

ACE

TEST ID: 105

Engineering Academy

Head Office: Sree Sindhi Guru Sangat Sabha Association, # 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001.

Ph: 040-23234418, 040-2324419, 040-2324420, 040-24750437

Hyderabad | Kukatpally | Kothapet | Delhi | Bhopal | Patna | Pune | Bhubaneswar | Lucknow | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kolkata | Ahmedabad

ESE- 2020 (Prelims) - Offline Test Series

Test-9

ELECTRONICS & TELECOMMUNICATION ENGINEERING

SUBJECT: MATERIALS SCIENCE AND NETWORK THEORY

SOLUTIONS

01. Ans: (a)

Sol: Miller index of a plane in the lattice can be determined by taking the reciprocal distances of the plane w.r.t X, Y, Z axes.

02. Ans: (d)

Sol: Pure silica \rightarrow sodium silicate \rightarrow doped silicon \rightarrow nickel

$$10^4 \rightarrow 2 \rightarrow 10^{-4} \rightarrow 10^{-7}$$

(Resistivity value in decreasing order)

03. Ans: (d)

Sol: For BCC-Iron material, $4R = \sqrt{3}$ a

Where, a = lattice parameter

R = radius of atom

$$\Rightarrow$$
 a = $\frac{4R}{\sqrt{3}} = \frac{4 \times 0.173}{\sqrt{3}} \approx 0.4 \text{ nm}$

04. Ans: (b)

Sol: Metals have low ionization energies, due to loosely bounded valence electrons. The electrostatic attraction between the free electrons and the positive metal ions keeps the metal stable.

05. Ans: (d)

Sol: The hall coefficient, $R = \frac{1}{n.e}$ where 'n' is the carrier concentration. Hall coefficient & charge carrier concentration are inversely rated.

$$R \propto \frac{1}{n}$$

n = Charge carrier concentration

$$\frac{R_A}{R_B} = \frac{4 \times 10^{21}}{1 \times 10^{21}} = \frac{4}{1}$$

TEST YOUR PREP

Pre GATE - 2020

Date of Exam : **18th January 2020** Last Date to Apply : **31st December 2019**

Highlights:

- Get real-time experience of GATE-20 test pattern and environment.
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for **GATE-20** toppers.

SSC-JE (Paper-I) --Online Test Series

Staff Selection Commission - Junior Engineer

No. of Tests: 20

Subject Wise Tests: 16 | Mock Tests - 4

Civil | Electrical | Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination

© 040 - 48539866 / 040 - 40136222

06. Ans: (a)

Sol: Atomic packing factor for SC = 52%, BCC = 68 %, FCC = 74 % and DC = 34 %.

07. Ans: (c)

Sol: 1 mole of $cu = 6.023 \times 10^{23}$ atoms & cu weights 63.5 gm

$$\therefore \text{ Mass of 1 cu atom} = \frac{6.35}{6.023 \times 10^{23}} \text{ gram}$$

FCC contains 4 atoms per unit cell

For FCC,
$$a = 2\sqrt{2} r$$

$$\therefore \ \rho = \frac{4 \times \frac{63.5}{6.023 \times 10^{23}} \times 10^{-3} \,\text{kg}}{\left(2\sqrt{2} \times 1.28 \times 10^{-10}\right)^3 \,\text{m}^3}$$

$$= 8891 \text{kg} / \text{m}^3 \simeq 8.9 \times 10^3 \text{kg/m}^3$$

08. Ans: (d)

Sol:

Model	Particle properties Example		
1.Maxwell-	Distinguishable	Ideal gas,	
Boltzmann	unlimited particles	Molecules	
	per quantum state		
2.Bose	Indistinguishable	Photon,	
Einstein	unlimited particles	phonon	
	per quantum state		
3.Fermi	Indistinguishable,	Electron,	
Dirac	identical one	protons	
	particle Per		
	quantum state		
	(Pauli exclusion		
	principle)		

09. Ans: (d)

Sol: The bullet proof jocket is made up of aramid fiber reinforced polymer (AFRB) with reinforcement phase is Aramid and matrix phase is polymer.

10. Ans: (c)

Sol: If the temperature of metal increases, the lattice vibration in the crystal structure increases. Hence collision frequency increases and relaxation time decreases. Due to that resistivity of metal increases.

11. Ans: (a)

Sol: Tuning frequency $f \propto \sqrt{\frac{Y}{\rho}}$

Where, Y = Young's modulus of the crystal $\rho = density of crystal$

$$\rho \propto M$$

$$f \propto \frac{1}{\sqrt{M}}$$

Hence, upon solving f = 8.165 kHz

12. Ans: (d)

Sol: The overall mobility of a semiconductor, the present both impurity scattering (µ_I) and phonon scattering (μ_p) is $\mu_0 = \frac{\mu_I \times \mu_p}{\mu_I + \mu}$

13. Ans: (b)

Sol: The coupling coefficient (K) = 0.42Output mechanical energy = 9.06×10^{-3} J $= 9.06 \, \text{mJ}$

> :. The applied electric field $E = (1-0.42) \times 9.06$ = 5.25 mJ

14. Ans: (d)

15. Ans: (b)

Sol:

Given the atom A at a distance $\alpha = 30A^{\circ}$ from an α -particle

The α - particle is helium molecules. It carries 2 units

of positive charge $q = 2 \times 1.6 \times 10^{-19} C$

The electric field intensity at the site of the

atom A =
$$\frac{1}{4\pi\epsilon_0}$$
. $\frac{q}{d^2}$

The dipole moment induced in the atom =

$$\alpha \cdot \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{d^2}$$

$$=10^{-40} \times \frac{9 \times 10^9 \times 3.2 \times 10^{-19}}{900 \times 10^{-20}}$$

Dipole moment induced $=3.2\times10^{-32}$ coulomb-m

16. Ans: (b)

17. Ans: (a)

Sol: Stripped metal nanowires of alternative metal like Au & Ag can be used as barcode. Au as '0' and Ag as '1', so 0001010, 01011101, 11010001 there are all different barcodes.

18. Ans: (c)

19. Ans: (d)

Sol: Superconductivity can not be exceeded by the application of electric field.

20. Ans: (a)

Sol: The critical current for superconductor is given as $i_c = 2\pi r H_c$ and $j_c = \frac{i_c}{\pi r^2} = \frac{2H_c}{r}$

So, critical current density depends on

- 1. Critical magnetic field
- Temperature
- 3. Critical temperature also depends on penetration depth. With increasing temperature, penetration depth increases.

21. Ans: (a)

Sol: The ceramics are high temperature super conductors. YBCO (Yithum Barium Copper Oxide) is a high temperature ceramic super conductor.

22. Ans: (b)

Sol: Given magnetic moment per atom = $2.22 \mu_B$ Magnetic moment per 28 grams = N $2.22\mu_B$ Where N= no. of atoms of Fe in 28 grams 56 grams of Fe contains 6.023×10²³ atoms 28 grams of Fe contains $N = \frac{6.023 \times 10^{23}}{2}$ $= 3 \times 10^{23}$

Magnetic moment per 28grams

$$= 3 \times 10^{23} \times 2.22 \times \mu_B$$
$$= 3 \times 10^{23} \times 2.22 \times 9.27 \times 10^{-24}$$

23. Ans: (a)

Sol: Properties of Ferrites (Ferri magnetic materials)

> 1. Ferrite's possess permanent dipoles with anti parallel and unequal magnitudes they generate large magnetization.

2. Ferrites are ceramic in nature and they are high resistivity materials.

Eg: Mn,Fe,O₄, Zn Fe₂O₄

3. Ferrite's have low eddy current losses due to high resistivity and hence there are used in high frequency transformers.

24. Ans: (d)

Sol: The hardness of a magnetic material is given by the value of the applied coercive field or even on the product of B and H_{max} called as energy product which gives area of the largest rectangle in the second quadrant of the hysteresis loop.

25. Ans: (c)

Sol: Given data:

$$\chi_{m} = 6.8 \! \times \! 10^{-5}$$

Relative permeability $\mu_r = 1 + \chi_m$

$$\mu_{\rm r} = 1 + 6.8 \! \times \! 10^{-5}$$

$$\mu_r = 1.000068$$

Permeability
$$\mu = \mu_r \ \mu_0$$

= $(1.000068)(4\pi \times 10^{-7})$
= 1.256×10^{-6}
 $\mu = 12.56 \times 10^{-7}$

26. Ans: (c)

27. Ans: (c)

Sol: Permalloy is a soft magnetic material. If the temperature of material is more than curie's temperature, then the para magnetic material converts into dia magnetic material.

28. Ans: (b)

Sol: $\mu_r = \chi + 1$ for paramagnetic materials susceptibility is positive but very small hence relative permeability slightly greater than unity.

29. Ans: (d)

Sol: Aluminium metal matrix finds application in aerospace, thermal management areas, industrial products, and automotive applications such as engine piston, brake etc.

30. Ans: (d)

Sol: The maximum average power transfer to the load, $P_{\text{max}} = \frac{|V_{Th}^2|}{4R}$

$$P_{\text{max}} = \frac{(20)^2}{4 \times 10} = 10 \text{ W}$$

31. Ans: (d)

Sol: $V(t) = 120 \cos (100\pi t - 20^{\circ})$ $\Rightarrow V = 120 \angle -20^{\circ}$ $i(t) = 4 \cos (100\pi t + 10^{\circ}) \Rightarrow I = 4 \angle 10^{\circ}$ $\therefore Z = \frac{V}{I} = \frac{120 \angle -20^{\circ}}{4 \angle 10^{\circ}} = \frac{120}{4} \angle -30^{\circ}$

$$Z = 30 \angle -30^{\circ}$$

 $Z = 30 \cos (30^{\circ}) - j30 \sin (30^{\circ})$
 $Z = 15\sqrt{3} - i15$

Resistor and capacitor connected in series

$$\therefore R = 15\sqrt{3}\Omega$$

$$X_{c} = \frac{1}{\omega C} = 15\Omega$$

$$\Rightarrow C = \frac{1}{15 \times \omega}$$

$$C = \frac{1}{15 \times 100\pi} = \frac{1}{1500\pi} F$$

32. Ans: (d)

Sol:

By KVL,
$$32 - 2I_1 - 30I_1 = 0$$

$$\Rightarrow 32 = 32I_1 \Rightarrow I_1 = 1A$$

Power dissipated in 10Ω resistor

$$= (3I_1)^2 \times 10$$
$$= 9 \times 10$$
$$= 90 \text{ watts}$$

33. Ans: (d)

Sol: We know that for parallel resonance circuit impedance is maximum at resonance frequency.

:. Here at 2.5 kHz the impedance is maximum.

So,
$$f_0 = 2.5 \times 10^3 \text{ Hz}$$

$$\therefore \omega_0 = 2\pi f_0 = 2\pi \times 2.5 \times 10^3$$
$$= 5000\pi \text{ rad/sec}$$

34. Ans: (a)

Sol:

For ideal transform,
$$\frac{V_1}{V_2} = \frac{N_1}{N_2} = \frac{1}{n} \&$$

$$\frac{I_1}{I_2} = \frac{-N_2}{N_1} = -n$$

$$\Rightarrow \frac{V_1}{V_2} = \frac{1}{n} \qquad \Rightarrow \frac{I_1}{I_2} = -n$$

$$\Rightarrow \frac{I_1}{I_2} = -n$$

$$\Rightarrow V_1 = \frac{1}{n}V_2....(1)$$
 $\Rightarrow I_2 = -\frac{1}{n}I_1....(2)$

Now compare equation (1) and (2) with the general equation of h-parameters

i.e.,
$$V_1 = h_{11}I_1 + h_{12}V_2$$

$$I_2 = h_{21}I_1 + h_{22}V_2$$

$$h_{11} = 0, h_{12} = \frac{1}{n}$$

$$h_{21} = -\frac{1}{n}, h_{22} = 0$$

$$\begin{bmatrix} \mathbf{h} \end{bmatrix} = \begin{bmatrix} 0 & 1/\mathbf{n} \\ -1/\mathbf{n} & 0 \end{bmatrix}$$

Sol:
$$R_{CB} = 20 + (40 \parallel 40) + 20$$

= $20 + 20 + 20$
 $R_{CB} = 60 \Omega$

36. Ans: (d)

Sol: The general form of g-parameters are

$$I_1 = g_{11}V_1 + g_{12}I_2$$

$$V_2 = g_{21}V_1 + g_{22}I_2$$

Apply KCL at node '1',

$$I_1 = \frac{S}{2}V_1 + 5I_2$$
(1)

Apply KVL to loop '2',

$$V_2 = 10V_1 + 2sI_2$$
(2)

By comparing equation (1) and equation (2)

With general equation

We get,
$$[g] = \begin{bmatrix} \frac{s}{2} & 5\\ 10 & 2s \end{bmatrix}$$

37. Ans: (a)

Sol: f-cut-set 1: [1, 6]

f-cut-set 4: [2, 3, 4]

f-cut-set 5: [2, 3, 5, 6, 7]

f-cut-set matrix:

f-cut-set	Branches →					
\	1 2	3	4	5	6	7
1	1 0	0	0	0	1	0
4	0 -1	1	1	0	0	0
5	0 - 1	1	0	1	-1	-1

38. Ans: (a)

39. Ans: (a)

Sol:

Using voltage division method,

$$V_0 = \frac{5i_0 \times 8}{8+2}$$

$$V_0 = \frac{40i_0}{10}$$

$$\Rightarrow i_0 = \frac{V_0}{4}$$

By KCL,

$$12 = i_0 + \frac{i_0}{6} + \frac{V_0}{8}$$

$$12 = \frac{V_0}{4} + \frac{V_0}{24} + \frac{V_0}{8} \left(\because i_0 = \frac{V_0}{4} \right)$$

$$12 = \left(\frac{6+1+3}{24} \right) V_0$$

$$V_0 = \frac{12 \times 24}{10}$$

$$V_0 = 28.8V$$

40. Ans: (c)

Sol: Here the product of opposite arms are same, so using bridge balance condition the circuit can be represented as

$$R_{eq} = \frac{20}{2} = 10\Omega$$

$$G_{eq} = \frac{1}{R_{eq}} = \frac{1}{10} = 0.1 \text{ }$$

41. Ans: (b)

Sol: Using voltage division method,

$$V_{0} = \frac{V_{s}(R_{2} // 5k)}{R_{1} + (R_{2} // 5k)}$$

$$\Rightarrow \frac{R_{2} // 5k}{R_{1} + (R_{2} // 5k)} = \frac{V_{0}}{V_{s}}$$

$$\Rightarrow \frac{R_2 // 5k}{R_1 + (R_2 // 5k)} = 0.8 \qquad \dots (1)$$

Here, $R_{eq} = R_1 + (R_2 / / 5K)$

$$\Rightarrow$$
 R₁+ (R₂//5K) = 50K(2)

From equation (1) and equation (2)

$$\frac{R_2 // 5K}{50K} = 0.8$$

$$R_2//5K = 40K$$

$$\frac{5R_2}{5+R_2} = 40$$

$$5R_2 = 40 \times 5 + 40R_2$$

$$40R_2 - 5R_2 = -40 \times 5$$

$$R_2 = \frac{-40 \times 5}{35} = \frac{-40}{7}$$

$$R_2 = \frac{-40}{7} k\Omega$$

42. Ans: (b)

Sol: We know $R_Y = \frac{R_{\Delta}}{3}$

$$R_{Y} = \frac{R/2}{3} = \frac{R}{6}\Omega$$

43. Ans: (c)

44. Ans: (a)

45. Ans: (c)

Sol: In a series RLC circuit

$$V_{S} = V_{m} \angle \theta \begin{pmatrix} + \\ - \end{pmatrix}$$
 C

At resonance condition $I_m = \frac{V_m}{R}$

At lower cut off frequency,

$$I = \frac{I_m}{\sqrt{2}}$$

$$\Rightarrow \frac{V_{m}}{\sqrt{R^{2} + \left(\omega L - \frac{1}{\omega C}\right)^{2}}} = \frac{V_{m}}{\sqrt{2R}}$$

$$\Rightarrow \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} = \sqrt{2} R$$

$$\Rightarrow \left(\omega L - \frac{1}{\omega C}\right) = \pm R$$

At lower cut off frequency

$$\omega L - \frac{1}{\omega c} = -R$$

Power factor angle $\phi = \tan^{-1} \left| \frac{\omega L - \frac{1}{\omega C}}{R} \right|$

∴ Power factor =
$$\cos \phi = 0.707$$
 leading (∴ capacitive nature)

46. Ans: (c)

Sol: Here, voltage across capacitor, voltage across resistor

$$\Rightarrow$$
 $V_c(t) = V_R(t) = V_0 e^{-t/\tau}$ Volts

Where $V_0 = 5$ Volts

 τ = time constant

$$i_R(t) = \frac{V_R(t)}{R} = \frac{V_0}{R} e^{-t/\tau}$$
amperes

The energy absorbed by the resistor up to

time t is
$$W_R(t) = \int_0^t V_R(t) i_R(t) dt$$

$$= \int_0^t \frac{V_0^2}{R} e^{-\frac{2t}{\tau}} dt$$

$$= -\frac{\tau V_0^2}{2R} e^{-\frac{2t}{\tau}} \Big|_0^t$$

$$\Rightarrow W_R(t) = \frac{1}{2}CV_0^2 \left(1 - e^{-\frac{2t}{\tau}}\right)$$

For
$$t = 2\tau$$

$$W_R(2\tau) = \frac{1}{2} \times 25 \times 4(1 - e^{-4})$$

$$\Rightarrow$$
 W_R (2 τ) = 50 (1 -e⁻⁴) joules

47. Ans: (d)

Sol: Circuit at $t = 0^-$

Here,
$$i_L(0^-) = i_L(0^+) = \frac{10 \times 10}{10 + 5}$$

$$\Rightarrow i_L(0^+) = \frac{20}{3}$$

:. Initial energy stored in the inductor is,

$$W_L(0) = \frac{1}{2} Li^2(0)$$

$$W_L(0) = \frac{1}{2} \times 2 \times \left(\frac{20}{3}\right)^2$$

$$\Rightarrow W_L(0) = \frac{400}{9}$$
 Joules

48. Ans: (b)

Sol: Circuit at $t = 0^-$

By nodal analysis:

$$\frac{V-10}{2} + \frac{V}{3} + \frac{V}{3} = 0$$

$$\Rightarrow V\left(\frac{1}{2} + \frac{2}{3}\right) = 5$$

$$\Rightarrow \frac{7V}{6} = 5$$

$$V = \frac{30}{7}$$

$$\therefore i_L(0^-) = i_L(0^+) = \frac{30/7}{3} = \frac{10}{7}A$$

Circuit at $t = 0^+$:

By KVL,
$$-V_L(0^+) - \frac{30}{7} - \frac{30}{7} = 0$$

$$\Rightarrow V_L(0^+) = -\frac{60}{7} \text{ volts}$$

HEARTY CONGRATULATIONS TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33

(EE: 9, E&T: 8, ME: 9, CE: 7) and many more...

DIGITAL CLASSES

for

ESE 2020/2021 **General Studies &** Engineering Aptitude **GATE** 2020/2021 Computer Science & Information Technology

Access the Course at

www.deep-learn.in 🛬

49. Ans: (d)

Sol: We know, $R_Y = \frac{R_A}{2}$ (for three arms have

equal resistance)

$$\Rightarrow R_{\Delta} = 3R_{Y}$$

The given circuit is simplified as

$$\therefore R_{eq} = \frac{3}{2} ||3| = \frac{\frac{3}{2} \times 3}{\frac{3}{2} + 3}$$

$$R_{eq} = \frac{9}{2} \times \frac{2}{9} = 1\Omega$$

50. Ans: (a)

Sol: Voltage across the capacitor at resonance

$$V_c = -jQ V_m$$

 $\Rightarrow V_c = -j25 \times 20$
 $= -j500 \text{ volts.}$

51. Ans: (a)

Sol: Complex power, $S = \frac{1}{2}VI^*$

$$=\frac{1}{2} \times 20 \angle 30^{\circ} \times 50 \angle -60^{\circ}$$

$$= \frac{20 \times 50}{2} \angle 30^{\circ} - 60^{\circ}$$
$$= 500 \angle -30^{\circ}$$

Average real power, P=500cos30°

$$=250\sqrt{3}$$
 watts

52. Ans: (b)

Sol:
$$v(t) = 225\cos(5t+30^{\circ})V$$

$$i(t) = 2\cos(5t+60^{\circ}-90^{\circ})A$$

= $2\cos(5t-30^{\circ})A$

$$\therefore V = 225 \angle 30^{\circ}$$

$$I=2\angle\!-\!30^{\rm o}$$

$$\therefore \text{ Complex power, } S = \frac{1}{2}VI^*$$

$$=\frac{1}{2}\times225\angle30^{\circ}\times2\angle30^{\circ}$$

Average real power, $P = \frac{225 \times 2}{2} \cos 60^{\circ}$

$$= 225\cos 60^{\circ}$$

$$=225\times\frac{1}{2}$$

$$= 112.5$$
 watts

53. Ans: (d)

Sol: Let
$$R_2 = R_3 = R$$

So,
$$R_1 = 2R$$
 (: $R_1 = 2R_3$)

Using voltage division method,

$$V_0 = V_s \times \frac{R/2}{\frac{R}{2} + 2R}$$

$$\Rightarrow \frac{V_0}{V_S} = \frac{R/2}{\frac{R}{2} + 2R}$$

$$\Rightarrow \frac{V_0}{V_S} = \frac{R}{R + 4R}$$

$$\Rightarrow \frac{V_0}{V_S} = \frac{1}{5} = 0.2$$

54. **Ans: (b)**

Sol:

$$x(t) = \begin{cases} 4 & \dots & 0 < t < T/2 \\ 0 & \dots & T/2 < t < T \end{cases}$$

Rms value of x(t) is

$$X_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} x^{2}(t) dt}$$

$$X_{rms} = \sqrt{\frac{1}{T} \left[\int_{0}^{T/2} (4)^2 dt + \int_{T/2}^{T} (0)^2 dt \right]}$$

$$X_{\text{rms}} = \sqrt{\frac{1}{T} \left[16 \left(\frac{T}{2} - 0 \right) + 0 \right]}$$

$$X_{rms} = \sqrt{8} = 2\sqrt{2}$$

55. Ans: (c)

Sol: For parallel RLC circuit, resonant frequency is

$$\omega_0 = \frac{1}{\sqrt{LC}}$$

And Bandwidth (BW) = $\frac{\omega_0}{O}$

$$Q = \frac{\omega_0}{BW} = \frac{\omega_0}{1/RC}$$
 (BW = 1/RC for parallel

RLC circuit)

$$Q = \omega_0 RC$$

56. Ans: (a)

Sol: For t < 0, the circuit is

$$i_x(0^-) = \frac{10}{10} = 1A$$

57. Ans: (a)

Sol: The inference drawn from can be Reciprocity theorem.

58. Ans: (a)

Sol: We know, when two, 2-port networks are connected in parallel, their individual Yparameters gets added.

:. First, we need to convert given ABCD parameters to Y-parameters.

For 2-port network

Y-parameters are

$$\frac{I_1 = Y_{11}V_1 + Y_{12}V_2}{I_2 = Y_{21}V_1 + Y_{22}V_2}$$
 (1)

ABCD parameters

$$V_{1} = AV_{2} - BI_{2}$$

$$I_{1} = CV_{2} - DI_{2}$$
(2)

Make $V_2 = 0$ to find $Y_{11} \& Y_{21}$

Equation (2) becomes $V_1 = -BI_2$

$$I_1 = -DI_2$$

$$\therefore Y_{11} = \frac{I_1}{V_1}\bigg|_{V_2=0} = \frac{D}{B}$$

$$Y_{21} = \frac{I_2}{V_1}\Big|_{V=0} = \frac{-1}{B}$$

Similarly, $V_1 = 0$, to find $Y_{12} \& Y_{22}$

 \therefore from equation (2) AV₂ = BI₂ \Rightarrow

$$V_2 = \frac{B}{A}I_2$$

$$I_1 = CV_2 - DI_2$$

$$I_1 = C \frac{B}{A} I_2 - DI_2 = \frac{CB - DA}{A} I_2$$

$$I_1 = \frac{BC - AD}{A}I_2$$

But
$$I_2 = \frac{A}{R}V_2$$

$$\Rightarrow I_1 = \frac{BC - AD}{A} \frac{A}{B} V_2$$

$$\Rightarrow$$
 I₁ = (BC - AD)V₂(3)

$$\therefore Y_{12} = \frac{I_1}{V_2}\bigg|_{V=0} = \frac{BC - AD}{B}$$

And $I_1 = \frac{BC - AD}{P}I_2$ put this value in

equation (3)

$$\frac{BC - AD}{A}I_2 = \frac{BC - AD}{B}V_2$$

$$I_2 = \frac{A}{B}V_2 \Rightarrow Y_{22} = \frac{I_2}{V_2}\Big|_{V_2=0} = \frac{A}{B}$$

Y-parameter matrix in terms of ABCD parameter is

$$Y_{T} = \begin{bmatrix} \frac{D}{B} & \frac{BC - AD}{B} \\ \frac{-1}{B} & \frac{A}{B} \end{bmatrix}$$

$$Y_T$$
 or $Y_{eq} = Y_A + Y_B$

$$= \begin{bmatrix} \frac{D}{B} & \frac{BC - AD}{B} \\ \frac{-1}{B} & \frac{A}{B} \end{bmatrix} + \begin{bmatrix} \frac{D}{B} & \frac{BC - AD}{B} \\ \frac{-1}{B} & \frac{A}{B} \end{bmatrix}$$

$$Y_{T} \text{ or } Y_{eq} = \begin{bmatrix} 2\frac{D}{B} & 2\frac{(BC - AD)}{B} \\ \frac{-2}{B} & \frac{2A}{B} \end{bmatrix}$$

Now, again connect back to parameters

$$I_{1} = \frac{2D}{B}V_{1} + 2\frac{(BC - AD)}{B}V_{2}$$

$$I_{2} = -\frac{2}{B}V_{1} + \frac{2A}{B}V_{2}$$

$$(4)$$

$$Make \ V_2 = 0 \qquad I_1 = \frac{2D}{B} V_{_1}$$

$$I_2 = -\frac{2}{B}V_1$$

$$B_T = -\frac{V_1}{I_2}\Big|_{V=0} = \frac{B}{2} = 0.5B$$

$$D_{T} = -\frac{I_{1}}{I_{2}}\Big|_{V_{2}=0} = \frac{2D/B}{2/B} = D$$

Make $I_2 = 0$, equation (4) becomes

$$\begin{split} V_1 &= AV_2 \& I_1 = \frac{2D}{B}V_1 + 2\frac{\left(BC - AD\right)}{B}V_2 \\ &= \frac{2D}{B}AV_2 + \frac{\left(2BC - 2AD\right)}{B}V_2 \\ &= \left(\frac{2AD + 2BC - 2AD}{B}\right)V_2 \end{split}$$

$$I_1 = 2CV_2$$

$$\therefore A_{\rm T} = \frac{V_1}{V_2} = A$$

$$C_T = \frac{I_1}{V_2} = 2C$$

$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} A_T & B_T \\ C_T & D_T \end{bmatrix} = \begin{bmatrix} A & 0.5B \\ 2C & D \end{bmatrix}$$

59. Ans: (d)

Sol: g-parameter for 2-port network

$$I_1 = g_{11}V_1 + g_{12}I_2$$

$$V_2 = g_{21}V_1 + g_{22}I_2$$

$$g_{21} = \frac{V_2}{V_1} \bigg|_{I_2=0}$$

Given equation $V_1 = 20I_1 + 5V_2$

$$I_2 = 2I_1 + V_2$$

Make
$$I_2 = 0$$
 $2I_1 = -V_2$

$$\implies I_1 = -\frac{1}{2}V_2$$

$$\therefore V_1 = 20 \left(-\frac{1}{2} V_2 \right) + 5 V_2$$

$$= (-10 + 5) V_2$$

$$V_1 = -5V_2$$

$$\therefore g_{21} = \frac{V_2}{V_1} = \frac{-1}{5} = -0.2$$

60. Ans: (b)

Sol: Dependent current source 0.25V0, converted to voltage source, then circuit becomes

Apply KCL at node (1)

$$\frac{V_1}{3} + \frac{V_1 - 18}{6} + \frac{V_1 - 0.5V_0}{2} = 0$$

But
$$V_1 = V_0$$

$$2V_1 + V_1 - 18 + 3V_1 - 1.5 V_1 = 0$$

$$4.5 V_1 = 18$$

$$V_1 = 4 V$$

$$But \; I_N = Isc = \frac{V_{_{\! 1}} - 0.5 V_{_{\! 0}}}{2}$$

$$= \frac{V_1/2}{2} \quad (\because V_1 = V_0)$$

$$= \frac{V_1}{4} = \frac{4}{4} = 1$$

$$I_N = 1A$$

61. Ans: (a)

Sol: No. of possible trees = n^{n-2}

$$= 4^{4-2}$$
$$= 4^{2}$$
$$= 16$$

62. Ans: (b)

Sol: R should be minimum in the given options 5 Ω is minimum.

63. Ans: (d)

Sol: In star connection $I_L = I_{ph} = \frac{V_L}{\sqrt{3}R} = 12 \text{ A}$

$$\Rightarrow \frac{V_L}{R} = \sqrt{3} \times 12 \text{ A}$$

In Δ connection $\sqrt{3}I_{ph} = I_{ph}$; $V_L = V_{ph}$

$$I_{ph} = \frac{V_{_L}}{R}$$

$$I_{L} = \frac{\sqrt{3} \times V_{L}}{R} = \sqrt{3} \times \sqrt{3} \times 12$$
$$= 36 \text{ A}$$

64. Ans: (d)

Sol: Rated current of each bulb

$$= \frac{\text{Power}}{\text{Voltage}} = \frac{40}{100} = 0.4 \,\text{A}$$

Number of bulbs =

$$\frac{\text{Triggering Current}}{\text{Rated Current of each bulb}} = \frac{4}{0.4} = 10$$

65. Ans: (c)

Sol: Statement (I) is correct.

By using substitution theorem, we replace an impedance branch by another branch with different circuit components, without disturbing the voltage-current relationship in the network. So, statement (II) is wrong

66. Ans: (b)

Sol: Let the instantaneous voltage and current are

$$v(t) = V_m cos(\omega t + \theta_v)$$

$$i(t) = I_m cos(\omega t + \theta_i)$$

$$\begin{aligned} p(t) &= v(t)i(t) \\ &= V_m I_m cos(\omega t + \theta_v) cos(\omega t + \theta_i) \end{aligned}$$

$$P(t) = \frac{1}{2} V_{m} I_{m} \cos(\theta_{v} - \theta_{i}) + \frac{1}{2} V_{m} I_{m} \cos(2\omega t + \theta_{v} + \theta_{i})$$

....(1)

The 2^{nd} part of the above expression is a sinusoidal function whose frequency is 2ω (changes with time)

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019

Exam Timing: 6:00 pm to 8:00 pm

FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019

Exam Timing: 6:00 pm to 8:00 pm

- All tests will be conducted in Question Paper Booklet format.
- Test Series will be conducted at all our centres.

Hyderabad | Delhi | Pune | Bhubaneswar | Bengaluru | Chennai | Vijayawada | Vizag | Tirupathi | Kukotpelly | Kolketer | Alimedal

© 040 - 48539866 / 040 - 40136222 testseries@aceenggacademy.com

No. of Tests: 15

Subject Wise Tests: 12 | Mock Tests: 3

Indian Space Research Organisation (ISRO) Recruitment of Scientist/Engineer 'SC'

ELECTRONICS | MECHANICAL | COMPUTER SCIENCE

Starts from 5th November 2019

All tests will be available till 12-01-2020.

© 040 - 48539866 / 040 - 40136222 📓 testseries@aceenggacademy.com

67. Ans: (d)

Sol: Superposition theorem is applicable to linear networks and system. The system with characteristics equation $y = x^3$ is a non-linear system. So, superposition theorem is not applicable to this system

68. Ans: (b)

69. Ans: (c)

70. Ans: (a)

71. Ans: (d)

Sol: Z_L should be equal to Z_S^* and $\eta=50 \%$

:. A is false but R is true.

72. Ans: (c)

Sol: The internal structure of a material gives the information about the arrangement of atoms in a material. Statement I is correct.

The properties of bulk matter of all kinds are dependent of the nature and distribution of imperfections. Statement II is incorrect. 73. Ans: (a)

Sol: Electrical conductivity of an alloy or solid solution decreases with increasing impurity level because of disturbance in periodicity of atoms and due to that collection of e⁻ takes place.

74. Ans: (c)

Sol: When dielectric is subjected to alternating field, the polarization (P) varies, so the dielectric constant.

Dielectric constant $\left(\varepsilon_{r}^{*}\right) = \varepsilon_{r}^{1} - i\varepsilon_{r}^{11}$

Where ε_r^{11} is measure of dielectric loss.

75. Ans: (c)