

31. Ans: (b)

Sol: ALE (Address Latch Enable) signal is used for differentiating $A D_{7}$ to $A D_{0}$ multiplexed data, whether it is address or data.
32. Ans: (b)

Sol: $\mathrm{D}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{A}} \cdot \mathrm{Q}_{\mathrm{B}}, \mathrm{D}_{\mathrm{B}}=\mathrm{Q}_{\mathrm{A}}, \mathrm{D}_{\mathrm{C}}=\mathrm{Q}_{\mathrm{B}}$

So, it is a Divide by 3 circuit, with 50%, Duty cycle.
33. Ans: (a)

Sol:

$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum \mathrm{m}(0,2,3,6)+\mathrm{d}(4,5)$

$\mathrm{F}=\overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{B}$
$\mathrm{F}=\overline{\overline{\mathrm{F}}}=\overline{\mathrm{C}} \overline{\overline{\overline{\mathrm{A}} \cdot \mathrm{B}}}$
So, 2 number of two input NAND gates are required.

34. Ans: (b)

Sol: The open collector output of TTL gates can be tied directly together which results the Logical AND.

TEST YOUR PREP IN A REAL TEST ENVIRONMENT

 Pre

 Pre GA GA TE TE 2020

2020}

Date of Exam: 18 ${ }^{\text {th }}$ January 2020 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019

Highlights:

- Get real-time experience of GATE-20 test pattern and environment
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for GATE-20 toppers.

SSC-JE (Paper-I) OOnline Test Series

Staff Selection Commission - Junior Engineer
No. of Tests : 20
Subject Wise Tests: 16|Mock Tests - 4
Civil|Electrical|Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination
35. Ans: (a)

Sol: Given $\mathrm{D}_{\mathrm{A}}=\mathrm{X} . \mathrm{B}$

$$
\mathrm{D}_{\mathrm{B}}=\overline{\mathrm{A}}
$$

P.S	Input	FF		Inputs	N.S		Output
A	B	X	D_{A}	D_{B}	A	B	Y
0	0	0	0	1	0	1	0
0	0	1	0	1	0	1	0
0	1	0	0	1	0	1	0
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0
1	1	0	0	0	0	0	1
1	1	1	1	0	1	0	1

The value of X at -ve edges of all clock pulses are $1,1,0,1,0,0,0$
Thus the state transitions are

Number of times output is high equals to 1.
36. Ans: (c)

Sol:

37. Ans: (d)

Sol: Saturated logic - RTL, DCTL, IIL, DTL, HTL, TTL
Non-Saturated logic - Schottky TTL, ECL
38. Ans: (c)

Sol:

$\mathrm{t}_{\mathrm{p}} \leq 15 \mathrm{~ns}$ to avoid Race around condition $\left(\mathrm{t}_{\mathrm{p}}<\mathrm{t}_{\mathrm{FF}}<\mathrm{T}\right)$
i.e., $\mathrm{t}_{\mathrm{p}}, \max =15 \mathrm{~ns}$ which is equal to 3 inverters propagation delay
$3 \mathrm{t}_{\mathrm{pi}}=15 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{pi}}=5 \mathrm{~ns}$

39. Ans: (d)

Sol:

Initially when test input is low output is high (assume identical non zero delay)
When test becomes high:-
$\mathrm{x}=$ high, y remains high till the 3 NOT gate combination, make the input logic low. So, Output goes to low. After some delay Y becomes logic low. Then output becomes high.
So, output switches from high to low to high and remains high.
Option (d) is correct.
40. Ans: (d)

Sol: From state diagram x-FF Truth table is

x	$\mathrm{Q}(\mathrm{t}+1)$				
0	$\overline{\mathrm{Q}(\mathrm{t})}$				
1	$\mathrm{Q}(\mathrm{t})$	\Rightarrow	x	$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$
:---	:---:	:---:			
0	0	1			
0	1	0			
1	0	0			
1	1	1			

i.e., $\mathrm{Q}(\mathrm{t}+1)=\overline{\mathrm{x} \oplus \mathrm{Q}(\mathrm{t})}$
41. Ans: (b)

Sol:

42. Ans: (a)

Sol: Delay of a k-bit Carry-Lookahead Adder $\mathrm{T}_{\text {lookahead-adder }}=4\left[\log _{4} \mathrm{k}\right]$

k	$\mathrm{T}_{\text {lookahead-adder }}$
4	4
16	8
32	12
64	12
128	16
256	16

Delay in Carry Look Adder

$$
\begin{aligned}
\mathrm{T}_{\mathrm{CLK}} & =4 \log _{4} \mathrm{~K} \\
\mathrm{~T}_{\mathrm{CLK}} & =4 \log _{4} 128 \\
& =16
\end{aligned}
$$

43. Ans: (c)

Sol: Let us assume two numbers as 1011 and 111, then its multiplication is

1011
$\times 111$
1011
1011
1011
1001101

So, we require two number of 4-bit binary adders.
44. Ans: (b)

Sol:

$F=A \cdot B(\overline{\overline{\mathrm{~A}}+\mathrm{BC}})$
$\mathrm{F}=\mathrm{AB} \overline{\mathrm{C}}$

45. Ans: (a)

Sol: $\quad \mathrm{F}=(\overline{\mathrm{A}} \overline{\mathrm{D}}+\mathrm{B} \overline{\mathrm{D}})(\mathrm{A}+\mathrm{B}+\mathrm{D})$

$$
\begin{aligned}
\mathrm{F} & =\overline{\mathrm{A}} \mathrm{~B} \overline{\mathrm{D}}+\mathrm{AB} \overline{\mathrm{D}}+\mathrm{B} \overline{\mathrm{D}} \\
& =\mathrm{B} \overline{\mathrm{D}}[\overline{\mathrm{~A}}+\mathrm{A}+1] \\
\mathrm{F} & =\mathrm{B} \overline{\mathrm{D}}
\end{aligned}
$$

46. Ans: (a)

Sol: $\mathrm{J}_{\mathrm{A}}=\mathrm{BC}, \mathrm{K}_{\mathrm{A}}=\overline{\mathrm{B}}, \mathrm{J}_{\mathrm{C}}=\mathrm{K}_{\mathrm{C}}=\overline{\mathrm{A}}$ and B Toggles when C changes from 1 to 0

PS			FF	Inputs	NS			
A	B	C	J_{A}	K_{A}	$\mathrm{J}_{\mathrm{C}} \mathrm{K}_{\mathrm{C}}$	A	B	C
1	0	1	0	1	0	0	0	0

47. Ans: (d)

Sol: $\mathrm{V}_{\mathrm{FS}}=5 \mathrm{~V}$
Resolution $=\frac{\mathrm{V}_{\mathrm{FS}}}{2^{\mathrm{n}}-1}=\frac{5 \mathrm{~V}}{2^{10}-1}=0.00488 \mathrm{~V}$

$$
=4.88 \mathrm{mV}
$$

48. Ans: (c)

Sol: $\mathrm{RST} \mathrm{n} \Rightarrow \mathrm{n} \times 8 \Rightarrow(\mathrm{n} \times 8)_{10} \Rightarrow \mathrm{XXXXH}$
RST $4.5 \Rightarrow 4.5 \times 8=(36)_{10} \Rightarrow 0024 \mathrm{H}$
49. Ans: (c)

Sol: Let us take A is loaded is 53 H , so when XRA A is executed EXOR operation is performed,

$$
01010011
$$

(+) $\underline{01010011}$

$$
00000000
$$

$$
\begin{aligned}
\text { XRA A } & \rightarrow \mathrm{A} \oplus \mathrm{~A} \\
& =0
\end{aligned}
$$

This means result is $00 \mathrm{H}, \mathrm{CY}=0$ and $\mathrm{Z}=1$
50. Ans: (b)

Sol: DCTL gates suffer from a difficulty called current-hogging and it can eliminated by RTL gates.
51. Ans: (a)

Sol: To get the physical address, the contents of segment register are multiplied by 16 i.e., shifted by 4 positions to the left by inserting 4 zero bits and then the offset i.e., contents of pointer register are added to the contents of SS.
Physical address $=40000 \mathrm{H}+9 \mathrm{~F} 20 \mathrm{H}$

$$
=49 \mathrm{~F} 20 \mathrm{H}
$$

52. Ans: (a)

Sol: In DRAM the bit is stored as a charge in capacitor, and it is made up of MOS transistors. Each memory cell requires two transistors.
53. Ans: (b)

Sol:

$$
\begin{aligned}
\mathrm{A}=37 \mathrm{H} & =0011 \begin{array}{l}
0111 \\
56 \mathrm{H}
\end{array}=\begin{array}{rl}
& 0101 \quad 0110 \\
\hline 1000 & 1101 \\
+1 & - \text { carry generated from previous executions } \\
& \begin{array}{rr}
1000 & 1110
\end{array}=8 \mathrm{EH}
\end{array}
\end{aligned}
$$

HEARTY CONGRATULATIONS TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33 (EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

DGITAL CLASSES for
 ESE 2020/2021
 General Studies \&
 Engineering Aptitude
 BATE 2020/2021
 Computer Science \&
 Information Technology

54. Ans: (c)

Sol: \rightarrow flip-flop is used to store 1-bit of information.
\rightarrow Race-around condition occurs in J-K flip-flop when both the inputs are 1
\rightarrow A transparent latch consists of D type flip-flop.
\rightarrow Master-slave configuration is used to prevent race around condition.
55. Ans: (c)

Sol: LXI H,4000H -Immediate Addressing mode RNZ - Implicit Addressing mode
XRA B - Register Addressing mode
LDA 1560H - Direct Addressing mode
56. Ans: (d)

Sol: Conversion time of Successive Approximation ADC is $n T$
$\mathrm{T}_{\mathrm{A}}=\mathrm{nT}_{\mathrm{clk}}=5 \times \frac{1}{10 \mathrm{M}}=0.5 \mu \mathrm{~S}$
$\mathrm{f}_{\mathrm{s}} \rightarrow$ Sampling frequency
$\mathrm{f}_{\mathrm{m}} \rightarrow$ Input signal frequency
$\mathrm{f}_{\mathrm{s}(\max)}=\frac{1}{0.5 \mu \mathrm{~s}}=2 \mathrm{MHz}$
$\mathrm{f}_{\mathrm{s}(\max)}=2 \mathrm{f}_{\mathrm{m}(\max)}$
$\mathrm{f}_{\mathrm{m}(\max)}=\frac{\mathrm{f}_{\mathrm{s}(\max)}}{2}=\frac{2 \mathrm{MHz}}{2}=1 \mathrm{MHz}$
57. Ans: (a)

Sol: Step size $\Delta=\frac{\mathrm{V}_{\text {max }}-\mathrm{V}_{\text {min }}}{2^{\mathrm{n}}}=\frac{10 \mathrm{~V}-0 \mathrm{~V}}{2^{10}}$
maximum possible error
$=\frac{\Delta}{2}=\frac{10 \mathrm{~V}}{2^{11}}=0.00488 \mathrm{~V}=4.88 \mathrm{mV}$
58. Ans: (c)

Sol: $\mathrm{V}_{0}=-\mathrm{V}_{\mathrm{R}}\left(\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}}\right)\left(\mathrm{d}_{1} 2^{-1}+\mathrm{d}_{2} 2^{-2}+\ldots . \mathrm{d}_{\mathrm{n}} 2^{-\mathrm{n}}\right)$

$$
\mathrm{V}_{0}=-8 \mathrm{~V}\left(\frac{10 \mathrm{k}}{10 \mathrm{k}}\right)\left(\frac{1}{2}+0+\frac{1}{2^{3}}\right)=-5 \mathrm{~V}
$$

59. Ans: (c)

Sol:

A	B	P	Q
0	0	Invalid	
0	1	1	0
1	0	0	1
1	1	No Change	

When $\mathrm{A}=1, \mathrm{~B}=0$

$$
\Rightarrow P=0, Q=1
$$

60. Ans: (c)

Sol: EPI is a PI which contains at least one ' 1 ' which can't be covered by any other PI is called EPI.

The K map for $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$ is

So, 3 EPI's
61. Ans: (d)

Sol: Base - 6 number of system The numbers present are

$$
\begin{aligned}
& 0 \rightarrow 000 \\
& 1 \rightarrow 001 \\
& 2 \rightarrow 010 \\
& 3 \rightarrow 101 \\
& 4 \rightarrow 110 \\
& 5 \rightarrow 111
\end{aligned}
$$

As the code is given to be self complementary, code of $0 \& 5$ are complementary to each other.
Similarly the code of $1 \& 4$ are complementary to each other.
\therefore Code of $4=110$

62. Ans: (b)

Sol: Racing means output is toggling more than once (i.e. minimum twice) in a ON time of clock.
Race around condition occurs if, pulse width ($\Delta \mathrm{t})$ > propagation delay of Flip-Flop (t_{p})

63. Ans: (b)

Sol: MOV AL, 72 H : Gets $1^{\text {st }}$ number 72H in AL
ADD AL, $78 \mathrm{H} \quad: \quad$ Add $2^{\text {nd }}$ number 78 H with 72 H in AL
ADC AH, $00 \mathrm{H} \quad: \quad$ Put the carry in AH
SAR AX, 1 : Divide sum by 2 (shifting operation)
MOV [3000H], AL : Copy AL content in location 3000H
HLT : Stop
64. Ans: (b)

Sol: In microcontroller, Port 1 does not have any secondary function.
65. Ans: (b)

Sol: The instruction code 'ACALL' contains ' 11 ' bit address and required ' 2 K ' program memory space
66. Ans: (d)

Sol: Multimedia system is one of the example for 'firmware real time' embedded system.
67. Ans: (b)

Sol: (A) CAN is used in Automobiles with centrally controlled switch
(B) I2C is used for communication between multiple IC's
(C) USB is used in communication between CPU and devices like mouse
68. Ans: (d)

Sol: $f(A, B, C)=\Sigma m(0,2,6,7)$ in SOP form
$=\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{B} \overline{\mathrm{C}}+\mathrm{AB} \overline{\mathrm{C}}+\mathrm{ABC}$
Its complement $=\overline{\mathrm{f}}(\mathrm{A}, \mathrm{B}, \mathrm{C})$
$=\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{C}+\overline{\mathrm{A}} \mathrm{BC}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}$

69. Ans: (d)

Sol: Truth table of NAND latch

A	$\overline{\mathrm{Q}}$	D
0	0	Invalid
0	1	1
1	0	0
1	1	No Change

70. Ans: (a)

Sol: In a CE amplifier if the bypass capacitor is open, the unbypassed emitter resistor provides negative feedback and will reduce the voltage gain and increase the input resistance.
71. Ans: (a)

Sol: Slew Rate $(S R)=\left.\frac{\mathrm{dV}_{0}}{\mathrm{dt}}\right|_{\max }$
In ideal Op-Amp Slew Rate is Very high.

72. Ans: (b)

Sol: Master slave JK Flip Flop suffers from ones catching problem. So, statement I is true.
Negative Edge Triggered Flip Flop ignores the pulses that occur when clock pulse is high. So, statement II is true. But Statement II is not correct explanation for statement I.
73. Ans: (b)

Sol: In static RAM, flip-flop holds each bit of memory, it takes 4-6 transistors with wiring, but never has to be refreshed. This makes SRAM faster than DRAM's. So statement I is true
Static RAM's are built using either MOS Technology or Bipolar Technology. So statement II is true
But statement II is not correct explanation for statement I.
74. Ans: (a)

Sol: Schottky barrier diodes are used as clamp diode in transistor circuit to speedup the operation when it acts as switch.
75. Ans: (a)

Sol: In ECL, saturation not occurs, hence propagation delay is reduced.
So, Both Statement I and Statement II are individually true and Statement II is the correct explanation of Statement I.

