ESE- 2020 (Prelims) - Offline Test Series
 Test - 9 ELECTRICAL ENGINEERING
 SUBJECT: Electrical Materials + Electric Circuits \& Fields SOLUTIONS

01. Ans: (a)

Sol: Miller index of a plane in the lattice can be determined by taking the reciprocal distances of the plane w.r.t $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes.
02. Ans: (d)

Sol: Pure silica \rightarrow sodium silicate \rightarrow doped silicon \rightarrow nickel
$10^{4} \rightarrow 2 \rightarrow 10^{-4} \rightarrow 10^{-7}$
(Resistivity value in decreasing order)

03. Ans: (d)

Sol: For BCC-Iron material, $4 \mathrm{R}=\sqrt{3} \mathrm{a}$
Where, $a=$ lattice parameter
$\mathrm{R}=$ radius of atom
$\Rightarrow \mathrm{a}=\frac{4 \mathrm{R}}{\sqrt{3}}=\frac{4 \times 0.173}{\sqrt{3}} \approx 0.4 \mathrm{~nm}$
04. Ans: (b)

Sol: $\mu_{r}=\chi+1$ for paramagnetic materials susceptibility is positive but very small
hence relative permeability slightly greater than unity.
05. Ans: (b)

Sol: Metals have low ionization energies, due to loosely bounded valence electrons. The electrostatic attraction between the free electrons and the positive metal ions keeps the metal stable.
06. Ans: (c)

Sol: Permalloy is a soft magnetic material. If the temperature of material is more than curie's temperature, then the para magnetic material converts into dia magnetic material.
07. Ans: (d)

Sol: The hall coefficient, $R=\frac{1}{n . e}$ where ' n ' is the carrier concentration. Hall coefficient \& charge carrier concentration are inversely rated.
$R \propto \frac{1}{n}$
$\mathrm{n}=$ Charge carrier concentration
$\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{B}}}=\frac{4 \times 10^{21}}{1 \times 10^{21}}=\frac{4}{1}$
08. Ans: (a)

Sol: Atomic packing factor for $\mathrm{SC}=52 \%$,
$\mathrm{BCC}=68 \%, \mathrm{FCC}=74 \%$ and $\mathrm{DC}=34 \%$.
09. Ans: (c)

Sol: 1 mole of $\mathrm{cu}=6.023 \times 10^{23}$ atoms and cu weights 63.5 gm

$$
\therefore \text { Mass of } 1 \text { cu atom }=\frac{6.35}{6.023 \times 10^{23}} \text { gram }
$$

FCC contains 4 atoms per unit cell
For FCC, $a=2 \sqrt{2} r$

$$
\begin{aligned}
\therefore \rho & =\frac{4 \times \frac{63.5}{6.023 \times 10^{23}} \times 10^{-3} \mathrm{~kg}}{\left(2 \sqrt{2} \times 1.28 \times 10^{-10}\right)^{3} \mathrm{~m}^{3}} \\
& =8891 \mathrm{~kg} / \mathrm{m}^{3} \\
& \simeq 8.9 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

10. Ans: (d)

Sol:

Model	Particle properties	Examples
1. Maxwell- Boltzmann	Distinguishable unlimited particles per quantum state	Ideal gas, Molecules
2.Bose	Indistinguishable	Photon,

Einstein	unlimited particles per quantum state	phonon		
3.Fermi	Indistinguishable, identical one Darticle	Electron, protons		
Per quantum state				
(Pauli exclusion				
principle)			\quad	
:---				

11. Ans: (d)

Sol: The bullet proof jacket is made up of aramid fiber reinforced polymer (AFRB) with reinforcement phase is Aramid and matrix phase is polymer.

12. Ans: (c)

Sol: If the temperature of metal increases, the lattice vibration in the crystal structure increases. Hence collision frequency increases and relaxation time decreases. Due to that resistivity of metal increases.

13. Ans: (a)

Sol: Tuning frequency $\mathrm{f} \propto \sqrt{\frac{Y}{\rho}}$
Where, $\mathrm{Y}=$ Young's modulus of the crystal $\rho=$ density of crystal $\rho \propto M$

$$
f \propto \frac{1}{\sqrt{M}}
$$

Hence, upon solving $\mathrm{f}=8.165 \mathrm{kHz}$

TEST YOUR PREP IN A REAL TEST ENVIRONMENT

 Pre

 Pre GA GA TE TE 2020

2020}

Date of Exam : 18 ${ }^{\text {th }}$ January 2020 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019

Highlights:

- Get real-time experience of GATE-20 test pattern and environment.
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for GATE-20 toppers.

SSC-JE (Paper-I)

 =Online Test SeriesStaff Selection Commission - Junior Engineer

No. of Tests : 20

Subject Wise Tests: 16| Mock Tests - 4
Civil|Electrical|Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination

14. Ans: (d)

Sol: The overall mobility of a semiconductor, the present both impurity scattering (μ_{I}) and phonon scattering $\left(\mu_{p}\right)$ is $\mu_{0}=\frac{\mu_{I} \times \mu_{p}}{\mu_{I}+\mu_{p}}$

15. Ans: (b)

Sol: The coupling coefficient $(\mathrm{K})=0.42$
Output mechanical energy $=9.06 \times 10^{-3} \mathrm{~J}$

$$
=9.06 \mathrm{~mJ}
$$

\therefore The applied electric field

$$
\mathrm{E}=(1-0.42) \times 9.06=5.25 \mathrm{~mJ}
$$

16. Ans: (d)
17. Ans: (b)

Sol:

Given the atom A at a distance
$\alpha=30 \mathrm{~A}^{\circ}$ from an α-particle
The α-particle is helium molecules.
It carries 2 units of positive charge q

$$
=2 \times 1.6 \times 10^{-19} \mathrm{C}
$$

The electric field intensity at the site of the atom $\mathrm{A}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{q}}{\mathrm{d}^{2}}$

The dipole moment induced in the atom $=$ $\alpha . \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{q}}{\mathrm{d}^{2}}$

$$
=10^{-40} \times \frac{9 \times 10^{9} \times 3.2 \times 10^{-19}}{900 \times 10^{-20}}
$$

Dipole moment induced

$$
=3.2 \times 10^{-32} \text { coulomb }-\mathrm{m}
$$

18. Ans: (b)
19. Ans: (a)

Sol: Stripped metal nanowires of alternative metal like Au \& Ag can be used as barcode. Au as ' 0 ' and Ag as ' 1 ', so 0001010 , 01011101, 11010001 there are all different barcodes.
20. Ans: (c)
21. Ans: (d)

Sol: Aluminium metal matrix finds application in aerospace, thermal management areas, industrial products, and automotive applications such as engine piston, brake etc.
22. Ans: (d)

Sol: Superconductivity can not be exceeded by the application of electric field.

23. Ans: (a)

Sol: The critical current for superconductor is given as $i_{c}=2 \pi r H_{c}$ and $j_{c}=\frac{i_{c}}{\pi r^{2}}=\frac{2 H_{c}}{r}$

So, critical current density depends on

1. Critical magnetic field
2. Temperature
3. Critical temperature also depends on penetration depth. With increasing in temperature, penetration depth increases.

24. Ans: (a)

Sol: The ceramics are high temperature super conductors. YBCO (Yithum Barium Copper Oxide) is a high temperature ceramic super conductor.
25. Ans: (b)

Sol: Given magnetic moment per atom $=2.22 \mu_{\mathrm{B}}$
Magnetic moment per 28 grams $=\mathrm{N} 2.22 \mu_{\mathrm{B}}$
Where $\mathrm{N}=$ no.of atoms of Fe in 28 grams
56 grams of Fe contains 6.023×10^{23} atoms
28 grams of Fe contains $\mathrm{N}=\frac{6.023 \times 10^{23}}{2}=$ 3×10^{23}

Magnetic moment per 28grams

$$
\begin{aligned}
& =3 \times 10^{23} \times 2.22 \times \mu_{\mathrm{B}} \\
& =3 \times 10^{23} \times 2.22 \times 9.27 \times 10^{-24} \\
& =6.173
\end{aligned}
$$

26. Ans: (a)

Sol: Properties of Ferrites (Ferri magnetic materials)

1. Ferrite's possess permanent dipoles with anti parallel and unequal magnitudes they generate large magnetization.
2. Ferrites are ceramic in nature and they are high resistivity materials.

Eg: $\mathrm{Mn}, \mathrm{Fe}, \mathrm{O}_{4}, \quad \mathrm{Zn} \mathrm{Fe} 2 \mathrm{O}_{4}$
3. Ferrite's have low eddy current losses due to high resistivity and hence there are used in high frequency transformers.

27. Ans: (d)

Sol: The hardness of a magnetic material is given by the value of the applied coercive field or even on the product of B and $H_{\text {max }}$ called as energy product which gives area of the largest rectangle in the second quadrant of the hysteresis loop.

28. Ans: (c)

Sol: Given data:

$$
\chi_{\mathrm{m}}=6.8 \times 10^{-5}
$$

Relative permeability $\mu_{\mathrm{r}}=1+\chi_{\mathrm{m}}$

$$
\begin{aligned}
& \mu_{r}=1+6.8 \times 10^{-5} \\
& \mu_{\mathrm{r}}=1.000068
\end{aligned}
$$

$$
\text { Permeability } \begin{aligned}
\mu & =\mu_{\mathrm{r}} \mu_{0}=(1.000068)\left(4 \pi \times 10^{-7}\right) \\
& =1.256 \times 10^{-6} \\
\mu & =12.56 \times 10^{-7}
\end{aligned}
$$

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

2. FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

5. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm
\checkmark All tests will be conducted in Question Paper Booklet format.
\checkmark Test Series will be conducted at all our centres.

(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

ISRO -- -
 ONLINE TEST SERIES

No. of Tests: 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO)
Recruitment of Scientist/Engineer 'SC'
ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
『 starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.
(C) 040-48539866 / 040-40136222 © testseries@aceenggacademy.com
29. Ans: (c)
30. Ans: (d)

Sol: Let $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}$
So, $\mathrm{R}_{1}=2 \mathrm{R} \quad\left(\because \mathrm{R}_{1}=2 \mathrm{R}_{3}\right)$

Using voltage division method,
$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{s}} \times \frac{\mathrm{R} / 2}{\frac{\mathrm{R}}{2}+2 \mathrm{R}}$
$\Rightarrow \frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{S}}}=\frac{\mathrm{R} / 2}{\frac{\mathrm{R}}{2}+2 \mathrm{R}}$
$\Rightarrow \frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{S}}}=\frac{\mathrm{R}}{\mathrm{R}+4 \mathrm{R}}$
$\Rightarrow \frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{S}}}=\frac{1}{5}=0.2$

31. Ans: (d)

Sol: We know, $\mathrm{R}_{\mathrm{Y}}=\frac{\mathrm{R}_{\Delta}}{3}$ (for three arms have equal resistance)
$\Rightarrow \mathrm{R}_{\Delta}=3 \mathrm{R}_{\mathrm{Y}}$
The given circuit is simplified as

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{eq} \longrightarrow} \\
& \therefore \mathrm{R}_{\mathrm{eq}}=\frac{3}{2} \| 3 \\
& \quad=\frac{\frac{3}{2} \times 3}{\frac{3}{2}+3} \\
& \mathrm{R}_{\mathrm{eq}}=\frac{9}{2} \times \frac{2}{9}=1 \Omega
\end{aligned}
$$

32. Ans: (d)

Sol: The maximum average power transfer to the
load, $P_{\text {max }}=\frac{\left|V_{T h}^{2}\right|}{4 R_{T h}}$
$P_{\max }=\frac{(20)^{2}}{4 \times 10}=10 \mathrm{~W}$
33. Ans: (d)

Sol: $\mathrm{V}(\mathrm{t})=120 \cos \left(100 \pi \mathrm{t}-20^{\circ}\right)$
$\Rightarrow \mathrm{V}=120 \angle-20^{\circ}$
$\mathrm{i}(\mathrm{t})=4 \cos \left(100 \pi \mathrm{t}+10^{\circ}\right) \Rightarrow \mathrm{I}=4 \angle 10^{\circ}$
$\therefore \mathrm{Z}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{120 \angle-20^{\circ}}{4 \angle 10^{\circ}}=\frac{120}{4} \angle-30^{\circ}$
$\mathrm{Z}=30 \angle-30^{\circ}$
$Z=30 \cos \left(30^{\circ}\right)-j 30 \sin \left(30^{\circ}\right)$

$$
Z=15 \sqrt{3}-j 15
$$

Resistor and capacitor connected in series
$\therefore \mathrm{R}=15 \sqrt{3} \Omega$
$\mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}}=15 \Omega$
$\Rightarrow \mathrm{C}=\frac{1}{15 \times \omega}$
$\mathrm{C}=\frac{1}{15 \times 100 \pi}=\frac{1}{1500 \pi} \mathrm{~F}$
34. Ans: (d)

Sol:

By KVL, $32-2 \mathrm{I}_{1}-30 \mathrm{I}_{1}=0$
$\Rightarrow 32=32 \mathrm{I}_{1} \Rightarrow \mathrm{I}_{1}=1 \mathrm{~A}$
Power dissipated in 10Ω resistor

$$
\begin{aligned}
& =\left(3 \mathrm{I}_{1}\right)^{2} \times 10 \\
& =9 \times 10 \\
& =90 \mathrm{watts}
\end{aligned}
$$

35. Ans: (d)

Sol: We know that for parallel resonance circuit impedance is maximum at resonance frequency.
\therefore Here at 2.5 kHz the impedance is maximum.

So, $\mathrm{f}_{0}=2.5 \times 10^{3} \mathrm{~Hz}$
$\therefore \omega_{0}=2 \pi \mathrm{f}_{0}=2 \pi \times 2.5 \times 10^{3}=5000 \pi$ $\mathrm{rad} / \mathrm{sec}$
36. Ans: (a)

Sol: For ideal transform, $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{1}{\mathrm{n}}$ \&

$$
\begin{align*}
& \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{-\mathrm{N}_{2}}{\mathrm{~N}_{1}}=-\mathrm{n} \\
& \Rightarrow \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{1}{\mathrm{n}} \quad \Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=-\mathrm{n} \\
& \Rightarrow \mathrm{~V}_{1}=\frac{1}{\mathrm{n}} \mathrm{~V}_{2}---(1) \quad \Rightarrow \mathrm{I}_{2}=-\frac{1}{\mathrm{n}} \mathrm{I}_{1} \tag{2}
\end{align*}
$$

Now compare equation (1) and (2) with the general equation of h-parameters
i.e., $V_{1}=h_{11} I_{1}+h_{12} V_{2}$
$\mathrm{I}_{2}=\mathrm{h}_{21} \mathrm{I}_{1}+\mathrm{h}_{22} \mathrm{~V}_{2}$
$\therefore \mathrm{h}_{11}=0, \mathrm{~h}_{12}=\frac{1}{\mathrm{n}}$
$\mathrm{h}_{21}=-\frac{1}{\mathrm{n}}, \mathrm{h}_{22}=0$
$[h]=\left[\begin{array}{cc}0 & 1 / n \\ -1 / n & 0\end{array}\right]$

37. Ans: (d)

Sol: $\mathrm{R}_{\mathrm{CB}}=20+(40 \| 40)+20$

$$
=20+20+20
$$

$R_{C B}=60 \Omega$

38. Ans: (d)

Sol: The general form of g-parameters are
$\mathrm{I}_{1}=\mathrm{g}_{11} \mathrm{~V}_{1}+\mathrm{g}_{12} \mathrm{I}_{2}$
$\mathrm{V}_{2}=\mathrm{g}_{21} \mathrm{~V}_{1}+\mathrm{g}_{22} \mathrm{I}_{2}$

Apply KCL at node ' 1 ',
$I_{1}=\frac{S}{2} V_{1}+5 I_{2}$
Apply KVL to loop '2',
$\mathrm{V}_{2}=10 \mathrm{~V}_{1}+2 \mathrm{sI}_{2}$
By comparing equation (1) and equation (2)
With general equation
We get, $[\mathrm{g}]=\left[\begin{array}{cc}\frac{\mathrm{s}}{2} & 5 \\ 10 & 2 \mathrm{~s}\end{array}\right]$

39. Ans: (a)

40. Ans: (a)

Sol:

Using voltage division method,

$$
\begin{aligned}
\mathrm{V}_{0} & =\frac{5 \mathrm{i}_{0} \times 8}{8+2} \\
\mathrm{~V}_{0} & =\frac{40 \mathrm{i}_{0}}{10} \\
\Rightarrow \mathrm{i}_{0} & =\frac{\mathrm{V}_{0}}{4}
\end{aligned}
$$

By KCL,

$$
\begin{aligned}
& 12=\mathrm{i}_{0}+\frac{\mathrm{i}_{0}}{6}+\frac{\mathrm{v}_{0}}{8} \\
& 12=\frac{\mathrm{V}_{0}}{4}+\frac{\mathrm{V}_{0}}{24}+\frac{\mathrm{V}_{0}}{8}\left(\because \mathrm{i}_{0}=\frac{\mathrm{V}_{0}}{4}\right) \\
& 12=\left(\frac{6+1+3}{24}\right) \mathrm{V}_{0}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{0} & =\frac{12 \times 24}{10} \\
\mathrm{~V}_{0} & =28.8 \mathrm{~V}
\end{aligned}
$$

41. Ans: (c)

Sol: Here the product of opposite arms are same, so using bridge balance condition the circuit can be represented as

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{eq}}=\frac{20}{2}=10 \Omega \\
& \mathrm{G}_{\mathrm{eq}}=\frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{1}{10}=0.1 \mathrm{~J}
\end{aligned}
$$

42. Ans: (b)

Sol: Using voltage division method,

$$
\begin{align*}
& \mathrm{V}_{0}=\frac{\mathrm{V}_{\mathrm{s}}\left(\mathrm{R}_{2} / / 5 \mathrm{k}\right)}{\mathrm{R}_{1}+\left(\mathrm{R}_{2} / / 5 \mathrm{k}\right)} \\
& \Rightarrow \frac{\mathrm{R}_{2} / / 5 \mathrm{k}}{\mathrm{R}_{1}+\left(\mathrm{R}_{2} / / 5 \mathrm{k}\right)}=\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{s}}} \\
& \Rightarrow \frac{\mathrm{R}_{2} / / 5 \mathrm{k}}{\mathrm{R}_{1}+\left(\mathrm{R}_{2} / / 5 \mathrm{k}\right)}=0.8 \tag{1}
\end{align*}
$$

Here, $\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\left(\mathrm{R}_{2} / / 5 \mathrm{~K}\right)$
$\Rightarrow \mathrm{R}_{1}+\left(\mathrm{R}_{2} / / 5 \mathrm{~K}\right)=50 \mathrm{~K}$
From equation (1) and equation (2)

$$
\begin{aligned}
& \frac{\mathrm{R}_{2} / / 5 \mathrm{~K}}{50 \mathrm{~K}}=0.8 \\
& \mathrm{R}_{2} / / 5 \mathrm{~K}=40 \mathrm{~K}
\end{aligned}
$$

$\frac{5 \mathrm{R}_{2}}{5+\mathrm{R}_{2}}=40$
$5 \mathrm{R}_{2}=40 \times 5+40 \mathrm{R}_{2}$
$40 R_{2}-5 R_{2}=-40 \times 5$
$R_{2}=\frac{-40 \times 5}{35}=\frac{-40}{7}$
$\mathrm{R}_{2}=\frac{-40}{7} \mathrm{k} \Omega$
43. Ans: (b)

Sol: We know $\mathrm{R}_{\mathrm{Y}}=\frac{\mathrm{R}_{\Delta}}{3}$
$\mathrm{R}_{\mathrm{Y}}=\frac{\mathrm{R} / 2}{3}=\frac{\mathrm{R}}{6} \Omega$
44. Ans: (c)
45. Ans: (a)
46. Ans: (c)

Sol: In a series RLC circuit

At resonance condition $I_{m}=\frac{V_{m}}{R}$
At lower cut off frequency,

$$
\begin{gathered}
\mathrm{I}=\frac{\frac{I_{m}}{\sqrt{2}}}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}=\frac{V_{m}}{\sqrt{2} R}
\end{gathered}
$$

$\Rightarrow \sqrt{\mathrm{R}^{2}+\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)^{2}}=\sqrt{2} \mathrm{R}$
$\Rightarrow\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)= \pm \mathrm{R}$
At lower cut off frequency
$\omega L-\frac{1}{\omega c}=-R$
Power factor angle $\phi=\tan ^{-1}\left(\frac{\omega \mathrm{~L}-\frac{1}{\omega \mathrm{C}}}{\mathrm{R}}\right)$

$$
=-45^{\circ}
$$

\therefore Power factor $=\cos \phi=0.707$ leading

$$
(\because \text { capacitive nature) }
$$

47. Ans: (c)

Sol: Here, voltage across capacitor, voltage across resistor
$\Rightarrow \mathrm{V}_{\mathrm{c}}(\mathrm{t})=\mathrm{V}_{\mathrm{R}}(\mathrm{t})=\mathrm{V}_{0} \mathrm{e}^{-\mathrm{t} / \tau}$ Volts
Where $\mathrm{V}_{0}=5$ Volts
$\tau=$ time constant
$i_{R}(t)=\frac{V_{R}(t)}{R}=\frac{V_{0}}{R} e^{-t / \tau}$ amperes
The energy absorbed by the resistor up to time t is

$$
\begin{aligned}
W_{R}(t)= & \int_{0}^{t} V_{R}(t) i_{R}(t) d t \\
& =\int_{0}^{t} \frac{V_{0}^{2}}{R} e^{-\frac{2 t}{\tau}} d t \\
& =-\left.\frac{\tau V_{0}^{2}}{2 R} e^{-\frac{2 t}{\tau}}\right|_{0} ^{t}
\end{aligned}
$$

$\Rightarrow \mathrm{W}_{\mathrm{R}}(\mathrm{t})=\frac{1}{2} \mathrm{CV}_{0}^{2}\left(1-\mathrm{e}^{-\frac{2 \mathrm{t}}{\tau}}\right)$
For $\mathrm{t}=2 \tau$
$\mathrm{W}_{\mathrm{R}}(2 \tau)=\frac{1}{2} \times 25 \times 4\left(1-\mathrm{e}^{-4}\right)$
$\Rightarrow \mathrm{W}_{\mathrm{R}}(2 \tau)=50\left(1-\mathrm{e}^{-4}\right)$ joules
48. Ans: (d)

Sol: Circuit at $\mathbf{t}=0^{-}$

Here, $\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=\mathrm{i}_{\mathrm{L}}\left(\mathrm{O}^{+}\right)=\frac{10 \times 10}{10+5}$

$$
\Rightarrow \mathrm{i}_{\mathrm{L}}\left(\mathrm{O}^{+}\right)=\frac{20}{3}
$$

\therefore Initial energy stored in the inductor is,
$\mathrm{W}_{\mathrm{L}}(0)=\frac{1}{2} \mathrm{Li}^{2}(0)$
$\mathrm{W}_{\mathrm{L}}(0)=\frac{1}{2} \times 2 \times\left(\frac{20}{3}\right)^{2}$
$\Rightarrow \mathrm{W}_{\mathrm{L}}(0)=\frac{400}{9}$ Joules
49. Ans: (b)

Sol: Circuit at $\mathbf{t}=\mathbf{0}^{-}$

By nodal analysis:

$$
\begin{aligned}
& \frac{\mathrm{V}-10}{2}+\frac{\mathrm{V}}{3}+\frac{\mathrm{V}}{3}=0 \\
& \Rightarrow \mathrm{~V}\left(\frac{1}{2}+\frac{2}{3}\right)=5 \\
& \Rightarrow \frac{7 \mathrm{~V}}{6}=5 \\
& \mathrm{~V}=\frac{30}{7} \\
& \therefore \mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=\frac{30 / 7}{3}=\frac{10}{7} \mathrm{~A}
\end{aligned}
$$

Circuit at $\mathbf{t}=\mathbf{0}^{+}$:

By KVL, $-\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)-\frac{30}{7}-\frac{30}{7}=0$
$\Rightarrow \mathrm{V}_{\mathrm{L}}\left(\mathrm{O}^{+}\right)=-\frac{60}{7}$ volts
50. Ans: (a)

Sol: Voltage across the capacitor at resonance

$$
\begin{aligned}
\mathrm{V}_{\mathrm{c}} & =-\mathrm{jQ} \mathrm{~V}_{\mathrm{m}} \\
\Rightarrow \mathrm{~V}_{\mathrm{c}} & =-\mathrm{j} 25 \times 20 \\
= & \mathrm{j} 500 \text { volts } .
\end{aligned}
$$

51. Ans: (a)

Sol: Complex power, $\mathrm{S}=\frac{1}{2} \mathrm{VI}^{*}$

$$
\begin{aligned}
& =\frac{1}{2} \times 20 \angle 30^{\circ} \times 50 \angle-60^{\circ} \\
& =\frac{20 \times 50}{2} \angle 30^{\circ}-60^{\circ} \\
& =500 \angle-30^{\circ}
\end{aligned}
$$

Average real power, $\mathrm{P}=500 \cos 30^{\circ}$

$$
=250 \sqrt{3} \text { watts }
$$

52. Ans: (b)

Sol: $v(t)=225 \cos \left(5 t+30^{\circ}\right) V$

$$
\begin{aligned}
\mathrm{i}(\mathrm{t}) & =2 \cos \left(5 \mathrm{t}+60^{\circ}-90^{\circ}\right) \mathrm{A} \\
& =2 \cos \left(5 \mathrm{t}-30^{\circ}\right) \mathrm{A} \\
\therefore & \mathrm{~V}=225 \angle 30^{\circ} \\
\mathrm{I} & =2 \angle-30^{\circ}
\end{aligned}
$$

\therefore Complex power, $\mathrm{S}=\frac{1}{2} \mathrm{VI}^{*}$

$$
=\frac{1}{2} \times 225 \angle 30^{\circ} \times 2 \angle 30^{\circ}
$$

Average real power, $\mathrm{P}=\frac{225 \times 2}{2} \cos 60^{\circ}$

$$
\begin{aligned}
& =225 \cos 60^{\circ} \\
& =225 \times \frac{1}{2} \\
& =112.5 \mathrm{watts}
\end{aligned}
$$

53. Ans: (b)

Sol: For two point charge, energy stored is given by

$$
\begin{aligned}
W & =\frac{1}{2} Q_{1} V_{1}+\frac{1}{2} Q_{2} V_{2} \\
& =\frac{1}{2} \times \mathrm{Q}_{1} \times \frac{\mathrm{Q}_{2}}{4 \pi \varepsilon_{0} \mathrm{r}}+\frac{1}{2} \times \mathrm{Q}_{2} \times \frac{\mathrm{Q}_{1}}{4 \pi \varepsilon_{0} \mathrm{r}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{4 \pi \varepsilon_{0} \mathrm{r}} \\
& =\frac{3 \times 10^{-9} \times-3 \times 10^{-9}}{4 \pi \times \frac{10^{-9}}{36 \pi} \times 0.2} \\
& =-81 \times \frac{10^{-9}}{0.2}=-405 \mathrm{~nJ}
\end{aligned}
$$

54. Ans: (d)

Sol: Given: $\ell=100 \mathrm{~cm}$

$$
\begin{aligned}
& A=80 \mathrm{~cm}^{2} \\
& \mathrm{~N}=250 \\
& \mathrm{I}=10 \mathrm{Amp}
\end{aligned}
$$

The energy stored in a magnetic field is

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{M}}=\frac{1}{2} \mathrm{LI}^{2} \\
& \mathrm{~L}=\frac{\mu_{0} \mathrm{~N}^{2} \mathrm{~A}}{\ell}
\end{aligned}
$$

$$
=\frac{4 \pi \times 10^{-7} \times(250)^{2} \times\left(80 \times 10^{-4}\right)}{100 \times 10^{-2}}
$$

$$
=\frac{4 \pi \times 10^{-7} \times(25 \times 10)^{2} \times\left(8 \times 10 \times 10^{-4}\right)}{1}
$$

$$
=4 \times 25 \times 8 \times 25 \times \pi \times 10^{-7} \times 10^{-3} \times 10^{2}
$$

$$
=2 \pi \times 10^{2} \times 10^{2} \times 10^{-1} \times 10^{-7}
$$

$$
\mathrm{L}=2 \pi \times 10^{-4}
$$

$$
\begin{aligned}
\mathrm{W}_{\mathrm{m}} & =\frac{1}{2}(2 \pi) \times 10^{-4} \times(100) \\
= & \pi \times 10^{-2} \\
= & 31.4 \times 10^{-3}
\end{aligned}
$$

$$
\therefore \mathrm{W}_{\mathrm{m}}=31.40 \mathrm{~mJ}
$$

HEARTY CONGRATULATIONS TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33 (EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

DGITAL CLASSES for
 ESE 2020/2021
 General Studies \&
 Engineering Aptitude
 BATE 2020/2021
 Computer Science \&
 Information Technology

55. Ans: (c)

Sol: For any vector field, $\overrightarrow{\mathrm{P}}$ divergence of curl of vector is always zero.
$\therefore \nabla . \nabla \times \overrightarrow{\mathrm{P}}=0$
56. Ans: (d)

Sol: $\mathrm{W}=-\mathrm{Q} \int_{(1,3,5)}^{(2,0,3)} \overrightarrow{\mathrm{E}} \cdot \mathrm{d} \overrightarrow{\mathrm{L}}$
$\vec{E} \cdot d \vec{L}=\left(x \hat{a}_{y}\right) \cdot\left(d x \hat{a}_{x}+d y \hat{a}_{y}+d z \hat{a}_{z}\right)=x d y$
$\therefore \mathrm{W}=-4 \int_{3}^{0} \mathrm{xdy}$
Point of integration is $(1,3,5)$ to $(1,3,3)$ to $(1,0,3)$ to $(2,0,3)$. Between second and third point, x and z coordinates are constant where as y-coordinate varies from $y=3$ to $y=0$.Hence substitute $x=1$ in equation (1) ,we get

$$
\mathrm{W}=-4 \int_{3}^{0} 1 \times \mathrm{dy}=-4[\mathrm{y}]_{3}^{0}=-4[0-3]=12 \mathrm{~J}
$$

57. Ans: (a)

Sol: $\overline{\mathrm{p}}=\mathrm{Q} \overline{\mathrm{d}}$, where $\overline{\mathrm{d}}$ is a vector directed from negative charge towards positive charge. hence $\quad \bar{d}=\left(0.001 \hat{a}_{z}\right)-\left(-0.001 \hat{\mathrm{a}}_{\mathrm{z}}\right)$

$$
=0.002 \hat{\mathrm{a}}_{\mathrm{z}}
$$

$$
\therefore \overline{\mathrm{p}}=3 \times 10^{-6}(0.002) \hat{\mathrm{a}}_{\mathrm{z}}
$$

$$
=6 \hat{a}_{\mathrm{z}} \mathrm{nC}-\mathrm{m}
$$

58. Ans: (c)

Sol: $\rightarrow \nabla^{2} \overrightarrow{\mathrm{~A}}=-\mu \overrightarrow{\mathrm{J}}$ s the Poisson's equation in a static magnetic field, where the region is having non-zero current $(\vec{J} \neq 0)$ distribution.
$\rightarrow \nabla^{2} \mathrm{~V}=0$ is the Laplace's equation, if the region is charge free $\left(\rho_{v}=0\right)$.
$\rightarrow \overrightarrow{\mathrm{H}}=-\nabla \mathrm{V}_{\mathrm{m}}$ is defined if and only if $\overrightarrow{\mathrm{J}}=0$ (current free).
Consider
$\nabla \bullet \vec{B}=0$
$\nabla \bullet \mu \overrightarrow{\mathrm{H}}=0$
$\nabla \bullet \overrightarrow{\mathrm{H}}=0 \quad$ (Assumed medium is homogeneous and current-free)
$\nabla .\left(-\nabla \mathrm{V}_{\mathrm{m}}\right)=0$
$\nabla^{2} \mathrm{~V}_{\mathrm{m}}=0 \rightarrow$ is Laplace's equation in a static magnetic field
$\nabla^{2} \mathrm{~V}=\frac{-\rho_{\mathrm{v}}}{\varepsilon}$ is the Poisson's equation, only when the medium is homogeneous.
Therefore the correct matching code is $\mathrm{P}-3$, Q-1, R-4, S-2
59. Ans: (c)

Sol: $\nabla . \bar{A} \neq 0 \Rightarrow$ The field has divergence
$\nabla . \mathrm{A}=+\mathrm{ve} \Rightarrow$ The divergence is outward i.e., source
$\nabla \times \mathrm{A} \neq 0 \Rightarrow$ The field is non-conservative or rotational
60. Ans: (c)

Sol: The capacitance of long coaxial cable is given by

$$
\mathrm{C}=\frac{2 \pi \varepsilon \ell}{\ell \mathrm{n}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)}(\mathrm{F})
$$

Where l : length of the cable
ε : permittivity of medium between the conductors
a: radius of inner conductor
b: radius of outer conductor
In general capacitance of capacitor will never depends on charge and potential applied between the two conductors. It will truly depends on physical dimensions of system of conductors and electrical permittivity.

61. Ans: (a)

Sol:

Due to infinite line charge,

$$
\overline{\mathrm{E}}=\frac{\rho_{\ell}}{2 \pi \varepsilon \rho} \hat{\mathrm{a}}_{\rho}
$$

Hence, the radial distance

$$
\begin{aligned}
\rho & =(2,3,4)-(x,-2,5) \\
& =5 \hat{a}_{y}-\hat{a}_{z} \\
E & =\frac{5 \times 10^{-9}}{2 \pi \times \frac{1}{36 \pi \times 10^{9}} \times(\sqrt{25+1})^{2}}\left(5 \hat{a}_{y}-\hat{a}_{z}\right) \\
& =\frac{90}{26}\left(5 \hat{a}_{y}-\hat{a}_{z}\right) \mathrm{V} / \mathrm{m}
\end{aligned}
$$

62. Ans: (a)

Sol: $\rho_{v}=\nabla . \bar{D}$

$$
\begin{aligned}
& =\frac{1}{\rho} \frac{\partial}{\partial \rho}\left[\rho \times \rho z^{2} \sin ^{2} \phi\right]+\frac{1}{\rho} \frac{\partial}{\partial \phi}\left[\rho z^{2} \sin \phi \cos \phi\right]+\frac{\partial}{\partial z}\left[\rho^{2} z \sin ^{2} \phi\right] \\
& =\frac{1}{\rho} \times 2 \rho z^{2} \sin ^{2} \phi+\frac{1}{\rho} \times \rho z^{2} \cos 2 \phi+\rho^{2} \sin ^{2} \phi \\
& =2 z^{2} \sin ^{2} \phi+z^{2} \cos 2 \phi+\rho^{2} \sin ^{2} \phi \\
& =2 z^{2} \sin ^{2} \phi+z^{2}\left(1-2 \sin ^{2} \phi\right)+\rho^{2} \sin ^{2} \phi \\
& =z^{2}+\rho^{2} \sin ^{2} \phi
\end{aligned}
$$

63. Ans: (d)

Sol: $\Delta \mathrm{Q}=\left[\frac{\partial \mathrm{D}_{\mathrm{x}}}{\partial \mathrm{x}}+\frac{\partial \mathrm{D}_{\mathrm{y}}}{\partial \mathrm{y}}+\frac{\partial \mathrm{D}_{\mathrm{z}}}{\partial \mathrm{z}}\right]_{(4,2,-3)} \times 10^{-10}$

$$
\begin{aligned}
& =[12 \mathrm{yz}+6 \mathrm{z}]_{(4,2,-3)} \\
& =[-12 \times 2 \times 3+6 \times-3] \times 10^{-10}=-9 \mathrm{nC}
\end{aligned}
$$

64. Ans: (b)

Sol: Given region is $\phi=$ constant
$\left(\phi=\frac{\pi}{4}\right)$, hence
$\mathrm{dS}=\mathrm{rdr} \mathrm{d} \theta$

$$
\begin{aligned}
& \mathrm{S}=\int_{\mathrm{r}=0}^{2} \int_{\theta=0}^{\frac{\pi}{2}} \mathrm{rdrd} \mathrm{\theta} \\
& =\left.\left.\frac{\mathrm{r}^{2}}{2}\right|_{0} ^{2} \theta\right|_{0} ^{\frac{\pi}{2}} \\
& \therefore \mathrm{~S}=\pi \mathrm{m}^{2}
\end{aligned}
$$

65. Ans: (d)

Sol: All statements are correct.
66. Ans: (a)

Sol: Electrical conductivity of an alloy or solid solution decreases with increasing impurity level because of disturbance in periodicity of atoms and due to that collection of e^{-}takes place.
67. Ans: (c)

Sol: The internal structure of a material gives the information about the arrangement of atoms in a material. Statement I is correct.

The properties of bulk matter of all kinds are dependent of the nature and distribution of imperfections. Statement II is incorrect.

68. Ans:(c)

Sol: Statement (I) is correct.
By using substitution theorem, we replace an impedance branch by another branch with different circuit components, without disturbing the voltage-current relationship in the network. So, statement (II) is wrong

69. Ans: (b)

Sol: Let the instantaneous voltage and current are

$$
\begin{align*}
\mathrm{v}(\mathrm{t}) & =\mathrm{V}_{\mathrm{m}} \cos \left(\omega \mathrm{t}+\theta_{\mathrm{v}}\right) \\
\mathrm{i}(\mathrm{t}) & =\mathrm{I}_{\mathrm{m}} \cos \left(\omega \mathrm{t}+\theta_{\mathrm{i}}\right) \\
\mathrm{p}(\mathrm{t}) & =\mathrm{v}(\mathrm{t}) \mathrm{i}(\mathrm{t}) \\
& =\mathrm{V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos \left(\omega \mathrm{t}+\theta_{\mathrm{v}}\right) \cos \left(\omega \mathrm{t}+\theta_{\mathrm{i}}\right) \\
\mathrm{P}(\mathrm{t}) & =\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right)+\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos \left(2 \omega \mathrm{t}+\theta_{\mathrm{v}}+\theta_{\mathrm{i}}\right) \tag{1}
\end{align*}
$$

The $2^{\text {nd }}$ part of the above expression is a sinusoidal function whose frequency is 2ω (changes with time)

70. Ans: (d)

Sol: Superposition theorem is applicable to linear networks and system. The system with characteristics equation $y=x^{3}$ is a nonlinear system. So, superposition theorem is not applicable to this system

71. Ans: (b)

72. Ans: (c)

Sol: When dielectric is subjected to alternating field, the polarization (P) varies, so the dielectric constant.

Dielectric constant $\left(\varepsilon_{\mathrm{r}}^{*}\right)=\varepsilon_{\mathrm{r}}^{1}-\mathrm{i} \varepsilon_{\mathrm{r}}^{11}$
Where ε_{r}^{11} is measure of dielectric loss.

73. Ans: (c)

74. Ans: (a)

Sol: Consider the two long wires carrying current in the same direction (assume +z direction)

$$
\begin{aligned}
\overrightarrow{\mathrm{H}} & =\overrightarrow{\mathrm{H}}_{1}+\overrightarrow{\mathrm{H}}_{2} \\
& =\frac{\mathrm{I}}{2 \pi \mathrm{~d}}\left(+\hat{\mathrm{a}}_{\mathrm{y}}\right)+\frac{\mathrm{I}}{2 \pi \mathrm{~d}}\left(-\hat{\mathrm{a}}_{\mathrm{y}}\right)
\end{aligned}
$$

$\therefore \overrightarrow{\mathrm{H}}=0$ (null vector)
Therefore when the two wires are carrying currents in the same direction, with equal magnitude, then the magnetic field intensity midway between then is zero. (or) null vector. This indicates there exist a weak magnetic lines of force between the two wires, due to this there is a force of attraction can exist between the wires.

If two long wires are carrying currents in the same direction with the magnitudes I_{1} and I_{2} and separated by a distance ' d ' then the
magnitude of magnetic force per unit length is given by
$\mathrm{f}=\frac{\mu \mathrm{I}_{1} \mathrm{I}_{2}}{2 \pi \mathrm{~d}} \mathrm{~N} / \mathrm{m}$
if $\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}$
Then $\mathrm{f}=\frac{\mu \mathrm{I}^{2}}{2 \pi \mathrm{~d}} ; \mathrm{f} \alpha \mathrm{I}^{2}$
Therefore both the statements S1 and S2 are individually true and S 2 is the correct explanation of S1.
75. Ans: (a)

Sol: Reluctance: The opposition offered by a magnetic circuit, to flow of magnetic flux is called reluctance, which is given by $R=\frac{\ell}{\mu_{0} \mu_{\mathrm{r}} \mathrm{A}}(\mathrm{AT} / \mathrm{Wb})$

Permenace: The reciprocal of reluctance is called permeance, which indicates the conducting power of magnetic flux (ϕ).

$$
\mathrm{P}=\frac{1}{\mathrm{R}}
$$

When reluctance of a magnetic material decreases, then the permeance will increase. Therefore both S1 and S2 are individually true and S2 is the correct explanation of S1.

