ESE- 2020 (Prelims) - Offline Test Series

SUBJECT: MATERIALS SCIENCE AND NETWORK THEORY

SOLUTIONS

01. Ans: (a)

Sol: Miller index of a plane in the lattice can be determined by taking the reciprocal distances of the plane w.r.t $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes.

02. Ans: (d)

Sol: Pure silica \rightarrow sodium silicate \rightarrow doped silicon \rightarrow nickel
$10^{4} \rightarrow 2 \rightarrow 10^{-4} \rightarrow 10^{-7}$
(Resistivity value in decreasing order)
03. Ans: (d)

Sol: For BCC-Iron material, $4 \mathrm{R}=\sqrt{3} \mathrm{a}$
Where, $\mathrm{a}=$ lattice parameter

$$
\mathrm{R}=\text { radius of atom }
$$

$\Rightarrow \mathrm{a}=\frac{4 \mathrm{R}}{\sqrt{3}}=\frac{4 \times 0.173}{\sqrt{3}} \approx 0.4 \mathrm{~nm}$
04. Ans: (b)

Sol: Metals have low ionization energies, due to loosely bounded valence electrons. The electrostatic attraction between the free electrons and the positive metal ions keeps the metal stable.
05. Ans: (d)

Sol: The hall coefficient, $R=\frac{1}{n \cdot e}$ where ' n ' is the carrier concentration. Hall coefficient \& charge carrier concentration are inversely rated.
$\mathrm{R} \propto \frac{1}{\mathrm{n}}$
$\mathrm{n}=$ Charge carrier concentration
$\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{B}}}=\frac{4 \times 10^{21}}{1 \times 10^{21}}=\frac{4}{1}$

TEST YOUR PREP IN A REAL TEST ENVIRONMENT

 Pre

 Pre GA GA TE TE 2020

2020}

Date of Exam : 18 ${ }^{\text {th }}$ January 2020 Last Date to Apply: 31 ${ }^{\text {st }}$ December 2019

Highlights:

- Get real-time experience of GATE-20 test pattern and environment.
- Virtual calculator will be enabled.
- Post exam learning analytics and All India Rank will be provided.
- Post GATE guidance sessions by experts.
- Encouraging awards for GATE-20 toppers.

SSC-JE (Paper-I)

 =Online Test SeriesStaff Selection Commission - Junior Engineer

No. of Tests : 20

Subject Wise Tests: 16| Mock Tests - 4
Civil|Electrical|Mechanical

AVAILABLE NOW

All tests will be available till SSC 2019 Examination

06. Ans: (a)

Sol: Atomic packing factor for $\mathrm{SC}=52 \%, \mathrm{BCC}$ $=68 \%, \mathrm{FCC}=74 \%$ and $\mathrm{DC}=34 \%$.

07. Ans: (c)

Sol: 1 mole of $\mathrm{cu}=6.023 \times 10^{23}$ atoms $\& \mathrm{cu}$ weights 63.5 gm
\therefore Mass of 1 cu atom $=\frac{6.35}{6.023 \times 10^{23}}$ gram
FCC contains 4 atoms per unit cell
For FCC, $a=2 \sqrt{2} r$

$$
\begin{aligned}
\therefore \rho & =\frac{4 \times \frac{63.5}{6.023 \times 10^{23}} \times 10^{-3} \mathrm{~kg}}{\left(2 \sqrt{2} \times 1.28 \times 10^{-10}\right)^{3} \mathrm{~m}^{3}} \\
& =8891 \mathrm{~kg} / \mathrm{m}^{3} \simeq 8.9 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

8. Ans: (d)

Sol:

Model	Particle properties	Examples
1.Maxwell- Boltzmann	Distinguishable unlimited particles per quantum state	Ideal gas, Molecules
2.Bose Einstein	Indistinguishable unlimited particles per quantum state	Photon,
phonon		
3.Fermi Dirac	Indistinguishable, identical one particle Per quantum state (Pauli exclusion principle)	Electron, protons

09. Ans: (d)

Sol: The bullet proof jocket is made up of aramid fiber reinforced polymer (AFRB) with reinforcement phase is Aramid and matrix phase is polymer.

10. Ans: (c)

Sol: If the temperature of metal increases, the lattice vibration in the crystal structure increases. Hence collision frequency increases and relaxation time decreases. Due to that resistivity of metal increases.

11. Ans: (a)

Sol: Tuning frequency $\mathrm{f} \propto \sqrt{\frac{Y}{\rho}}$
Where, $\mathrm{Y}=$ Young's modulus of the crystal $\rho=$ density of crystal $\rho \propto M$

$$
f \propto \frac{1}{\sqrt{M}}
$$

Hence, upon solving $\mathrm{f}=8.165 \mathrm{kHz}$

12. Ans: (d)

Sol: The overall mobility of a semiconductor, the present both impurity scattering $\left(\mu_{\mathrm{I}}\right)$ and phonon scattering $\left(\mu_{\mathrm{p}}\right)$ is $\mu_{0}=\frac{\mu_{I} \times \mu_{p}}{\mu_{I}+\mu_{p}}$

13. Ans: (b)

Sol: The coupling coefficient $(\mathrm{K})=0.42$
Output mechanical energy $=9.06 \times 10^{-3} \mathrm{~J}$

$$
=9.06 \mathrm{~mJ}
$$

\therefore The applied electric field

$$
\begin{aligned}
\mathrm{E} & =(1-0.42) \times 9.06 \\
& =5.25 \mathrm{~mJ}
\end{aligned}
$$

14. Ans: (d)
15. Ans: (b)

Sol:

Given the atom A at a distance
$\alpha=30 \mathrm{~A}^{\circ}$ from an α-particle
The α - particle is helium molecules. It carries 2 units
of positive charge $\mathrm{q}=2 \times 1.6 \times 10^{-19} \mathrm{C}$
The electric field intensity at the site of the atom $\mathrm{A}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{q}}{\mathrm{d}^{2}}$

The dipole moment induced in the atom $=$ $\alpha \cdot \frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{d^{2}}$

$$
=10^{-40} \times \frac{9 \times 10^{9} \times 3.2 \times 10^{-19}}{900 \times 10^{-20}}
$$

Dipole moment induced $=3.2 \times 10^{-32}$ coulomb-m
16. Ans: (b)
17. Ans: (a)

Sol: Stripped metal nanowires of alternative metal like Au \& Ag can be used as barcode. Au as ' 0 ' and Ag as ' 1 ', so 0001010 , 01011101, 11010001 there are all different barcodes.
18. Ans: (c)
19. Ans: (d)

Sol: Superconductivity can not be exceeded by the application of electric field.
20. Ans: (a)

Sol: The critical current for superconductor is given as $i_{c}=2 \pi r H_{c}$ and $j_{c}=\frac{i_{c}}{\pi r^{2}}=\frac{2 \mathrm{H}_{\mathrm{c}}}{\mathrm{r}}$

So, critical current density depends on

1. Critical magnetic field
2. Temperature
3. Critical temperature also depends on penetration depth. With increasing in temperature, penetration depth increases.

21. Ans: (a)

Sol: The ceramics are high temperature super conductors. YBCO (Yithum Barium Copper Oxide) is a high temperature ceramic super conductor.
22. Ans: (b)

Sol: Given magnetic moment per atom $=2.22 \mu_{\mathrm{B}}$
Magnetic moment per 28 grams $=\mathrm{N} 2.22 \mu_{\mathrm{B}}$
Where $\mathrm{N}=$ no. of atoms of Fe in 28 grams
56 grams of Fe contains 6.023×10^{23} atoms
28 grams of Fe contains $\mathrm{N}=\frac{6.023 \times 10^{23}}{2}$

$$
=3 \times 10^{23}
$$

Magnetic moment per 28grams

$$
\begin{aligned}
& =3 \times 10^{23} \times 2.22 \times \mu_{\mathrm{B}} \\
& =3 \times 10^{23} \times 2.22 \times 9.27 \times 10^{-24}
\end{aligned}
$$

23. Ans: (a)

Sol: Properties of Ferrites (Ferri magnetic materials)

1. Ferrite's possess permanent dipoles with anti parallel and unequal magnitudes they generate large magnetization.
2. Ferrites are ceramic in nature and they are high resistivity materials.

Eg: $\mathrm{Mn}, \mathrm{Fe}, \mathrm{O}_{4}, \quad \mathrm{Zn} \mathrm{Fe} \mathrm{O}_{2}$
3. Ferrite's have low eddy current losses due to high resistivity and hence there are used in high frequency transformers.

24. Ans: (d)

Sol: The hardness of a magnetic material is given by the value of the applied coercive field or even on the product of B and $\mathrm{H}_{\text {max }}$ called as energy product which gives area of the largest rectangle in the second quadrant of the hysteresis loop.

25. Ans: (c)

Sol: Given data:

$$
\chi_{\mathrm{m}}=6.8 \times 10^{-5}
$$

Relative permeability $\mu_{\mathrm{r}}=1+\chi_{\mathrm{m}}$
$\mu_{\mathrm{r}}=1+6.8 \times 10^{-5}$
$\mu_{\mathrm{r}}=1.000068$

$$
\text { Permeability } \begin{aligned}
\mu & =\mu_{\mathrm{r}} \mu_{0} \\
& =(1.000068)\left(4 \pi \times 10^{-7}\right) \\
& =1.256 \times 10^{-6} \\
\mu & =12.56 \times 10^{-7}
\end{aligned}
$$

26. Ans: (c)

27. Ans: (c)

Sol: Permalloy is a soft magnetic material. If the temperature of material is more than curie's temperature, then the para magnetic material converts into dia magnetic material.
28. Ans: (b)

Sol: $\mu_{\mathrm{r}}=\chi+1$ for paramagnetic materials susceptibility is positive but very small hence relative permeability slightly greater than unity.
29. Ans: (d)

Sol: Aluminium metal matrix finds application in aerospace, thermal management areas, industrial products, and automotive applications such as engine piston, brake etc.
30. Ans: (d)

Sol: The maximum average power transfer to the load, $P_{\text {max }}=\frac{\left|V_{T h}^{2}\right|}{4 R_{T h}}$

$$
P_{\max }=\frac{(20)^{2}}{4 \times 10}=10 \mathrm{~W}
$$

31. Ans: (d)

Sol: $\mathrm{V}(\mathrm{t})=120 \cos \left(100 \pi \mathrm{t}-20^{\circ}\right)$

$$
\begin{aligned}
\Rightarrow \mathrm{V} & =120 \angle-20^{\circ} \\
\mathrm{i}(\mathrm{t}) & =4 \cos \left(100 \pi \mathrm{t}+10^{\circ}\right) \Rightarrow \mathrm{I}=4 \angle 10^{\circ} \\
\therefore \mathrm{Z} & =\frac{\mathrm{V}}{\mathrm{I}}=\frac{120 \angle-20^{\circ}}{4 \angle 10^{\circ}}=\frac{120}{4} \angle-30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& Z=30 \angle-30^{\circ} \\
& Z=30 \cos \left(30^{\circ}\right)-j 30 \sin \left(30^{\circ}\right) \\
& Z=15 \sqrt{3}-j 15
\end{aligned}
$$

Resistor and capacitor connected in series
$\therefore \mathrm{R}=15 \sqrt{3} \Omega$

$$
X_{C}=\frac{1}{\omega C}=15 \Omega
$$

$$
\Rightarrow \mathrm{C}=\frac{1}{15 \times \omega}
$$

$$
\mathrm{C}=\frac{1}{15 \times 100 \pi}=\frac{1}{1500 \pi} \mathrm{~F}
$$

32. Ans: (d)

Sol:

By KVL, $32-2 \mathrm{I}_{1}-30 \mathrm{I}_{1}=0$
$\Rightarrow 32=32 \mathrm{I}_{1} \Rightarrow \mathrm{I}_{1}=1 \mathrm{~A}$
Power dissipated in 10Ω resistor

$$
\begin{aligned}
& =\left(3 \mathrm{I}_{1}\right)^{2} \times 10 \\
& =9 \times 10 \\
& =90 \mathrm{watts}
\end{aligned}
$$

33. Ans: (d)

Sol: We know that for parallel resonance circuit impedance is maximum at resonance frequency.
\therefore Here at 2.5 kHz the impedance is maximum.

So, $\mathrm{f}_{0}=2.5 \times 10^{3} \mathrm{~Hz}$

$$
\begin{aligned}
\therefore \omega_{0}=2 \pi \mathrm{f}_{0} & =2 \pi \times 2.5 \times 10^{3} \\
& =5000 \pi \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

34. Ans: (a)

Sol:

For ideal transform, $\quad \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{N}_{1}}{\mathrm{~N}_{2}}=\frac{1}{\mathrm{n}}$ \&
$\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{-\mathrm{N}_{2}}{\mathrm{~N}_{1}}=-\mathrm{n}$
$\Rightarrow \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{1}{\mathrm{n}} \quad \Rightarrow \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=-\mathrm{n}$
$\Rightarrow \mathrm{V}_{1}=\frac{1}{\mathrm{n}} \mathrm{V}_{2} \ldots$.
(1) $\Rightarrow I_{2}=-\frac{1}{n} I_{1}$

Now compare equation (1) and (2) with the general equation of h-parameters
i.e., $V_{1}=h_{11} I_{1}+h_{12} V_{2}$
$\mathrm{I}_{2}=\mathrm{h}_{21} \mathrm{I}_{1}+\mathrm{h}_{22} \mathrm{~V}_{2}$
$\therefore \mathrm{h}_{11}=0, \mathrm{~h}_{12}=\frac{1}{\mathrm{n}}$
$\mathrm{h}_{21}=-\frac{1}{\mathrm{n}}, \mathrm{h}_{22}=0$
$[h]=\left[\begin{array}{cc}0 & 1 / n \\ -1 / n & 0\end{array}\right]$
35. Ans: (d)

Sol: $\mathrm{R}_{\mathrm{CB}}=20+(40 \| 40)+20$

$$
=20+20+20
$$

$\mathrm{R}_{\mathrm{CB}}=60 \Omega$

36. Ans: (d)

Sol: The general form of g-parameters are
$\mathrm{I}_{1}=\mathrm{g}_{11} \mathrm{~V}_{1}+\mathrm{g}_{12} \mathrm{I}_{2}$
$\mathrm{V}_{2}=\mathrm{g}_{21} \mathrm{~V}_{1}+\mathrm{g}_{22} \mathrm{I}_{2}$

Apply KCL at node ' 1 ',
$I_{1}=\frac{S}{2} V_{1}+5 I_{2}$
Apply KVL to loop '2',
$\mathrm{V}_{2}=10 \mathrm{~V}_{1}+2 \mathrm{sI}_{2}$
By comparing equation (1) and equation (2)
With general equation
We get, $[\mathrm{g}]=\left[\begin{array}{cc}\frac{\mathrm{s}}{2} & 5 \\ 10 & 2 \mathrm{~s}\end{array}\right]$
37. Ans: (a)

Sol: f-cut-set 1: $[1,6]$
f-cut-set 4: [2, 3, 4]
f-cut-set 5: [2, 3, 5, 6, 7]

f-cut-set matrix:

f-cut-set	Branches \rightarrow						
\downarrow	1	2	3	4	5	6	7
1	1	0	0	0	0	1	0
4	0	-1	1	1	0	0	0
5	0	-1	1	0	1	-1	-1

38. Ans: (a)
39. Ans: (a)

Sol:

Using voltage division method,

$$
\begin{aligned}
\mathrm{V}_{0} & =\frac{5 \mathrm{i}_{0} \times 8}{8+2} \\
\mathrm{~V}_{0} & =\frac{40 \mathrm{i}_{0}}{10} \\
\Rightarrow \mathrm{i}_{0} & =\frac{\mathrm{V}_{0}}{4}
\end{aligned}
$$

By KCL,

$$
\begin{aligned}
12 & =\mathrm{i}_{0}+\frac{\mathrm{i}_{0}}{6}+\frac{\mathrm{v}_{0}}{8} \\
12 & =\frac{\mathrm{V}_{0}}{4}+\frac{\mathrm{V}_{0}}{24}+\frac{\mathrm{V}_{0}}{8}\left(\because \mathrm{i}_{0}=\frac{\mathrm{V}_{0}}{4}\right) \\
12 & =\left(\frac{6+1+3}{24}\right) \mathrm{V}_{0} \\
\mathrm{~V}_{0} & =\frac{12 \times 24}{10} \\
\mathrm{~V}_{0} & =28.8 \mathrm{~V}
\end{aligned}
$$

40. Ans: (c)

Sol: Here the product of opposite arms are same, so using bridge balance condition the circuit can be represented as

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{eq}}=\frac{20}{2}=10 \Omega \\
& \mathrm{G}_{\mathrm{eq}}=\frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{1}{10}=0.1 \mho
\end{aligned}
$$

41. Ans: (b)

Sol: Using voltage division method,

$$
\begin{aligned}
& \mathrm{V}_{0}=\frac{\mathrm{V}_{\mathrm{s}}\left(\mathrm{R}_{2} / / 5 \mathrm{k}\right)}{\mathrm{R}_{1}+\left(\mathrm{R}_{2} / / 5 \mathrm{k}\right)} \\
& \Rightarrow \frac{\mathrm{R}_{2} / / 5 \mathrm{k}}{\mathrm{R}_{1}+\left(\mathrm{R}_{2} / / 5 \mathrm{k}\right)}=\frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{s}}}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \frac{\mathrm{R}_{2} / / 5 \mathrm{k}}{\mathrm{R}_{1}+\left(\mathrm{R}_{2} / / 5 \mathrm{k}\right)}=0.8 \tag{1}
\end{equation*}
$$

Here, $\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\left(\mathrm{R}_{2} / / 5 \mathrm{~K}\right)$
$\Rightarrow \mathrm{R}_{1}+\left(\mathrm{R}_{2} / / 5 \mathrm{~K}\right)=50 \mathrm{~K}$
From equation (1) and equation (2)
$\frac{\mathrm{R}_{2} / / 5 \mathrm{~K}}{50 \mathrm{~K}}=0.8$
$\mathrm{R}_{2} / / 5 \mathrm{~K}=40 \mathrm{~K}$
$\frac{5 \mathrm{R}_{2}}{5+\mathrm{R}_{2}}=40$
$5 \mathrm{R}_{2}=40 \times 5+40 \mathrm{R}_{2}$
$40 R_{2}-5 R_{2}=-40 \times 5$
$\mathrm{R}_{2}=\frac{-40 \times 5}{35}=\frac{-40}{7}$
$\mathrm{R}_{2}=\frac{-40}{7} \mathrm{k} \Omega$
42. Ans: (b)

Sol: We know $\mathrm{R}_{\mathrm{Y}}=\frac{\mathrm{R}_{\Delta}}{3}$

$$
\mathrm{R}_{\mathrm{Y}}=\frac{\mathrm{R} / 2}{3}=\frac{\mathrm{R}}{6} \Omega
$$

43. Ans: (c)
44. Ans: (a)
45. Ans: (c)

Sol: In a series RLC circuit

At resonance condition $I_{m}=\frac{V_{m}}{R}$
At lower cut off frequency,

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{I}}{}=\frac{\mathrm{I}_{\mathrm{m}}}{\sqrt{2}} \\
& \sqrt{\mathrm{R}^{2}+\left(\omega \mathrm{L}-\frac{1}{\omega C}\right)^{2}}
\end{aligned}=\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{2} \mathrm{R}}
$$

At lower cut off frequency
$\omega L-\frac{1}{\omega c}=-R$
Power factor angle $\phi=\tan ^{-1}\left(\frac{\omega L-\frac{1}{\omega C}}{R}\right)$

$$
=-45^{\circ}
$$

\therefore Power factor $=\cos \phi=0.707$ leading

$$
\text { (} \because \text { capacitive nature) }
$$

46. Ans: (c)

Sol: Here, voltage across capacitor, voltage across resistor
$\Rightarrow \mathrm{V}_{\mathrm{c}}(\mathrm{t})=\mathrm{V}_{\mathrm{R}}(\mathrm{t})=\mathrm{V}_{0} \mathrm{e}^{-\mathrm{t} / \tau}$ Volts
Where $\mathrm{V}_{0}=5$ Volts
$\tau=$ time constant
$i_{R}(t)=\frac{V_{R}(t)}{R}=\frac{V_{0}}{R} e^{-t / \tau}$ amperes

The energy absorbed by the resistor up to
time t is $W_{R}(t)=\int_{0}^{t} V_{R}(t) i_{R}(t) d t$

$$
=\int_{0}^{t} \frac{V_{0}^{2}}{R} e^{-\frac{2 t}{\tau}} d t
$$

$$
=-\left.\frac{\tau \mathrm{V}_{0}^{2}}{2 \mathrm{R}} \mathrm{e}^{-\frac{2 \mathrm{t}}{\tau}}\right|_{0} ^{\mathrm{t}}
$$

$\Rightarrow \mathrm{W}_{\mathrm{R}}(\mathrm{t})=\frac{1}{2} \mathrm{CV}_{0}^{2}\left(1-\mathrm{e}^{-\frac{2 \mathrm{t}}{\tau}}\right)$
For $t=2 \tau$
$\mathrm{W}_{\mathrm{R}}(2 \tau)=\frac{1}{2} \times 25 \times 4\left(1-\mathrm{e}^{-4}\right)$
$\Rightarrow \mathrm{W}_{\mathrm{R}}(2 \tau)=50\left(1-\mathrm{e}^{-4}\right)$ joules
47. Ans: (d)

Sol: Circuit at $\mathbf{t}=\mathbf{0}^{-}$

Here, $\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=\frac{10 \times 10}{10+5}$
$\Rightarrow \mathrm{i}_{\mathrm{L}}\left(\mathrm{O}^{+}\right)=\frac{20}{3}$
\therefore Initial energy stored in the inductor is,

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{L}}(0)=\frac{1}{2} \mathrm{Li}^{2}(0) \\
& \mathrm{W}_{\mathrm{L}}(0)=\frac{1}{2} \times 2 \times\left(\frac{20}{3}\right)^{2}
\end{aligned}
$$

$\Rightarrow \mathrm{W}_{\mathrm{L}}(0)=\frac{400}{9}$ Joules
48. Ans: (b)

Sol: Circuit at $\mathbf{t}=\mathbf{0}^{-}$

By nodal analysis:

$$
\begin{aligned}
& \frac{\mathrm{V}-10}{2}+\frac{\mathrm{V}}{3}+\frac{\mathrm{V}}{3}=0 \\
& \Rightarrow \mathrm{~V}\left(\frac{1}{2}+\frac{2}{3}\right)=5 \\
& \Rightarrow \frac{7 \mathrm{~V}}{6}=5 \\
& \mathrm{~V}=\frac{30}{7} \\
& \therefore \mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=\frac{30 / 7}{3}=\frac{10}{7} \mathrm{~A}
\end{aligned}
$$

Circuit at $\mathbf{t}=\mathbf{0}^{+}$:

By KVL, $-\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)-\frac{30}{7}-\frac{30}{7}=0$
$\Rightarrow \mathrm{V}_{\mathrm{L}}\left(\mathrm{O}^{+}\right)=-\frac{60}{7}$ volts

HEARTY CONGRATULATIONS
 TO OUR ESE - 2019 TOP RANKERS

TOTAL SELECTIONS in Top 10: 33

(EE: 9, E\&T: 8, ME: 9, CE: 7) and many more...

 dIGITAL CLASSES

 dIGITAL CLASSES for
 ESE 2020/2021
 General Studies \&
 Engineering Aptitude
 BATE 2020/2021
 Computer Science \&
 Information Technology

49. Ans: (d)

Sol: We know, $\mathrm{R}_{\mathrm{Y}}=\frac{\mathrm{R}_{\Delta}}{3}$ (for three arms have equal resistance)
$\Rightarrow R_{\Delta}=3 R_{Y}$
The given circuit is simplified as

$\therefore \mathrm{R}_{\mathrm{eq}}=\frac{3}{2} \| 3=\frac{\frac{3}{2} \times 3}{\frac{3}{2}+3}$
$\mathrm{R}_{\mathrm{eq}}=\frac{9}{2} \times \frac{2}{9}=1 \Omega$
50. Ans: (a)

Sol: Voltage across the capacitor at resonance

$$
\begin{aligned}
V_{c} & =-j Q V_{m} \\
\Rightarrow V_{c} & =-j 25 \times 20 \\
& =-j 500 \text { volts. }
\end{aligned}
$$

51. Ans: (a)

Sol: Complex power, $\mathrm{S}=\frac{1}{2} \mathrm{VI}^{*}$

$$
=\frac{1}{2} \times 20 \angle 30^{\circ} \times 50 \angle-60^{\circ}
$$

$$
\begin{aligned}
& =\frac{20 \times 50}{2} \angle 30^{\circ}-60^{\circ} \\
& =500 \angle-30^{\circ}
\end{aligned}
$$

Average real power , $\mathrm{P}=500 \cos 30^{\circ}$

$$
=250 \sqrt{3} \mathrm{watts}
$$

52. Ans: (b)

Sol: $v(t)=225 \cos \left(5 t+30^{\circ}\right) V$

$$
\begin{aligned}
\mathrm{i}(\mathrm{t}) & =2 \cos \left(5 \mathrm{t}+60^{\circ}-90^{\circ}\right) \mathrm{A} \\
& =2 \cos \left(5 \mathrm{t}-30^{\circ}\right) \mathrm{A} \\
\therefore \mathrm{~V} & =225 \angle 30^{\circ} \\
\quad \mathrm{I} & =2 \angle-30^{\circ}
\end{aligned}
$$

\therefore Complex power, $\mathrm{S}=\frac{1}{2} \mathrm{VI}^{*}$

$$
=\frac{1}{2} \times 225 \angle 30^{\circ} \times 2 \angle 30^{\circ}
$$

Average real power, $\mathrm{P}=\frac{225 \times 2}{2} \cos 60^{\circ}$

$$
\begin{aligned}
& =225 \cos 60^{\circ} \\
& =225 \times \frac{1}{2} \\
& =112.5 \mathrm{watts}
\end{aligned}
$$

53. Ans: (d)

Sol: Let $R_{2}=R_{3}=R$
So, $\mathrm{R}_{1}=2 \mathrm{R} \quad\left(\because \mathrm{R}_{1}=2 \mathrm{R}_{3}\right)$

Using voltage division method,
$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{s}} \times \frac{\mathrm{R} / 2}{\frac{\mathrm{R}}{2}+2 \mathrm{R}}$
$\Rightarrow \frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{S}}}=\frac{\mathrm{R} / 2}{\frac{\mathrm{R}}{2}+2 \mathrm{R}}$
$\Rightarrow \frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{S}}}=\frac{\mathrm{R}}{\mathrm{R}+4 \mathrm{R}}$
$\Rightarrow \frac{\mathrm{V}_{0}}{\mathrm{~V}_{\mathrm{S}}}=\frac{1}{5}=0.2$
54. Ans: (b)

Sol:

$x(t)=\left\{\begin{array}{l}4 \ldots \ldots .0<t<T / 2 \\ 0 \ldots \ldots . . T / 2<t<T\end{array}\right.$
Rms value of $x(t)$ is
$X_{\text {rms }}=\sqrt{\frac{1}{T} \int_{0}^{T} \mathrm{X}^{2}(\mathrm{t}) \mathrm{dt}}$
$X_{\mathrm{rms}}=\sqrt{\frac{1}{\mathrm{~T}}\left[\int_{0}^{\mathrm{T} / 2}(4)^{2} \mathrm{dt}+\int_{\mathrm{T} / 2}^{\mathrm{T}}(0)^{2} \mathrm{dt}\right]}$
$\mathrm{X}_{\mathrm{rms}}=\sqrt{\frac{1}{\mathrm{~T}}\left[16\left(\frac{\mathrm{~T}}{2}-0\right)+0\right]}$
$\mathrm{X}_{\mathrm{rms}}=\sqrt{8}=2 \sqrt{2}$

55. Ans: (c)

Sol: For parallel RLC circuit, resonant frequency is
$\omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}$
And Bandwidth $(\mathrm{BW})=\frac{\omega_{0}}{\mathrm{Q}}$
$\mathrm{Q}=\frac{\omega_{0}}{\mathrm{BW}}=\frac{\omega_{0}}{1 / \mathrm{RC}}(\mathrm{BW}=1 / \mathrm{RC}$ for parallel
RLC circuit)
$\mathrm{Q}=\omega_{0} \mathrm{RC}$
56. Ans: (a)

Sol: For $\mathrm{t}<0$, the circuit is

$$
\mathrm{i}_{\mathrm{x}}\left(0^{-}\right)=\frac{10}{10}=1 \mathrm{~A}
$$

57. Ans: (a)

Sol: The inference can be drawn from Reciprocity theorem.
58. Ans: (a)

Sol: We know, when two, 2-port networks are connected in parallel, their individual Yparameters gets added.
\therefore First, we need to convert given ABCD parameters to Y-parameters.

For 2-port network
Y-parameters are
$\left.\begin{array}{l}\mathrm{I}_{1}=\mathrm{Y}_{11} \mathrm{~V}_{1}+\mathrm{Y}_{12} \mathrm{~V}_{2} \\ \mathrm{I}_{2}=\mathrm{Y}_{21} \mathrm{~V}_{1}+\mathrm{Y}_{22} \mathrm{~V}_{2}\end{array}\right\}$
ABCD parameters

$$
\left.\begin{array}{l}
\mathrm{V}_{1}=\mathrm{AV}_{2}-\mathrm{BI}_{2} \\
\mathrm{I}_{1}=\mathrm{CV}_{2}-\mathrm{DI}_{2} \tag{2}
\end{array}\right\}
$$

Make $\mathrm{V}_{2}=0$ to find $\mathrm{Y}_{11} \& \mathrm{Y}_{21}$
Equation (2) becomes $\quad \mathrm{V}_{1}=-\mathrm{BI}_{2}$

$$
\begin{aligned}
& \therefore \mathrm{Y}_{11}=-\left.\frac{\mathrm{I}_{1}}{\mathrm{~V}_{1}}\right|_{\mathrm{V}_{2}=0}=\frac{\mathrm{DI}}{2} \\
& \mathrm{D} \\
& \mathrm{Y}_{21}=\left.\frac{\mathrm{I}_{2}}{\mathrm{~V}_{1}}\right|_{\mathrm{V}_{2}=0}=\frac{-1}{\mathrm{~B}}
\end{aligned}
$$

Similarly, $\mathrm{V}_{1}=0$, to find $\mathrm{Y}_{12} \& \mathrm{Y}_{22}$
\therefore from equation (2) $\mathrm{AV}_{2}=\mathrm{BI}_{2} \Rightarrow$
$V_{2}=\frac{B}{A} I_{2}$
$\mathrm{I}_{1}=\mathrm{CV}_{2}-\mathrm{DI}_{2}$
$\mathrm{I}_{1}=\mathrm{C} \frac{\mathrm{B}}{\mathrm{A}} \mathrm{I}_{2}-\mathrm{DI}_{2}=\frac{\mathrm{CB}-\mathrm{DA}}{\mathrm{A}} \mathrm{I}_{2}$
$I_{1}=\frac{B C-A D}{A} I_{2}$
But $\mathrm{I}_{2}=\frac{\mathrm{A}}{\mathrm{B}} \mathrm{V}_{2}$
$\Rightarrow \mathrm{I}_{1}=\frac{\mathrm{BC}-\mathrm{AD}}{\mathrm{A}} \frac{\mathrm{A}}{\mathrm{B}} \mathrm{V}_{2}$
$\Rightarrow \mathrm{I}_{1}=(\mathrm{BC}-\mathrm{AD}) \mathrm{V}_{2}$
$\therefore Y_{12}=\left.\frac{\mathrm{I}_{1}}{\mathrm{~V}_{2}}\right|_{\mathrm{V}_{1}=0}=\frac{\mathrm{BC}-\mathrm{AD}}{\mathrm{B}}$
And $\quad I_{1}=\frac{B C-A D}{B} I_{2}$ put this value in equation (3)

$$
\begin{aligned}
& \frac{B C-A D}{A} I_{2}=\frac{B C-A D}{B} V_{2} \\
& I_{2}=\frac{A}{B} V_{2} \Rightarrow Y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}=0}=\frac{A}{B}
\end{aligned}
$$

Y-parameter matrix in terms of ABCD parameter is
$Y_{T}=\left[\begin{array}{cc}\frac{D}{B} & \frac{B C-A D}{B} \\ \frac{-1}{B} & \frac{A}{B}\end{array}\right]$

Y_{T} or $\mathrm{Y}_{\text {eq }}=\mathrm{Y}_{\mathrm{A}}+\mathrm{Y}_{\mathrm{B}}$
$=\left[\begin{array}{cc}\frac{D}{B} & \frac{B C-A D}{B} \\ \frac{-1}{B} & \frac{A}{B}\end{array}\right]+\left[\begin{array}{cc}\frac{D}{B} & \frac{B C-A D}{B} \\ \frac{-1}{B} & \frac{A}{B}\end{array}\right]$
Y_{T} or $Y_{e q}=\left[\begin{array}{cc}2 \frac{D}{B} & 2 \frac{(B C-A D)}{B} \\ \frac{-2}{B} & \frac{2 A}{B}\end{array}\right]$
Now, again connect back to ABCD parameters

$$
\left.\begin{array}{c}
I_{1}=\frac{2 D}{B} V_{1}+2 \frac{(B C-A D)}{B} V_{2} \tag{4}\\
I_{2}=-\frac{2}{B} V_{1}+\frac{2 A}{B} V_{2}
\end{array}\right\}
$$

Make $\mathrm{V}_{2}=0 \quad \mathrm{I}_{1}=\frac{2 \mathrm{D}}{\mathrm{B}} \mathrm{V}_{1}$

$$
I_{2}=-\frac{2}{B} V_{1}
$$

$\mathrm{B}_{\mathrm{T}}=-\left.\frac{\mathrm{V}_{1}}{\mathrm{I}_{2}}\right|_{\mathrm{V}_{2}=0}=\frac{\mathrm{B}}{2}=0.5 \mathrm{~B}$
$\mathrm{D}_{\mathrm{T}}=-\left.\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}\right|_{\mathrm{V}_{2}=0}=\frac{2 \mathrm{D} / \mathrm{B}}{2 / \mathrm{B}}=\mathrm{D}$
Make $\mathrm{I}_{2}=0$, equation (4) becomes

$$
\begin{aligned}
V_{1}=A V_{2} & \& I_{1}=\frac{2 D}{B} V_{1}+2 \frac{(B C-A D)}{B} V_{2} \\
& =\frac{2 D}{B} A V_{2}+\frac{(2 B C-2 A D)}{B} V_{2} \\
& =\left(\frac{2 A D+2 B C-2 A D}{B}\right) V_{2}
\end{aligned}
$$

$$
\mathrm{I}_{1}=2 \mathrm{CV}_{2}
$$

$$
\therefore \mathrm{A}_{\mathrm{T}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\mathrm{A}
$$

$$
\mathrm{C}_{\mathrm{T}}=\frac{\mathrm{I}_{1}}{\mathrm{~V}_{2}}=2 \mathrm{C}
$$

$[\mathrm{T}]=\left[\begin{array}{ll}\mathrm{A}_{\mathrm{T}} & \mathrm{B}_{\mathrm{T}} \\ \mathrm{C}_{\mathrm{T}} & \mathrm{D}_{\mathrm{T}}\end{array}\right]=\left[\begin{array}{cc}\mathrm{A} & 0.5 \mathrm{~B} \\ 2 \mathrm{C} & \mathrm{D}\end{array}\right]$
59. Ans: (d)

Sol: g-parameter for 2-port network
$\mathrm{I}_{1}=\mathrm{g}_{11} \mathrm{~V}_{1}+\mathrm{g}_{12} \mathrm{I}_{2}$
$\mathrm{V}_{2}=\mathrm{g}_{21} \mathrm{~V}_{1}+\mathrm{g}_{22} \mathrm{I}_{2}$

$$
\mathrm{g}_{21}=\left.\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right|_{\mathrm{I}_{2}=0}
$$

Given equation $\mathrm{V}_{1}=20 \mathrm{I}_{1}+5 \mathrm{~V}_{2}$

$$
\mathrm{I}_{2}=2 \mathrm{I}_{1}+\mathrm{V}_{2}
$$

Make $\mathrm{I}_{2}=0 \quad 2 \mathrm{I}_{1}=-\mathrm{V}_{2}$
$\Rightarrow \mathrm{I}_{1}=-\frac{1}{2} \mathrm{~V}_{2}$
$\therefore \mathrm{V}_{1}=20\left(-\frac{1}{2} \mathrm{~V}_{2}\right)+5 \mathrm{~V}_{2}$

$$
=(-10+5) V_{2}
$$

$\mathrm{V}_{1}=-5 \mathrm{~V}_{2}$
$\therefore \mathrm{g}_{21}=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{-1}{5}=-0.2$
60. Ans: (b)

Sol: Dependent current source 0.25 V 0 , converted to voltage source, then circuit becomes

Apply KCL at node (1)
$\frac{\mathrm{V}_{1}}{3}+\frac{\mathrm{V}_{1}-18}{6}+\frac{\mathrm{V}_{1}-0.5 \mathrm{~V}_{0}}{2}=0$
But $V_{1}=V_{0}$
$2 \mathrm{~V}_{1}+\mathrm{V}_{1}-18+3 \mathrm{~V}_{1}-1.5 \mathrm{~V}_{1}=0$
$4.5 \mathrm{~V}_{1}=18$
$\mathrm{V}_{1}=4 \mathrm{~V}$
But $\mathrm{I}_{\mathrm{N}}=$ Isc $=\frac{\frac{\mathrm{V}_{1}-0.5 \mathrm{~V}_{0}}{2}}{2}$

$$
\begin{aligned}
& =\frac{\mathrm{V}_{1} / 2}{2}\left(\because \mathrm{~V}_{1}=\mathrm{V}_{0}\right) \\
& =\frac{\mathrm{V}_{1}}{4}=\frac{4}{4}=1 \\
& \mathrm{I}_{\mathrm{N}}=1 \mathrm{~A}
\end{aligned}
$$

61. Ans: (a)

Sol: No. of possible trees $=\mathrm{n}^{\mathrm{n}-2}$

$$
\begin{aligned}
& =4^{4-2} \\
& =4^{2} \\
& =16
\end{aligned}
$$

62. Ans: (b)

Sol: R should be minimum in the given options 5 Ω is minimum.
63. Ans: (d)

Sol: In star connection $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{ph}}=\frac{\mathrm{V}_{\mathrm{L}}}{\sqrt{3} \mathrm{R}}=12 \mathrm{~A}$
$\Rightarrow \frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{R}}=\sqrt{3} \times 12 \mathrm{~A}$
In Δ connection $\sqrt{3} \mathrm{I}_{\mathrm{ph}}=\mathrm{I}_{\mathrm{ph}} ; \mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{ph}}$

$$
\begin{aligned}
\mathrm{I}_{\mathrm{ph}} & =\frac{\mathrm{V}_{\mathrm{L}}}{\mathrm{R}} \\
\mathrm{I}_{\mathrm{L}} & =\frac{\sqrt{3} \times \mathrm{V}_{\mathrm{L}}}{\mathrm{R}}=\sqrt{3} \times \sqrt{3} \times 12 \\
& =36 \mathrm{~A}
\end{aligned}
$$

64. Ans: (d)

Sol: Rated current of each bulb

$$
=\frac{\text { Power }}{\text { Voltage }}=\frac{40}{100}=0.4 \mathrm{~A}
$$

Number of bulbs $=$ $\frac{\text { Triggering Current }}{\text { Rated Current of each bulb }}=\frac{4}{0.4}=10$
65. Ans: (c)

Sol: Statement (I) is correct.
By using substitution theorem, we replace an impedance branch by another branch with different circuit components, without disturbing the voltage-current relationship in the network. So, statement (II) is wrong
66. Ans: (b)

Sol: Let the instantaneous voltage and current are

$$
\begin{align*}
\mathrm{v}(\mathrm{t}) & =\mathrm{V}_{\mathrm{m}} \cos \left(\omega \mathrm{t}+\theta_{\mathrm{v}}\right) \\
\mathrm{i}(\mathrm{t}) & =\mathrm{I}_{\mathrm{m}} \cos \left(\omega \mathrm{t}+\theta_{\mathrm{i}}\right) \\
\mathrm{p}(\mathrm{t}) & =\mathrm{v}(\mathrm{t}) \mathrm{i}(\mathrm{t}) \\
& =\mathrm{V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos \left(\omega \mathrm{t}+\theta_{\mathrm{v}}\right) \cos \left(\omega \mathrm{t}+\theta_{\mathrm{i}}\right) \\
\mathrm{P}(\mathrm{t}) & =\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos \left(\theta_{\mathrm{v}}-\theta_{\mathrm{i}}\right)+\frac{1}{2} \mathrm{~V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \cos \left(2 \omega t+\theta_{\mathrm{v}}+\theta_{\mathrm{i}}\right) \tag{1}
\end{align*}
$$

The $2^{\text {nd }}$ part of the above expression is a sinusoidal function whose frequency is 2ω (changes with time)

SSC-JE (Paper-II) MAINS 2018

OFFLINE TEST SERIES

Streams: Civil | Electrical | Mechanical

2. FULL LENGTH MOCK TEST-1

Exam Date: 01.12.2019
Exam Timing: 6:00 pm to 8:00 pm

5. FULL LENGTH MOCK TEST-2

Exam Date: 15.12.2019
Exam Timing: 6:00 pm to 8:00 pm
\checkmark All tests will be conducted in Question Paper Booklet format.
\checkmark Test Series will be conducted at all our centres.

(C) 040-48539866 / 040-40136222 testseries@aceenggacademy.com

ISRO -- -
 ONLINE TEST SERIES

No. of Tests: 15
Subject Wise Tests : 12 | Mock Tests : 3
Indian Space Research Organisation (ISRO)
Recruitment of Scientist/Engineer 'SC'
ELECTRONICS | MECHANICAL | COMPUTER SCIENCE
『 starts from $5^{\text {th }}$ November 2019
All tests will be available till 12-01-2020.
(C) 040-48539866 / 040-40136222 © testseries@aceenggacademy.com
67. Ans: (d)

Sol: Superposition theorem is applicable to linear networks and system. The system with characteristics equation $y=x^{3}$ is a nonlinear system. So, superposition theorem is not applicable to this system
68. Ans: (b)
69. Ans: (c)
70. Ans: (a)
71. Ans: (d)

Sol: Z_{L} should be equal to $\mathrm{Z}_{\mathrm{S}}{ }^{*}$ and $\eta=50 \%$
$\therefore \mathrm{A}$ is false but R is true.

72. Ans: (c)

Sol: The internal structure of a material gives the information about the arrangement of atoms in a material. Statement I is correct.
The properties of bulk matter of all kinds are dependent of the nature and distribution of imperfections. Statement II is incorrect.
73. Ans: (a)

Sol: Electrical conductivity of an alloy or solid solution decreases with increasing impurity level because of disturbance in periodicity of atoms and due to that collection of e^{-}takes place.
74. Ans: (c)

Sol: When dielectric is subjected to alternating field, the polarization (P) varies, so the dielectric constant.

Dielectric constant $\left(\varepsilon_{\mathrm{r}}^{*}\right)=\varepsilon_{\mathrm{r}}^{1}-\mathrm{i} \varepsilon_{\mathrm{r}}^{11}$
Where $\varepsilon_{\mathrm{r}}^{11}$ is measure of dielectric loss.

75. Ans: (c)

