

ESE | GATE | PSUs

CIVIL ENGINEERING TRANSPORTATION ENGINEERING

Text Book : Theory with worked out Examples and Practice Questions

Transportation Engineering

(Solutions for Text Book Practice Questions)

01. Highway Development and Planning

01. Ans: (d)

Sol:

Deed	Length	Number of with population			T 14:1:4		
Road	(km)	< 2000	2000 - 5000	> 5000	Utility	Utility/km	
Р	20	8	6 NEER/	NC	$8 \times 0.5 + 6 \times 1 + 1 \times 2 = 12$	12/20 = 0.6	
Q	28	19	CIN 8	4	19×0.5+8×1+4×2= 25.5	25.5/28 =0.91	
R	12	40,	5	2	7×0.5+5×1+2×2= 12.5	12.5/12=1.04	
Weightage factor		0.5	1	2			

∴ RQP

02. Ans: (a)

Sol:

Road Lane	Length (cm)	Number of Villages with honiligation ranges				Industrial Product	Utility	Utility/km
		1000-2000	2000-5000	5000-10000	>10000			
Р	300	100	80	Sin ₃₀ e 1	995	200	100×1+80×2+30× 3+6×4+200 =574	574/300 =1.91
Q	400	200	90	00	8	270	$200 \times 1 + 90 \times 2 + 8 \times 4 + 270$ = 682	682/400 =1.70
R	500	240	110	70	10	315	240×1+110×2+70 ×3+10×4+315 =1025	1025/500 =2.05
S	550	248	112	73	12	335	248×1+112×2+73×3 +12×4+335 =1074	1074/550 =1.95
Weightage factor		1	2	3	4			

∴ RSPQ

03. Ans: (b)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-1, 2nd Question -pg: 968)

Engineering Publications	2 ESE-Postal Coaching Solutions
04. Highway Geometric Design - Gradients	Conventional Practice Solutions
Common data for Questions 01 & 02	01. Sol: (a) For WBM district road with heavy
01. Ans: (b)	rainfall
Sol: Height of crown $=\frac{W}{2n}=\frac{3.5\times1000}{2\times60}$	Height of crown with respect to edges = $\frac{eW}{2}$
= 29.2 mm	$e = \frac{1}{33}$ W = 3.5 m
02. Ans: (d)	
Sol: Height of crown $=\frac{W}{2n}=\frac{3.5\times1000}{2\times40}$	Height of crown w.r.to edges = $\frac{1}{33} \times \frac{3.5}{2}$
= 43.75 mm	= 0.053 m
	(b) For state highway of concrete
04. Ans: (a)	pavement
Sol: G.C = $\frac{30 + R}{R}$	Height of crown w.r.to edges = $\frac{eW}{2}$
$G.C = \frac{30 + 50}{50} = 1.6$	$e = \frac{1}{50} W = 7 m$
Max $GC = \frac{75}{50} = 1.5$ $\therefore GC = 1.5$ Sin	Height of crown w.r.to edges = $\frac{1}{50} \times \frac{7}{2}$
The compensated gradient = $6\% - 1.5$	= 0.07 m
= 4.5%	
05. Ans: (a)	05. Highway Geometric Design – Sight Distances
Sol: Height of crown $=\frac{W}{2n}=7.5$ cm	01. Ans: (c)
W	Sol: $B.D = 16 m$,
$\frac{W}{2 n} = 7.5$	f = 0.4
$2 n = \frac{9 \times 100}{7.5}$	$\frac{\mathrm{V}^2}{254\mathrm{f}} = 16 \implies \frac{\mathrm{V}^2}{254 \times 0.4} = 16$
$n = 60 \Longrightarrow 1$ in 60	$V = 40.3 \text{ kmph} \approx 40 \text{ kmph}$

02. Ans: (c) Sol: V = 30 kmph, f = 0.4 $BD_{down} = 2 BD_{up}$ $\frac{V^2}{254(f - 0.01n)} = \frac{2 \times V^2}{254(f + 0.01n)}$ f + 0.01 n = 2 f - 0.02n0.03 n = 0.4n = 13.33%

03. Ans: (b)

Sol: V = 72 kmph, n = 2%,

f = 0.15,

t =1.5 sec

$$SSD = 0.278 \, \text{Vt} + \frac{\text{V}^2}{254(\text{f} + 0.01\text{n})^2}$$

= 150 m

04. Ans: (b)

Sol: V = 60 kmph t = 2.5 sec ,f = 0.36

$$\frac{0.278 \,\text{Vt}}{\text{V}^2 / 254 (\text{f} + 0.01\text{n})} = \frac{6}{5}$$

$$0.278 \times 60 \times 2.5 = \frac{6}{5} \left[\frac{60^2}{254 (0.36 + 0.01\text{n})} \right]$$

$$n = 4.78 \simeq 4.8$$

05. Ans: (c) Sol: V = 60 kmph, t = 2.5 sec, f = 0.35 $SSD = 0.278 Vt + \frac{V^2}{254 f}$

 $= 0.278 \times 60 \times 2.5 + \frac{60^2}{254 \times 0.35} = 82.1 \text{ m}$

SSD for single two way traffic = $2 \times SSD$ $= 2 \times 82.1 = 164.2 \text{ m}$ 06. Ans: (c) **Sol:** ISD = $2 \times 80 = 160 \text{ m}$ 07. Ans: (83 kmph) Sol: There are 3 phases in the problem 1. Driver lifts foot from accelerator and moves it to brake pedal – the velocity is uniform. 2. Deceleration increases from zero to maximum 3. Braking system locks the wheels and deceleration assumed to be constant until vehicle strikes the stationary vehicle Speed 4 Initial speed nce 1995 ► Time to t_1 t_2 $A = fg = 0.75 \times 9.81 = 7.35 \text{ m/s}^2$ During 1st phase, assume driver reaction time 0.5 sec

$$v_{o} = v_{1} + \frac{a}{2}(t_{1} - t_{o})$$

During 3rd phase, deceleration assumed to be uniform

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

3

Engineering Publications	4	ESE-Postal Coaching Solutions
$v_1 = \sqrt{v_2^2 + 2aS} = \sqrt{11.18^2 + 2 \times 7.35 \times 27.45}$		In question they give it will take 3 sec to red sign
= 22.98 m/s = 82.76 kmph		So
$v_o = 82.76 + \frac{7.35}{2}(0.8 - 0.5)$		Speed of $\frac{20}{40}$ vision driver = $\frac{115}{3}$ m/sec
= 83 kmph		= 138 kmph
08. Ans: (13.6 m)		For speed of $\frac{20}{40}$ vision driver is 58kmph
Sol: $\frac{\mathrm{dv}}{\mathrm{dt}} = 3 - 0.04 \mathrm{v}$		i.e $58 \times \frac{5}{18} = 16.11 \text{ m/sec}$
A = 3, β = 0.04, t = 5 – 0.75 = 4.25, GINER		Velocity = $\frac{D}{T}$
Width of intersection = 7.5 m		$T = \frac{115}{1}$
Equation for distance as a function of time		$T = \frac{115}{16.11}$
$x = \frac{\alpha t}{\beta} - \frac{\alpha}{\beta^2} (1 - e^{-\beta t}) + \frac{v_o}{\beta} (1 - e^{-\beta t})$		T = 7.13 sec
$v_o = initial speed = 0$		10. Ans: 142
$=\frac{3(4.25)}{0.04}-\frac{3}{(0.04)^2}(1-e^{-0.04\times4.25})+0$		Sol: For normal driver with 6/6 vision the
x = 25.62 m		position of sign post is shown below.
Intersection + length of car		Start of zone-y
7.5 + 6.1 = 13.6 m Since	ce 1	995 $A S_1 = 48 \text{ m}$ $S_2 = ?$ B zone-y
∴ He can clear the intersection		S = 174 m
09. Ans: T = 7.13 sec, V = 138 kmph		$S_2 = 174 - 48 = 126 \text{ m}$
Sol:		S_2 = The distance from sign post to the start
sign		of zone-y
20/20 $20/40$ 20		S_1 = Distance traveled by the vehicle during
$\frac{20}{20} \rightarrow 230 \text{ m}$ (115 m)		perception – reaction time for 6/6
20 230 m		vision driver
$\frac{23}{40} \rightarrow x$		S = total distance required to reduce the
x = 115 m		speed to 30 kmph from design speed.

For a driver with 6/9 vision (with defective sight), the distance of sign post should be nearer as compared to driver with normal sight.

$$\therefore \text{ Modified } S_1 = \frac{6}{9} \times 48 = 32 \text{ m}$$

The position of sign post is as shown below

$$A S_1 = 32 m$$

$$S_2 = X = ?$$

$$S = 174 m$$

$$S = 174 m$$

$$S = 174 m$$

$$S = 174 m$$

The distance from modified position of sign post to the start of zone-y (i.e. C'B) = 174 - 32 = 142 m.

11. Ans: 900.79

Sol: Refer previous GATE solutions Book (Cha-2, Two marks 9th Question -pg: 821)

12. Ans: (d)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-5, 5th Question -pg: 977)

13. Ans: (c)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-5, 9th Question -pg: 978)

Conventional Practice Solutions

01.

5

S.S.D = 0.278 Vt +
$$\frac{V^2}{254 \text{ f}}$$

= $(0.278 \times 100 \times 2.4) + \frac{100^2}{254 \times 0.35}$
= $66.72 + 112.49$
= 179.2 m
) Two way traffic on a single lane Road

$$S.S.D = 2 \times \left[0.278 \text{Vt} + \frac{\text{V}^2}{254 \text{ f}} \right]$$
$$= 2 \times 179.2$$
$$= 358.4 \text{ m}$$

02.

ß

Sol: Minimum distance Required = $SSD_1 + SSD_2$

$$= \left(0.278V_{1}t + \frac{V_{1}^{2}}{254 \text{ f n}}\right) + \left(0.278V_{2}t\right) + \left(\frac{V_{2}^{2}}{255 \text{ f n}}\right)$$
$$= \left[(0.278 \times 100 \times 2.5) + \left(\frac{100^{2}}{254 \times 0.33 \times 0.5}\right) + \left(0.278 \times 80 \times 25\right) + \left(\frac{80^{2}}{254 \times 0.33 \times 0.5}\right)\right]$$
$$= 69.5 + 238.6 + 55.6 + 152.7 = 516.4 \text{ m}$$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Transportation Engineering

ACE Engineering Publications	ESE-Postal Coaching Solutions
03. Sol: $SSD_1 = 0.278Vt + \frac{V^2}{254(f+x)}$ (i)	(c) $S = ut + \frac{1}{2}at^{2}$ $7 = \left(60 \times \frac{5}{18}\right) \times 1.5 + \frac{1}{2} \times 9.81(-f) \times 1.5^{2}$
$SSD_2 = 0.278Vt + \frac{V^2}{254(f-x)}$ (ii)	7 = 25 - 11.04 f
Subtracting 2 equations $10 = \frac{V^2}{254(f-x)} - \frac{V^2}{254(f+x)}$	$f = \frac{18}{11.04} = 1.63$
$10 = \frac{V^2}{254} \left[\frac{1}{f - x} - \frac{1}{f + x} \right]$	05. Sol: $v^2 - u^2 = 2as$
$\frac{10 \times 254}{V^2} = \frac{(f+x) - (f-x)}{(f^2 - x^2)}$	$0 - \left(65 \times \frac{5}{18}\right)^2 = 2 \times a \times 25.5$ $-326 = 51 a$
$0.706 = \frac{2x}{0.16 - x^2}$ x = 0.054	$a = -6.392$ $a = -g f \eta$
or x = 5.54%	$-9.81 \times 0.7 \times \eta = -6.392$ $\eta = 0.93$
04. Sol: (a) $v^2 - u^2 = 2gfs$	06. Highway Geometric Design – Overtaking Sight Distance
	Common data for Questions 01, 02 & 03 01. Ans: (c)
277.78 = 113.796 f f = 2.44	Sol: $V = 80$ kmph a = 2.5 kmph/sec $V_b = 50$ kmph $S = 16$ m
(b) $V = \mu + at$	$t = 2 \sec t$
$\mu = -a t$ $\left(60 \times \frac{5}{18}\right) = +g f t$	$T = \sqrt{\frac{14.4 \mathrm{s}}{\mathrm{A}}} = \sqrt{92.16 \mathrm{sec}}$ $= 9.6 \mathrm{sec}$
$16.67 = 9.81 \times f \times 2$ f = 0.85	$OSD = d_1 + d_2$ = 0.278 V _b t + (0.278 V _b T + 2s) = 193.24 m

02. Ans: (d) **Sol:** OSD = $d_1 + d_2 + d_3$ $= 0.278V_{b}t + (0.278V_{b}T + 2s) + 0.278VT$ = 406.74 m03. Ans: (c) Sol: Since division is there $OSD = d_1 + d_2 = 193.24 \text{ m}$ Common data for Questions 04 & 05 04. Ans: (c) **Sol:** V = u + atu = 100 kmph= 27.7 m/s $= 27.7 + 0.8 \times 5$ V = 31.72 m/s $V^2 - u^2 = 2 \times as$ $(31.7)^2 - (27.7)^2 = 2 \times 0.8 \times S$ S = 148.5 mDistance traveled in next 2 sec = 323 - 148.5Since S = 174.5 mNow, u = 31.7 m/s $S = ut + \frac{1}{2} at^2$ $174.5 = (31.7 \times 5) + \left(\frac{1}{2} \times a \times 5^2\right)$ $a = 1.2 \text{ m/sec}^{2}$ 05. Ans: (d) **Sol:** Distance traveled in overtaking process (d₂) $d_2 = (V_b T + 2 s)$ $S_1 = 25 m$ $= (V_h T + S_1 + S_2)$ $S_2 = 20 m$

$$T = \sqrt{\frac{4s}{a}} = 10.6 \text{ sec}$$

d₂ = (0.278 × 100 × 10) + (25 + 20)
= 323 mm

7

Common data for Questions 06 & 07 06. Ans: (c) Sol: OSD = $d_1 + d_2$ $V = 22.22 \text{ m/s } V_b = 16.67 \text{ m/s}$ $a = 0.7 \text{ m/s}^2$ $S = (0.7 V_b + l) = 17.67 \text{ m}$ $T = \sqrt{\frac{4s}{a}} = 10.05 \text{ sec}$ t = 2 secOSD = $d_1 + d_2 + d_3$ $= V_b t + (V_b T + 2s) + VT$ $= 236.21 + (22.22 \times 10.05)$ = 459.521 m $\approx 460 \text{ m}$ 07. Ans: (d)

Sol: Desirable length of OZ = 5 OSD = 5 $(d_1 + d_2 + d_3)$ = 5 ×460 \approx 2300 m

ESE-Postal Coaching Solutions

ACE Engineering Fablications	9 Transportation Engineering
<i>Common data for Questions 04 to 06</i> 04. Ans: (b)	$\frac{b}{2h} = \frac{2.4}{2 \times 4.2} = 0.286 > f$
Sol: $e + f = \frac{V^2}{127 R}$	$\frac{b}{2h} > f$
$e + 0.15 = \frac{100^2}{127 \times 500}$ $\Rightarrow e = 0.00748 = 0.74\%$	 ∴ Lateral skidding occur first 11. Ans: (d) Sol: Refer previous ESE-Obj-(Vol-2) solutions
→ e = 0.00748 = 0.74% 05. Ans: (b)	Book (Cha-6, 9 th Question -pg: 984)
Sol: $f = \frac{V^2}{127 R} = \frac{100^2}{127 \times 500} = 0.157 \simeq 0.16$	12. Ans: (c) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-6, 10 th Question -pg: 984)
06. Ans: (c) Sol: $f = 0$; $e + 0 = \frac{100^2}{127 \times 500}$	Conventional Practice Solutions
$\Rightarrow e = 15.75\%$	01. Sol: (a) $e = \frac{V^2}{225 R}$
07. Ans: (a) Sol: $e = \frac{V^2}{225 R} = \frac{60^2}{225 \times 500} = 0.032 = 3.2\%$	$= \frac{120^2}{225 \times 450}$
08. Ans: (b) Sol: $R_{Ruling} = \frac{V^2}{127(f+e)}$	e = 0.142 but $e \ge 0.07$ So use $e = 0.07$
$=\frac{100^2}{127(0.07+0.13)}$	(b) $e+f = \frac{V^2}{127 R}$ $V = \sqrt{(e+f) \times 127 R}$
$= 393.7 \text{ m} \approx 395 \text{ m}$	$=\sqrt{(0.07+0.15)127\times450}$
09. Ans: (a) Sol: $b = 2.4 \text{ m}$ h = 4.2 m	= 112.1 kmph

09. Set Back Distance and Curve Resistance

01. Ans: (a)

- **Sol:** Set back or the clearance is the distance required from the centre line of horizontal curve to an obstruction on the inner side of the curve to provide adequate sight distance at a horizontal curve.
- 02. Ans: (c)

Sol: $m = \frac{S^2}{8R} \Longrightarrow R = \frac{80^2}{8 \times 10} = 80 m$

Common data for Questions 03 & 04

03. Ans: (c) Sol: L = 180 m S = 80 m L > S $m = \frac{S^2}{8R} = \frac{80^2}{8 \times 360} = 2.22 m$ Width of pavement is not indicated $m = R - R \cos(\alpha/2)$ $\frac{\alpha}{2} = \frac{180S}{2\pi R} = \frac{180 \times 80}{2\pi \times 360} = 6.36$ $m = 360 - 360 \cos(6.36)$ = 2.2 m

04. Ans: (c) Sol: L = 180 m S = 250 m L < S $m = R - R \cos\left(\frac{\alpha}{2}\right) + \frac{S - L}{2} \sin\left(\frac{\alpha}{2}\right)$

$$\frac{\alpha}{2} = \frac{180 \text{ L}}{2 \pi \text{ R}} = \frac{180 \times 180}{2 \pi \times 360} = 14.32$$
$$m = 360 - 360 \cos(14.32)$$

ESE-Postal Coaching Solutions

$$+\frac{250-180}{2}\sin(14.32) = 19.85 \text{ m}$$

Common data for Questions 05 & 06

05. Ans: (c)
Sol: SSD =
$$0.278 \text{ V t} + \frac{\text{V}^2}{254 \text{ f}}$$

= $(0.278 \times 80 \times 2.4) + \frac{80^2}{254 \times 0.355}$
= $124.35 \text{ m} \approx 125 \text{ m}$
06. Ans: (d)
Sol: S = 125 m
 $d = \frac{\text{W}}{4} = \frac{7}{4} = 1.75 \text{ m}$
 $\frac{\alpha}{2} = \frac{180 \text{ S}}{2\pi(\text{R}-\text{d})} = \frac{180 \times 125}{2\pi(200-1.75)} = 18.06$
m = R - (R - d)cos $\left(\frac{\alpha}{2}\right)$
= 11.52 m
m¹ = m - d
= $11.52 \text{ - } 1.75 = 9.77 \text{ m}$
(or)
In approximately
m = $\frac{\text{S}^2}{8\text{R}} = 9.76 \text{ m}$

ACE Engincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

12

Problems on Curve Resistance 01. Sol: Let 'T' is the original Tractive force loss of tractive force = $T(1 - \cos\theta)$ = $T(1 - \cos45^{\circ})$ Ratio of loss of Tractive force to original is = 0.243

02.

Sol: Curve resistance = $T(1 - \cos\theta)$

 $= T(1 - \cos 30^{\circ})$ = 0.134 T

03.

Sol: Curve resistance = $T(1-\cos\theta)$ = $T(1-\cos90^{\circ})$ = 0

Conventional Practice Solutions

01.

2

So set back =
$$R - (R - d) \cos\left(\frac{\alpha}{2}\right)$$

$$\left(\frac{S-L}{2}\right)\sin\left(\frac{\alpha}{2}\right)$$

$$\frac{\alpha}{2} = \frac{180L}{2\pi(R-d)}$$
$$\frac{\alpha}{2} = \frac{180 \times 100}{2\pi \left[500 - \left(3.5 \times 2 + \frac{3.5}{2} \right) \right]^2}$$
$$\frac{\alpha}{2\pi \left[5.83^\circ \right]}$$

$$m = R - (R - d) \cos \left(\frac{\alpha}{2}\right) + \left(\frac{S-L}{2}\right)$$

Transportation Engineering

$$\sin(\frac{\alpha}{2}) = 500 - (500 - 8.75)\cos 5.83 + \left(\frac{200 - 100}{2}\right)\sin 5.83$$

=
$$500 - 488.7 + 5.08$$

= 16.38 (from centre of food)
Distance from inner edge
= $16.38 - 3 \times 3.5$ = 5.88 m

10. Highway Geometric Design – Transition Curves

01. Ans: (d)
Sol:
$$L = \frac{0.0215 V^3}{CR}$$

$$=\frac{1}{0.6 \times 200}$$
 = 38.7 m

Considering N value

$$L = eN (W + W_e) = 0.07 \times 100 (7 + 0.2)$$

$$= 50.4 \text{ m}$$

$$L = \frac{2.7 V^2}{R} = \frac{2.7 \times 60^2}{200} = 48.6 m$$

 \therefore The length of T.C = 50.4 m (from the 3 values maximum value)

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

13

ACE Engineering Publications	14 ESE-Postal Coaching Solutions
02. Ans: (d) Sol: S = $\frac{L^2}{24 R} = \frac{(50.4)^2}{24 \times 200} = 0.53 m$	05. Ans: (c) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-9, 9 th Question -pg: 992)
Common data for Questions 03 & 04	06. Ans: (c) Sol: Refer previous ESE-Obj-(Vol-2) solutions
03. Ans: (c)	Book (Cha-9, 10 th Question -pg: 992)
Sol: C = $\frac{80}{75 + V} = \frac{80}{75 + 80}$	07. Ans: (a)
$= 0.516 \mathrm{m/sec^3}$	Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-9, 11 th Question -pg: 992)
04. Ans: (a)	10 N
Sol: Considering 'C' value	Conventional Practice Solutions
$L = \frac{0.0215 \mathrm{V}^3}{\mathrm{C}\mathrm{R}} = \frac{0.0215 \times 80^3}{0.516 \times 900}$	01.
= 23.7 m	Sol: (i) Minimum sight distance
Considering 'N' value $e = \frac{V^2}{225 R} = \frac{80^2}{225 \times 900} = 0.0316$	$= 0.278vt + \frac{v^2}{254 f}$ [Assume t = 2.5 sec, & f = 0.4]
(for mixed traffic) $L = \frac{e N}{2} (W + W_e)$ Sin	ce 1995 = $(0.278 \times 100 \times 2.5) + \frac{100^2}{254 \times 0.4}$
2 (= 167.9 m
$=\frac{0.0316\times150}{2}\times7=16.59\mathrm{m}$	(ii) Design super elevation
2 Considering terrain	$e = \frac{V^2}{225 R} = \frac{100^2}{225 \times 300}$
$L = \frac{2.7 V^2}{R} = \frac{2.7 \times 80^2}{900} = 19.2 m$	e = 0.148
\therefore Length of T.C = 23.7 m	But e ≯ 0.07 So limit e to 0.07
	Check $e + f = \frac{V^2}{127 R}$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	 1r • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

$0.07 + f = \frac{100^2}{127 \times 300}$	Common data for Q 04 & 05
f = 0.192 > 0.15	04. Ans: (c)
So since reduce the speed or increase the radius of the curve.	Sol: N = $\frac{1}{25} - \left(-\frac{1}{50}\right) = 0.06 = 6\%$
	S = 180 m
11. Highway Geometric Design – Vertical	Take L > SSD
Curves	$L = \frac{NS^2}{4.40} = \frac{0.06 \times 180^2}{4.4} = 441.8 \mathrm{m}$
01. Ans: (b)	INC ≃442 m
Sol: Length of summit parabolic curve, Assume L > S	05. Ans: (b)
	Sol: 6 % \rightarrow 442 m
$L = \frac{NS^2}{\left(\sqrt{2H} + \sqrt{2h}\right)^2}$	$4 \% \rightarrow \frac{4}{6} \times 442 = 294.66 \text{ m} = 294.66$
$= \frac{0.09 \times 120^2}{\left(\sqrt{2 \times 1.5} + \sqrt{2 \times 0.15}\right)^2} = 249 \text{ m}$	
$(\sqrt{2} \times 1.5 + \sqrt{2} \times 0.15)$	06. Ans: (a)
	Sol: Refer previous GATE solutions Book
02. Ans: (d)	(Cha-2.8, Two marks 5 th Question -pg: 859)
Sol: $N = 4 - (-2) = 6\%$ $6\% \rightarrow 150 \text{ nm}$ 4% 150 m -2%	
Since	07. Ans: (b)
$4\% \rightarrow \frac{4}{6} \times 150 = 100 \mathrm{m}$	Sol: N = $\frac{1}{100} - \left(\frac{-1}{120}\right) = 0.0183$
	Assume $L > OSD$
03. Ans: (c)	$L = \frac{NS^2}{9.6} = \frac{0.0183 \times 470^2}{9.6}$
Sol: N = $\frac{1}{50} - \left(-\frac{1}{100}\right) = 0.03 = 3\%$	9.6 9.6
	= 421.09 m
$1 \% \rightarrow 100 \text{ m}$	421.09 < 470
$3 \% \rightarrow \frac{3}{1} \times 100 = 300 \mathrm{m}$	Take L < OSD
1	$L = 2S - \frac{9.6}{N} = 2 \times 470 - \frac{9.6}{0.0183}$
	= 406.66 m

Engineering Publications	16		ESE-	Postal Coac	ching Solutio	ns
08. Ans: (c)			$\mathbf{x} = \frac{1}{2}$	$\frac{N_1L}{N}$ from	n start	
Sol: Take L \ge OSD L = $\frac{\text{NS}^2}{9.6} = \frac{0.018 \times 500^2}{9.6}$				$\frac{400}{3} = 150.09$		
= 468.75 m < 500 m Take L < OSD		E	Equation of p		$\frac{\mathrm{Mx}^2}{\mathrm{2L}} = \frac{0.053\mathrm{x}}{2\times400}$	
$L = 2S - \frac{9.6}{N} = 2 \times 500 - \frac{9.6}{0.018}$ $= 466.67 \text{ m} < 500 \text{ m}$				it .02 - (0.000	$0.00006625 \text{ m}^{-0.00006625}$	
:. Length of summit cure, $L \approx 467 \text{ m}$	RIN	~~	Vertical dis ntersection a	nd curve	ween point	of
09. Ans: (c) Sol: Refer previous ESE-Obj-(Vol-2) solutions			$=\frac{NL}{8}=\frac{0}{2}$ Station	$\frac{0.053 \times 400}{8} = \frac{1}{2}$	= 2.650 m	
Book (Cha-10, 4 th Question -pg: 997)			1 2 3	0 20 40	10.000 10.375 10.694	
Conventional Practice Solutions 01.			4 5 6	60 80 100	10.9615 11.176 11.338	
Sol: Length of summit curve Assume L > SSD	e 19	95	7 8 9	120 140	11.446 11.5015	
$L = \frac{NS^2}{4.4}$			10 11	160 180 200	11.504 11.4535 11.352	
$N = \frac{1}{50} - \left(-\frac{1}{30}\right) = \frac{80}{1500} = \frac{8}{150}$			12 13 14	220 240 260	11.1935 10.984 10.7215	
$L = \frac{8}{150} \times \frac{180^2}{4.4}$			15 16 17	280 300 320	10.406 10.042 9.616	
L = 392.7 m ≈ 400 m Assumption was correct as L > SSD (ii) Summit point is at a distance of			18 19 20	340 360 380	9.1415 8.614 8.0335	
ACF Engineering Publications Hyderabad • Delhi • Bhonal • Pune • Bhubaneswar •			21	400	7.408	

Engineering Publications	17		Tr	anspo	rtation E	ngineering
12. Highway Geometric Design – Valley Curves			Conventiona	ıl Prac	tice Solu	tions
Common data for Questions 01 to 03		01. Sol:	$N_1 = 0$			
01. Ans: (c)			$N_2 = -0.033$ $N = N_1 - N_2$		2	
Sol: $-n_1 = \frac{1}{25}$ V = 100 kmph		As	sume $L > SS$			
$n_2 = \frac{1}{20}$ C = 0.6 m/s ³			$L = \frac{NS^2}{1.5 + 0.0}$	2 035S		
SSD = 180 m $N = (-n_1 - n_2) = n_1 + n_2$	ER <i>II</i>	VG AC	$=\frac{0.033\times}{1.5+0.}$	$\frac{180 \times 1}{035 \times 1}$.80 80	
$=\frac{1}{25} + \frac{1}{20} = 0.09$		As	= 137.1 m sume L < SS			
$\frac{-25}{25} + \frac{-0.03}{20} = 0.03$ (a) L = 0.38 (NV ³) ^{1/2}			$L = 2S - \frac{1.5}{2}$		55	
$= 0.38 (0.09 \times 100^3)^{\frac{1}{2}} = 114$ L > SSD			= 2×180		0.035× 0.033	180
(b) $L = \frac{NS^2}{1.5 + (0.035S)} = \frac{0.09 \times 180^2}{1.5 + 0.035(180)}$		_	$= 360 - \frac{1}{6}$		= 123.6 n	n
$= 373.86 \text{ m} \simeq 374 \text{ m}$	ce 1	995 ^{Prc}	ovide a length	n of 12:	5 m	
02. Ans: (b) Sol: $I = \frac{1.6 \text{ NV}^2}{L}$			$y = \frac{Nx^2}{2L} = \frac{0}{2}$).033x 2×125	$\frac{2}{5} = 0.000$	$132 \mathrm{x}^2$
			Station	X	У	RL
$=\frac{1.6\times0.09\times100^2}{374}=3.85$			1	0	0	10.000
<i></i>			2	25	0.083	10.083
03. Ans: (a)			3	50	0.330	10.330
Sol: For $9\% \rightarrow 373.86$			4	75	0.743	10.743
For 4 $\% \rightarrow ?$			5	100	1.320	11.320
$=\frac{4\times374.0}{9}$ = 166.22 m \simeq 166			6	125	2.063	12.063
ACE Engineering Dublications Hyderabad • Delhi • Rhonal • Pune • Rhuhaneswa	n - Luchno	w . Dotno . Pong	alumu - Channai - Viiau	wada . Via	a Timurati . V	- North Alexandria

05. Ans: $G_t = 2.48$, $G_m = 2.30$
Sel. C 100
Sol: $G_t = \frac{100}{\frac{W_1}{G_1} + \frac{W_2}{G_2} + \frac{W_3}{G_3}}$
$=\frac{100}{25-5}=2.48$
$=\frac{100}{\frac{60}{2.72}+\frac{35}{2.66}+\frac{5}{1.0}}=2.48$
$V_a = 7\%$
$V_a = \frac{G_t - G_m}{G_t} \times 100$
$\Rightarrow 7 = \frac{2.48 - G_{\rm m}}{2.48} \times 100$
$G_m = 2.30$
06. Ans: (c)
Sol: CBR (%) = $\frac{P_{2.5}}{P_{st 2.5}} \times 100$
$=\frac{60.5}{1370}\times100=4.4\%$
CBR (%) = $\frac{P_5}{P_{st5}} \times 100$
$=\frac{80.5}{2055}\times 100$
= 3.92 %
Adopt higher one.
$\therefore \text{ CBR}(\%) = 4.4$

07. Ans: (b)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-12, 4th Question -pg: 1002)

08. Ans: (a)
Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (Cha-12, 5 th Question -pg: 1002)
Dook (Chu 12, 5 Question pg. 1002)
09. Ans: (c)
Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (Cha-12, 10 th Question -pg: 1003)
10. Ans: (a)
Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (Cha-12, 21 st Question -pg: 1005)
Doon (chu 12, 21 Question pg. 1000)
11. Ans: (d)
Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (Cha-12, 30 th Question -pg: 1006)
12. Ans: (d)
Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (Cha-12, 56 th Question -pg: 1011)
14 Hickory Construction on J Decement
14. Highway Construction and Pavement Maintenance
32. Ans: (c)
Sol: Refer previous GATE-(Cha-4, 2 nd Question
- 1 mark - pg: 888)
35. Ans: (c)
Sol: Refer previous GATE-(Cha-4, 6 th Ouestion -

1 mark - pg: 888)

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

	20	ESE-Postal Coaching Solutions
36. Ans: (d)	I	
Sol: Refer previous ESE-Obj-(Vol-2) solutions		02. Ans: (c)
Book (Cha-13, 1 st Question -pg: 1021)		
Dook (Chu 15, 1 Question pg. 1021)		Sol: N = $\frac{365[(1+r)^n - 1] \times A \times D \times F}{r}$
38. Ans: (c)		Assume $F = 0.75$
Sol: Refer previous ESE-Obj-(Vol-2) solutions		$N = \frac{365[(1+0.1)^{15} - 1] \times 1610.51 \times 3 \times 0.75}{0.1}$
Book (Cha-13, 3 rd Question -pg: 1021)		$N = \frac{1}{0.1}$
		= 42.02 msa
41. Ans: (d)		
Sol: Refer previous ESE-Obj-(Vol-2) solutions	- DI	$\mathbf{A} = \mathbf{P}(1+\mathbf{r})^{\mathbf{n}}$
Book (Cha-13, 4 th Question -pg: 1021)		$G = 1000 (1+0.1)^5 = 1610.51$
EN.		A.
44. Ans: (d)		03. Ans: (b)
Sol: Refer previous ESE-Obj-(Vol-2) solutions		Sol: $N = N_1 + N_2$
Book (Cha-13, 8 th Question -pg: 1022)		$= \frac{365[(1+r)^n - 1] \times A \times D \times F}{r}$
		= r
15. Pavement Design		$365[(1+0.075)^{10}-1][2000\times5+200\times6]$
	•	N = $\frac{365[(1+0.075)^{10} - 1][2000 \times 5 + 200 \times 6]}{0.075}$
01. Ans: 34.22 msa		= 57.8 msa
Sol: Assume lane distribution factor, $F = 1$		
	ce 1	995
A = $1000 \left(1 + \frac{7.5}{100} \right) = 1435.6 \text{ CVPD}$		
$N = \frac{365 \left[(1 + 0.075)^{15} - 1 \right] \times 1435.6 \times 2.5 \times 1}{2}$		
0.075		
= 34.22 msa		
	I	

Engineering Publications	21	Transportation Engineering
--------------------------	----	----------------------------

04. Ans: F = 3.74, N = 25.86 msa

Sol:

S.No	Wheel load	% Total Traffic (Ni)	EF [Fi]
1	2268	25	1
2	2722	12	2.07
3	3175	9	3.84
4	3629	6	6.55
5	4082	4	10.49
6	4536	2 GINEERIA	16
7	4490		23.43
		$\Sigma N_i = 59\%$	E.

 $\Sigma EF = \left(\frac{Actual load}{S \tan dard load}\right)$

$$(1) \to \mathrm{EF}_1 = \left(\frac{2268}{2268}\right)^4 = 1$$

(2)
$$\rightarrow \text{EF}_2 = \left(\frac{2722}{2268}\right)^4 = 2.07 \dots$$

$$VDF = \frac{\Sigma N_i f_i}{\Sigma N_i} = \frac{25 \times 1 + 12 \times 2.07 + 9 \times 3.84 + 6 \times 6.55 + 4 \times 10.49 + 2 \times 16 + 1 \times 23.23}{59}$$

Since 1995

VDF = 3.74

Given LDF = 0.4

Total Traffic = 1860 cv/day

:. Total commercial traffic (A) = $1860 \times \frac{59}{100} = 1094.4$ cv/day

N =
$$\frac{365((1+0.075)^{20}-1)(1094.4 \times 0.4 \times 3.74)}{0.075}$$

 $N = 25.94 \times 10^{6}$ csa = 25.87 msa

Engineering Publications	22	ESE-Postal Coaching Solutions

05. Ans: 1.26

Sol:

Equivalent axle load and vehicle damage factor (VDF)

Axle load	Number of load	Equivalent factor	Equivalent axle load
	repetition		
80	1000	$(80/80)^4 = 1$	1000
160	100	$(160/80)^4 = 16$	1600
40	1000	$(40/80)^4 = 0.0625$	62.5
			2662.5

 \therefore The equivalent axle load = 2662.5 kN

$$VDF = \frac{(1000 \times 1) + (100 \times 16) + (1000 \times 0.0625)}{1000 + 100 + 1000}$$

= 1.26

06. Ans: (d)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-13, 2nd Question -pg: 1021)

07. And: (d)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-13, 6th Question -pg: 1021)

08. And: (b)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-13, 11^h Question -pg: 1022)

09. And: (d)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-13, 15th Question -pg: 1023)

10. And: (a)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-13, 30th Question -pg: 1026)

Conventional Practice Solutions

01. 01. Given: Mean deflection $\overline{D} = 1.45 \text{m}$ Standard deviation $\sigma = 0.107$ mm Pavement temperature = $T = 37^{\circ}C$ 199 Moisture correction factor = K = 1.6Allowable deflection $D_a = 1 \text{ mm}$ (i) Characteristic deflection D_c = $\overline{D} = 1.45 \text{m}$ Standard deviation $\sigma = 0.107$ mm (ii) Standard temperature = 35° = as per IRC Deflection after temperature correction $D_c = (T - 35) \times 0.0065$

 $= 1.557 - (37 - 35) \times 0.0065$

= 1.544 mm

ACE **ESE-Postal Coaching Solutions** 24 So we can design for 50 msa traffic data 07. **Sol:** $\delta' = \frac{2.5}{2}$ **SDBC** 50 mm = 1.25 cm DBM 50 mm $T_2 - T_1 = 54 - 10 = 44^{\circ} C$ Aggregate layer 100 mm $\delta' = L \alpha \Delta T$ CT Base 190 mm $L = \frac{\delta'}{\alpha \Lambda T}$ GSB 250 mm $L = \frac{1.25}{100 \times 10 \times 10^{-6} \times 44}$ 05. Sol: Area of steel per metre length of L = 28.5 mlongitudinal joint $A_{s} = \frac{bfhw}{100S_{s}}$ **16. Rigid Pavements** $=\frac{3.75 \times 1.5 \times 20 \times 2400}{100 \times 1400}$ 01. Ans: (a) Sol: L = $\frac{\delta'}{\alpha(t_2 - t_1)} = \frac{\frac{2.5}{2}}{10 \times 10^{-6}(45 - 10)} = 3571.42 \text{ cm}$ $= 1.93 \text{ cm}^2 \text{ per m length}$ For 15 m length $A_{st} = 15 A_s$ = 35.71 m $= 28.93 \text{ cm}^2$ $(\delta' = 50\% \text{ of gap expansion joint})$ Since Common data for Questions 02 & 03 06. **Sol:** $A_s = \frac{b f h w}{100 S_s}$ 02. Ans: (a) **Sol:** $\sigma_{w(e)} = \frac{C_x E \alpha t}{2}$ $=\frac{7\times1.3\times24\times2400}{100\times1400}$ $=\frac{0.92\times3\times10^{5}\times10\times10^{-6}\times16.2}{2}$ $= 3.744 \text{ cm}^2$ Assume 1 cm diameter of bar $= 22.35 \text{ kg/cm}^2$ No. of the bar Required = $\frac{3.744}{0.785}$ $= 4.77 \approx 5$ Spacing of tie bar = $\frac{100}{5}$ = 20 cm ACE Engincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	25	Transportation Engineering
03. Ans: (d)		Common data for Questions 06 & 07
Sol: $l = \left[\frac{Eh^3}{12k(1-\mu^2)}\right]^{\frac{1}{4}}$		06. Ans: (c)
$= \left[\frac{3 \times 10^5 \times 20^3}{12 \times 8(1 - 0.15^2)}\right]^{\frac{1}{4}} = 71.1 \mathrm{cm}$		Sol: $L = \frac{2\sigma_c}{\gamma_c f} = \frac{2 \times 0.8 \times 10^4}{2400 \times 1.5} = 4.4 \text{ m c/c}$
$\sigma_{\rm w(c)} = \frac{\rm E\alpha t}{3(1-\mu)} \sqrt{\frac{a}{l}}$		07. Ans: (c) Sol: $L = \frac{200\sigma_s A_s}{Bh\gamma_c f}$
$=\frac{3\times10^5\times10\times10^{-6}\times16.2}{3(1-0.15)}\times\sqrt{\frac{15}{71.1}}$	ERI/	$Bh\gamma_{c} f$ $= \frac{200 \times 1200 \times \frac{\pi}{4} \times (10 \times 10^{-1})^{2}}{3.75 \times 20 \times 2400 \times 1.5} \times \text{ no. of bars}$
$= 8.75 \text{ kg/cm}^2$		$= \frac{4}{3.75 \times 20 \times 2400 \times 1.5} \times \text{ no. of bars}$ = 8.72 c/c
Common data for Questions 04 & 05		No. of bars $=\frac{\text{width}}{0.3} = \frac{3.75}{0.3} = 12.5 \simeq 13$
04. Ans: (a)		No's
Sol: A _s = $\frac{B h f r_c}{\sigma_s \times 100} = \frac{\frac{1}{2} \times 7.2 \times 18 \times 1.5 \times 2400}{1700 \times 100}$		08. Ans: (a)
$=137.22 \text{ cm}^{2}/\text{m}$		Sol: $\sigma_{\rm f} = \frac{\gamma_{\rm c} {\rm f} {\rm L}}{2 \times 10^4} = \frac{2400 \times 4 \times 1.2}{2 \times 10^4}$
$=137.22 \text{ cm}^{2}/\text{m}$ Spacing $=\frac{100 \times \text{A}}{\text{A}_{s}} = \frac{100 \times (\pi/4 \times 10^{2})}{137.22}$	ce 1	$= 0.576 \text{kg} / \text{cm}^2$
$= 57.23 \text{ cm} \simeq 550 \text{mm c/c}$		09. Ans: (b)
	Y	Sol: Refer previous ESE-Obj-(Vol-2) solutions
05. Ans: (b)		Book (Cha-14, 1 st Question -pg: 1032)
Sol: $L = \frac{d\sigma_s}{2\sigma_b} = \frac{1 \times 1700}{2 \times 24.6} = 34.55 \text{ cm} \simeq 35 \text{ cm}$		10. Ans: (c)
		Sol: Refer previous ESE-Obj-(Vol-2) solutions
		Book (Cha-14, 5 th Question -pg: 1032)

Engineering Fublications	26	ESE-Postal Coaching Solutions			ıs	
11. Ans: (c) Sol: Refer previous ESE-Obj-(Vol-2) solutions		02. Ans Sol:	s: (a)			
Book (Cha-14, 8 th Question -pg: 1033) 12. Ans: (d) Sol: Refer previous ESE-Obj-(Vol-2) solutions		Speed Range (m/s)	Frequency PCU/hr (q)	Mid- pt speed (v)	qv	q/v
Book (Cha-14, 12 th Question -pg: 1033)		2.5	1	2.5	2.5	0.4
13. Ans: (b)		7.5 11.5 15.5	4 0 7	7.5 11.5 15.5	30 0 108.5	0.533 0 0.45
Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-14, 24 th Question -pg: 1035)	ERI	NG AC	Σq=12		$\Sigma qv = 142.0$	$\Sigma \frac{q}{v} 1.38$
17. Traffic Engineering 01. Ans: (a) Sol: Time mean speed			$= \frac{\sum q v}{\sum q} = \frac{141}{12}$ $= \frac{\sum q}{\sum (q/v)} = \frac{1}{12}$			
$=\frac{50+40+60+54+45}{5}$		Alwa	avs the time	mean si	peed is more	than
$(V_t) = 49.8 \text{ kmph}$			e mean speed	_	-	
$V_s \Rightarrow \text{space mean speed} \frac{1}{V} = \frac{1}{50} + \frac{1}{40} + \frac{1}{60} + \frac{1}{54} + \frac{1}{45} $ $V = 9.76$	ce 1					
$V_s = V \times n = 9.76 \times 5 = 48.80 \text{ kmph}$						
			ed of vehicle-($\frac{1}{60} = 35.3 \mathrm{kmp}$	bh
			$(1) = \frac{50 + 40 + 1}{3}$			

= 41.8 kmph

ACE Engineering Publications	27 Transportation Engineering
Space mean speed $(V_s) = \frac{n}{\Sigma\left(\frac{1}{v_i}\right)}$ $= \frac{3}{\frac{1}{50} + \frac{1}{40} + \frac{1}{35.3}}$ $= 40.91 \text{ kmph}$ 04. Ans: 4000 veh/hr Sol: Design flow rate = $-\frac{q}{1000}$	Chultric Freshency 100
Sol: Design flow rate = $\frac{q}{pHF}$	
$PHF = \frac{q}{4(q_{15})}$	06. Ans: (c)
Volume during peak 15 min $(q_{15}) = 1000$	Sol: SSD = $0.278 \text{ Vt} + \frac{\text{V}^2}{254 \text{ f}}$
Peak hour volume (q)	65 ²
= 700 + 812 + 1000 + 635	$= 0.278 \times 65 \times 2.5 + \frac{65^2}{254 \times 0.4}$
= 3147	= 86.7 m
$\therefore \text{ Design flow rate} = \frac{3147}{3147} \approx 4000 \text{ veh / hr}$	S = SSD + L = 86.7 + 5 = 91.7 m
	$C = \frac{1000 \text{ V}}{\text{S}} = \frac{1000 \times 65}{91.7}$
4000	$\simeq 709 \text{ veh}/\text{hr}/\text{lane}$
Sinc	ce 1995
05. Sol: Total frequency = 100	07. Ans: (b)
	Sol: $t = 0.7$ Assume
% frequency = $\frac{10}{1000} \times 100 = 1$	SSD = 0.278 Vt = 7.78 m
(i) 85 th percentile speed is considered as a	S = SSD + L = 12.78 m
safe speed from graph $V_{85} = 65$ kmph	$C = \frac{1000 V}{S} = 3129$
(ii) 98 th percentile speed is considered as a	$S = \frac{1}{S} = \frac{1}{S}$
design speed from graph $V_{98} = 85$ kmph	$\simeq 3130$ veh/hr
(iii) 15 th percentile speed is considered as a	
minimum speed on the highway from	
graph V ₁₅ =35 kmph	
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar	• Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE 28 **ESE-Postal Coaching Solutions** 08. Ans: (b) $q = U_{sf} \left| k - \frac{k^2}{k} \right| = U_{sf} \left[k - \frac{k}{2} \right]$ **Sol:** S = SSD + L = 20+6 = 26 m $C = \frac{1000 \text{ V}}{\text{S}} = \frac{1000 \times 40}{26} = 1538 \text{ veh} / \text{hr} / \text{lane}$ $= U_{sf} \left[\frac{k_j}{2} - \frac{k_j}{4} \right]$ 09. Ans: (c) $= U_{sf} \begin{bmatrix} k_j \\ 4 \end{bmatrix}$ Sol: Given standard deviation (SD) = 8.8kmph mean speed $\overline{x} = 33$ kmph $q = 70 \times \frac{1000}{7} \times \frac{1}{4}$ Coefficient of variation $=\frac{\text{SD}}{\overline{x}}=\frac{8.8}{33}$ = 2500 veh/hr= 0.266611. Ans: (d) 10. Ans: (b) Sol: $V_{sf} = 80$ kmph **Sol:** q = uk $k_i = 100 \text{ veh /km}$ $U = U_{sf} \left[1 - \frac{k}{k} \right]$ $q_{max} = \frac{V_{sf} \times k_j}{4} = \frac{80 \times 100}{4} = 2000 \text{ veh} / \text{hr}$ $\therefore q = U_{sf} \left[1 - \frac{k}{k} \right] k = U_{sf} \left[k - \frac{k^2}{k} \right]$ $V_s = \frac{V_{sf}}{2}$ (the speed corresponding to For max traffic flow; $\frac{d_q}{d_{\nu}} = 0$ q_{max} is $V_{s max} = \frac{80}{2} = 40$ kmph Since 1995 $\frac{d_{q}}{d_{1}} = U_{sf} \left[1 - \frac{2k}{k_{\perp}} \right] = 0$ 12. Ans: 33 veh/km & 149 veh/km **Sol:** $q_m = 1700$ veh/hr $k_m = \frac{1000}{8} = \frac{1000}{55} = 181.81$ $1 - \frac{2k}{k_{\pm}} = 0$ $q_{m} = \left(\frac{V_{m}}{2}\right) \left(\frac{k_{m}}{2}\right)$ $k_i = 2k$ $U_{sf} = 70 \text{ km/hr}$ 37.4 V $1700 = \left(\frac{V_m}{2}\right) \left(\frac{181.81}{2}\right)$ $k_{j} = \frac{1000}{s} = \frac{1000}{7}$ $v_m = 37.40$ kmph $k = k_i/2$ k ki For q = 1000 veh/hr

181.81

ACE

 $\tan \theta = \frac{V_m}{k}$ $\frac{V_{max}}{K_{max}} = \frac{30 \text{kmph}}{(130 - 30)}$ $v = \frac{37.4}{181.81} \times (181.81 - k)$ $K_{max} = 130 \text{ veh/km}$ $V_{max} = \frac{30}{130 - 30} \times 130$ For normal condition q = v.k= 39 kmph $1000 = \frac{37.4}{181.81} \times (181.81 - k) \times k$ $\mathbf{K}_{\max} = \left(\frac{\mathbf{V}_{\max}}{2}\right) \left(\frac{\mathbf{K}_{\max}}{2}\right)$ 4861.23 = (181.81 - k)k $=\frac{39}{2} \times \frac{130}{2} \simeq 1268 \text{ veh/hr}$ $4861.23 = 181.81 \text{ k} - \text{k}^2$ k = 149 veh/km and k = 32.6 veh/km 15. Ans: (b) \simeq 33 veh/km **Sol:** $Q_p = \frac{280 \text{ w} \left(1 + \frac{e}{w}\right) \left(1 - \frac{p}{3}\right)}{1 + w/2}$ 13. Ans: 35.7 kmph Sol: $V_{sf} = 50$ kmph w = 14 m; e = 8.4 m $t_i = 70 \text{ veh/km}$ L = 35 m $q_{max} = \frac{V_{sf} \times K_{j}}{4} = \frac{50 \times 70}{4} = 875 \text{ veh} / \text{hr}$ $p = \frac{\text{Crossing traffic}}{\text{Total traffic}} = \frac{1000}{2000} = 0.5$ K = 20 veh/kmSince $199Q_p = \frac{280 \times 14 \left(1 + \frac{8.4}{14}\right) \left(1 - \frac{0.5}{3}\right)}{1 + \frac{14}{25}}$ $\frac{K_{j}}{V_{c}} = \frac{K_{j} - K}{V - 0}$ $\frac{70}{50} = \frac{70 - 20}{V} \Longrightarrow V = 35.7 \text{ kmph}$ = 3733.33 PCU/hr 14. Ans: 1268 veh/hr 16. Ans: 2064.10 veh/hr Sol: Start of **Sol:** w = 6m; p = 0.5zone-y L = 20 m; e = 5.5 m $=\frac{280\times 6\left[1+\frac{5.5}{6}\right]\left[1-\frac{0.5}{3}\right]}{1+\frac{6}{3}}$ $Q_{p} = 2064.10 \text{ veh} / \text{hr}$ ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Alternative Solution:

40 Cumulative arrival or departure 30 Cumulative (No. of vehicles) irrival 20 10 umulative Departure 0 0 10 20 30 40 50 Time(s)

From fig:

The average delay = The area between cumulative arrival and cumulative departure /Total no of vehicles (or) The hatched area in above figure/total number of vehicles

... The average delay

$$= \frac{\frac{1}{2}(50)(40) - \frac{1}{2}(20)(40)}{40}$$
$$= \frac{1}{2}(50) - \frac{1}{2}(20) = 25 - 10 = 15 \sec 20$$

22. Ans: (a)

Sol:

Critical lane volume on major road is increased to 440 veh/hr/lane those for green time should be increased for major road and it remains same for minor road.

23. Ans: (a)

31

Sol: Green Time = 27 sec Yellow Time = 4 sec Total lost time, t_L = Start up lost time +Clearance lost time = 2 + 1 = 3 sec Effective green time ; $g = G + y - t_L$ = 27 + 4 -3 = 28 sec Saturation flow rate; $S = \frac{3600}{h} = \frac{3600}{2.4}$ = 1500 veh/hr h \rightarrow Time headway Capacity of lane, $C = S \times \left(\frac{g_i}{C_o}\right)$ = $1500 \times \left(\frac{28}{60}\right)$

= 700 veh/hr/lane

1 24.5 Ans: (d)

Sol: Distance travelled by bicycle = 5 km Time of travel, t = 40 - 15 = 25 min Stop time = 15 min

Speed of bicycle = $V_b = \frac{5}{25} \text{ km} / \text{min}$

Let speed of stream is V km/min Assume traffic density is the constant on the road (K = Constant).

but
$$K = \frac{q}{V}$$

Since

ACE

During journey relative speed of stream=V-Vb $=\left(V-\frac{5}{25}\right)$ $K = \frac{\left(\frac{60}{25}\right) \text{Vechicles/min}}{\left(V - \frac{5}{25}\right)} \quad \dots \dots (1)$ During stop ($V_b = 0$) $K = \frac{\left(\frac{45}{15}\right) \text{Vehicles/min}}{V} = \frac{45}{15V} \dots$ Equating (1) & (2) $K = \frac{\left(\frac{60}{25}\right)}{\left(V - \frac{5}{25}\right)} = \frac{\left(\frac{45}{15}\right)}{V}$ 45 15V $0.8 = \left(1 - \frac{5}{25V}\right)$ $0.2 = \frac{5}{25V}$ Since $\Rightarrow V = \frac{5}{25 \times 0.2}$ \Rightarrow V = 1 km/min V = 60 km/hrAns: 2133.33 veh/hr 25. **Sol:** V = 80 - 0.75 KV_{max} ν.

V_{max} occur, when K = 0 V_{max} = 80 kmph K_{max} occur when V = 0 K_{max} = $\frac{80}{0.75}$ = 106.67 veh/km Capacity of road, q = $\left[\frac{K_{max} \times V_{max}}{4}\right]$ q = $\frac{106.67 \times 80}{4}$ q = 2133.33 veh/hr 26. Ans: (c) Sol: In R: 2,5 combination is possible 1,3 and

4,6 are not possible

27. Ans: Sol: Given: Speed of the vehicle = 60 kmph Amber duration = 4 sec Comfortable deceleration = 3m/sec² Car length = 4.0 m Intersection width = 14 Longitudinal friction factor = 0.35 Perception reaction time = 1.5 sec When the vehicle reaches section A, he sees the amber right. Hear, two situation are possible. There are two possibilities

(i) Driver decides to cross intersection:

Total distance to be covered

$$=$$
 SSD + 14 + 4.0

$$SSD = (vt) + \frac{v^2}{2\,gf}$$

$$= (16.67 \times 1.5) + \frac{(16.67)^2}{2 \times 9.81 \times 0.35}$$

= 65.47 m

Total distance to be covered

= 65.47 + 14 + 4 = 83.47 mdistance

Time required = $\frac{\text{distance}}{\text{speed of vehicle}}$

$$=\frac{83.47}{16.67}=5.0 \text{ sec} > 4 \text{ sec}$$

(ii) He decides to stop the vehicle time taken to stop the vehicle after sighting the amber light.

= Reaction time + time taken to stop the vehicle after application of brakes

$$= 1.5 + \left(\frac{60 \times \frac{5}{18} - 0}{3}\right) = 1.5 + 5.55$$

= 7.05 sec > 4 sec

Therefore, in both the situation, the required duration is greater than the provided amber duration hence the driver's claim is correct.

28. Ans: 0.1353

Sol: Probability that the gap is greater than 8 sec

P (h
$$\ge$$
 t) = e^{- λ t}
 λ = rate of arrival per second
= $\frac{900}{3600}$ = 0.25
t = 8 sec
P (h \ge 8) = e^{-0.25 × 8}
P (h \ge 8) = 0.1353

29. Ans: (a)
Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-15, 4th Question -pg: 1040)

30. Ans: (c)
Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (Cha-15, 24th Question -pg: 1044)

Conventional Practice Solutions

01.

Since

Sol: Time mean speed =
$$\frac{V_1 + V_2 + V_3 + V_4}{4}$$

= $\frac{20 + 35 + 40 + 45}{4}$
= 35 kmph

ESE-Postal Coaching Solutions

Space mean speed =
$$\frac{\sum n_i}{\sum \frac{n_i}{v_i}}$$

= $\frac{4}{\frac{1}{20} + \frac{1}{35} + \frac{1}{40} + \frac{1}{45}}$ = 31.8 kmph

02.

Speed range kmph	Mid speed kmph	Frequency f	Frequency %	Commulative Frequency %
Column- 1	2	3-EDI	4	5
0-10	5	(\12	1.41	1.41
10 - 20	15	18	2.12	3.53
20 - 30	25 4	68	8.00	11.53
30 - 40	35	89	10.47	22.00
40 - 50	45	204	24.00	46.00
50 - 60	55	255	30.00	76.00
60 - 70	65	119	14.00	90.00
70 - 80	75	43	5.06	95.06
80 - 90	85	33	3.88	98.94
90 - 100	95	9	1.06	100.00
Total		850	100.00	

(1) Upper speed limit for regulation = 85^{th} 03. **Sol:** (a) $kj = \frac{1000}{L}$ Since percentile speed = 60 kmph $V_{sf} = 60 \text{ kmph}$ (2) Lower speed limit for regulation = 15^{th} Theoretical capacity = $\frac{V_{sf}k_j}{4}$ percentile speed = 30 kmph $=\frac{\frac{1000}{6.1}\times60}{4}$ (3) Speed to check design elements - 98th percentile speed = 2459 veh/hr= 84 kmph (b) Maximum Theoretical capacity 3600 Time headway = 3600 5 = 720 veh/hr ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	35	Transportation Engineering
$q = \kappa u$ $= 21.38 \times 97.18$ $= 2077 \text{ veh / hr}$ Comment: q is maximum when $V = \frac{V_{sf}}{2} \& q = \frac{qj}{2}$ 2077 Flow $\left(\frac{\text{veh}}{2}\right)$	n I	$L = 2n + R = 2 \times 2 + 12 = 16 \text{ sec}$ $C_{o} = \frac{1.5L+5}{1-Y} = \frac{1.5 \times 16+5}{1-0.57}$ $= 67.5 \text{ sec}$ $G_{a} = \frac{y_{a}}{Y}(C_{o} - L) = \frac{0.32}{0.57}(67.5 - 16) = 29 \text{ sec}$ $G_{b} = \frac{y_{b}}{Y}(C_{o} - L) = \frac{0.25}{0.57}(67.5 - 16) = 22.5 \text{ sec}$ All red time for pedestrian crossing = 12 secs Provide anber time of 2 sec Total cycle time = 29 + 22.5 + 12 + 4 = 67.5 \text{ seconds} $\underbrace{\longleftarrow R_{b} \longrightarrow \text{All red } G_{b} A_{2}}_{31 \text{ sec}} = \frac{12 \text{ sec}}{12 \text{ sec}} = \frac{2}{2.5 \text{ sec}} = \frac{2}{\text{ sec}}$
$ \begin{array}{c c} 0 & 97.18 & \underline{\text{veh}} \\ 0 & 97.18 & \underline{\text{veh}} \\ \text{density} \left(\frac{\text{veh}}{\text{km}} \right)^{\text{km}} \end{array} $ 05.	C	06. Sol: Saturation flow is 160 PCU/0.3 m with of approach For road A: Saturation flow
Sol: $y_a = \frac{q_a}{S_a} = \frac{400}{1250} = 0.32$		$S_{A} = \frac{160}{0.3} \times \frac{19}{2} = 5066.673 \text{ PCU/hr}$ For road B: Saturation flow
$y_{b} = \frac{q_{b}}{S_{b}} = \frac{250}{1000} = 0.25$ $Y = y_{a} + y_{b} = 0.57$ ACE Engineering Publications Hyderabad · Delhi · Bhopal · Pune · Bhubanes		$S_{\rm B} = \frac{160}{0.3} \times \frac{7.5}{2} = 2000 \text{ PCU/hr}$ Maximum flow road A = q _A = 1360 veh/hr

Engineering Publications	36		ES	E-Postal	Coaching	g Solut	ions
Maximum flow for road B = q _B = 310 veh/hr Flow ratio for road $A = y_A = \frac{q_A}{S_A} = \frac{1360}{5066.67} = 0.268$ Flow ratio for road $B = y_B = \frac{q_B}{S_B} = \frac{310}{2000} = 0.155$ Flow ratio for road $B = y_B = \frac{q_B}{S_B} = \frac{310}{2000} = 0.155$ Lost time = 2n + R = 2(2) + 6 + 6 = 16 sec Cycle time = $\frac{1.5L+5}{1-y} = \frac{1.5(16)+5}{1-(0.268+0.155)} = 50.26 sec$ Green time for road $A = \frac{y_A}{4}(C_o - L)$ $= \frac{0.268}{0.269+0.155}(50.5-16)$ = 21.86 sec Say 21.9 sec Green time for road $B = \frac{y_B}{4}(G-C)$	RI	Whathe posses (i) He SSE 995	eeption r en the ve amber sible. SSD SSD decides al distan = SSD D = Lag	reaction t ehicle realight. He 15 to cross ce to be c 15 + 4 distance	ime = 1.5 aches sect ere, two m the inters covered 4.6 + Brake d	sec ion A, i situatio	the sees ons are
$= \frac{0.155}{0.268 + 0.155} (50.5 - 16)$ = 12.64 sec Say 12.6 sec		= v	\times t + $\frac{v}{2}$	$\frac{a}{\sqrt{a}} = \left(50\right)$	$\times \frac{5}{18} $ $\times 1.5$	5+	$\frac{7\times 18}{2\times 3}$
		,	Road	Green	Amber	Red	Cycle
07. Salı Cimer		=	А	21.9	6	22.6	50.5
Sol: Given: Speed of the vehicle = 50 km/hr		2	В	12.6	6	31.9	50.5
Amber duration = 4.5 sec		0.83 + 32.15 = 52.98 m					
Comfortable deceleration = 3 m/sec^2		Total distance to be covered					
Car length = 4.6 m		= 52.98 + 15 + 4.6 = 72.58 m				n	
Intersection width = 15 m			C				
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	r • Luckno	ow • Patna • Benga	ıluru • Chenna	ıi • Vijayawada •	Vizag • Tirupati	• Kolkata • A	Ahmedabad

$$\begin{split} P_{SW} &= \frac{400 + 225 + 550 + 300}{400 + 225 + 550 + 300 + 350 + 250} \\ &= 0.7108 \\ P_{WN} &= \frac{500 + 300 + 400 + 250}{500 + 300 + 400 + 250 + 225 + 400} \end{split}$$

Maximum proportioning ratio gives minimum capacity

 $\therefore P_{\min} = P_{wn} = 0.698$

Capacity of the rotary

$$= \frac{280w\left(1+\frac{e}{w}\right)\left(1-\frac{P}{3}\right)}{\left(1+\frac{W}{L}\right)}$$
$$= \frac{280\times11.5\left(1+\frac{8}{11.5}\right)\left(1-\frac{0.6}{3}\right)}{\left(1+\frac{11.5}{46}\right)}$$

= 3351.71 veh/hr

09.

Sol: Correction for elevation

Basic length is increased by 7% per 300 m above M.S.L Correction for elevation

$$= \frac{7}{100} \times \frac{600}{300} \times 1800$$

= 252 m
Length of runway after elevation down

= 1800 + 252 = 2052 m

Temperature correction:

Temperature at R.L = 600 m

$$= 15 - 6.5 \times \frac{600}{1000}$$

 $= 11.1^{\circ} C$

38

Difference between airport reference and standard atmospheric temperature

 $21.6 - 11.1 = 10.5^{\circ} \text{ C}$ Apply correction of 1% per 1° C Correction for temperature

$$= 2052 \times \frac{1}{100} \times 10.5$$

= 215.46 m

Corrected runway length = 2052 + 215.46= 2267.46 m

Correction for Gradient 20% for 1% effective gradient

$$=\frac{20}{100} \times 2267.46 \times 0.6$$

= 272.1 m Actual length of runway = 272.1 + 2267.46 = 2539.55 m

Check:

Total correction for elevation and temperature

$=\frac{2267.46-1800}{1800}\times100$	11.Sol:End to en	d of runway	
= 26%	Chains	Metres	Gradient
According to 1CAO, this should not be	0-5	0-120	+ 1
more than 35%.	5-15	120 - 360	- 1
	15 – 30	360 - 720	+ 0.8
).	30 - 40	720 - 960	- 0.8
) Turning radius:	Chainage	Elevati	ion
) Turning radius: $R = \frac{V^2}{125 f}$ 50 ²	VG (m)	(m)	
		100.0	
$=\frac{50^2}{125 \times 0.13}$	120	101.2	
= 153.85 m	360	98.8	
) Horon jeff = n	720	101.6	
	960	99.70	5
$R = \frac{0.388W^2}{\frac{T}{2} - S}$	Mayimum di	fference in elev	votion
$\frac{1}{2}$ - 8	Maximum di	= (101.68 -	
W = Wheel bar of aircraft = 35 m		= 2.88 m	- 90.0)
T = widen of taxiway pavement = 27 M	Total run	way length $= 96$	60 m
	005		
main gears and edge of taxiway pavement	Effective	gradient = $\frac{2.88}{960}$	-×100)
$=6+\frac{7.5}{2}=9.75$ m		= 0.3%	0
$R = \frac{0.388 \times 35^2}{\frac{27}{2} - 9.75} = 126.75 \text{ m}$			
) Absolute minimum turning radius for			
supersonic aircraft irrespective of any			
speed = 180 m .			
So, adopt turning radius = maximum value			
of above 3 i.e. 180 m.			

18. Railway Engineering

18.1 GEOMETRIC DESIGN OF RAILWAY TRACK

01. Ans: (b)

Sol: Grade compensations on curves:

For BG : 0.04% per degree of curve

For MG: 0.03% per degree of curve

For NG : 0.02% per degree of curve

Therefore, in the present case, for 4° curve, the grade compensation is

$$= 0.04 \times 4 = 0.16\%$$

03. Ans: (b)

Sol: Ruling gradient in $\% = \frac{1}{250} \times 100 = 0.4\%$

Grade compensation at 0.04% per degree of

Curve = $0.04 \times 3 = 0.12\%$

Compensated gradient = 0.4 - 0.12

l/2

$$= 0.28\%$$
$$= \frac{0.28}{100} = \frac{1}{357}$$

(2r-h)

06. Ans: (c) Sol:

 $\frac{\ell}{2} \cdot \frac{\ell}{2} = h(2r - h)$ $\frac{\ell^2}{4} = 2rh - h^2$ h^2 is neglected (being very small) $\therefore h = \frac{\ell^2}{2r}$ 07. Ans: (a) **Sol:** Grade compensation $= 2 \times 0.04$ % = 0.08%Stipulated ruling gradient = 0.5%Steepest gradient = 0.5% - 0.08% $= 0.42\% = \frac{1}{238}$ 08. Ans: (c) Sol: Curve resistance $= 0.04\% \times D^{\circ}$ $= 0.04 \times 4 = 0.16\%$ 199 Ruling gradient = $\frac{1}{150}$ $=\frac{1}{150}\times 100 = 0.67\%$ Compensated gradient = 0.67 - 0.16= 0.51%0 51

$$=\frac{0.51}{100}=\frac{1}{196}$$

From circle property,

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lutknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

ESE-Postal Coaching Solutions

Engineering Publications	41	Transportation Engineering
10. Ans: 91.26 kmph		11. Ans: 86.4 m
Sol: Given, $D^\circ = 2^\circ$		Sol: $e = 12cm$
$R = \frac{1720}{D^{\circ}} = \frac{1720}{2}$		$V_{max} = 85 \text{ kmph}$ D = 7.6 cm (BG)
R = 860 mm		Length of transition curves maximum of
The "weighted average" of different trains at		following:
different speeds is calculated from the		
equation		(a) Based on arbitrary gradient of 1 in 720
Weighted average = $\frac{n_1V_1 + n_2V_2 + n_3V_3 + n_4V_4}{n_1 + n_2 + n_3 + n_4}$		$L = 7.20 \times e$
$n_1 + n_2 + n_3 + n_4$	ERI	$V_{C} L = 7.20 \times 12 = 86.4 cm$
$V = \frac{15 \times 50 + 10 \times 60 + 5 \times 70 + 2 \times 80}{15 + 10 + 5 + 2}$		A CA
15+10+5+2		(b) Based on rate of change of cant deficiency
V = 58.125 kmph		$L = 0.073 \text{ DV}_{\text{max}}$
$e = \frac{GV^2}{127R} = \frac{1.676 \times 58.125^2}{127 \times 860}$		$L = 0.073 \times 7.6 \times 85$
		L = 47.158 cm
= 0.0518 m = 5.18 cm		
Theoretical cant = Equilibrium cant + cant		(c) Based on rate of change of super
deficiency		elevation
= 5.18 + 7.60		$L = 0.073 e V_{max}$
= 12.78 cm		$L = 0.073 \times 12 \times 85$
$e = \frac{GV^2}{127 P}$ Since	ce 1	L = 74.46cm
127 R		\therefore Take maximum L = 86.4cm
$12.78 - 1.676 \times V^2$		
$\overline{100} = \overline{127 \times 860}$		
V = 91.26 kmph		18. 2 TRACTIVE RESISTANCES AND
According to railway boards Speed formula		HAULING CAPACITY
$V = 4.35\sqrt{R - 67}$		01. Ans: (b)
$V = 4.35\sqrt{860 - 67}$		Sol: Refer previous ESE-Obj-(Vol-2) solutions
V = 122.5 kmph		Book (Cha-1, 2 nd Question -pg: 1061)
Hence maximum permissible speed		
(i.e lower of the two value) is 91.26 kmph		
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	r • Luckno	w • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications	42	ESE-Postal Coaching Solutions
 02. Ans: (c) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-1, 3rd Question -pg: 1061) 		 Ans: (c) Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-3, 6th Question -pg: 1070)
 03. Ans: (c) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-1, 4th Question -pg: 1061) 		 Ans: (b) Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-3, 7th Question -pg: 1070)
 04. Ans: (b) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-1, 5th Question -pg: 1061) 	Sol RING	 Ans: (b) Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-3, 8th Question -pg: 1071) Ans: (d)
18.3 POINTS & CROSSING	Sol	: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-3, 9 th Question -pg: 1071)
 01. Ans: (a) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-3, 1st Question -pg: 1070) 		 Ans: (b) Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-3, 10th Question -pg: 1071)
 02. Ans: (a) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-3, 2nd Question -pg: 1070) 	a 100	18.4 TRACK JUNCTION Ans: (a) : Refer previous ESE-Obj-(Vol-2) solutions
03. Ans: (b) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-3, 3 rd Question -pg: 1070)	03.	Book (Cha-3, 4 th Question -pg: 1070) 18.5 PERMANENT WAY Ans: (b)

04. Ans: (d)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-3, 5th Question -pg: 1070)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-4, 3rd Question -pg: 1074)

18.6 STRESSES IN RAILWAY TRACK

01. Ans: (a)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-4, 5th Question -pg: 1074)

18.8 CREEP OF RAILS

01. Ans: (a)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-5, 10th Question -pg: 1078)

02. Ans: (d)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-5, 11th Question -pg: 1078)

18.9 SLEEPER

01. Ans: (d)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-5, 7th Question -pg: 1077)

02. Ans: (b)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-5, 8th Question -pg: 1078)

03. Ans: (a)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-5, 9th Question -pg: 1078)

18.11 BALLAST

01. Ans: (a)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-4, 6th Question -pg: 1074)

18.12 MATERIAL REQUIRED FOR RAILWAY TRACK

01. Ans: (c)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-4, 2nd Question -pg: 1074)

18.15 STATION AND YARDS

01. Ans: (c)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-6, 3rd Question -pg: 1082)

02. Ans: (b)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-6, 9th Question -pg: 1084)

18.16 EQUIPMENT IN STATION YARD

01. Ans: (b)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-6, 7th Question -pg: 1083)

18.17 SIGNALLING AND CONTROL SYSTEM

01. Ans: (b)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-7, 2nd Question -pg: 1087)

02. Ans: (a)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-7, 3rd Question -pg: 1087)

03. Ans: (c)

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Transportation Engineering

Engineering Publications	44 ESE-Postal Coaching Solutions
Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-7, 4 th Question -pg: 1087)	Conventional Practice Solutions 01.
 04. Ans: (c) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-7, 5th Question -pg: 1087) 05. Ans: (d) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-7, 6th Question -pg: 1087) 06. Ans: (b) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-7, 7th Question -pg: 1088) 18.19 TRACK MODERNISATION 01. Ans: (b) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-6, 2nd Question -pg: 1082) 02. Ans: (c) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-6, 6th Question -pg: 1083) 03. Ans: (b) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-6, 5th Question -pg: 1083) 	Sol: $e_{eq} = \frac{1.35V^2}{R}$ $= \frac{1.35 \times 80^2}{1719/3}$ = 15.08 cm (i) Actual cont required $e_{th} = e_{eq} + C.D$ = 15.08 + 7.5 $e_{th} = 22.58 \text{ cm}$ (ii) Permissible speed $V = \sqrt{\frac{eR}{1.35}}$ $= \sqrt{\frac{22.58 \times (1719/3)}{1.35}}$ = 97.9 kmph (1) According to Railway Board formula $V = 4.4\sqrt{R-70}$
 04. Ans: (c) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-6, 8th Question -pg: 1083) 05. Ans: (b) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-6, 10th Question -pg: 1084) 	(a) $L = 7.2 e$ = 7.2 × 22.58 = 162.586 m (b) $L = 0.073 D V_{max}$ = 0.073 × 7.5 × 97.9 = 53.6 m

Engineering Publications	45	Transportation Engineering
(c) $L = 0.073 \text{ e V}_{\text{max}}$ = 0.073 × 22.58 × 97.9		2.
= 161.37 m	S	ol: (i) S.E of Branch track = $\frac{0.8V^2}{R}$
,	re	$=\frac{0.8\times30^2}{(1719/6)}$
calculated from cubic parabola equation	as	= 2.51 cm
follows		-ve super elevation = $(2.51 - 5) = -2.49$ cm
$Y = \frac{x^3}{6 RL} = \frac{x^3 \times 100}{6 \times 573 \times 165} cm = \frac{x^3}{5673.0} cm$	1	Maximum S.E on main line = 2.49 cm
	the second se	Theoretical S.E = $2.49 + 5 = 7.49$ cm
x(m) y (cm) 10 0.176	EERIN	$7.49 = \frac{V^2}{(1719/3)} \times 0.8$
20 1.408		V = 73.24 kmph (1)
30 4.752		Maximum permissible speed
40 11.264		
50 22		
60 38.016		$V = 4.4\sqrt{R - 70}$ $= 4.4\sqrt{\frac{1719}{3} - 70}$
70 60.37		= 98.68 kmph (2)
80 90.112		So adopt lower value of (1) & (2)
90 128.3	>	V = 73.24 kmph
100 176	200 10	95(ii) $e_{th} = \frac{0.8V^2}{R}$
110 234.26	nce iy	$e_{th} = \frac{R}{R}$
120 304.13		0.8×70^2 (84 mm
130 386.67		$=\frac{0.8\times70^2}{(1719/3)}=6.84$ cm
140 428.94		$e_{th} = e_{act} + CD$
150 594		$6.84 = e_{act} + 5$
160 720.87		$e_{act} = 1.84 \text{ cm}$
165 790.61		
·	F	or branch track:
		$e_{act} = -1.84$ cm
		$e_{th} = e_{act} + CD$

= -1.84 + 5 = 3.16 cm

	ACE
3-2K	Engineering Publications

04. Sol:

$e_{th} = \frac{0.8V^2}{R}$
$3.16 = \frac{0.8 \times V^2}{(1719/6)}$
V = 33.64 kmph
Check:
$V_{max} = 4.4\sqrt{R-70} = 4.4\sqrt{\frac{1719}{6}-70}$
= 64.74 kmph
Hence $V = 33.64$ kmph is ok
4.ENGIN
Deviation angle $N = 0.03 - (0.04) = 0.07$
Length of valley curve
Deviation angle
$=\frac{1}{Rate of change of gradient}$

$$=\frac{7}{0.25}=28\,\mathrm{chains}$$

Assume chain length = 20 m Length of valley curve = 560 m Intersection of gradients is

At mid point of curve (C) So changing of A $=3200 - \frac{560}{2} = 2920 \,\mathrm{m}$ Change of B $=3200+\frac{560}{2}=3480\,\mathrm{m}$ Chainage of valley point $=\frac{n_2}{(n_1+n_2)}L=\frac{4}{7}\times 560=320 \text{ m from B}=$ 240 m from A RL of C = RL of A – N₁ x + $\frac{Nx^2}{2L}$ $350 = R.L \text{ of } A - 0.03 \times 280 +$ 0.07×280^{2} 2×560 350 = R.L of A - 8.4 + 4.9R.L of A = 353.5 mRL of B = RL of A - N₁ x + $\frac{Nx^2}{2L}$ $= 353.5 - 0.03 \times 560 + \frac{0.07 \times 560^2}{2 \times 560}$ **Since 1995** RL of B = 356.6 mR.L of valley point = RL of A $- n_1 x +$ $\frac{Nx^2}{2L}$ $= 353.5 - 0.03 \times 240 + \frac{0.07 \times 240^2}{2 \times 560}$ = 353.5 - 7.2 + 3.6= 349.9 m

Engineering Publications	47 Transportation Engineering
05. Sol: Having capacity of loco motive $= \frac{1}{6} \times 3 \times 21$ $= 10.5 \text{ tonne}$ (a) On a straight track, train resistance = Resistance due to friction wave action + resistance due to speed $10 = 0.0025 \text{ W} + 0.0000015 \text{ WV}^2$ W = 826.44 tonne (b) Total Train resistance $= 0.0025 \text{ W} + 0.0000015 \text{ V}^2 \text{ W} + \text{W} \times \frac{1}{\text{rate of grade}}$ $10.5 = 0.0025 \times 826.44 + 0.0000015 \text{ V}^2 \times 826.44 + \left(826.44 \times \frac{1}{200}\right)$ V = 58.9 kmph (c) Total Train Resistance $10.5 = 0.0025 \text{ W} + 0.0000015 \text{ WV}^2 + 100000015 \text{ WV}^2 + 100000015 \text{ WV}^2 + 100000015 \text{ WV}^2 + 100000015 \text{ WV}^2 + 100000000000000000000000000000000000$	06. Sol: (a) Curve is starting from toe of switch and end at theoretical nose of crossing \therefore Using Coles method: Crossing number N = 12 Curve lead = CL = 2GN $= 2 \times 1.676 \times 12 = 40.224 \text{ m}$ Radius of outer curve R _o = 1.5G + 2GN ² $= (1.5 \times 1.676) + (2 \times 1.676 \times 12^2)$ = 485.202 m Radius of centre line = R _o - $\frac{G}{2} = 484.364 \text{ m}$ Switch lead = $\sqrt{2R_od} = \sqrt{2 \times 485.202 \times 0.12}$ = 10.79 m Lead = LL - SL = 40.224 - 10.79 = 0 (b) Curve is starting from heel of switch
-	and ends at TNC

10.

Sol: Let, Angle of crossing = α Number of crossing N = 4 G = 1.676m for B.G tack Diamond crossing

From $\triangle CDF$,

 $\sin \alpha = \frac{FD}{CD}$

Where, FD = G

$$\sin \alpha = \frac{G}{CE}$$

 $CD = G. \operatorname{cosec} \alpha$

From figure,

 $AB = BC = CD = DA = G. \operatorname{coseca}$ $AB = BC = CD = DA = 1.676 \operatorname{coseca}$ We know that, N = cota $4 = \cot \alpha$ $\alpha = 14^{\circ}2'10.48''$ (i) AB = BC = CD = DA $= 1.676.\operatorname{cosec}(14^{\circ}2'10.48'')$

= 6.91 m

Transportation Engineering

(ii) AE = CF = G.cot
$$\alpha$$
 = 1.676×4
= 6.704 m
(iii) AC = 2 AB sin $\frac{\alpha}{2}$
= 2×6.91 sin $\left(\frac{14^{\circ}2'10.48''}{2}\right)$
= 1.688 m
(iv) BD = G.cosec $\frac{\alpha}{2}$

=
$$1.676 \times \operatorname{cosec}\left(\frac{14^{\circ}2'10.48''}{2}\right)$$

BD = 13.72 m

19. Airport Engineering

19.2 RUNWAY

01. Ans: (a) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (23rd Question -pg: 1096)

02. Ans: (d)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (2nd Question -pg: 1093)

03. Ans: (a)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (19th Question -pg: 1096)

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

50

04. Ans: (c)
Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (30th Question -pg: 1098)

05. Ans: (a)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (6th Question -pg: 1093)

19.3 GEOMETRIC DESIGN OF RUNWAY

01. Ans: (a)

Sol: Length of runway under standard condition = 2100 m

> We have to increase 7% for every 300 m elevation above ground so length of runway = $2100 + \frac{7}{100} \times 2100 = 2247$ m

02. Ans: (c)

Sol: Runway elevation = 1000 m (above msl)

Airport reference temperature (ART) = CO 16°C

Airport standard temperature(AST)

= standard temperature at msl - 6.5 °C for

1 km height above msl

 $AST = 15 - 6.5 = 8.5^{\circ}C$

Rise in temperature as per

 $ICAO = 16 - 8.5 = 7.5^{\circ}C$

03. Ans: 4 km

Sol: Runway length = 2460 m

Correction for elevation (ICAO)

 $300 \text{ m} \rightarrow 7\%$

 $486 \rightarrow x$

$$x = 11.34$$
 %

corrected length after elevation correction

$$=\frac{11.34}{100} \times 2460 + 2460 = 2738.964 \text{ m}$$

correction for temperature

$$ART = T_1 + \frac{T_2 - T_1}{3}$$
$$= 30.2 + \frac{(46.3 - 30.2)}{3}$$

ART = 35.57°

Temperature gradient 1000 - 6.5

486 – x

 $x = 3.159^{\circ}$

100 Temperature @ airport @ 486 m elevation

 $= 15 - 3.159 = 11.841^{\circ}$

1% increase in length for 1° above standard temperature. $(3.5057^{\circ} - 11.841^{\circ}) = 23.729^{\circ}$

 $1\% \rightarrow 1^{\circ}$ change

$$x \rightarrow (35.57^{\circ} - 11.84\%)$$

$$x = 23.729\%$$

Correction =

 $\frac{23.729}{100} \times 2738.964 + 2738.964$

= 3388.89 m

Correction for effective gradient

 $20\% \uparrow \rightarrow 1\%$ effective gradient

$$x \rightarrow 0.75\%$$

x = 15%

Total runway length = 1.15×3388.89

= 3897.22 m

 $\simeq 4000 \text{ m} = 4 \text{ km}$

04. Ans: (d)

Sol: The runway length after being corrected for elevation and temperature should further be increased at the rate of 20% for every 1 % of the effective gradient for 0.5%, 10% should be increased.

So runway length after correction of temperature and elevation

$$= 2845 + 10\left(\frac{2845}{100}\right) = 3129.5 \simeq 3130 \text{ m}$$

05. Ans: (d)

Sol: Given $T_m = 40^{\circ}C$

$$T_{a} = 25^{\circ}C$$

$$ART = \frac{2T_{a} + T_{m}}{3}$$

$$= \frac{2 \times 25 + 40}{3}$$

$$= 30^{\circ}C$$

06. Ans: 2102.17 m

Sol: Length of runway = 1640 m

Elevation = 280 m

Reference temperature = $33.5^{\circ}C$

Effective gradient = 0.2%

Correction for Elevation (ICAO)

For 300 m – 7 %

$$280 \rightarrow x$$

correction =
$$1640 + \frac{6.53}{100} \times 1640$$

= 1747.15 m

Correction for temperature (ICAO) ART = 33.5° C m Temperature gradient

$$1000 \text{ m} \rightarrow 0.3$$

 $199280 \text{ m} \rightarrow \text{x}$

Temp @ airport @ 280 m elevation

$$= 15 - 1.82$$

= 13.18°

1% increase in length for 1° above standard temperature = $33.5^{\circ} - 13.18^{\circ}$

 $= 20.32^{\circ}$ $1^{\circ} \uparrow \rightarrow 1\% \uparrow$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

$20.32^{\circ} \uparrow \rightarrow x$ 88. Ans: (d) $x = 20.32\%$ Sol: Refer previous ESE-Obj-(Vol-2) solution Book (3 rd Question -pg: 1093) Correction = $\frac{20.32}{100} \times 1747.15 + 1747.15$ 900. (3 rd Question -pg: 1093) 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 280 m Sol: Refer previous ESE-Obj-(Vol-2) solution Book (16 th Question -pg: 1095) 10. Ans: (a) Sol: Refer previous ESE-Obj-(Vol-2) solution Book (20 th Question -pg: 1095) 10. Ans: (a) Sol: Refer previous ESE-Obj-(Vol-2) solution Book (20 th Question -pg: 1096) 11. Ans: (c) Sol: Refer previous ESE-Obj-(Vol-2) solution Book (25 th Question -pg: 1097) 1500 +0.5 280 + $\frac{0.5}{100} \times 690 = 283$ 1800 +1 283 + 0.01 \times 300 = 284.5 2100 -0.5 286 + $\frac{0.5}{100} \times 300 = 284.5$ 2700 0.4 284.5 - $\frac{0.4}{100} \times 600 = 282.4$ 3000 -0.1 282.1 - $\frac{0.1}{100} \times 300 = 281.8$ Effective gradient = $\left(\frac{286 - 280}{1640}\right) \times 100 = 0.36\%$ Sol: Refer previous ESE-Obj-(Vol-2) solution Book (28 th Question -pg: 1098) <th>ACE Engineering Publications</th> <th></th> <th></th> <th>52</th> <th>ESE-Postal Coaching Solutions</th>	ACE Engineering Publications			52	ESE-Postal Coaching Solutions
= 2102.17 m 09. Ans: (a) 07. Ans: 0.36 % Sol: Refer previous ESE-Obj-(Vol-2) solution Book (16 th Question -pg: 1095) Sol: 10. Ans: (a) Chainage Gradient Elevation 0 - 280 m 300 +1% (280 + 0.01 × 300) = 283 900 -0.5% 283 - $\frac{0.5}{100} \times 600 = 280$ 1500 +0.5 280 + $\frac{0.5}{100} \times 690 = 283$ 1800 +1 283 + 0.01 × 300 = 286 2100 -0.5 286 - $\frac{0.5}{100} \times 300 = 284.5$ 2100 -0.5 286 - $\frac{0.5}{100} \times 300 = 284.5$ 3000 -0.1 282.1 - $\frac{0.1}{100} \times 300 = 281.8$ Effective gradient = $\left(\frac{286 - 280}{1640}\right) \times 100 = 0.36\%$ 14. Ans: (b) Sol: Refer previous ESE-Obj-(Vol-2) solution Book (29 th Question -pg: 1097) 3000 -0.1 282.1 - $\frac{0.1}{100} \times 300 = 281.8$ Effective gradient = $\left(\frac{286 - 280}{1640}\right) \times 100 = 0.36\%$ 15. Ans: (b)	x = 20	0.32%			Refer previous ESE-Obj-(Vol-2) solutions
Chainage Gradient Elevation 0 - 280 m 300 +1% (280 +0.01×300) = 283 900 -0.5% $283 - \frac{0.5}{100} \times 600 = 280$ 10. Ans: (a) Sol: Refer previous ESE-Obj-(Vol-2) solution Book (20 th Question -pg: 1096) 11. Ans: (c) Sol: Refer previous ESE-Obj-(Vol-2) solution Book (25 th Question -pg: 1097) 1500 +0.5 $280 + \frac{0.5}{100} \times 690 = 283$ 1800 +1 $283 + 0.01 \times 300 = 284$.5 1200 -0.5 $286 - \frac{0.5}{100} \times 300 = 284.5$ 2700 0.4 $284.5 - \frac{0.4}{100} \times 600 = 282.4$ 3000 -0.1 $282.1 - \frac{0.1}{100} \times 300 = 281.8$ Effective gradient = $\left(\frac{286 - 280}{1640}\right) \times 100 = 0.36\%$ 14. Ans: (b) Sol: Refer previous ESE-Obj-(Vol-2) solution Book (29 th Question -pg: 1098) 20% $\rightarrow 1\%$ 100 = 0.36\%	= 21	102.17 m			Refer previous ESE-Obj-(Vol-2) solutions
0-280 m 300 $+1\%$ $(280 \pm 0.01 \times 300) = 283$ 900 -0.5% $283 - \frac{0.5}{100} \times 600 = 280$ 900 -0.5% $283 - \frac{0.5}{100} \times 600 = 283$ 1500 ± 0.5 $280 \pm \frac{0.5}{100} \times 690 = 283$ 1800 ± 1 $283 \pm 0.01 \times 300 = 286$ 1800 ± 1 $283 \pm 0.01 \times 300 = 286$ 2100 -0.5 $286 - \frac{0.5}{100} \times 300 = 284.5$ 2700 0.4 $284.5 - \frac{0.4}{100} \times 600 = 282.1$ 3000 -0.1 $282.1 - \frac{0.1}{100} \times 300 = 281.8$ Effective gradient = $\left(\frac{286 - 280}{1640}\right) \times 100 = 0.36\%$ 14. Ans: (b) $20\% \rightarrow 1\%$ $100 = 0.36\%$ $20\% \rightarrow 1\%$ $100 = 0.36\%$		radient	Elevation		
900 -0.5% $283 - \frac{0.5}{100} \times 600 = 280$ Sol: Refer previous ESE-Obj-(Vol-2) solution Book (25^{th} Question -pg: 1097)1500 $+0.5$ $280 + \frac{0.5}{100} \times 690 = 283$ 12. Ans: (a)1800 $+1$ $283 + 0.01 \times 300 = 286$ Sol: Refer previous ESE-Obj-(Vol-2) solution Book (26^{th} Question -pg: 1097)2100 -0.5 $286 - \frac{0.5}{100} \times 300 = 284.5$ Sol: Refer previous ESE-Obj-(Vol-2) solution Book (26^{th} Question -pg: 1097)2700 0.4 $284.5 - \frac{0.4}{100} \times 600 = 282.1$ Sol: Refer previous ESE-Obj-(Vol-2) solution 		- +1%	GIN		Book (20 th Question -pg: 1096)
1800 +1 $283 + 0.01 \times 300 = 286$ 2100 -0.5 $286 - \frac{0.5}{100} \times 300 = 284.5$ Book (26 th Question -pg: 1097) 2700 0.4 $284.5 - \frac{0.4}{100} \times 600 = 282.1$ Sol: Refer previous ESE-Obj-(Vol-2) solution Book (28 th Question -pg: 1097) 3000 -0.1 $282.1 - \frac{0.1}{100} \times 300 = 281.8$ Sol: Refer previous ESE-Obj-(Vol-2) solution Book (28 th Question -pg: 1097) 3000 -0.1 $282.1 - \frac{0.1}{100} \times 300 = 281.8$ Sol: Refer previous ESE-Obj-(Vol-2) solution Book (28 th Question -pg: 1097) 44. Ans: (b) Sol: Refer previous ESE-Obj-(Vol-2) solution Book (29 th Question -pg: 1097) 20% $\rightarrow 1\%$ 15. Ans: (b)	900 -	-0.5%	$283 - \frac{0.5}{100} \times 600 = 280$		Refer previous ESE-Obj-(Vol-2) solutions
1800 $+1$ $283 \pm 0.01 \times 300 = 286$ 2100 -0.5 $286 - \frac{0.5}{100} \times 300 = 284.5$ Book (26^{th} Question -pg: 1097) 2700 0.4 $284.5 - \frac{0.4}{100} \times 600 = 282.1$ Sol: Refer previous ESE-Obj-(Vol-2) solution Book (28^{th} Question -pg: 1097) 3000 -0.1 $282.1 - \frac{0.1}{100} \times 300 = 281.8$ H. Ans: (b)Effective gradient = $\left(\frac{286 - 280}{1640}\right) \times 100 = 0.36\%$ Sol: Refer previous ESE-Obj-(Vol-2) solution Book (29^{th} Question -pg: 1098) $20\% \rightarrow 1\%$ 15. Ans: (b)	1500	+0.5	$280 + \frac{0.5}{100} \times 690 = 283$		
2700 0.4 $284.5 - \frac{0.4}{100} \times 600 = 282.1$ 13. Ans: (d) 3000 -0.1 $284.5 - \frac{0.4}{100} \times 600 = 282.1$ Sol: Refer previous ESE-Obj-(Vol-2) solution Book (28^{th} Question -pg: 1097) 3000 -0.1 $282.1 - \frac{0.1}{100} \times 300 = 281.8$ 14. Ans: (b) Effective gradient = $\left(\frac{286 - 280}{1640}\right) \times 100 = 0.36\%$ Sol: Refer previous ESE-Obj-(Vol-2) solution Book (29^{th} Question -pg: 1098) $20\% \rightarrow 1\%$ 15. Ans: (b)				- 501:	
3000 -0.1 $282.1 - \frac{0.1}{100} \times 300 = 281.8$ 14. Ans: (b) Effective gradient = $\left(\frac{286 - 280}{1640}\right) \times 100 = 0.36\%$ Sol: Refer previous ESE-Obj-(Vol-2) solution Book (29 th Question -pg: 1098) $20\% \rightarrow 1\%$ 15. Ans: (b)					
Effective gradient = $\left(\frac{286 - 280}{1640}\right) \times 100 = 0.36\%$ $20\% \rightarrow 1\%$ $r_{e} > 0.26\%$ Book (29 th Question -pg: 1098) 15. Ans: (b)	3000	-0.1	0.1		
15. Ans: (b)	Effective gradie	ent = $\left(\frac{28}{2}\right)$	$\left(\frac{36-280}{1640}\right) \times 100 = 0.36\%$	Sol:	• • • • •
Sol: Refer previous ESE-Obj-(Vol-2) solution x = 7.2% Total length of runway = 1.072× 2102.17 = 2253.5 m	$x \rightarrow 0.36\%$ $x = 7.2\%\uparrow$		-		Refer previous ESE-Obj-(Vol-2) solutions

53

16. Ans: (b)

Sol: Speed of airplane = 800 km/hr = 222.22 m/sec Air temperature = 0°C Mach number = $\frac{\text{Speed of airplane}}{\text{Speed of sound}}$ Speed of round at 0°C = 331.5 m/sec as V ≈ 20.05 \sqrt{T} (T in Kelvin) = 20.05 $\sqrt{273}$ =331.28 m/sec \therefore Moch number = $\frac{222.22}{331.25}$ = 0.67

Conventional Practice Solutions

01.

Sol: Given

Basic length of runway = 2000 meters

Elevation of airport site (RL) = 280 meters

Monthly mean of average daily temperature

for the hottest month of the year $= 35^{\circ}C$

Monthly mean maximum daily temperature

for the same month=42°C

Effective gradient = 0.12 %

Correction for Elevation:

(Recommendation of ICAO),

The basic length is to be increased at the rate of 7% per 300 m elevation above mean sealevel.

Therefore,

Correction $= \frac{7}{100} \times \frac{\text{Elevation}}{300} \times \text{Basic length}$ $= \frac{7}{100} \times \frac{280}{300} \times 2000$ = 130.67 m Corrected length, L' = L + 130.67= 2000 + 130.67 = 2130.67 m

Correction for temperature:

Airport reference temperature,

$$T_{\rm R} = T_1 + \frac{T_2 - T_1}{3}$$

Where

 T_1 = mean of average daily temperature = 35°C

 T_2 = Mean of maximum daily temperature = 42°C

$$T_{\rm R} = 35 + \frac{42 - 35}{3}$$

 $T_{\rm R} = 37.33 \ ^{\circ}{\rm C}$

We know that,

Standard atmospheric temperature at mean sea level = 15° C

Taking the temperature gradient as equal to 6.5°C per 1000 m rise in Elevation, the standard temperature at the airport site will be,

Temperature at given elevation

$$= 15 - \left[6.5 \times \frac{280}{1000} \right] = 13.18^{\circ} C$$

Rise in temperature from standard temperature

$$= T_{R} - T_{S}$$

= 37 - 13.18
= 23.82° C

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

Engineering Publications	54	ESE-Postal Coaching Solutions
ICAO recommends,		Correction for gradient
Correction for temperature shall be 1% for		$=\frac{20}{100}\times 0.12\times 2638.19$
every 1°C rise in temperature.		
Correction = $\frac{1}{100}$ × (rise in temperature) × L'		= 63.32 m
$-\frac{1}{2}$ × 23.82 × 2130.67 - 507.52 m		Final runway length = $L'' + 63.32$
$= \frac{1}{100} \times 23.82 \times 2130.67 = 507.52 \mathrm{m}$		= 2638.19 + 63.32
Corrected length, $L'' = 2130.67 + 507.52$		= 2701.51 m
L" = 2638.19 m		
		19.4 TAXIWAY DESIGN
Check:		AC
As per ICAO, total correction for sum of		01. Ans: 400 m
elevation and temperature shall not exceed		Sol:
35% of basic runway.		(i) Horonjeff's equation:
		$R = \frac{0.388 \mathrm{w}^2}{0.5 \mathrm{T} - \mathrm{S}}$
Length total correction for elevation and		0.5T - S
temperature.		= 0.388 × 17.7 ² = 55.50 m
= 130.67 + 507.52		$=\frac{0.388\times17.7^2}{0.5(23)-\left(6+\frac{6.62}{2}\right)}=55.50 \text{ m}$
= 638.19 m		
Total correction in percentage		(ii) Turning radius $V^2 = 80^2$
$=\frac{638.19}{\times 100}$		$R = \frac{V^2}{125f} = \frac{80^2}{125 \times 0.13} = 393.85 \text{ m}$

 $=\frac{1000}{2000}\times 100$ = 31.9 % < 35 %

Hence Accepted.

Correction for gradient:

(Recommendation of FAA),

Runway length shall be further increased at the rate of 20 % for energy 1% of effective gradient after being corrected for elevation and temperature.

$$R = \frac{V^2}{125f} = \frac{80^2}{125 \times 0.13} = 393.85 \text{ m}$$

(iii) The minimum radius of sub sonic aircraft is 135 m

.:. Turning radius = Maximum of three conditions

$$R \approx 400 \text{ m}$$

02. Ans: (b)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (12th Question -pg: 1094)

Conventional Practice Solutions

01.

Sol: Given:

Turning speed, V = 60 kmph Wheel base, W = 35 m Tread of main landing gear, T' = 4 m Co-efficient of friction, f = 0.13Width of taxiway ,T = 22.5 m

The following three values of R shall be worked out, and maximum of three will be final radius of taxiway.

(i)
$$R = \frac{V^2}{125f} = \frac{60^2}{125 \times (0.13)} = 221.54m$$

(ii) Horonjeff's equation

$$R = \frac{0.388W^2}{\frac{T}{2} - S}$$

Where S is distance between point midway of main gears and the edge of taxiway pavement.

S = edge distance + $\frac{T'}{2}$ (Assume edge distance as 6 m)

$$S = 6 + \frac{4}{2} = 8 m \dots (1)$$

Substituting equation (1) in Horonjeff's equation

$$R = \frac{0.388 \times (35)^2}{0.5(22.5) - 8} = 146.25 \text{ m}$$

(iii)The absolute minimum turning radius for supersonic aircraft irrespective of any speed = 180 m.

The maximum value among the above three is 221.54 m. Hence the radius is approximately 221.54 m.

19.5 PLANNING AND DESIGN OF TERMINAL AREA & VISUAL AIDS

01. Ans: (c)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (1st Question -pg: 1093)

02. Ans: (d)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (4th Question -pg: 1093)

03. Ans: (a)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (5th Question -pg: 1093)

04. Ans: (a)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (8th Question -pg: 1094)

05. Ans: (d)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (11th Question -pg: 1094)

ACF	
Engineering Publications	56 ESE-Postal Coaching Solutions
06. Ans: (a)	14. Ans: (b)
Sol: Refer previous ESE-Obj-(Vol-2) solutions	Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (13 th Question -pg: 1095)	Book (32 nd Question -pg: 1098)
07. Ans: (d)	15. Ans: (a)
Sol: Refer previous ESE-Obj-(Vol-2) solutions	Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (14 th Question -pg: 1095)	Book (34 th Question -pg: 1099)
08. Ans: (c)	16. Ans: (b)
Sol: Refer previous ESE-Obj-(Vol-2) solutions	
Book (15 th Question -pg: 1095)	Book (35 th Question -pg: 1099)
09. Ans: (d)	17. Ans: (c)
Sol: Refer previous ESE-Obj-(Vol-2) solutions	
Book (17 th Question -pg: 1095)	Book (36 th Question -pg: 1099)
10. Ans: (a)	19. Ans: (a)
Sol: Refer previous ESE-Obj-(Vol-2) solutions	Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (21 st Question -pg: 1096)	Book (42 nd Question -pg: 1099)
11. Ans: (c) Since	
Sol: Refer previous ESE-Obj-(Vol-2) solutions	
Book (22 nd Question -pg: 1096)	Book (39 th Question -pg: 1099)
12. Ans: (d) Sel: Befer provious ESE Obi (Vol 2) solutions	20. Harbour Engineering
Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (27 th Question -pg: 1097)	
Book (27 Question - pg. 1077)	01. Ans: (c)
13. Ans: (d)	Sol: Refer previous ESE-Obj-(Vol-2) solutions
Sol: Refer previous ESE-Obj-(Vol-2) solutions	Book (2 nd Question -pg: 1105)
Book $(31^{st}$ Question -pg: 1098)	
2001 (01 Question P5. 1090)	

ACE	57	Transportation Engineering
Engineering Publications		
02. Ans: (a)		10. Ans: (c)
Sol: Refer previous ESE-Obj-(Vol-2) solutions		Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (4 th Question -pg: 1105)		Book (13 th Question -pg: 1107)
03. Ans: (d)		11. Ans: (c)
Sol: Refer previous ESE-Obj-(Vol-2) solutions		Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (5 th Question -pg: 1106)		Book (14 th Question -pg: 1107)
04. Ans: (b)		12. Ans: (b)
Sol: Refer previous ESE-Obj-(Vol-2) solutions		Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (7 th Question -pg: 1106)		Book (15 th Question -pg: 1107)
05. Ans: (c)		13. Ans: (d)
Sol: Refer previous ESE-Obj-(Vol-2) solutions		Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (8 th Question -pg: 1106)		Book (16 th Question -pg: 1107)
Ne		
06. Ans: (a)		14. Ans: (d)
Sol: Refer previous ESE-Obj-(Vol-2) solutions		Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (9 th Question -pg: 1106)		Book (17 th Question -pg: 1108)
07. Ans: (c) Since	ce 1	15. Ans: (d)
Sol: Refer previous ESE-Obj-(Vol-2) solutions		Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (10 th Question -pg: 1106)		Book (18 th Question -pg: 1108)
08. Ans: (a)		16. Ans: (a)
		Sol: Refer previous ESE-Obj-(Vol-2) solutions
Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (8 th Question -pg: 1106)		Book (19 th Question -pg: 1108)
Book (o Question - pg. 1100)		Book (13 Question - pg. 1100)

09. Ans: (b)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (12th Question -pg: 1107)

17. Ans: (b)

Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (20th Question -pg: 1108)

S ACE	
Engineering Publications	58ESE-Postal Coaching Solutions
18. Ans: (a)	26. Ans: (c)
Sol: Refer previous ESE-Obj-(Vol-2) solutions	Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (21 st Question -pg: 1108)	Book (30 th Question -pg: 1110)
19. Ans: (d)	29. Ans: (c)
Sol: Refer previous ESE-Obj-(Vol-2) solutions	Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (22 nd Question -pg: 1108)	Book (31 st Question -pg: 1110)
20. Ans: (a)	31. Ans: (a)
Sol: Refer previous ESE-Obj-(Vol-2) solutions	Sol: Refer previous ESE-Obj-(Vol-2) solutions
Book (23 rd Question -pg: 1108)	Book (33 rd Question -pg: 1110)
21. Ans: (b)	32. Ans: (d)
Sol: Refer previous ESE-Obj-(Vol-2) solutions	
Book (25 th Question -pg: 1109)	Book (34 th Question -pg: 1110)
22. Ans: (a)	21. Tunnel Engineering
Sol: Refer previous ESE-Obj-(Vol-2) solutions	
Book (26 th Question -pg: 1109)	01. Ans: (d)
	Sol: Refer previous ESE-Obj-(Vol-2) solutions
23. Ans: (d)	Ce 1995 Book (4 th Question -pg: 1115)
Sol: Refer previous ESE-Obj-(Vol-2) solutions	
Book (27 th Question -pg: 1109)	02. Ans: (b)
	Sol: Refer previous ESE-Obj-(Vol-2) solutions
24. Ans: (d)	Book (5 th Question -pg: 1115)
Sol: Refer previous ESE-Obj-(Vol-2) solutions	
Book (28 th Question -pg: 1109)	03. Ans: (a)
	Sol: Refer previous ESE-Obj-(Vol-2) solutions
25. Ans: (a)	Book (6 th Question -pg: 1116)
Sol: Refer previous ESE-Obj-(Vol-2) solutions	

Book (29th Question -pg: 1110)

 D4. Ans: (d) Sol: Refer previous ESE-Obj-(Vol-2) solutions Book (7th Question -pg: 1116) 	
Book (7 th Question -pg: 1116)	11. Ans: (c)
	Sol: Refer previous ESE-Obj-(Vol-2) solution Book (15 th Question -pg: 1118)
05. Ans: (d)	
Sol: Refer previous ESE-Obj-(Vol-2) solutions	12. Ans: (d)
Book (8 th Question -pg: 1116)	Sol: Refer previous ESE-Obj-(Vol-2) solution Book (16 th Question -pg: 1118)
06. Ans: (c)	
Sol: Refer previous ESE-Obj-(Vol-2) solutions	R 14. Ans: (d)
Book (9 th Question -pg: 1116)	Sol: Refer previous ESE-Obj-(Vol-2) solution Book (17 th Question -pg: 1118)
07. Ans: (b)	1
Sol: Refer previous ESE-Obj-(Vol-2) solutions	15. Ans: (c)
Book (10 th Question -pg: 1116)	Sol: Refer previous ESE-Obj-(Vol-2) solution Book (18 th Question -pg: 1118)
08. Ans: (d)	
Sol: Refer previous ESE-Obj-(Vol-2) solutions	16. Ans: (d)
Book (11 th Question -pg: 1117)	Sol: Refer previous ESE-Obj-(Vol-2) solution Book (19 th Question -pg: 1118)
09. Ans: (b) Sinc	e 1995
Sol: Refer previous ESE-Obj-(Vol-2) solutions	17. Ans: (c)
Book (12 th Question -pg: 1117)	Sol: Refer previous ESE-Obj-(Vol-2) solution Book (20 th Question -pg: 1118)
10. Ans: (b)	
Sol: Refer previous ESE-Obj-(Vol-2) solutions	
Book (13 th Question -pg: 1117)	