

ESE | GATE | PSUs

MECHANICAL ENGINEERING

THEORY OF MACHINES & VIBRATIONS

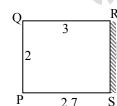
Text Book : Theory with worked out Examples and Practice Questions

Theory of Machines & Vibrations

(Solutions for Text Book Objective & Conventional Practice Questions)

Chapter Analysis of Planar Mechanisms

01. Ans: (a, c)


Sol:

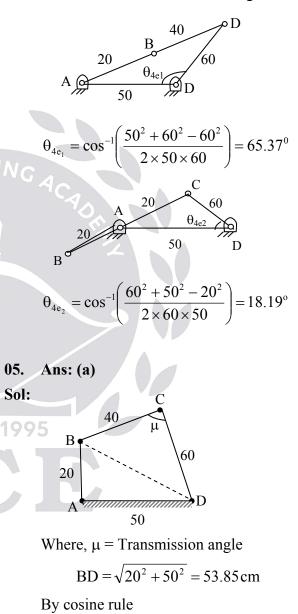
1

- The pair shown has two degree of freedom one is translational (motion along axis of bar and the rotation (rotation about axis). Both motions are independent. Therefore the pair has incomplete constraint.
- Kinematic pair is a joint of two links having relative motion between them. The pair shown form a kinematic pair.

02. Ans: (c)

Sol:

The given dimensions of the linkage satisfies Grashof's condition to get double rocker. We need to fix the link opposite to the shortest link. So by fixing link 'RS' we get double rocker.

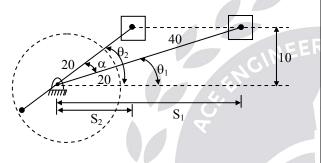

2.5

03. Ans: (d)

Sol: At toggle position velocity ratio is 'zero' so mechanical advantage is ' ∞ '.

04. Ans: (d)

Sol: The two extreme positions of crank rocker mechanisms are shown below figure.



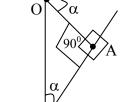
$$\cos\mu = \frac{BC^2 + CD^2 - BD^2}{2BC \times CD}$$

ACE

$$=\frac{40^2+60^2-53.85^2}{2\times40\times60}=0.479$$

$$\mu=61.37^{\circ}$$

- **06**. Ans: (c)
- Sol: Two extreme positions are as shown in figure below. Let r = radius of crank = 20 cml =length of connecting rod = 40 cm
 - h = 10 cm


Stroke =
$$S_1 - S_2$$

 $S_1 = \sqrt{(\ell + r)^2 - h^2} = \sqrt{60^2 - 10^2} = 59.16 \text{ cm}$
 $S_2 = \sqrt{(\ell - r)^2 - h^2} = \sqrt{20^2 - 10^2} = 17.32 \text{ cm}$
Stroke = $S_1 - S_2 = 59.16 - 17.32 = 41.84 \text{ cm}$

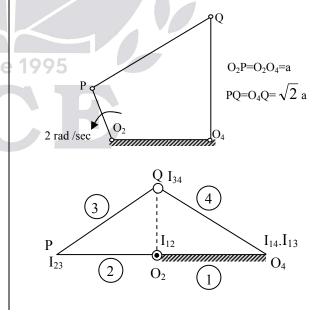
Sol:
$$\theta_1 = \sin^{-1} \left(\frac{h}{\ell + r} \right) = \sin^{-1} \left(\frac{10}{60} \right) = 9.55^\circ$$

 $\theta_2 = \sin^{-1} \left(\frac{h}{\ell - r} \right) = \sin^{-1} \left(\frac{10}{20} \right) = 30^\circ$
 $\alpha = \theta_2 - \theta_1 = 20.41^\circ$
Quick return ratio
 $(OPP) = \frac{180 + \alpha}{2559} = 1.2559$

$$(QRR) = \frac{180 + \alpha}{180 - \alpha} = 1.2558$$

ACE Engincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

2



 $OO_1 = 40 \text{ cm}$, OA = 20 cm $\sin\alpha = \frac{OA}{C} = \frac{20}{C} = \frac{1}{C}$

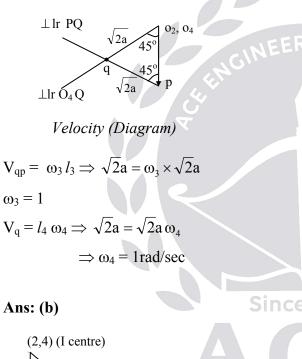
$$OO_1 \quad 40 \quad 2$$

 $\Rightarrow \alpha = 30^\circ$

$$QRR = \frac{180 + 2\alpha}{180 - 2\alpha} = \frac{180 + 60}{180 - 60}$$
$$\Rightarrow QRR = 2$$

- 09. Ans: (c)
- **Sol:** $\angle O_4 O_2 P = 180^\circ$ sketch the position diagram for the given input angle and identify the Instantaneous Centers.

ACE


 I_{13} is obtained by joining $I_{12} \ I_{23}$ and $I_{14} \ I_{3}$

$$\frac{\omega_3}{\omega_2} = \frac{I_{12}I_{23}}{I_{13}I_{23}} = \frac{a}{2a}$$
$$\frac{\omega_3}{2} = \frac{1}{2}$$

$\omega_3 = 1 \text{ rad /sec}$

Alternate Method:

The position diagram is isosceles right angle triangle and the velocity triangle is similar to the position diagram.

3

/////

4

OC = r
Velocity of slider
$$V_S = (12 - 24) \times \omega_2$$

 $= x \omega_2$
 $\frac{x}{\sin(\alpha + \beta)} = \frac{r}{\sin(90 - \beta)}$
 $x = \frac{r \sin(\alpha + \beta)}{\sin(90 - \beta)}$
 $V_S = r \omega_2 \sin(\alpha + \beta) \times \sec \beta$
 $= V_C \sin(\alpha + \beta) \times \sec \beta$
Ans: (a)
 $\perp \ln to CD$
 a,d,c
 $\perp \ln to BC$

Velocity diagram

$$V_{\rm C} = 0 = dc \times \omega_{\rm CD}$$

 $\omega_{\rm CD} = 0$

Note: If input and coupler links are collinear, then output angular velocity will be zero.

12. Ans: (c)

11.

Sol:

Sol: In a four bar mechanism when input link and output links are parallel then coupler velocity(ω_3) is zero.

$$\Rightarrow l_2 \omega_2 = l_4 \omega_4$$

$$l_4 = 2l_2 \text{ (Given)}$$

$$\Rightarrow \omega_4 = \omega_2 / 2 = 2/2 = 1 \text{ rad/s}$$

$$\omega_2 \omega_3 = \text{angular velocity of input}$$

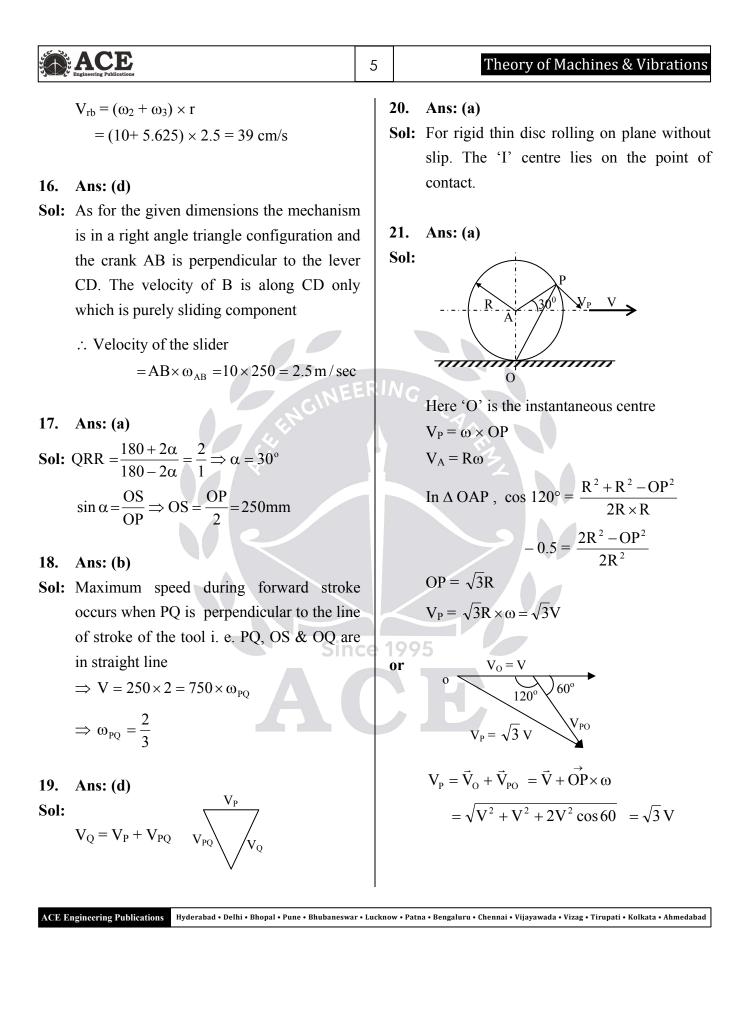
 ω_2 , ω_4 = angular velocity of input and output link respectively.

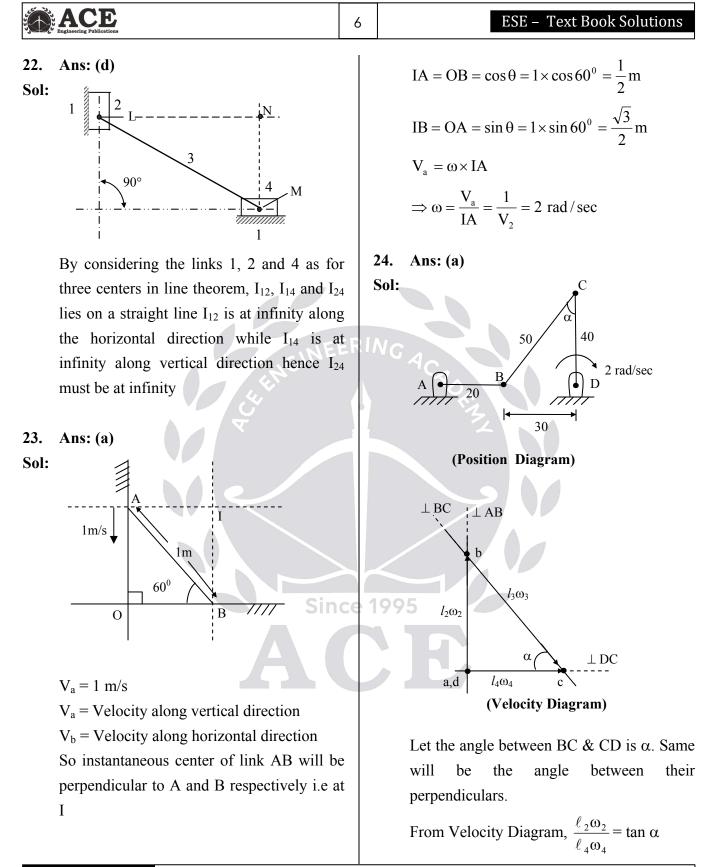
Fixed links have zero velocity.

ACE Engineering Publications

х

12

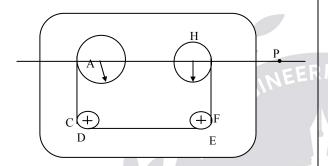

0


10.

Sol:

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	4	ESE – Text Book Solutions
At joint 1, relative velocity between fixed	d	\therefore Slider velocity = DE× ω_4
link and input link = $2-0 = 2$		$=50\times2$
Rubbing velocity at joint 1 = Relative	e	= 100 cm/sec (upward)
velocity \times radius of pin = $2 \times 10 = 20$ cm/s		
At joint 2, rubbing velocity = $(\omega_2 + \omega_3) \times r$		14. Ans: (a)
$= (2+0) \times 10 = 20 \text{ cm/s}$		Sol: Here as angular velocity of the connecting
+ve sign means ω_2 and ω_3 are moving in	n	rod is zero so crank is perpendicular to the
opposite directions.		line of stroke.
At joint 3, rubbing velocity = $(\omega_4 + \omega_3) \times r$		V_s = velocity of slider = $r\omega_2$
$=(1+0) \times 10 = 10 \text{ cm/s}$		$2 = 1 \times \omega_2 \implies \omega_2 = 2 \text{ rad/sec}$
At joint 4, rubbing velocity		15 Arr. (D)
$=(\omega_4-0)\times r$	ERU	15. Ans: (d) Sol:a
$=(1-0)\times 10=10$ cm/s		
4		$l_3 \omega_3 = 90^{\circ}$ r ω_2
13. Ans: (a)		$b \qquad 90^{\circ} - \theta \qquad 0$
Sol: $B \xrightarrow{C} C$		V V _s
50 75		Here the crank is perpendicular to
		connecting rod
A , , , , , , , , , , , , , , , , , , ,		Velocity of rubbing = $(\omega_2 + \omega_3) \times r$
////// 30		Where, $r = radius$ of crank pin
75		From the velocity diagram $V_{AB} = ab = ?$
F Sin	ce 1	1995 oa = $\omega_2 \times r = 10 \times 0.3 = 3$ m/sec
		Δ oab is right angle Δ .
Considering the four bar mechanism	n	$\tan \theta = \frac{\mathrm{oa}}{\mathrm{ab}} = \frac{40}{30} \implies \theta = 53.13^{\circ}$
ABCD, $l_2 \parallel l_4$		rω.
		$\tan \theta = \frac{r\omega_2}{\ell \omega_3}$
$\therefore \ell_2 \omega_2 = \ell_4 \omega_4 \Longrightarrow \omega_4 = \frac{50 \times 3}{75} = 2 \operatorname{rad/sec}$		P
CDE being a ternary link angular velocity		where, $n = \frac{\ell}{r}$
of DE is same as that of the link DC (ω_4).		$\omega_2 = 10 = 90 = 5.55$
For the slider crank mechanism DEF, cran	ς.	$\omega_3 = \frac{\omega_2}{n^2} = \frac{10}{\left(\frac{4}{2}\right)^2} = \frac{90}{16} = 5.625$ (CW)
is perpendicular to the axis of the slider.		$\left(\overline{3}\right)$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	r • Luckno	ow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad


Engineering Publications	7 Theory of Machines & Vibrations
From Position diagram, $\tan \alpha = \frac{30}{40}$ $\therefore \omega_2 = \omega_4 \times \frac{\ell_4}{\ell_2} \times \tan \alpha = 2 \times \frac{40}{20} \times \frac{30}{40} = 3$ $\omega_2 = 3 \text{ rad/sec}$ Note: DC is the rocker (Output link) and AB is the crank (Input link).	 27. Ans: (d) Sol: Refer the figure shown below, By knowing the velocity directions instantaneous centre can be located as shown. By knowing velocity (magnitude) of Q we can get the angular velocity of the link, from this we can get the state of the link from the second s
25. Ans: (c) Sol: $E,I_{13} = 90^{0}$ $E_{13} = 134$ 36 E,III = 100 E $I_{12} = 134$ 36 E,III = 100 E $I_{12} = 100$ E,III = 100 E III = 100 E IIII = 100 E III = 100 E IIII = 100 E III = 100 E IIII =	$V_Q = 1 \text{m/sec}$ $V_Q = 1 \text{m/sec}$ $V_Q = \frac{45^\circ}{20^\circ} \frac{65^\circ}{70^\circ}$ $V_P = \frac{20^\circ}{70^\circ} P$
I ₁₃ = Instantaneous center of link 3 with respect to link 1 As AED is a right angle triangle and the sides are being integers so AE = 30 cm and DE = 40 cm BE = 3 cm and CE = 4 cm By 'I' center velocity method, $V_{23} = \omega_2 \times (AB) = \omega_3 \times (BE)$ $\omega_3 = \frac{1 \times 27}{3} = 9 \text{ rad/s}$	From sine rule
26. Ans: (a) Sol: Similarly, $V_{34} = \omega_3 \times (EC) = \omega_4 \times (CD)$ $\omega_4 = \frac{9 \times 4}{36} = 1 \text{ rad/s}$	IQ = 0.9645

ESE - Text Book Solutions

ACE Engineering Publications

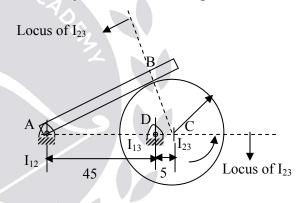
28. Ans: (c)

Sol: Consider the three bodies the bigger spool (Radius 20), smaller spool (Radius 10) and the frame. They together have three I centers, I centre of big spool with respect to the frame is at its centre A. that of the small spool with respect to the frame is at its centre H. The I centre for the two spools P is to be located.

As for the three centers in line theorem all the three centers should lie on a straight line implies on the line joining of A and H. More over as both the spools are rotating in the same direction, P should lie on the same side of A and H. Also it should be close to the spool running at higher angular velocity. Implies close to H and it is to be on the right of H. Whether P belongs to bigger spool or smaller spool its velocity must be same. As for the radii of the spools and noting that the velocity of the tape is same on both the spools

$$\omega_{\rm H} = 2\omega_{\rm A}$$

 $\therefore AP.\omega_{\rm A} = HP\omega_{\rm H} \text{ and}$
 $AP = AH + HP \Longrightarrow HP = AH$


Note:

8

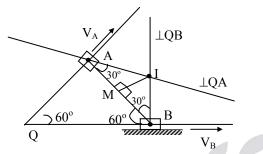
- (i) If two links are rotating in same directions then their Instantaneous centre will never lie in between them. The 'I' center will always close to that link which is having high velocity.
- (ii) If two links are rotating in different directions, their 'I' centre will lie in between the line joining the centres of the links.

29. Ans: (b)

Sol: I_{23} should be in the line joining I_{12} and I_{13} . Similarly the link 3 is rolling on link 2.

So the I – Center I_{23} will be on the line perpendicular to the link – 2. (I_{23} lies common normal passing through the contact point)

So the point C is the intersection of these two loci which is the center of the disc.


So
$$\omega_2(I_{12}, I_{23}) = \omega_3(I_{13}, I_{23})$$

 $\Rightarrow \omega_2 \times 50 = 1 \times 5$
 $\Rightarrow \omega_2 = 0.1 \text{ rad/sec}$

ACE Engineering Publications

ACE Engineering Publications

30. Ans: 1 (range 0.95 to 1.05)

Sol: Locate the I-centre for the link AB as shown in fig. M is the mid point of AB Given, $V_A = 2$ m/sec

$$V_{A} = IA.\omega \Longrightarrow \omega = \frac{V_{A}}{IA}$$
$$V_{M} = IM.\omega = IM\frac{V_{A}}{IA} = \frac{II}{IA}$$

$$= \sin 30^{\circ}.V_{\rm A} = \frac{1}{2}.2 = 1$$
m/se

31. Ans: (a) & 32. Ans: (b) Sol: $f^{co} = 0.4$

$$f' = 0.5$$

 $f^{e} = 0.4$
 $f^{e} = 0.4$

Centripetal acceleration,

 $f^c = r\omega^2 = 0.4 \text{ m/s}^2$ acts towards the centre Tangential acceleration, $f^t = r\alpha = 0.2 \text{ m/s}^2$ acts perpendicular to the link in the direction of angular acceleration. Linear deceleration = 0.5 m/s² acts opposite to velocity of slider As the link is rotating and sliding so coriolis

component of acceleration acts $f^{co} = 2V\omega = 2 \times 0.2 \times 1 = 0.4 \text{ m/s}^2$

To get the direction of coriolis acceleration, rotate the velocity vector by 90^0 in the direction of ω .

Resultant acceleration

9

33. Sol:

Since

$$= \sqrt{0.6^2 + 0.1^2} = 0.608 \text{ m/sec}^2$$

$$\phi = \tan^{-1} \left(\frac{0.6}{0.1} \right) = 80.5$$

Angle of Resultant vector with reference to $OX = 30 + \phi = 30 + 80.5 = 110.53^{\circ}$

Ans: (d)

$$a_{TO} = r\alpha$$

 a_n
 a_n

Acceleration at point 'O'

$$a_{o}^{\rightarrow} = a_{TO}^{\rightarrow} + a_{TA}^{\rightarrow} + a_{n}^{\rightarrow}$$

 a_{TO}^{\rightarrow} and a_{TA}^{\rightarrow} are linear accelerations

with same magnitude and opposite in direction.

$$\Rightarrow a_{o}^{\rightarrow} = a_{n}^{\rightarrow} = \frac{V^{2}}{r} = r\omega^{2}$$

$$f^{R} \underbrace{r\alpha}_{r\alpha} e^{\alpha} e^{\alpha}$$

(Acceleration diagram)

Resultant acceleration, $f^{R} = r \omega^{2}$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Theory of Machines & Vibrations

38. Ans: 2 m/s ² , 270° Sol: $\alpha = -0.732 \text{ rad/s}^2$ $\omega = 1 \text{ rad/s(ccw)}$ $f^c = r\omega^2$ $f^c = r\omega^2$ $f^c = r\omega^2$ $f^c = r\omega^2$ $f^{corr} = 2V\omega$ $f^{corr} = 2V\omega$ $g^{corr} = 2V\omega$ $f^{corr} = 2V\omega$	ACE Engineering Publications	11 Theory of Machines & Vibrations
Acceleration diagram Radial relative acceleration, $f^{\text{linear}} = 0$ Centripetal acceleration, $f^{e} = r\omega^{2}$ $= 1 \times 1^{2} = 1 \text{ m/s}^{2}$ (acts towards the center) Tangential acceleration, $f^{e} = r\alpha$ $= 1 \times 0.732 = 0.732 \text{ m/sec}^{2}$ Coriolis acceleration, $f^{\text{cor}} = 2V\omega$ $= 2 \times 0.5 \times 1 = 1 \text{ m/sec}^{2}$ Resultant acceleration, $f^{r} = \sqrt{1^{2} + (1 + 0.732)^{2}} = 2 \text{ m/sec}^{2}$ $\phi = \tan^{-1} \left(\frac{1.732}{1}\right) = 60^{\circ}$ $\theta_{\text{reference}} = 30 + 180 + 60 = 270^{0}$ $F_{T} = \frac{F_{p}}{\cos \phi} = \frac{2}{\cos 14.36} = 2.065 \text{ kN}$	Sol: $a = -0.732 \text{ rad/s}^{2}$ $a = -0.732 $	39. Ans: (d) Sol: Angular acceleration of connecting rod is given by $a = -\omega^2 \sin \theta \left[\frac{(n^2 - 1)}{(n^2 - \sin^2 \theta)^{3/2}} \right]$ when n = 1, a = 0 40. Ans: (b) & 41. Ans: (a) Sol: I = 0 I = 0.8 m r = 20 cm = 0.8 m r = 20 cm = 0.2 m From the triangle OAB $\cos \phi = \frac{\ell^2 + \ell^2 - r^2}{2\ell^2}$ $= \frac{2 \times 80^2 - 20^2}{2 \times 80^2} \Rightarrow \phi = 14.36$ $\cos \theta = \frac{20^2 + 80^2 - 80^2}{2 \times 20 \times 80} \Rightarrow \theta = 82.82$ Thrust connecting rod

ACE
Engineering Publications

12

45.

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

В

ESE - Text Book Solutions

Turning moment,

$$T = F_{T} \times r = \frac{F_{P}}{\cos \phi} (\sin(\theta + \phi)) \times r$$
$$= \frac{2}{\cos 14.36} \times \sin(14.36 + 82.82) \times 0.2$$
$$= 0.409 \text{ kN-m}$$

Ans: (b) 42.

Sol: Calculate AB that will be equal to 260 mm

L = 260 mm,P = 160 mmS = 60 mm,Q = 240 mmL + S = 320P + Q = 400 \therefore L+S < P+Q It is a Grashof's chain Link adjacent to the shortest link is fixed

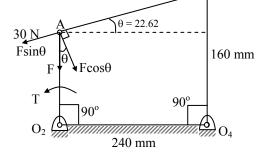
: Crank – Rocker Mechanism.

Ans: (b) 43.

Sol: $O_2A \parallel O_4B$

Then linear velocity is same at A and B.

```
\therefore \omega_2 \times O_2 A = \omega_4 \times O_4 B
```


 $8 \times 60 = \omega_4 \times 160$ *.*..

$$\Rightarrow \omega_4 = 3 \text{ rad/sec}$$

44. Ans: (c)

ACE Engineering Publications

Sol:

 $\tan \theta = \frac{100}{240} \Longrightarrow \theta = 22.62^{\circ}$ As centre of mass falls at O₂ $m\bar{r}\omega^2 = 0$ (:: $\bar{r} = 0$) $\alpha = 0$ (Given) Inertia torque = 0Since torque on link O₂A is zero, the resultant force at point A must be along O_2A . \Rightarrow Fsin22.62 = 30 \Rightarrow F = $\frac{30}{\sin 22.62}$ = 78 N The magnitude of the joint reaction at $O_2 = F = 78 N$ Ans: (d) **Sol:** $I\frac{d^2\theta}{dt^2} = T + f(\sin\theta,\cos\theta)$ Where 'T' is applied torque, f is inertia torque which is function of $\sin\theta \& \cos\theta$ $\frac{d\theta}{dt} = \frac{T}{I}t + f'(\sin\theta, \cos\theta) + c_1$ $\theta = \frac{T}{I}t^2 + c_1t + f''(\sin\theta, \cos\theta)$ θ is fluctuating on parabola and (a) t = 0, $\theta = 0$, $\dot{\theta}(slope) = 0$ (because it starts from rest) θ Parabola Fluctuation because of inertia

Engineering Publications	13 Theory of Machines & Vibrations
46. Ans: 1 (range 0.9 to 1.1) Sol: $F_{t} = \frac{F_{p}}{0.2m}, F_{t} = F_{rod} \cos \phi$ $\therefore F_{t} = 5 \text{ kN}$ Turning moment = F_{t} .r = 5×0.2 = 1 kN-m 47. Ans: (a) Sol:	13Theory of Machines & Vibrations $\sin 30 = \frac{O_2 A}{O_1 O_2}$ $\Rightarrow \frac{1}{2} = \frac{O_2 A}{50} \Rightarrow O_2 A = 25 \text{ cm}$ $\Rightarrow l_2 = 25 \text{ cm}$ At the position given above (O ₁ O ₂ B) the tool post attains the maximum velocity.At that given instant $l_2 \omega_2 = l_4 \omega_4$ & velocity of slider is zero. $l_4 = O_1 B = l_1 + l_2 = 50 + 25 = 75 \text{ cm}$ $\Rightarrow 25 \times 4\pi = 75 \times \omega_4$ $\omega_4 = \frac{100\pi}{75} = \frac{4\pi}{3} = 4.19 \text{ rad/s}$ $\omega_4 = $ angular velocity of slotted lever.
O_{2} O_{1} A	Description Description D1. Sol: $O_2A = 8 \text{ cm}$, $\omega_2 = 10 \text{ rad/sec}$ $AP(B) = 4 \text{ cm}$, $\omega_3 = -30 \text{ rad/sec}^2$ $\alpha_2 = 120 \text{ rad/s}^2 (CW)$ $\alpha_3 = 180 \text{ rad/s}^2$ $\int \frac{100}{100000000000000000000000000000000$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	ar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE Engineering Publications	14	ESE – Text Book Solutions		
1.	Velocity analysis $V_{AO2} = 8 \times 10 = 80 \text{ cm/sec} (\perp^{r} \text{to } O_2 \text{A})$		$B - I_{23}, I_{24}$ $C - I_{34}$		
	$V_{PA} = \omega_3 \times AP = 30 \times 4 = 120 \text{ cm/sec}$		$D - I_{13}, I_{14}$		
	$\therefore (\perp^{r} \text{ to } AP)$		From angular velocity-ratio theorem		
	V_{PO2} = Absolute velocity = V_P $\therefore V_{PO} = V_{AO2} + V_{BA} = -80+120 = 40 \text{ cm/s}$		$\frac{\omega_4}{\omega_2} = \frac{I_{24} - I_{12}}{I_{24} - I_{14}} = \frac{\ell}{2\ell} = 0.5$		
			$\omega_4 = 2.5 \text{ rad/s}$ (counter clockwise)		
2.	Acceleration analysis		$V_2 = (I_{12}, I_{23}) \times \omega_2 = (I_{13}, I_{23}) \times \omega_3$		
	$a_{AO}^{C} = r\omega_{2}^{2}$ (Parallel to OA & towards 'O')	$\Rightarrow l \times 5 = 2l \times \omega_3$		
	$= 8 \times 100 = 800 \text{ cm/s}^2$		$\Rightarrow \omega_3 = 2.5 \text{ rad/sec}$		
	$a_{AO}^{t} = OA \times \alpha_{2}$ (Perpendicular to OA & in	n	03.		
	direction of α_2) = 8 × 120 = 960 cm/s ²	EN	Sol: $N = 360$ rpm, $L = 0.7$ m,		
	$a_{BA}^{c} = 4 \times 30^{2} = 3600 cm/s^{2}$		$F_P = F_G - m a_P + mg$		
	$a_{BA}^{t} = 4 \times 120 = 480 \mathrm{cm/s^{2}}$		$F_{CR} = \frac{F_{P}}{\cos \phi}$		
	Resultant acceleration,				
	$a_{PO} = \sqrt{(800 + 3600)^2 + (720 + 960)^2}$		$T = \frac{F_{\rm p}}{\cos\phi}\sin(\theta + \phi) \times r$		
	$a_{PO} = 4709.81 \text{ cm/sec}^2$		Double acting steam engine		
			$F_G = (P_1A_1 - P_2A_2)$		
02.			Net gas force = F_G		
Sol:	Given that $\omega_2 = 5$ rad/s Need to find out ω_3 when $\angle BAD = 180^{\circ}$	ce '	$1 : F_{\rm G} = \left(0.35 \times \frac{\pi}{4} (300)^2 - 0.03 \times \frac{\pi}{4} (300^2 - 40^2) \right)$		
	C A		$F_{\rm G} = 22645 \ {\rm N}$		
			Acceleration of piston: $a_p = r\omega^2 \left(\cos\theta + \frac{\cos 2\theta}{n}\right)$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$L = 0.7 \text{ m}, \text{ s} = 300 \text{ mm} = 2r \Rightarrow r = 0.15 \text{ m}$		
	According to Kennedy's theorem I_{24} is a	it	$n = \frac{L}{r} = \frac{0.7}{0.15} = 4.67 \mathrm{m}$		
	the intersection of link 1 and 3 and I_{13} at the	e	$(2\pi \times 360)^2$ ($\cos 2(120^\circ)$)		
	intersection of links '2' and '4'.		$a_{p} = (0.15) \left(\frac{2\pi \times 360}{60}\right)^{2} \left(\cos(120) + \frac{\cos 2(120^{\circ})}{4.67}\right)$		
	\therefore At A – I ₁₂		$a_p = -129.28 \text{ m/s}^2$		
ACE	ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad				

- Identify fixed points o₁,o₂ and d, Draw cutting tool velocity in horizontal direction as V_r
- Draw $V_b \perp O_1 B$ which is known value
- Draw $V_d \perp O_2 D$
- V_{cb} along O₂D from b.(since B,C moves along the slot)
- Identify 'd' from the relation $o_2 d = o_2 c \times \frac{O_2 D}{O_2 C}$
- Draw $V_{rd} \perp DR$ from d

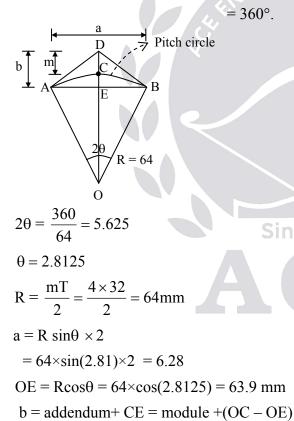
1995 $V_d = O_2 D \times \omega_3 \Rightarrow \omega_3 = \frac{V_d}{O_2 D}$ $\omega_3 = \frac{1.273}{1.25} = 1.0184 \text{ rad / sec}$

05.

Sol: Given that
$$r = 50 \text{ mm}$$
, $l = 175 \text{ mm}$
 $N = 400 \text{ rpm } \omega = \frac{2\pi N}{60} = 41.89 \text{ rad/sec}$
 $\omega \times r = 41.89 \times 50 \times 10^{-3} = 2.09 \text{ m/s}$

Engineering Publications	16 ESE – Text Book Solutions
Velocity, $V = \omega r \left(\sin \theta + \frac{\sin 2\theta}{2n} \right)$	$\theta = 180^{\circ},$ $a = -62.66 \text{ m/s}^2$ $\theta = 270^{\circ},$ $a = -25.06 \text{ m/s}^2$
Where, $n = l/r$	$\theta = 284.48^{\circ}, \qquad a = 0$
At	$\theta = 360^{\circ}, \qquad a = 112.8$
$\theta = 0,$ $V = 0$	At maximum value of acceleration
$\theta = 90^{\circ}, \qquad V = r\omega = 2.09 \text{ m/s}$	$da_{-0} \rightarrow \sin \theta_{-2} \sin 2\theta_{-0}$
$\theta = 180^{\circ}, \qquad V = 0$	$\frac{\mathrm{da}}{\mathrm{d\theta}} = 0 \qquad \Longrightarrow -\sin\theta - \frac{2\sin 2\theta}{n} = 0$
$\theta = 270^{\circ}$, $V = -2.09 \text{ m/s}$	$\Rightarrow (n + 4 \cos \theta) = 0$
$\theta = 360^\circ, \qquad V = 0$	$\cos\theta = -\frac{n}{4} = -0.875$
Velocity at the extreme position of pistor	n 4 4
becomes zero.	$\Rightarrow \theta = 151.05^{\circ}, 208.95^{\circ}$
For max velocity,	ERIN And, $a = -63.5 \text{ m/s}^2$ respectively.
For max velocity, $\frac{dV}{d\theta} = 0 \Rightarrow \cos\theta + \frac{\cos 2\theta}{n} = 0$ $\Rightarrow 2\cos^2\theta - 1 + n\cos\theta = 0, n = 3.5$ $\cos\theta = 0.25 \Rightarrow \theta = 75.52^\circ, 284.478^\circ$ $\frac{V}{2.177} \qquad $	$\begin{array}{c} a \uparrow \\ 112.8 \\ \hline \\ 75.59 \end{array} \xrightarrow{\pi/2} 151^{\circ} \pi 208^{\circ} 3\pi/2 284.48 2\pi \\ \hline \\ \theta \xrightarrow{-25.06} \\ -62.66 \\ \hline \\ -63.5 \end{array}$
Acceleration	
$a = r\omega^2 \left(\cos\theta + \frac{\cos 2\theta}{n}\right)$	
$r\omega^2 = 87.77 \text{ m/s}^2$	
$\theta = 0^{\circ}, \qquad a = 112.8$	
$\theta = 75.52^{\circ}, \qquad a = 0$	
$\theta = 90^{\circ}, \qquad a = -25.06 \text{ m/s}^2$	

ACE


Gear and Gear Trains

01. Ans (a)

Sol: Profile between base and root circles is not involute. If tip of a tooth of a mating gear digs into this non-involute portion interference will occur.

02. Ans: (d)

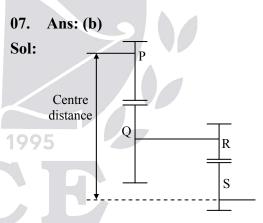
Sol: Angle made by 32 teeth + 32 tooth space

$$= 4 + (64 - 63.9) = 4.1$$

03. Ans: (a)

- Sol: When addendum of both gear and pinion are same then interference occurs between tip of the gear tooth and pinion.
- **04**. Ans: Decreases, Increases

Ans: (b) 05.


Sol: For same addendum interference is most likely to occur between tip of the gear tooth and pinion i.e., at the beginning of the contact.

Ans: (b) **06.**

 $= 360^{\circ}$.

Since

Sol: For two gears are to be meshed, they should have same module and same pressure angle.

Given $T_p = 20$, $T_Q = 40$, $T_R = 15$, $T_S = 20$ Dia of $Q = 2 \times Dia$ of R

 $m_{O}T_{O} = 2m_{R}T_{R}$

Given, module of
$$R = m_R = 2mm$$

$$\Rightarrow m_Q = 2 m_R \frac{T_R}{T_Q} = 2 \times 2 \times \frac{15}{40} = 1.5 \text{ mm}$$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE

- $m_P = m_Q = 2mm$
- $m_{\rm S} = m_{\rm R} = 1.5 \text{ mm}$
- Radius = module $\times \frac{\text{No. of teeth}}{2}$

Centre distance between P and S is given by

- $R_{P} + R_{Q} + R_{R} + R_{T}$ $= m_{P} \frac{T_{P}}{2} + m_{Q} \frac{T_{Q}}{2} + m_{R} \frac{T_{R}}{2} + m_{S} \frac{T_{S}}{2}$ $= 1.5 \left[\frac{40 + 20}{2} \right] + 2 \left[\frac{15 + 20}{2} \right]$ = 45 + 35 = 80 mm
- 08. Ans: (c)
- **Sol:** $\frac{N_2}{N_6} = \frac{N_3 N_5 N_6}{N_2 N_4 N_5} = \frac{N_3 N_6}{N_2 N_4}$

Wheel 5 is the only Idler gear as the number of teeth on wheel '5' does not appear in the velocity ratio.

- 09. Ans: (a)
- Sol:

 $Z_1 = 16$, $Z_3 = 15$, $Z_2 = ?$, $Z_4 = ?$ First stage gear ratio, $G_1 = 4$, Second stage gear ratio, $G_2 = 3$, $m_{12} = 3$, $m_{34} = 4$ $Z_2 = 16 \times 4 = 64$

$$Z_4 = 15 \times 3 = 45$$

10. Ans: (b)

18

Sol: Centre distance

$$= \frac{m_{12}}{2} \times (Z_1 + Z_2) = \frac{m_{34}}{2} \times (Z_3 + Z_4)$$
$$= \frac{4}{2} \times (15 + 45) = 120 \text{mm}$$

$$I_{1} = 104, \qquad N_{1} = 0,$$

$$T_{2} = 96, N_{a} = 60 \text{ rpm (CW+ve)}, \quad N_{2} = ?$$

$$\frac{N_{2} - N_{a}}{N_{1} - N_{a}} = \frac{T_{1}}{T_{2}} = \frac{104}{96}$$

$$\frac{N_{2} - 60}{0 - 60} = \frac{104}{96}$$

$$N_{2} = 60 \left[1 - \frac{104}{96} \right] = \frac{-60 \times 8}{96} = -5 \text{ rpm CW}$$

$$= 5 \text{ rpm in CCW}$$

12. Ans: (a)

Since

Sol: By Analytical Approach

$$\frac{\omega_{1} - \omega_{5}}{\omega_{4} - \omega_{5}} = \frac{-T_{2}}{T_{1}} \times \frac{-T_{4}}{T_{3}} = \frac{45}{15} \times \frac{40}{20}$$
$$\frac{\omega_{1} - \omega_{5}}{\omega_{4} - \omega_{5}} = 6$$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ESE - Text Book Solutions

	ACE Engineering Publications	19		Theory of Machines & Vibrations
13.	Ans: (d)		17.	Ans: (a)
Sol:	Data given:		Sol:	$r_b =$ base circle radius,
	$\omega_1 = 60 \text{ rpm (CW, +ve)}$			r_d = dedendum radius
	$\omega_4 = -120 \text{ rpm}$ [2 times speed of gear -1]			r = pitch circle radius.
	We have, $\frac{\omega_1 - \omega_5}{\omega_4 - \omega_5} = 6$			For the complete profile to be invoulte,
	4 5			$r_b = r_d$
	$\Rightarrow \frac{60 - \omega_5}{-120 - \omega_5} = 6 \text{, simplifying}$			$r_d = r - 1$ module mT 16×5
	$60 - \omega_5 = -720 - 6\omega_5$			$r = \frac{mT}{2} = \frac{16 \times 5}{2} = 40 \text{ mm}$
	$\omega_5 = -156 \text{ rpm CW}$			$\therefore r_{b} = r_{d} = 40 - 1 \times 5 = 35 \text{ mm}$
	$\Rightarrow \omega_5 = 156 \text{ rpm CCW}$			$r_b = r \cos \phi \Rightarrow \phi \simeq 29^\circ$
	GINE	ERU	NG	$\Gamma_b - \Gamma \cos \phi \Rightarrow \phi \simeq 29$
14.	Ans: (c)			
Sol:	$\omega_2 = 100 \text{ rad/sec(CW+ve)},$		18.	Ans: - 3.33 N-m
	$\omega_{arm} = 80 \text{ rad/s} (CCW) = -80 \text{ rad/sec}$		Sol:	$\frac{\omega_{\rm s}-\omega_{\rm a}}{\omega_{\rm p}-\omega_{\rm a}}=\frac{-Z_{\rm p}}{Z_{\rm s}}$
	$\frac{\omega_5 - \omega_a}{\omega_2 - \omega_a} = \frac{-T_2}{T_3} \times \frac{T_4}{T_5}$			$\omega_p - \omega_a \qquad Z_s$
	$\omega_2 - \omega_a = T_3 = T_5$			$\Rightarrow \frac{0-10}{\omega_{-}-10} = \frac{-20}{40}$
	$\frac{\omega_5 - (-80)}{100 - (-80)} = \frac{-20}{24} \times \frac{32}{80} = -\frac{1}{3}$			$\omega_{p} - 10 = 40$
				$\Rightarrow \omega_p = 30 \text{ rad/sec}$
	$\Rightarrow \omega_5 = -140 \text{ CW} = 140 \text{ CCW}$			By assuming no losses in power transmission
15	Sin		100	$5^{T_p \times \omega_p + T_s \times \omega_s + T_a \times \omega_a = 0}$
15. Sol:	Ans (c) Sin It also rotates one revolution but in opposite			$\Rightarrow T_{p} \times 30 + T_{s} \times 0 + 5 \times 10 = 0$
501.	direction because of differential gear system			
	uncerton because of unrefential gear system			$\Rightarrow T_p = \frac{-50}{30} = -1.67 \text{ N-m}, T_p + T_s + T_a = 0$
16.	Ans: (c)			$\Rightarrow -1.67 + T_s + 5 = 0$
Sol:	No .of Links, $L = 4$			\Rightarrow T _s = -3.33 N-m
	No. of class 1 pairs $J_1=3$			
	No. of class 2 pairs $J_2=1$ (Between gears)		19.	Ans: (a)
	No. of dof = $3(L - 1) - 2J_1 - J_2 = 2$		Sol:	Train value = speed ratio

ACE	20 ESE – Text Book Solutions
20. Ans: (d) Sol: $T_S + 2 T_P = T_A$ (1) $\frac{N_A - N_a}{N_P - N_a} = \frac{T_P}{T_A}$ (2)	Arc of contact = $\frac{\text{Path of contact}}{\cos \phi} = \frac{28.93}{\cos 20^{\circ}}$ = 30.787 mm (ii) Number of pairs of teeth in contact
and $\frac{N_{P} - N_{S}}{N_{S} - N_{G}} = -\frac{T_{S}}{T_{P}} \qquad $	$n = \frac{\operatorname{arc of contact}}{\operatorname{Circular Pitch}} = \frac{30.787}{\pi m}$ $= \frac{30.787}{\pi \times 6} = 1.633 \approx 2$
$\Rightarrow \frac{300 - 180}{0 - 180} = -\frac{80}{T_A}$ $\therefore T_A = 120$ $80 + 2 T_P = 120 \Rightarrow T_P = 20$ Conventional Practice Solutions	(iii) The angle turned by the pinion, while any one pair of teeth in contact is Angle of action = $\frac{\text{Arc of contact}}{2\pi r} \times 360$ = $\frac{30.787}{2\pi \times 57} \times 360 = 30.946^{\circ}$
01. Sol: Given that $T = 42$, $t = 19$, $\phi = 20^{\circ}$, $m = 6$ mm, addendum $a_w = 6$ mm (i) $R = \frac{mT}{2} = \frac{6 \times 42}{2} = 126$ mm $R_a = R + a_w = 126 + 6 = 132$ mm, $r = \frac{mt}{2} = \frac{6 \times 19}{2}$ r = 57 mm, $r_a = r + a_w = 57 + 6 = 63$ mm Path of contact, $= \sqrt{R_a^2 - (R \cos \phi)^2} + \sqrt{r_a^2 - (r \cos \phi)^2} - (R + r) \sin \phi$ $= \sqrt{132^2 - (126 \times \cos 20^{\circ})^2} + \sqrt{63^2 - (57 \cos 20^{\circ})^2} - (126 + 57) \sin 20^{\circ}}$ = 28.93 mm	(iv) Path of approach = $\sqrt{R_a^2 - (R\cos\phi)^2} - R\sin\phi$ = $\sqrt{132^2 - (126 \times \cos 20^\circ)^2} - 126\sin 20^\circ$ = 15.259 mm Path of recess = $\sqrt{r_a^2 - (r\cos\phi)^2} - r\sin\phi$ = $\sqrt{63^2 - (57\cos 20^\circ)^2} - 57\sin 20^\circ$ = 13.672 mm (a) Sliding velocity Rolling Velocity = $\frac{(\omega_p + \omega_g) \times Path of approach}{Pitch line velocity(\omega_p \times r)}$ = $\frac{(\omega_p + \frac{19}{42} \times \omega_p) \times 15.259}{\omega_p \times 57} = 0.388$

ACE 21 $\frac{\text{Sliding Velocity}}{\text{Rolling Velocity}} = \frac{\left(\omega_{p} + \frac{19}{42}\omega_{p}\right) \times \text{Path of recess}}{\omega_{p} \times r}$ $= \frac{\left(1 + \frac{19}{42}\right) \times 13.672}{57} = 0.348$ (b) Sliding Velocity (c) Rolling Velocit 02. Sol: Arm Sun wheel

Silding Velocity
Rolling Velocity =
$$\frac{(\omega_{p} + \omega_{g}) \times 0}{Pitch line Velocity} = 0$$

 $Z_{R} = 2Z_{P} + Z_{R} = 3Z_{R}$
 $Z_{R} = 2Z_{P} + Z_{R} = 3Z_{R}$
Torque analysis
 $T_{a}\omega_{a} + T_{s}\omega_{s} + T$
Note: idler gears
 $T_{a} = -\frac{T_{a}\omega_{s}}{\omega_{a}} = 0$
 $T_{a} = -5 \times 19$
 $\Sigma T_{i} = 0$
 $T_{a} = -5 \times 19$
 $\Sigma T_{i} = 0$
 $T_{a} = -5 \times 19$
 $\Sigma T_{i} = 0$
 $\Sigma T_{s} + T_{a} + T_{R}$
 $19.6 - 98 + T_{R}$
 $19.6 - 98 + T_{R}$
 103 .
Sol:
B
 $2 - \frac{1}{1 - \frac{1}{1$

$$Z_{s} = \frac{Z_{R}}{4} = \frac{56}{4} = 14$$
$$Z_{p} = \frac{3Z_{R}}{8} = \frac{3 \times 56}{4} = 21$$

 $N_R = 0$, $D_R =$

 $N_s = 5 N_a$

 $\therefore \frac{Z_{\rm R}}{Z_{\rm s}} = 4$

 $Z_R \cong 54$ (Take

Theory of Machines & Vibrations

From center distance :

$$R_{R} = D_{P} + R_{s}$$

$$\frac{m Z_{R}}{2} = m Z_{p} + m \frac{Z_{s}}{2}$$

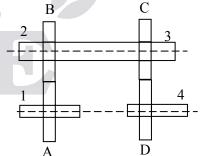
$$Z_{R} = 2Z_{P} + Z_{s}$$

$$Z_{R} = 2Z_{P} + \frac{Z_{R}}{4}$$

$$Z_{p} = \frac{3Z_{R}}{8}$$
Torque analysis : $\Sigma P_{i} = 0$

$$T_{a}\omega_{a} + T_{s}\omega_{s} + T_{R}\omega_{R} = 0$$
Note: idler gears can be ignored.

$$\therefore T_{a}\omega_{a} + T_{s}\omega_{s} = 0 \quad (\because \omega_{R}=0)$$


$$T_{a} = \frac{-T_{s}\omega_{s}}{\omega_{a}} = \frac{-T_{s} \times 5\omega_{a}}{\omega_{a}}$$

$$\therefore T_{a} = -5 \times 19.6 = -98 \text{ N-m}$$

$$\Sigma T_{i} = 0$$

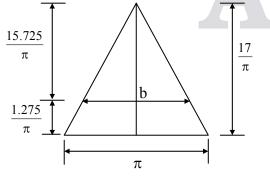
$$\therefore T_{s} + T_{a} + T_{R} = 0$$

$$19.6 - 98 + T_{R} = 0 \Rightarrow T_{R} = 78.4 \text{ N-m}$$

m,

$$m_C = m_D = 9 mm$$

$$\frac{N_1}{N_4} = \frac{Z_B \times Z_D}{Z_A \times Z_C} = \frac{N_A}{N_D} = 12$$


Engineering Publications	22	ESE – Text Book Solutions
$\frac{N_{\rm D}}{N_{\rm A}} = \frac{1}{12}$,		04. Sol:
$N_D \le \frac{N_A}{12}$		Action F Sun B & D C E A (N) (N) (N)
$G \ge 12 = G_1 G_2$ $\therefore G_1 = G_2 = \sqrt{12}$		$\left(\frac{\mathbf{N}_{\mathrm{B}}}{\mathbf{N}_{\mathrm{A}}}\right) \left(\frac{\mathbf{N}_{\mathrm{C}}}{\mathbf{N}_{\mathrm{A}}}\right) \left(\frac{\mathbf{N}_{\mathrm{E}}}{\mathbf{N}_{\mathrm{A}}}\right)$
$\frac{N_A}{N_D} = \frac{Z_B}{Z_A} \times \frac{Z_D}{Z_C} = 12$		Arm F is01 50 $-\frac{50}{80}$ $-\frac{30}{64}$ fixed & Give +1Give -1 $-\frac{30}{64}$ $-\frac{30}{64}$
Let, $Z_{min} = 15$ $Z_{B} = \sqrt{12} = 2.464$		rev. to sun &
$\frac{Z_{\rm B}}{Z_{\rm A}} = \sqrt{12} = 3.464$	ER	multiply with x0x $\frac{50}{64}$ x $-\frac{50}{80}$ x $-\frac{30}{64}$ x
$\frac{Z_{\rm D}}{Z_{\rm C}} = 3.464$		add y y x+y $50 \over 64}$ x + y $-50 \over 80$ x + y $-30 \over 64}$ x + y
Center distance = $\frac{m_1(Z_A + Z_B)}{2} = \frac{m_2(Z_C + Z_D)}{2}$		Arm = F, Sun = A
$\frac{4}{2} \left(Z_{\rm A} + \sqrt{12} Z_{\rm A} \right) = \frac{9}{2} \left(Z_{\rm C} + \sqrt{12} Z_{\rm C} \right)$		$\frac{N_{B}}{N_{A}} = \frac{T_{A}}{T_{B}}$
$\Rightarrow 2 \times 2Z_{A} \left(1 + \sqrt{12} \right) = 2 \times 4.5Z_{C} \left(1 + \sqrt{12} \right)$		$\therefore \qquad N_{\rm B} = N_{\rm A} \times \frac{T_{\rm A}}{T_{\rm B}}$
$Z_{\rm A} = \frac{9}{4} Z_{\rm C}$		$N_{\rm B} = 1 \times \frac{50}{64}$
Let us take $Z_C = 16$ $Z_D = \sqrt{12} \times Z_C = 55.42 = 56$ Sin	се	$\frac{N_{C}}{N_{A}} = \frac{-T_{B} \times T_{A}}{T_{C} \times T_{B}} = \frac{-T_{A}}{T_{C}}$
$Z_A = \frac{9}{4} \times 16 = 36$		$\frac{N_{E}}{N_{A}} = \frac{-T_{D} \times T_{A}}{T_{E} \times T_{B}}$
$Z_{\rm B} = \sqrt{12} \times 36 = 124.7 = 126$ $\therefore C = \frac{m_1(Z_{\rm A} + Z_{\rm B})}{2} = \frac{m_2(Z_{\rm C} + Z_{\rm D})}{2}$		$N_{A, arm} = N_A - N_{arm}$
		$N_A = N_{A,arm} + N_{arm}$ $N_C = 0$ (fixed)
$=\frac{4}{2}(36+126)=\frac{9}{2}(16+56)$		$N_{A} = +600 \text{ rpm (CW)}$
= 324 mm		$N_{\rm C} = -\frac{50x}{80} + y = 0(i)$
		$N_A = x + y = 600$ (ii)

٦

ACE Engineering Publications	23	Theory of Machines & Vibrations
$x = 369.23 \text{ rpm}, y = 230.76 \text{ rpm}$ $N_{E} = -\frac{30}{64}(369.23) + 230.76 = 57.69(CW)$ (looking from left side) $N_{E} = 57.69 (CCW)$ (looking from right side from E) By relative velocity method : $N_{A} = 600 \text{ rpm}, N_{C} = 0, N_{E} = ?$ $\frac{N_{A} - N_{F}}{N_{C} - N_{F}} = -\frac{T_{C}}{T_{A}}$ $\Rightarrow \frac{600 - N_{F}}{0 - N_{F}} = -\frac{80}{50}$ $3000 - 5 \text{ N}_{F} = 8 \text{ N}_{F}$ $\Rightarrow \qquad N_{F} = 230.76 \text{ rpm}$ $\frac{N_{A} - N_{F}}{N_{E} - N_{F}} = -\frac{T_{B} \times T_{E}}{T_{A} \times T_{D}}$ $\frac{600 - 230.76}{N_{E} - 230.76} = -\frac{64 \times 50}{50 \times 30}$ $\Rightarrow \qquad N_{E} = 57.67 \text{ rpm}$ 05. Sol: $G = \frac{5}{3}, A = 1 \text{ m}$ $\frac{N_{P}}{N_{G}} = \frac{T_{G}}{T_{P}} = G$ $T_{min} = \frac{2 \times a_{w}}{\sqrt{1 + \frac{1}{G}(\frac{1}{G} + 2)\sin^{2}\phi - 1}}$ $= \frac{2 \times 1}{\sqrt{1 + \frac{1}{5}(\frac{1}{5} + 2)}\sin^{2} 20^{\circ} - 1}$		$T_{G} = 22.8 = 23$ $T_{p} = \frac{23}{G} = \frac{23}{\frac{5}{3}} = 13.8 \approx 15$ $T_{G} = 15 \times \frac{5}{3} = 25$ $T_{G} = 25,$ $T_{P} = 15$ 06. Sol: Given that, $t = 15, \qquad T = 30,$ $\phi = 20^{\circ}, \qquad m = 5 \text{ mm}$ Addendum, $a_{m} = 5 \text{ mm}$ N _P = 1000 rpm But, $m = \frac{d}{t} = \frac{D}{T}$ $r = \frac{mt}{2} = \frac{5 \times 15}{2} = 37.5 \text{ mm}$ $R_{a} = R + a_{m} = 75 + 5 = 80 \text{ mm}$ $r_{a} = r + a_{m} = 37.5 + 5 = 42.5 \text{ mm}$ Path of recess = $\sqrt{r_{a}^{2} - (r\cos\phi)^{2}} - r\sin\phi$ $= \sqrt{(42.5)^{2} - (37.5\cos 20^{\circ})^{2}} - 37.5\sin 20^{\circ}}$ $= 10.93 \text{ mm}$ Path of approach = $\sqrt{R_{a}^{2} - (R\cos\phi)^{2}} - R\sin\phi$ $= \sqrt{80^{2} - (75\cos 20^{\circ})^{2}} - 75\sin 20^{\circ}$ $= 12.20 \text{ mm}$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar	• Luckno	w • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Fablications	24	ESE – Text Book Solutions
		Chapter 3 Flywheels 01. Sol: Given $P = 80 \text{ kW} = 80 \times 10^3 \text{ W} = 80,000 \text{ W}$ $\Delta E = 0.9 \text{ Per cycle}$ N = 300 rpm $C_s = 0.02$ $\omega = \frac{2\pi N}{60} = \frac{2\pi \times 30}{60} = 31.41 \text{ rad/s}$ $\rho = 7500 \text{ kg/m}^3$
Arc of contact = $\frac{\text{path of contact}}{\cos \phi}$ = $\frac{10.93 + 12.2}{\cos 20^{\circ}}$ = 24.6 mm Circular pitch, p = $\frac{\pi d}{t}$ = $\frac{\pi \times (37.5 \times 2)}{15}$ = 15.71 \therefore Contact ratio = $\frac{24.6}{15.7}$ = 1.57		$\sigma_{c} = 6 \text{ MN/m}^{2}$ $\sigma_{c} = \rho V^{2} = \rho R^{2} \omega^{2}$ $R = \sqrt{\frac{\sigma_{C}}{\rho \omega^{2}}} = \sqrt{\frac{6 \times 10^{6}}{7500 \times 31.41^{2}}}$ $R = 0.9 \text{ m}$ $D = 2R = 1.8m$ $N = 300 \text{ rpm} = 5 \text{ rps} \rightarrow 0.2 \text{ Sec/rev}$ $1 \text{ cycle} = 2 \text{ revolution (::4 stroke engine)}$
		= 0.4 sec Energy developed per cycle = 0.4 × 80 = 32 kJ $\Delta E = E \text{ per cycle} \times 0.9$ = 32 × 10 ³ × 0.9 = 28800 J $\Delta E = I\omega^2 C_s$ $I = \frac{\Delta E}{\omega^2 C_s}$ $I = 1459.58 \text{ kg-m}^2$

02. Sol: Τ 9 cm^2 $H = \frac{18}{100}$ b T_{mean} 1.5 В π 4π 0 0.8 cm^2 0.5 cm^2 1.7 cm Given: $1 \text{ cm}^2 = 1400 \text{ J}$ Assume on x-axis 1 cm = 1 radian and on yaxis 1 cm = 1400 N-m $a_1 = -0.5 \text{ cm}^2$ $a_2 = -1.7 \text{ cm}^2$ $a_3 = 9 \text{ cm}^2$ $a_4 = -0.8 \text{ cm}^2$ Work done per cycle = $-a_1 - a_2 + a_3 - a_4$ = -0.5 - 1.7 + 9 - 0.8 $= 6 \text{ cm}^2$ Mean torque T_m = $\frac{\text{Workdone per cycle}}{4\pi}$ Sinc $=\frac{6}{4\pi}=\frac{1.5}{\pi}\,\mathrm{cm}$

Area of the triangle (expansion)

$$= \frac{1}{2} \times \pi \times H = 9$$
$$H = 18 / \pi$$

Area above the mean torque line

$$\Delta E = \frac{1}{2} \times b \times h$$

From the similar triangles,

$$\frac{b}{B} = \frac{h}{H} \implies b = \frac{16.5}{18} \times \pi$$

$$\Delta E = \frac{1}{2} \times b \times \frac{16.5}{\pi}$$

$$= \frac{1}{2} \times \frac{16.5}{\pi} \times \frac{16.5}{\pi} = 7.56 \text{ cm}^2$$

$$\Delta E = 7.56 \times 1400 = 10587 \text{ N-m}$$

$$N_1 = 102 \text{ rpm}, \quad N_2 = 98 \text{ rpm},$$

$$\omega_1 = \frac{2\pi N_1}{60} = 10.68 \text{ rad/s}$$

$$\omega_2 = \frac{2\pi N_2}{60} = 10.26 \text{ rad/s}$$

$$\Delta E = \frac{1}{2} \times I \times (\omega_1^2 - \omega_2^2)$$

$$I = \frac{2 \times \Delta E}{(\omega_1^2 - \omega_2^2)} = \frac{2 \times 10587}{10.68^2 - 10.26^2}$$

$$I = 2405.6 \text{ kg-m}^2$$
03.
Sol: Power
$$\int_{1.5 \times 2639}^{1.5 \times 2639} = \frac{8.5 \times 2639}{22431 \text{ Nm}}$$

$$\int_{1.5 \times 2639}^{1.5 \times 2639} = \frac{1000}{1000} \text{ cm}$$

ACE

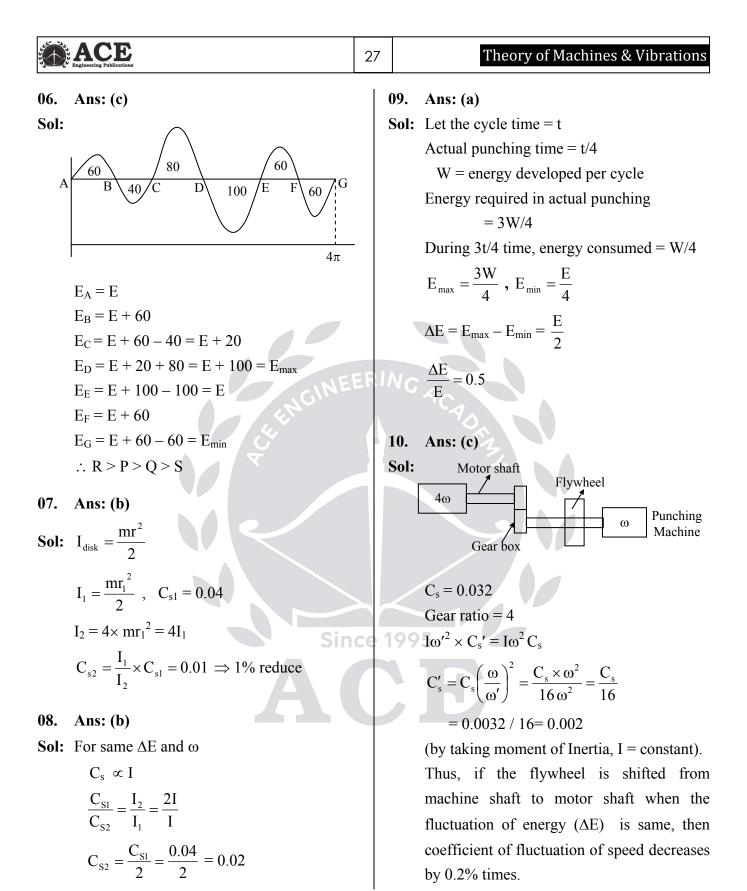
d = 40 mm, t = 30 mm $E_1 = 7 \text{ N-m/mm}^2, S = 100 \text{ mm}$ $V = 25 \text{ m/s}, V_1 - V_2 = 3\% V, C_S = 0.03$ $A = \pi dt = \pi \times 40 \times 30$ $= 3769.9 = 3770 \text{ mm}^2$

Since the energy required to punch the hole is 7 Nm/mm² of sheared area, therefore the Total energy required for punching one hole = $7 \times \pi dt = 26390$ N-m

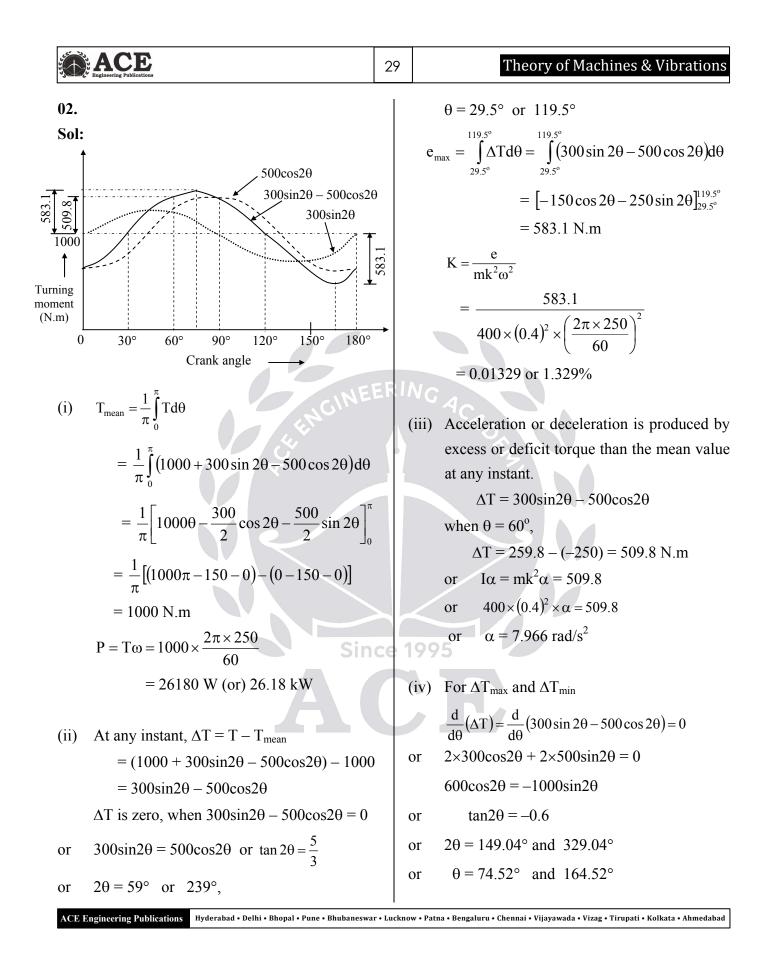
Also the time required to punch a hole is 10 sec, therefore power of the motor required $=\frac{26390}{10}=2639$ Watt The stroke of the punch is 100 mm and it punches one hole in every 10 seconds. Total punch travel = 200 mm (up stroke + down stroke) Velocity of punch = (200/10) = 20 mm/s Actual punching time = 30/20 = 1.5 sec Energy supplied by the motor in 1.5 sec is $E_2 = 2639 \times 1.5 = 3958.5 = 3959$ N-m

Energy to be supplied by the flywheel during punching or the maximum fluctuation of energy

$$\Delta \mathbf{E} = \mathbf{E}_1 - \mathbf{E}_2$$


= 26390 - 3959 = 22431 N-m Coefficient of fluctuation of speed

$$C_{s} = \frac{V_{1} - V_{2}}{V} = 0.03$$


We know that maximum fluctuation of energy (ΔE) 22431 = m V² C_S = m (25)² (0.03) m = 1196 kg

04. Ans: 4.27 **Sol:** $I = mk^2 = 200 \times 0.4^2 = 32 \text{ kg-m}^2$ $\omega_1 = \frac{2\pi \times 400}{60} = 41.86 \, \text{rad/s}$ $\omega_2 = \frac{2\pi \times 280}{60} = 26.16 \, \text{rad/s}$ Energy released $=\frac{1}{2}I(\omega_1^2 - \omega_2^2) = 17086.6 \text{ J}$ Total machining time $=\frac{60}{5}=12 \sec \theta$ Power of motor $=\frac{17086.6}{12-8} = 4.27 \,\text{kW}$ 05. Ans: (d) **Sol:** Work done = -0.5+1-2+25-0.8+0.5 $= 23.2 \text{ cm}^2$ Work done per cycle = $23.2 \times 100 = 2320$ $(:: 1 \text{cm}^2 = 100 \text{N} - \text{m})$ 1995 $T_{mean} = \frac{W.D \text{ per cycle}}{4\pi}$ $=\frac{2320}{4\pi}=\frac{580}{\pi}$ N – m Suction = 0 to π , Compression = π to 2π Expansion = 2π to 3π , Exhaust =3 π to 4π

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications	28 ESE – Text Book Solutions
11. Ans: 0.5625	Conventional Practice Solutions
Sol: The flywheel is considered as two parts $\frac{m}{2}$	01.
as rim type with Radius R and $\frac{m}{2}$ as disk	Sol:
type with Radius $\frac{R}{2}$	Power 7.5 kJ
$I_{\rm Rim} = \frac{m}{2} R^2,$	7.5 kJ 2.5 kJ
$I_{disk} = \frac{1}{2} \times \frac{m}{2} \times \left(\frac{R}{2}\right)^2 = \frac{mR^2}{16}$	$\begin{array}{cccc} 0 & 4.5 \text{ sec} & 6 \text{ sec} \\ & \text{Time} & \longrightarrow \end{array}$
$I = \frac{mR^2}{2} + \frac{mR^2}{16}$	$\begin{array}{c} \text{Given:} \\ \mathbf{P} = 2 \text{ kW}; \\ \mathbf{K} = 0.5 \end{array}$
$=\frac{9}{16}$ mR ²	$N = 260 \text{ rpm}$; $\omega = 27.23 \text{ rad/s}$
$= 0.5625 \text{ mR}^2$	Actual punching time = 1.5 sec
$\therefore \alpha = 0.5625$	Work done per cycle = 10000 Joule per hole Motor power = 2 kW
	$\Delta N = 30 \text{ rpm}$
12. Ans: 104.71	$\Delta \omega = 2\pi \times (30/60) = \pi \text{ rad/sec}$
Sol: N = 100 rpm	600 holes/hr = 10 holes/min \Rightarrow 6 sec/hole
$T_{mean} = \frac{1}{\pi} \int_0^{\pi} T d\theta$	Cycle time = 6 sec
	Energy withdrawn from motor
$=\frac{1}{\pi}\int_0^{\pi} (10000 + 1000\sin 2\theta - 1200\cos 2\theta)d\theta$	= (10000/6) = 1666.67 J
	Energy stored in flywheel
$= \frac{1}{\pi} [10000\theta - 500\cos 2\theta - 600\sin 2\theta]_0^{\pi}$ = 10000 Nm	$=\frac{10000}{6} \times 4.5 = 7.5 \mathrm{kJ}$
= 10000 Nm	Fluctuation of Energy $\Delta E = 7500 \text{ J}$
$Power = \frac{2\pi NT}{60}$	$\Delta E = I \ \omega \ \Delta \omega = mk^2 \omega \Delta \omega$
	$m = \frac{\Delta E}{k^2 \omega \Delta \omega}$
$=\frac{2\times\pi\times100\times10000}{60}=104719.75$ W	$k^2 \omega \Delta \omega$ Where k = radius of gyration
P = 104.719 kW	$m = \frac{7500}{0.5^2 \times 27.23 \times \pi} = 349.5 \text{ kg}$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar	r • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications

when $2\theta = 149.04^{\circ}$, Mean torque T = 1583.1 N.m. $\Delta T = 583.1 \text{ N.m}$ when $2\theta = 329.04^{\circ}$, T = 416.9 N.m. $\Delta T = -583.1 \text{ N.m}$ As values of ΔT at maximum and minimum torque T are same, maximum acceleration is equal to maximum retardation. $\Delta T = mk^2 \alpha = 583.1$ or $400 \times (0.4)^2 \times \alpha = 583.1$ or Maximum acceleration or retardation, $\alpha = 9.11 \text{ rad/s}^2$ 03. Sol: Т T_{max} 12 cm^2 12 π 2.175 - T_{mean} 4π 0 2π Sinc 0.8 cm^2 0.5 cm^2 2 cm^2 Given: $1 \text{ cm}^2 = 1200 \text{ J}$ Assume on x-axis 1 cm = 1 radian and on yaxis 1 cm = 1200 N-m $a_2 = -2 \text{ cm}^2$ $a_1 = -0.8 \text{ cm}^2$, $a_3 = 12 \text{ cm}^2$, $a_4 = -0.5 \text{ cm}^2$ Work done per cycle = $a_1 + a_2 + a_3 + a_4$ = -0.8 - 2 + 12 - 0.5 $= 8.7 \text{ cm}^2$

$$T_{m} = \frac{\text{Workdone per cycle}}{4\pi}$$

$$= \frac{8.7}{4\pi} = \frac{2.175}{\pi} \text{ cm}$$
Maximum torque, $T_{max} = \frac{12}{\pi}$
Area above the mean torque line
$$\Delta E = \pi \times \left(\frac{12 - 2.175}{\pi}\right) = 9.825 \text{ cm}^{2}$$

$$\Delta E = 9.825 \times 1200 \text{ J} = 11790 \text{ J}$$

$$N_{1} = 102 \text{ rpm},$$

$$N_{2} = 998 \text{ rpm},$$

$$\omega_{1} = \frac{2\pi N_{1}}{60} = 105.24 \text{ rad/s}$$

$$\omega_{2} = \frac{2\pi N_{2}}{60} = 104.51 \text{ rad/s}$$

$$\Delta E = \frac{1}{2} \times 1 \times (\omega_{1}^{2} - \omega_{2}^{2})$$

$$I = \frac{2 \times \Delta E}{(\omega_{1}^{2} - \omega_{2}^{2})} = \frac{2 \times 11790}{105.24^{2} - 104.51^{2}}$$

$$I = 151.92 \text{ kg-m}^{2}$$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications	
---------------------------------	--

Chapter **4**

Governor

01. Ans: (a)

Sol: As the governor runs at constant speed, net force on the sleeve is zero.

02. Ans: (d)

Sol: At equilibrium speed, friction at the sleeve is zero.

03. Ans: (a)

Sol:
$$\operatorname{mr}\omega^2 = \frac{r}{h}\left(\operatorname{mg} + \frac{\operatorname{Mg}(1+k)}{2}\right)$$

k = 1

$$\omega^2 = \frac{9.8}{2 \times 0.2} (10 + 2)$$
$$\omega = 17.15 \text{ rad/sec}$$

04. Ans: (a)

Sol: $mr\omega^2 a = \frac{1}{2} \times 200 \times \delta \times a$

$$\delta = \frac{1 \times 20^2 \times 0.25 \times 2}{200}$$
$$= 0.5 \times 2 = 1 \text{ cm}$$

05. Ans: (a)

ACE Engineering Publications

Sol:
$$\operatorname{mr}\omega^2 \times a = \left(\frac{F_s}{2}\right) \times a$$

 $F_s = 2\operatorname{mr}\omega^2$
 $= 2 \times 1 \times 0.4 \times (20)^2 = 320 \text{ N}$

06. Ans: (c)

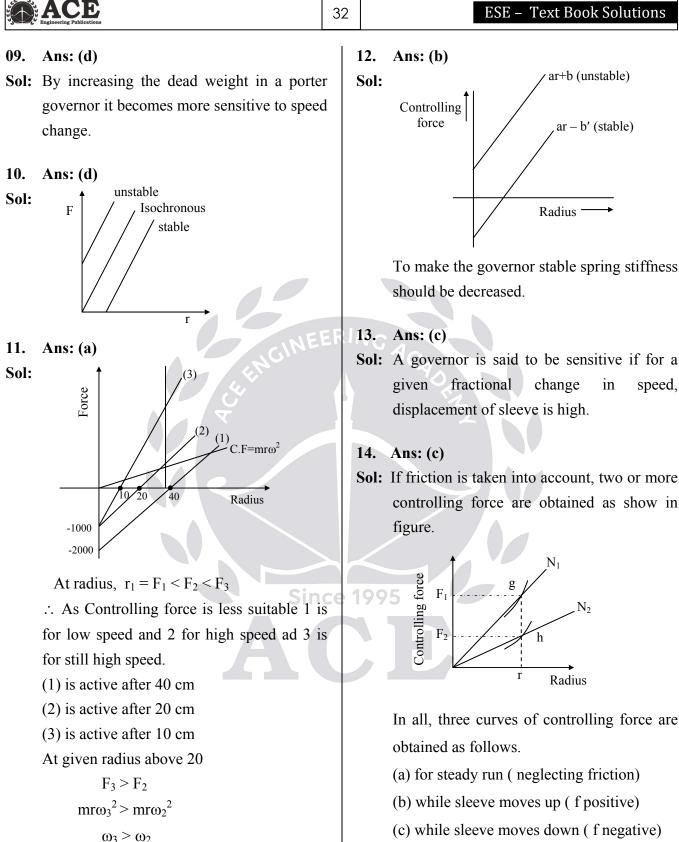
31

Sol: A governor is used to limit the change in speed of engine between minimum to full load conditions, the sensitiveness of a governor is defined as the ratio of difference between maximum and minimum speed to mean equilibrium speed, thus,

sensitiveness =
$$\frac{\text{Range of speed}}{\text{mean speed}} = \left(\frac{N_1 - N_2}{\frac{N_1 + N_2}{2}}\right)$$

Where, mean speed,
$$N = \frac{N_1 + N_2}{2}$$

- N_1 = maximum speed corresponding to noload conditions.
- N₂ = minimum speed corresponding to full load conditions.

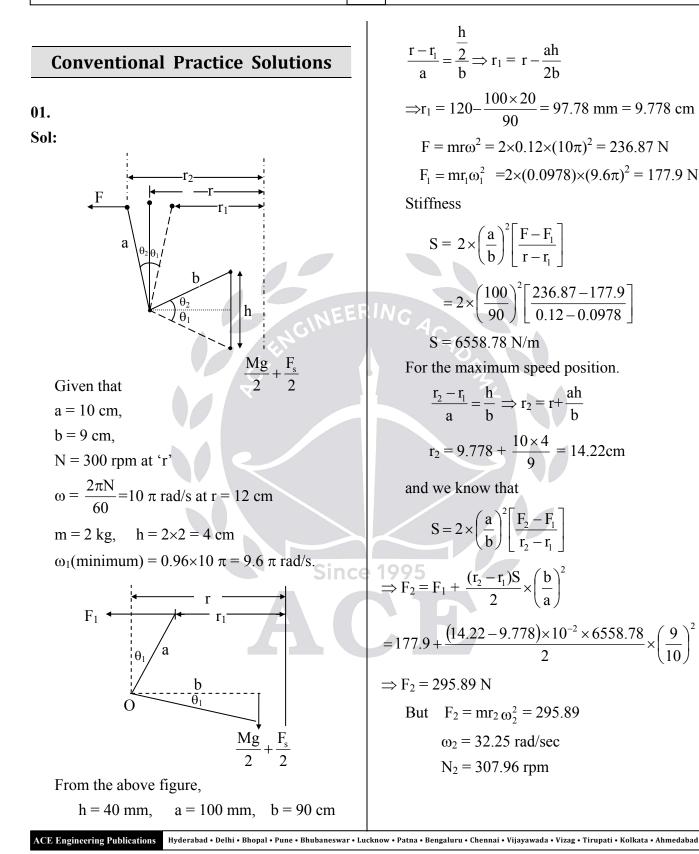

07. Ans: (b)

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

08. Ans: (a) Sol: $r_1 = 50 \text{ cm}$, $F_1 = 600 \text{ N}$

F = a + rb 600 = a + 50 b 700 = a + 60 b 10 b = 100 b = 10 N/cm a = 100 N F = 100 + 10 r F = 100 + 10 r

This is unstable governor. It can be isochronous if its initial compression is reduced by 100 N.



Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad ACE Engineering Publications

	ACE Engineering Publications	33		Theory of Machines & Vibrations
	The vertical intercept gh signifies that between the speeds corresponding to gh , the radius of the ball does not change while direction of movement of sleeve does Between speeds N ₁ and N ₂ , the governor is insensitive. Ans: (b) A governor is stable if radius of rotation of ball is increases as the speed increases. Centripetal force, $F = mr\omega^2$ $\Rightarrow \qquad \frac{F}{r} = m\omega^2$ Slope of the centripetal force represent speed. Higher the slope, higher will be the speed. when $r = 2$ cm; $F = 14$ N $\therefore \qquad \frac{F}{r} = \frac{14}{2} = 7$ when $r = 6$ cm; $F = 38$ N $\frac{F}{r} = \frac{38}{6} = 6.33$ As the radius increases slope of the centripetal force curve decreases and therefore speed of the governor decreases Thus the governor is unstable. 38 N 14 N	e f f f f f f f f f f f f f f f f f f f	N G	Ans: Given, m = 8 kg F ₁ = 1500 N at r ₁ = 0.2 m and F ₂ = 887.5 N at r ₂ = 0.13 m, For spring controlled governor, controlling force is given by F = a r + b 1500 = a × 0.2 + b 887.5 = a × 0.13 + b \therefore a = 8750, b = -250 F = 8750 r - 250 At r = 0.15 m, F = 8750×0.15 - 250 = 1062.5 N So, controlling force, F = 1062.5 m F = mro ² 1062.5 = 8 × 0.15 ω^2 \therefore ω = 29.72 rad/s N = $\frac{60\omega}{2\pi}$ = 284 rpm For isochronous speed F = a r = 8750 × 0.15 = 1312.5 N F = mr ω^2 1312.5 = 8 × 0.5 × ω^2 \Rightarrow ω = 33.07 rad/s N = $\frac{60\omega}{2\pi}$ = 316 rpm The increase in tension is 250 N to make the governor isochronous.
ACE	Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	LUCKIIO	w•rati	na • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications

ESE - Text Book Solutions

02. Sol: r = 7 cmmrω а $Mg + F_s \pm f$ Mass of sleeve, M = 5 kg, N = 500 rpm $\omega = \frac{2\pi \times 500}{60} = 52.36 \text{ rad/sec},$ f = 30 NAt equilibrium friction force = 0At r = 7 cm, f = 0Maximum speed, with friction $\omega_2 = 1.05 \ \omega = 1.05 \times 52.36 = 54.98 \ rad/s$ at minimum speed, with friction $\omega_1 = 0.95\omega = 0.95 \times 52.36 = 49.74$ rad/s Also, at mid position, the change in speed of \pm 1% gives the governor effort sufficient to overcome friction. Therefore, maximum speed at mid position, $\omega_2 = 1.01 \omega = 1.01 \times 52.36 = 52.88 \text{ rad/s}$ And, minimum speed at mid position $\omega_1 = 0.99 \omega = 0.99 \times 52.36 = 51.84 \text{ rad/s}$ Also, for maximum speed at mid position,

$$(W + f) + F_S = 2F_1 \times r \times \frac{a}{b}$$

 $\Rightarrow 5 \times 9.81 + 30 + F_S = 2 \times m \times 52.88^2 \times 0.07 \times 1$
 $79.05 + F_{S1} = 391.48$ -----(1)

And for minimum speed at mid position

Theory of Machines & Vibrations

$$(W - f) + F_{S} = 2F_{2} \times r \times \frac{a}{b}$$

$$(5 \times 9.81 - 30) + F_{S} = 2 \times m \times (51.84)^{2} \times 0.07 \times 1$$

$$19.05 + F_{S} = 376.223 - (2)$$
Solving equ. (1) and equ. (2)

$$m = \frac{60}{391.48 - 376.223} = 3.94 \text{ kg}$$
Thus, mass of each ball = 3.94 kg
(ii) Also, maximum speed with friction

$$(W + f) + F_{S2} = 2F_{2} \times \frac{a}{b}$$

$$(5 \times 9.81 + 30) + F_{S2} = 2 \times 3.94 \times (54.98)^{2} \times \frac{\left(7 + \frac{2}{2}\right) \times 1}{100}$$

$$F_{s2} = 1826.52 \text{ N}$$
Also, minimum speed with friction

$$(W - f) + F_{S1} = 2F_{1} \times \frac{a}{b}$$

$$(5 \times 9.81 - 30) + F_{S1} = 2 \times 3.94 \times (49.74)^{2} \times \frac{\left(7 - \frac{2}{2}\right) \times 1}{100}$$

$$F_{s1} = 1150.69 \text{ N}$$
Spring rate = $\frac{1826.52 - 1150.69}{0.02}$
= 33.79 N/mm
(iii) Initial compression of the spring

$$\frac{F_{s1}}{k} = \frac{1150.69}{33.79} = 34 \,\mathrm{mm} = 3.4 \,\mathrm{cm}$$

(iv) Governor effort for 1 % change in speed

$$= c \left(W + \frac{F_{s1} + F_{s2}}{2}\right)$$

= 0.01×($\left(5 \times 9.81 + \frac{1826.52 + 1150.69}{2}\right)$
= 15.38 N

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

35

(5

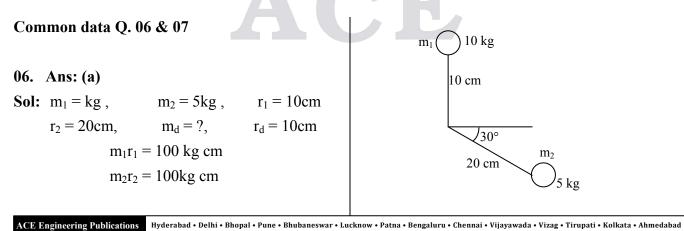
(5

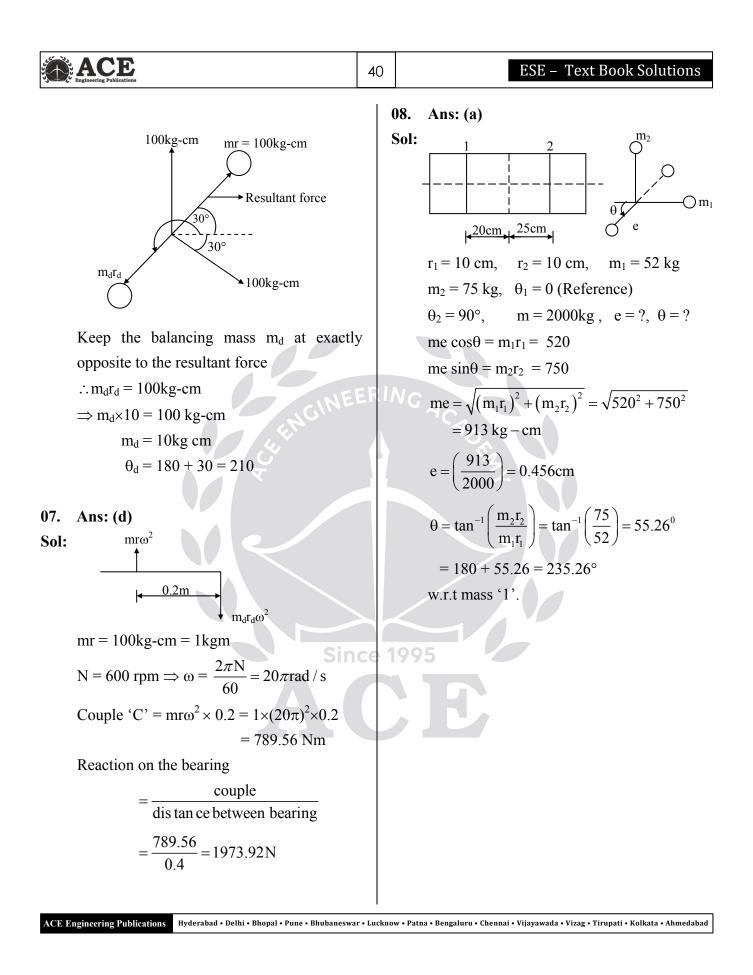
ACE

ACE Engineering Publications	36 ESE – Text Book Solutions
(v) Power of the governor	(b) Let ω_1' and ω_2' be the maximum and minimum angular velocity of the governor
$= 15.38 \times 0.02 = 0.308$	considering the friction. $F + f = m(\omega'_1)^2 \times r$
03. Sol: Weight of each ball 'w' = 40 N Mass of each ball = $\frac{40}{9.81}$ = 4.077 kg	$335 + 2.5 = 4.077 \times (\omega_1')^2 \times 0.15$ $\omega_1' = 23.492 \text{ rad/sec}$ $F - f = m(\omega_2')^2 \times r$
$r_1 = 10 \text{ cm}$ and $r_2 = 17.5 \text{ cm}$ $F_{c1} = 205 \text{ N}$ and $F_{c2} = 400 \text{ N}$ Let $F_c = ar + b$ When $r_1 = 10 \text{ cm} = 0.1 \text{ m}$ and $F_{c1} = 205 \text{ N}$	$335 - 2.5 = 4.077 \times (\omega_2')^2 \times 0.15$ $\omega_2' = 23.317 \text{ rad/se}$ $\therefore \text{ Coefficient of insensitiveness}$ $= \frac{(\omega_1' - \omega_2')}{\omega} = \frac{23.492 - 23.317}{23.404}$
205 = b + 0.1a When $r_2 = 17.5cm = 0.175m$ and $F_{c2} = 400N$ 400 = b + 0.175a	$\omega = 7.477 \times 10^{-3} = 0.747 \%$ 04.
$\therefore 195 = 0.075a \Rightarrow a = 2600$ $\therefore b = 205 - 0.1 \times 2600 = -55$ $\therefore F_c = -55 + 2600 r \text{ (stable governor)}$	Sol: $m = 0.5 \text{ kg}$, $M = 2 \text{ kg}$ At lowest position:
(a) For $F_c = 205$; $\frac{40}{g} \left(\frac{2\pi N_1}{60}\right)^2 \times 0.1 = 205N$ $N_1 = 214.1rpm$ For $F_c = 400$; $r = 0.175m$ $\therefore \frac{40}{g} \left(\frac{2\pi N_2}{60}\right)^2 \times 0.175 = 400$	
g (60) $N_2 = 226.1 \text{rpm}$ At r = 0.15m $F_c = -55 + 2600 \times 0.15 = 335N$ $335 = 4.077 \times 0.15 \times \omega^2$ $\omega = 23.404 \text{ rad/sec}$	$\alpha = \beta$ $k = \frac{\tan \beta}{\tan \alpha} = 1;$ $h = \frac{(mg + Mg + F_f)}{m\omega^2}$ $250 \cos 30^\circ = \frac{mg + Mg + F_f}{m\omega^2}$
	r • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirunati • Kolkata • Ahmedabad

ACE Engineering Publications	37 Theory of Machines & Vibrations
1980 Product to the second s	Let, N ₁ = minimum speed when r ₁ = BG = 20 cm, N ₂ = minimum speed when r ₂ = BG = 25 cm, Height of the governor, h ₁ = PG = $\sqrt{(BP)^2 - (BG)^2}$ $= \sqrt{30^2 - 20^2} = 22.36$ cm we know that, $(N_1)^2 = \frac{m+M}{m} \times \frac{895}{h_1} = \frac{7+54}{7} \times \frac{895}{(\frac{22.36}{100})}$ N ₁ = 186.8 rpm Height of the governor, h ₂ = PG = $\sqrt{(BP)^2 - (BG)^2}$ $= \sqrt{30^2 - 25^2} = 16.58$ cm $(N_2)^2 = \frac{m+M}{m} \times \frac{895}{h_2} = \frac{7+54}{7} \times \frac{895}{(\frac{16.58}{100})}$ N ₂ = 216.89 rpm Range of speed of governor, $= N_2 - N_1 = 216.89 - 186.8 = 30.1$ rpm 06. Sol: Given data, a = b, $d = 140$ mm, N = 500 rpm , h = 30 mm , M = 5 kg, f = 20 N $\omega = \frac{2\pi \times 500}{60} = 52.36$ rad/s Assuming power of governor is sufficient to overcome friction by 1% change in speed on each side of mid position.
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	r • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications	38	ESE – Text Book Solutions
(i) Considering the friction at the mid position,		
$m r \omega_1^2 a = \frac{1}{2} (Mg + F_s + f)b$		Chapter5Balancing
$m \times \left(\frac{0.140}{2}\right) \times (52.36 \times 1.01)^2 = \frac{1}{2}((5 \times 9.81) + F_s + 2.56 \times 1.01)^2$	20)	01. Ans: (c)
(a = b)(1)) 5	Sol: unbalanced force $(F_{un}) \propto mr\omega^2$
$\mathrm{mr}\omega_{2}^{2}\mathrm{a}=\frac{1}{2}\left(\mathrm{Mg}+\mathrm{F_{s}}-\mathrm{f}\right)\mathrm{b}$		Unbalance force is directly proportional to square of speed. At high speed this force is
$m \times \left(\frac{0.140}{2}\right) \times (52.36 \times 0.99)^2 = \frac{1}{2} (5 \times 9.81 + F_s - 2)^2$	0)	very high. Hence, dynamic balancing becomes necessary at high speeds.
Subtracting (1) from (2)		02. Ans: (a)
$m \times 0.07 \times (52.36)^2 [(1.01)^2 - (0.99)^2] = \frac{1}{2} \times (20 + 20)^2$) 5	Sol: Dynamic force = $\frac{W}{\sigma} e \omega^2$
\Rightarrow m = 2.605 kg		Sol: Dynamic force = $\frac{W}{g}e\omega^2$ Couple = $\frac{W}{g}e\omega^2 a$
(ii) In the extreme positions,		Reaction on each bearing = $\pm \frac{W}{\alpha} e \omega^2 \frac{a}{l}$
$mr_2\omega_2^2 a = \frac{1}{2}(Mg + F_{s2} + f)b$		g <i>l</i> Total reaction on bearing
$2.605 \times \left(0.07 + \frac{0.03}{2}\right) \times \left(52.36 \times 1.05\right)^2 = \frac{1}{2} \left(5 \times 9.81 + F_{s2} + 20\right)$ (a = b)		$= \left(\frac{W}{g}e\omega^{2}\frac{a}{l}\right) - \left(\frac{W}{g}e\omega^{2}\frac{a}{l}\right) = 0$
$F_{S2} = 1269.5 \text{ N}$		03. Ans: (b)
$mr_{1}\omega_{1}^{2}a = \frac{1}{2}(Mg + F_{s1} - f)b$ Sin	ce '	Sol: Since total dynamic reaction is zero the
$2.605 \times \left(0.07 + \frac{0.03}{2}\right) \times \left(52.36 \times 0.95\right)^2 = \frac{1}{2} \left(5 \times 9.81 + F_{s2} - 20\right)$		system is in static balance. 04. Ans: (a)
$F_{s1} = 639.95 \text{ N}$		
$h_1 s = F_{s2} - F_{s1}$ 0.03 × s = 1269.5 - 639.95		$05. Ans: (b) \qquad \qquad \bigcirc m_a$
$0.03 \times s = 1269.5 - 639.95$ s = 20985 N/m (or) 20.98 N/mm		Sol: $m_a = 5 \text{ kg}, r_a = 20 \text{ cm}$
		$m_a = 5 \text{ kg}, r_a = 20 \text{ cm}$ $m_b = 6 \text{ kg}, r_b = 20 \text{ cm}$
(iii) Initial compression = $\frac{F_{s1}}{s} = \frac{639.95}{20.98}$		$m_c = ?$, $r_c = 20$ cm
= 30.50 mm		$m_d = ?, \theta_c = ?, \theta_d = ? \qquad \bigcirc m_b$


S7 Incory of Millerinn


Take reference plane as 'C'
For complete balancing

$$\Sigma \text{ mr} = 0 \quad \& \quad \Sigma \text{ mr} l = 0$$

 $2\text{m}_{d} \cos \theta_{d} - 9 \quad \sqrt{2} = 0$
 $\Rightarrow \text{m}_{d} \cos \theta_{d} = 9 \quad \sqrt{2}$
 $2\text{m}_{d} \sin \theta_{d} - 5 \quad -9 \quad \sqrt{2} = 0$
 $\text{m}_{d} \sin \theta_{d} = = \frac{1}{2} \left(5 + 9 \quad \sqrt{2} \right)$
 $\text{m}_{d} = \sqrt{\left(\frac{9}{\sqrt{2}}\right)^{2} + \left[\frac{1}{2}\left(5 + 9 \quad \sqrt{2}\right)\right]^{2}} = 10.91 \text{ kg}$
 $\theta_{d} = \tan^{-1} \left[\frac{\frac{1}{2}\left(5 + 9 \quad \sqrt{2}\right)}{\frac{9}{\sqrt{2}}}\right] = 54.31^{0}$
 $= 90 - 54.31 = 35.68 \text{ w.r.t 'A'}$

 $m_{c} \cos\theta_{c} + m_{d} \cos\theta_{d} - 3\sqrt{2} = 0$ $\Rightarrow m_{c} \cos\theta_{c} + 10.91 \cos 54.31 - 3\sqrt{2} = 0$ $m_{c} \cos\theta_{c} = -2.122$ $m_{c} \sin\theta_{c} + m_{d} \sin\theta_{d} - 3\sqrt{2} + 5 = 0$ $m_{c} \sin\theta_{c} + 10.91 \sin 54.31 - 3\sqrt{2} + 5 = 0$ $m_{c} \sin\theta_{c} = -9.618$ $m_{c} = \sqrt{(-2.122)^{2} + (-9.618)^{2}} = 9.85 \text{kg}$ $\tan\theta_{c} = \frac{-9.618}{-2.122}$ $\theta_{c} = 257.56 \text{ or } 257.56 - 90 \text{ w.r.t 'A'}$ = 167.56

S.No	m	(r×20)cm	(<i>l</i> ×20)cm	θ	mrcosθ	mrsinθ	mr/cos0	mr <i>l</i> sinθ
А	5	1	-1	90	0	5	0	-5
В	6	1	3	225	$-3\sqrt{2}$	$-3\sqrt{2}$	$-9\sqrt{2}$	$-9\sqrt{2}$
С	m _c	1	0	θε	$m_c cos \theta_c$	$m_c sin \theta_c$	0	0
D	m _d	1	2	θ_d	$m_d cos \theta_d$	$m_d sin \theta_d$	$2m_d cos \theta_d$	$2m_d sin \theta_d$

ACE Engineering Publications 41	Theory of Machines & Vibrations
---------------------------------	---------------------------------

09. Ans: (a)

Sol:

Plane	m	r (m)	L (m) (reference	θ	F _x	Fy	C _x	Cy
	(kg)		Plane A)		(mrcosθ)	(mrsin0)	(mrlcos0)	(mr <i>l</i> sinθ)
D	2 kg.m		0.3	0	2	0	0.6	0
А	-m _a	0.5m	0	θ_a	$-0.5m_a\cos\theta_a$	$-0.5m_a sin \theta_a$	0	0
В	-m _b	0.5m	0.5	θ_b	$-0.5m_b\cos\theta_b$	$-0.5m_bsin\theta_b$	$-\frac{m_b}{4}\cos\theta_b$	$-\frac{m_b}{4}\sin\theta_b$

$$C_{x} = 0 \Rightarrow \frac{m_{b} \cos \theta_{b}}{4} = 0.6$$

$$C_{y} = 0 \Rightarrow \frac{m_{b} \sin \theta_{b}}{4} = 0$$

$$\Rightarrow m_{b} = 2.4 kg, \quad \theta_{b} = 0$$

$$\Sigma F_{x} = 0$$

$$\Rightarrow 2 - 0.5 m_{a} \cos \theta_{a} = 0.8$$

$$\Sigma F_{y} = 0 \Rightarrow \frac{m_{a}}{2} \sin \theta_{a} = 0$$

$$\therefore \quad \theta_{a} = 0^{\circ}, \quad m_{a} = 1.6 kg$$
(Note: mass is to be removed so that is taken as -ve).
10. Ans: (a)
Sol:

$$\int_{T_{2}}^{Y} \int_{T_{2}}^{0} \int_{T_{1}}^{0} \int_{T_{1}}^{0$$

ACE Engineering Publications

12. Ans: (b)

Sol:

• Primary unbalanced force = $mr\omega^2 cos\theta$ At $\theta = 0^\circ$ and 180°, Primary force attains maximum.

Secondary force = $\frac{mr\omega^2}{n}\cos 2\theta$ where n is

obliquity ratio. As n > 1, primary force is greater than secondary force.

• Unbalanced force due to reciprocating mass varies in magnitude. It is always along the line of stroke.

13. Ans: (b)

Sol: In balancing of single-cylinder engine, the rotating balance is completely made zero and the reciprocating unbalance is partially reduced.

14. Ans: (b)

Sol: m = 10 kg, r = 0.15 m,

c = 0.6, $\theta = 60^\circ$, $\omega = 4$ rad/sec

Residual unbalance along the line of stroke

 $= (1 - c) m r\omega^{2} \cos\theta$ = (1 - 0.6)×10 ×0.15 ×4²cos60 = 4.8 N

15. Ans: 2

Sol: By symmetric two system is in dynamic balance when

 $mea = m_1e_1a_1$

$$m_1 = m \frac{e}{e_1} \cdot \frac{a}{a_1} = 1 \times \frac{50}{20} \frac{2}{2.5} = 2kg$$

42

$$m_1 = \frac{mL_2}{L_1 + L_2} = \frac{100 \times 60}{100} = 60 \text{ kg}$$

 m_2

C.G

$$m_2 = \frac{mL_1}{L_1 + L_2} = \frac{100 \times 40}{100} = 40 \text{kg}$$

$$= 1 - m_1 L_1 + m_2 L_2$$

= 60 × 40² + 40 × 60²
= 240000 kg cm²
= 24 kg m²

17. Ans: (d) Sol: For primary forces balances $\sum r \cos \theta_i = 0$

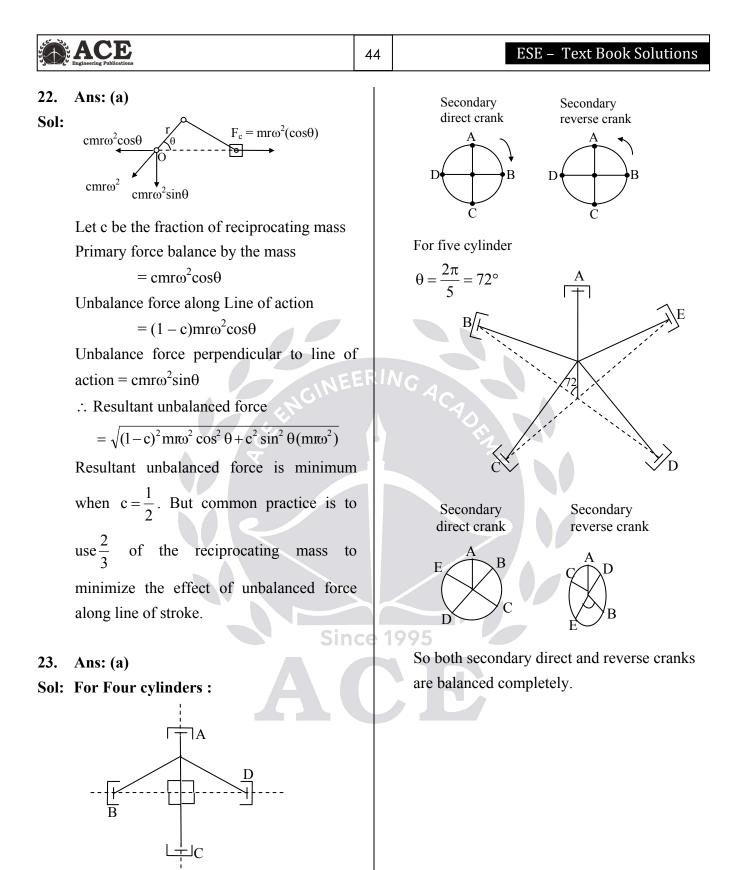
	Sl.No.	θ	cos θ
	1	α	cosα
	-2	$180 + \beta$	$\cos\left(180+\beta\right)$
5	3	180 – β	$\cos\left(180-\beta\right)$
	4	$360 - \alpha$	$\cos(360-\alpha)$

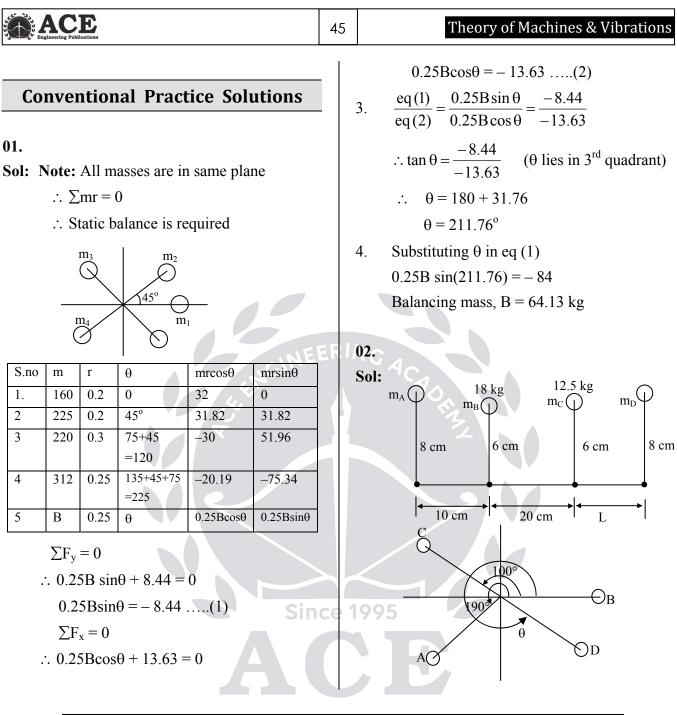
$$\therefore \sum m \cos \theta_i = R_1 \cos \alpha + R_2 \cos(180 + \beta)$$

 $+R_2\cos(180-\beta)+R_1\cos(360-\alpha)=0$

 $= R_1 \cos \alpha - R_2 \cos \beta - R_2 \cos \beta + R_1 \cos \alpha = 0$

$$\therefore 2 R_1 \cos \alpha = 2 R_2 \cos \beta$$

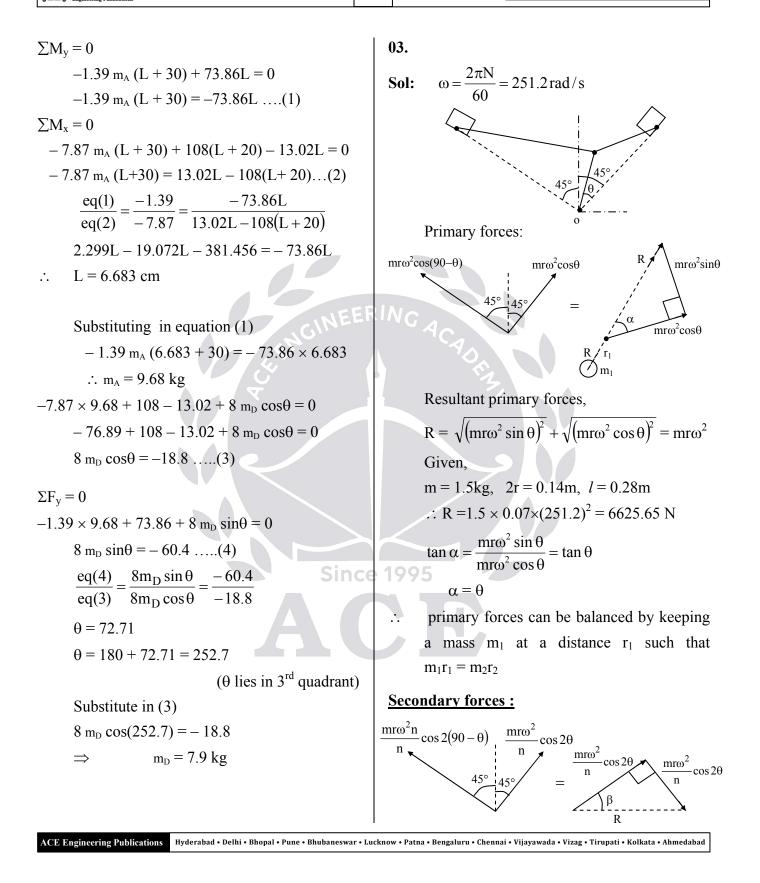

$$\therefore$$
 R₁ cos α = R₂ cos β


ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

19

ESE – Text Book Solutions

	CE ing Publications			43		Theory of Machines & Vibrations
18. An Sol:					19. Sol: •	Ans: (d) For primary direct crank total unbalanced mass is $\frac{3W}{2g}$. Therefore primary direct force is equal to $\frac{3W}{2g}r\omega^2$. As primary reverse crank is balanced, primary reverse force is equal to zero.
by		2θ 0 360 540° = 360+180 180° mary unbalanced for			• 20. Sol:	Primary direct crank speed is ω . Primary reverse crank speed is equal and opposite to the primary direct crank speed. Ans: (d) Ams: (d) $A = \frac{1}{2kN} B$ $1 = \frac{1}{2kN} B$ 1
Res give $\sum \vec{F}_{S} = \frac{m\pi}{2}$ $= 0$ $\therefore All$	ultant seen by $\frac{b^2 \cos 0}{n} + \frac{m\pi}{n}$	$m\omega^{2} \cos 180 + m\omega^{2} \cos 2^{2}$ econdary unbalance $\frac{\omega^{2} \cos 360}{n} + \frac{m\omega^{2} \cos (360 + m\omega^{2})}{n}$ w and secondary	ed force is $\frac{180}{n} + \frac{mro^2 \cos(n)}{n}$	80)	21.	If the shaft is statically balanced then Reactions due to unbalanced couple \therefore R _A × 1 m = 300 N-m \therefore R _A = 300 N R _B = -300 N Ans: (a)



ſ	S.No	m	r (cm)	θ	L	mrcosθ	mrsin0	mrLcosθ	mrLsinθ
Ī	1	m _A	8	190	30+L	-7.87 m _A	-1.38 m _A	-7.87 m _A (L+30)	-1.39 m _A (L+30)
	2	18	6	0	20+L	108	0	108(L+20)	0
Ī	3	12.5	6	100	L	-13.02	73.86	-13.02L	73.86L
Ī	4	m _D	8	θ	0	$8 m_D \cos\theta$	$8 m_D \sin \theta$	0	0

Note: Assuming the plane (D) having maximum unknowns as the reference plane

ACE

ESE - Text Book Solutions

46

ACE

Theory of Machines & Vibrations

Secondary force,

$$R_{s} = \sqrt{\left(\frac{mr\omega^{2}}{n}\cos 2\theta\right)^{2} + \left(\frac{mr\omega^{2}}{n}\cos 2\theta\right)^{2}}$$
$$= \sqrt{2} \cdot \frac{mr\omega^{2}}{n}\cos 2\theta$$

 $\tan\beta = 1 \Longrightarrow \beta = 45^{\circ}$

As R_S magnitude is varying and direction is not varying so it can't be balanced.

$$n = \frac{\ell}{r} = \frac{28}{7} = 4$$

$$\therefore \ (R_s)_{max} = \sqrt{2} \frac{mr\omega^2}{n} = 2342.5 \text{ N}$$

04.

Sol:

(i) On same side :

$$m_2$$

 m_2
 m_2
 m_1
 m_1
 m_1
 m_1
 m_1
 m_2
 m_1
 m_1
 m_2
 m_1
 m_2
 m_1
 m_2
 m_1
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_2
 m_2
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2

 $\sum \operatorname{mrcos} \theta = 0$ $2 \times 10 + 10 \times \operatorname{m_1 cos} \theta_1 + 10 \times \operatorname{m_2 cos} \theta_2 = 0$

 $\sum \text{mrsin}\theta = 0$

 $m_1 \cos\theta_1 + m_2 \cos\theta_2 = -2 - \dots - (1)$ $m_1 \sin\theta_1 + m_2 \sin\theta_2 = 0 - \dots - (2)$

 $\sum mr l \cos \theta = 0$

 $0+m_1 \times 10 \times 5\cos\theta_1 + m_2 \times 10 \times 15\cos\theta_2 = 0$ $5m_1 \cos\theta_1 + 15m_2 \cos\theta_2 = 0$ $m_1 \cos\theta_1 + 3m_2 \cos\theta_2 = 0 -----(3)$

 $\sum mr l \sin \theta = 0$ $m_1 \sin \theta_1 + 3m_2 \sin \theta_2 = 0 \dots (4)$ From (3) & (4) $\tan\theta_1 = \tan\theta_2$ $\theta_1 = \theta_2 \text{ or } (\pi + \theta_2)$ Take $\theta_1 = \theta_2$ $m_1 = -3m_2$ is not valid $\therefore \theta_1 = \pi + \theta_2$ $m_1 = 3m_2$ From (2) $(m_1 - m_2) \sin \theta_2 = 0$ $\theta_2 = 0, \pi$ From (1) $(m_1 - m_2)\cos\theta_2 = -2$ $2m_2\cos\theta_2 = -2$ $\therefore \theta_2 = 180^\circ, m_2 = 1 \text{ kg}, m_1 = 3 \text{ kg}$ $\therefore \theta_2 = 180^\circ, \theta_1 = 360^\circ \text{ or } 0^\circ$ On opposite sides of crank : 2kg m m1

 $\sum mr/\cos\theta = 0 \text{ about crank plane}$ m₁cos $\theta_1 5 - m_2 \cos\theta_2 5 = 0$ -----(5) m₁sin $\theta_1 5 - m_2 \sin\theta_2 5 = 0$ -----(6)

From (5) & (6) $\tan \theta_1 = \tan \theta_2$ $\theta_1 = \theta_2$ or $\pi + \theta_2$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

(ii)

1995

47

Engineering Publications	48	ESE – Text Book Solutions
Take $\theta_1 = \theta_2$ (m ₁ -m ₂)cos $\theta_1 = 0$ (7)		$f = \frac{1}{2\pi} \sqrt{\frac{gL}{(k^2 + L^2)}}$ cycle/sec
$(m_1+m_2)\cos\theta_1 = -2$ (8)		$f = 43$ cycle/min $= \frac{43}{60}$ cycle/sec
From (7) & (8) $\therefore m_1 - m_2 = 0$		$\frac{43}{60} = \frac{1}{2\pi} \sqrt{\frac{9.81 \times 0.375}{k^2 + (0.375)^2}}$
\Rightarrow m ₁ = m ₂		k = 0.202 m = 202 mm
$m_1 \cos\theta_1 = -1$ $2m_1 \sin\theta_1 = 0 (\text{from } (2))$		$L_1 L_2 = k^2$ (202) ² (202) ² 100 c
$\therefore \theta_1 = \pi,$		$L_2 = \frac{(202)^2}{L_1} = \frac{(202)^2}{375} = 108.8 \text{mm}$
$ \theta_2 = \pi, $ $ m_1 = 1 \text{ kg}, $	ERI	$m_1 = \frac{mL_2}{L_1 + L_2} = \frac{18 \times 108.8}{108.8 + 375} = 4.05 \text{kg}$
$m_2 = 1 \text{ kg}$		$m_2 = \frac{mL_1}{L_1 + L_2} = \frac{18 \times 375}{108.8 + 375} = 13.95 \text{ kg}$
05.		
Sol:		
$m_2 \phi$ o m_1	ce 1	1995
375.4mm 125 mm		
L = 500 mm, m = 18 kg,	4	
r = 100 mm		
$L_1 = 375 \text{ mm}$,		
$L_2 = ?$ $L_1 L_2 = k^2$		
Radius of gyration = k		nw • Patna • Bengaluru • Chennai • Vijavawada • Vizag • Tirunati • Kolkata • Ahmedahad

ACE **Theory of Machines & Vibrations** 49 04. Ans: (b) Sol: L = 4 cm, $\phi = 90^\circ = \pi/2 \text{ radian}$, Chapter Cams 6 $\omega = 2 \text{ rad/sec}$, $\theta = \frac{2}{3} \times 90 = 60^{\circ}$ Ans: (d) 01. $\frac{\theta}{\phi} = \frac{2}{3}$ **Sol:** Pressure angle is given by $\tan \phi = \frac{\frac{\mathrm{dy}(\theta)}{\mathrm{d}\theta} - \mathrm{e}}{\mathrm{y}(\theta) + \sqrt{(\mathrm{r_p})^2 - (\mathrm{e})^2}}$ $s(t) = \frac{L}{2} \left(1 - \cos \frac{\pi \theta}{\phi} \right)$ $= 2(1 - \cos 120) = 3$ cm where, ϕ is pressure angle, $V(t) = \frac{L}{2} \times \frac{\pi}{\Phi} \times \omega \times \sin\left(\frac{\pi\theta}{\Phi}\right)$ θ is angle of rotation of cam e is eccentricity $4 = \frac{4}{2} \times 2 \times 2\sin(120) = 7 \text{ cm/s}$ r_p is pitch circle radius y is follower displacement $\mathbf{a}(\mathbf{t}) = \frac{\mathbf{L}}{2} \left(\frac{\pi}{\Phi}\right)^2 \times \omega^2 \times \cos\left(\frac{\pi\theta}{\Phi}\right)$ 02. Ans: (d) $=\frac{4}{2} \times 2^2 \times 2^2 \times \cos(120) = -16 \text{ cm} / \sec^2$ Sol: Cycloidal motion $y = \frac{h}{2\pi} \left(\frac{2\pi\theta}{\phi} - \sin\left(\frac{2\pi}{\phi}\theta\right) \right)$ 05. Ans: (b) $\dot{y}_{max} = \frac{2h\omega}{h}$ Sol: ----(1) normal tangent Radial line Simple harmonic motion : 1995 , 16 10' $\dot{y}_{max} = \left(\frac{\pi}{2}\frac{h\omega}{\Phi}\right)$ --(2) 150° Uniform velocity : 3.897 30° 120° $\dot{y} = \frac{h\omega}{\Phi}$ -----(3) $x = 15\cos\theta$, From (1), (2) and (3) we observe that $y = 10 + 5\sin\theta$ $V_{\text{cyclodial}} > V_{\text{SHM}} > V_{\text{UV}}$ $\tan\phi = \frac{dy}{dx} = \frac{dy}{d\theta} = \frac{5\cos\theta}{-15\sin\theta}$ dx 03. Ans: (b) dθ

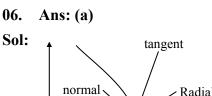
ACE

at $\theta = 30^{\circ}$. $\tan\phi = \frac{5 \times \frac{\sqrt{3}}{2}}{-15 \times \frac{1}{2}} = -\frac{1}{\sqrt{3}} \implies \phi = 150^{\circ}$ $\tan \theta = \frac{y}{x} = \frac{10 + 5\sin \theta}{15\cos \theta} = \frac{10 + 5\sin 30}{15\cos 30}$

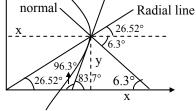
 $\theta = 43.897^{\circ}$

Pressure angle is angle between normal and radial line = 16.10° .

or
$$x = 15 \cos \theta$$
,


$$y = 10 + 5 \sin\theta \text{ at } \theta = 30^{\circ}$$
$$\left(\frac{x}{15}\right)^{2} + \left(\frac{y - 10}{5}\right)^{2} = 1$$
$$x = \frac{15\sqrt{3}}{2}, \quad y = 125$$
$$\frac{2x}{15^{2}} + \frac{2(y - 10)}{5^{2}}, \quad \frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = \frac{-x}{(y - 10)9} = \frac{-15\sqrt{3}}{2\left(\frac{3}{2}\right) \times 9} = \frac{-1}{\sqrt{3}}$$
$$\tan\theta = \frac{-1}{2}$$

$$\sqrt{3}$$


Then normal makes with x-axis

 $\tan^{-1}(\sqrt{3}) = 60^{\circ}$ $\tan \theta = \frac{y}{x} = \frac{10 + 5\sin \theta}{15\cos \theta} = \frac{10 + 5\sin 30}{15\cos 30}$ $\theta = 43.897^{\circ}$

With follower axis angle made by normal $(\text{pressure angle}) = 60^{\circ} - 43.897^{\circ} = 16.10^{\circ}$

50

Let α be the angle made by the normal to the curve

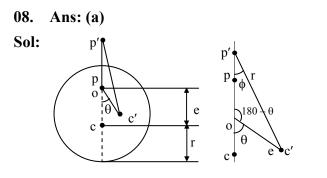
$$\left(\frac{dy}{dx}\right)_{(4,2)} = 9$$
$$\tan \alpha = \frac{dy}{dx} = 4x - 7$$

At
$$x = 4 & y = 2$$
,
 $\alpha = \tan^{-1}(9) = 83.7^{\circ}$

The normal makes an angle

$$= \tan^{-1}\left(\frac{-1}{9}\right) = 6.3^{\circ} \text{ with x axis}$$
$$\theta = \tan^{-1}\left(\frac{2}{4}\right) = 26.52^{\circ}$$

Pressure angle is angle between normal and 199 radial line = $26.52 + 6.3 = 32.82^{\circ}$


07. Ans: (b)

Sol: For the highest position the distance between the cam center and follower = (r + 5) mmFor the lowest position it is (r - 5) mm So the distance between the two positions = (r + 5) - (r - 5) = 10 mm

ESE - Text Book Solutions

Theory of Machines & Vibrations

ACE Engineering Publications

When 'c' move about 'o' through ' θ ', point 'p' moves to p'. ' ϕ ' is angle between normal drawn at point of contact which always passes through centre of circle and follower axis. So this is pressure angle.

From $\Delta le p'oc'$

$$\frac{r}{\sin\left(\pi-\theta\right)} = \frac{e}{\sin\phi}$$

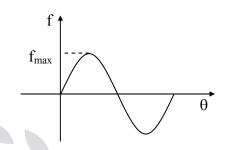
$$\sin\phi = -\sin\phi$$

$$\phi$$
 is maximum $\theta = 90^{\circ}$

 $\sin\phi = \frac{e}{e}$

Pressure angle s maximum at pitch point

$$\phi = \sin^{-1}\left(\frac{e}{r}\right) = 30^{\circ}$$


09. Ans: (c)

Sol: For a cycloidal motion displacement is given by

$$s = \frac{h}{\pi} \left[\frac{\pi \theta}{\phi} - \frac{1}{2} \sin \frac{2\pi \theta}{\phi} \right]$$

Velocity, $v = \frac{ds}{dt} = \frac{h\omega}{\phi} \left(1 - \cos \frac{2\pi \theta}{\phi} \right)$

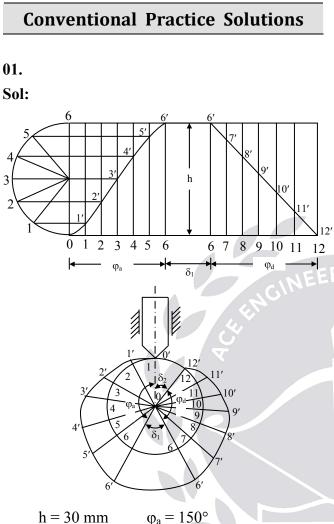
Acceleration,
$$f = \frac{dv}{dt} = \frac{2h\pi\omega^2}{\phi}\sin\frac{2\pi\theta}{\phi}$$

:. Shape of acceleration curve is a sine curve as shown below:

10. Ans: (b)

51

- **Sol:** By providing offset in a radial cam translating follower pressure angle is decreased during ascent of the follower.
 - let, $\boldsymbol{\phi}$ is pressure angle ,
 - θ is angle of rotation of cam
 - e is eccentricity
 - r_p is pitch circle radius
 - y is follower displacement


11. Ans: (d)

Sol: The cam in contact with a follower is case of successful constraint.

12. Ans: (a)

Sol: By providing offset to the follower, pressure angle decreases. As a result side thrust reduces and prevents jamming of follower in its guide. Wear between follower and cam surface also decreases.

$$\begin{split} h &= 30 \text{ mm} \qquad \phi_a = 150^{\circ} \\ N &= 120 \text{ rpm} \qquad \delta_1 = 60^{\circ} \\ r_c &= 20 \text{ mm} \qquad \phi_d = 100^{\circ} \\ \delta_2 &= (360^{\circ} - 150^{\circ} - 100^{\circ} - 60^{\circ}) = 50^{\circ} \end{split}$$

Procedure:

ACE

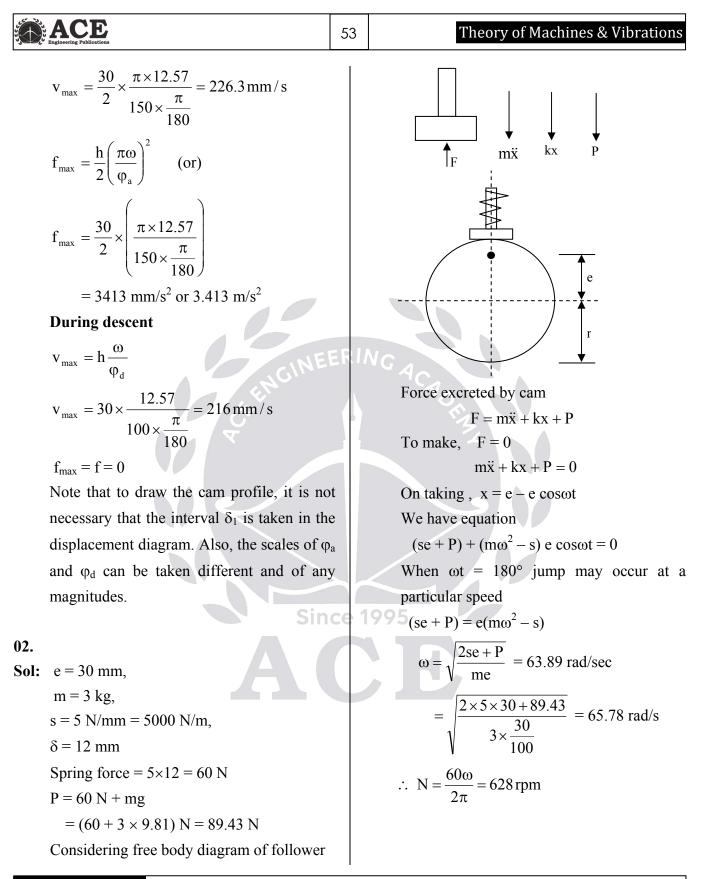
Draw the displacement diagram of the follower as discussed earlier taking a convenient scale. Construct the cam profile as follows refer fig.

(i) Draw a circle with radius r_c

(ii) If the cam rotates clockwise and the follower remains in vertical direction, the cam profile can be drawn by assuming that the cam is stationary and the follower rotates about the cam in the counterclockwise direction.

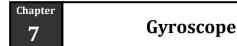
> From the vertical position, mark angles φ_a , δ_1 , φ_d , and δ_2 in the counter-clockwise direction, representing angles of ascent, rest or dwell, descent and rest respectively.

- (iii) Divide the angles ϕ_a and ϕ_d into same number of parts as is done in the displacement diagram. In this case, each has been divided into 6 equal parts.
- (iv) Draw radial lines O-1, O-2, O-3 etc, O-1 represents that after an interval of $\varphi_d/6$ of the cam rotation in the clockwise direction it will take the vertical position of O-O'.
- (v) On the radial lines produced, take distances equal to the lift of the follower beyond the circumference of the circle with radius r_c , i.e., 1-1', 2-2', 3-3', etc.
- (vi) Draw a smooth curve passing through O',
 1', 2',.....10', 11' and 12'. Draw an arc of radius O-6' for the dwell period δ₁.


During ascent

$$\omega = \frac{2\pi N}{60} = \frac{2\pi \times 120}{60} = 12.57 \text{ rad/s}$$

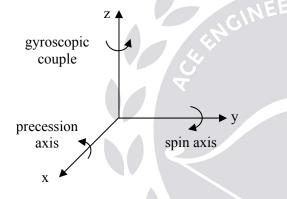
$$v_{\text{max}} = \frac{h}{2} \frac{\pi \omega}{\phi_{a}}$$
or)


ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

54

ESE - Text Book Solutions

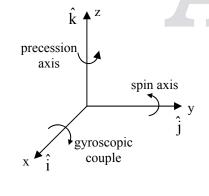


01. Ans: (c)

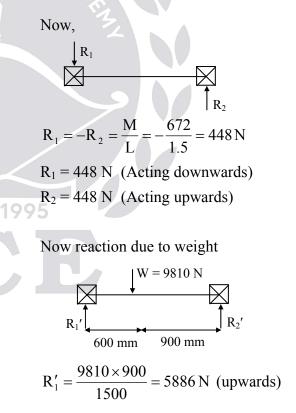
Sol: Due to Gyroscopic couple effect and centrifugal force effect the inner wheels tend to leave the ground.

02. Ans: (d)

Sol: Pitching is angular motion of ship about transverse axis.

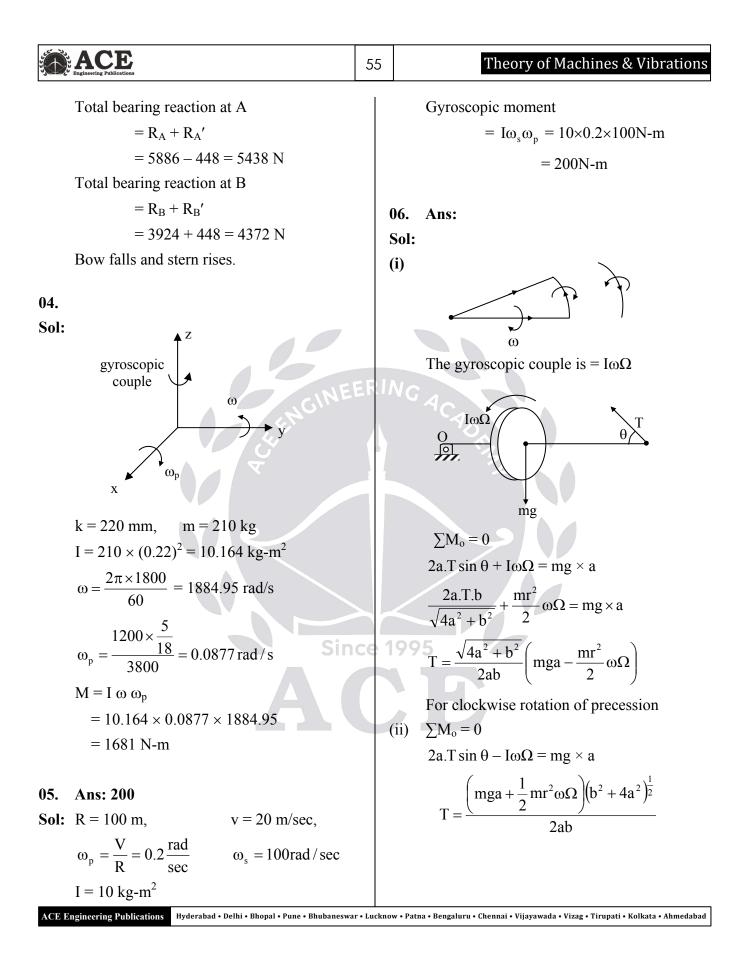


Due to pitching gyroscopic couple acts about vertical axis.


Since

03.

Sol: m = 1000 kg, $r_{k} = 200 \text{ mm}$



 $I = 1000 \times (0.2)^2 = 40 \text{ kg-m}^2$ N = 5000 rpm (CCW) looking from stern $\omega = \frac{2\pi \times 5000}{60} = 523.33$ rpm $\vec{\omega} = -523.33 \hat{j}$ Precession velocity $\omega_{\rm p} = \frac{\rm V}{\rm r} = \frac{25 \times 0.514}{400} = 0.032125 \text{ rad/s}$ $\vec{\omega}_{\rm p} = 0.0312 \ \hat{\rm k}$ Gyroscopic couple = $I(\vec{\omega} \times \vec{\omega}_p)$ $G = 40(-523.33\,\hat{j} \times 0.032125\,\hat{k})$ =-672 î N-m

$$R'_{2} = \frac{9810 \times 600}{1500} = 3924 \text{ N} \text{ (upwards)}$$

ACE Engineering Publications

ACE Engineering Publications

Conventional Practice Solutions

01.

Sol: Let V = limiting velocity of the vehicle.

Angular velocity,
$$\omega = \frac{V}{r} = \frac{V}{0.3} \text{ rad/s}$$

Precession velocity = $\omega_p = \frac{V}{R} = \frac{V}{120} \text{ rad/s}$

- (i) Reaction due to gyroscopic couple.
 - (a) Gyroscopic couple due to four wheels:

$$C_{w} = 4I_{\omega}\omega\omega_{p}$$
$$= 4 \times 2.2 \times \frac{V}{0.3} \times \frac{V}{120} = 0.25 V^{2} N.m$$

(b) Gyroscopic couple due to engine parts:

$$C_e = I_e G \omega \omega_p$$

=
$$1.25 \times 3.2 \times \frac{V}{0.3} \times \frac{V}{120} = 0.11 V^2 N.m$$

Total gyroscopic couple:

$$C_g = C_w + C_e = 0.25 V^2 + 0.11$$

= 0.36 V² N.m

Reaction due to total gyroscopic couple on each outer wheel:

$$R_{g} = \frac{C_{g}}{2b} = \frac{0.36V^{2}}{2 \times 1.6} = 0.1125V^{2}N(\uparrow)$$

Reaction due to total gyroscopic couple on each inner wheel = $0.1125V^2N$ (\downarrow) (ii) Reaction due to centrifugal couple: Centrifugal force,

$$F_c = \frac{mV^2}{R} = \frac{2050 \times V^2}{120} = 17.083V^2N$$

Overturning couple due to centrifugal force

$$C_c = F_c \times h$$

56

$$= 17.083 V^2 \times 0.52 = 8.883 V^2 N.m$$

Vertical downward reactions on each inner wheel is,

$$R_{c} = \frac{C_{c}}{2b} = \frac{8.883 V^{2}}{2 \times 1.6} = 2.776 V^{2} N (\downarrow)$$

(iii) Reaction due to weight of the vehicle

$$R_{w} = \frac{mg}{4} = \frac{2050 \times 9.81}{4} = 5027.625 \text{ N}(\uparrow)$$

The limiting condition to avoid lifting of the inner wheels from the road surface is

$$R_{i} = R_{w} - R_{c} - R_{g} > 0$$

$$R_{w} > R_{c} + R_{g}$$
5027.625 \ge 2.776V²+0.1125V²

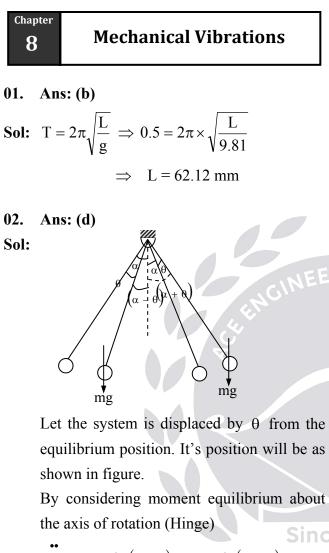
$$V = 41.72 \text{ m/s}$$
18

$$= 41.72 \times \frac{18}{5} = 150.19 \text{ km/hr}$$

Sol:

$$y \rightarrow \omega_p(\hat{j}) \rightarrow x(\hat{i})$$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad


0.2

Since

ESE - Text Book Solutions

ACE Engineering Publications	57	Theory of Machines & Vibrations
$I = mk^{2},$ m = 6000 kg, k = 0.45 m, $\omega = 2400 \text{ rpm}$ $= 80\pi \text{ rad/sec} = 251.2 \text{ rad/sec}$ $\omega_{p} = \frac{18 \times 1860}{60 \times 3600} = 0.155 \text{ rad/sec}$ $\omega_{p} = \frac{V}{R} \hat{j}$ (i) Gyroscope couple $C_{g} = \vec{H} \times \vec{\omega}_{p}$	57 EF(1)	Theory of Machines & Vibrations $\vec{H} = I\omega \hat{i} = 6000 \times 0.45^2 \times 80\pi \hat{i}$ $= 30536.28 \hat{i}$ $C_g = \vec{H} \times \vec{\omega}_p$ $= I\omega \times \omega_p (\hat{i} \times -\hat{k})$ $= 6000 \times 0.45^2 \times 80\pi \hat{i} \times 0.0457 (-\hat{k})$ $= 13.955 (\hat{j}) \text{ kN-m}$ (as the bow portion is lowered, the ship turns towards left or port side)Maximum acceleration = A ω^2
$= I\omega \times \omega_{p} (\hat{i} \times \hat{j}) = mk^{2}\omega \times \omega_{p} \times \hat{k}$ $= 6000 \times 0.45^{2} \times 251.2 \times 0.155$ $= 47.3 \hat{k} \text{ kN-m}$ Bow portion is raised. (ii) Pitching amplitude, A = 7.5° $\alpha = A \text{ sinoot}$ $\tau = 18 \text{ sec} ,$ $f = \frac{1}{18} \text{Hz}$ $\omega = \frac{2\pi}{18} \text{ rad/sec}$		$= 7.5 \times \frac{\pi}{180} \times \left(\frac{2\pi}{18}\right)^2 \text{ rad/sec}^2$ = 0.016 rad/sec ² (iii) $\omega_{\text{rolling}} = 0.035 \text{ rad/sec}$ $\omega_p = 0$ during rolling $C_g = \vec{H} \times \vec{\omega}_p = 0$ (No gyroscope effect)
Maximum angular velocity of precession, $\omega_p = A \omega$ $= 7.5 \times \frac{\pi}{180} \times \frac{2\pi}{18} = 0.0457 (-\hat{k}) \text{ rad/sec}$		

ACE Engineering Publications

$$I\theta + mg\ell\sin(\alpha+\theta) - mg\ell\sin(\alpha-\theta) = 0$$

$$\mathbf{I} = \mathbf{m}\ell^2 + \mathbf{m}\ell^2 = 2\mathbf{m}\ell^2$$

After simplification

 $2m\ell^2\ddot{\theta}+2mg\ell\cos\alpha\,\sin\theta=0$

For small oscillations (θ is small) sin $\theta = \theta$

$$\therefore 2m\ell^2\ddot{\theta} + 2mg\ell\cos\alpha.\theta = 0$$

$$\omega_{\rm n} = \sqrt{\frac{2\,\mathrm{m}\,\mathrm{g}\,\ell\,\mathrm{cos}\,\alpha}{2\,\mathrm{m}\,\ell^2}} = \sqrt{\frac{\mathrm{g\,cos}\,\alpha}{\ell}}$$

03. Ans: (c)

Sol: Let, V_0 is the initial velocity,

'm' is the mass

Equating Impulse = momentum

$$mV_o = 5kN \times 10^{-4} sec$$

$$=5 \times 10^{3} \times 10^{-4} = 0.5 \,\mathrm{sec}$$

$$V_0 = \frac{0.5}{m} = 0.5 \,\text{m/sec}$$

$$\omega_{\rm n} = \sqrt{\frac{\rm K}{\rm m}} = \sqrt{\frac{10000}{\rm 1}} = 100 \, \rm rad \, / \, \rm sec$$

When the free vibrations are initiate with initial velocity,

The amplitude

$$X = \frac{V_0}{\omega_n}$$
 (Initial displacement)

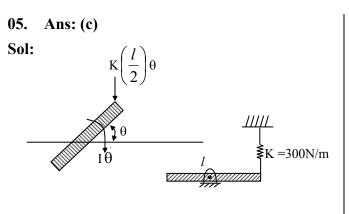
$$X = \frac{V_0}{\omega_n} = \frac{0.5 \times 10^3}{100} = 5 \,\text{mm}$$

04. Ans: (a)

Sol: Note: ω_n depends on mass of the system not on gravity

$$\therefore \omega_{n} \propto \frac{1}{\sqrt{m}}$$
If $\omega_{n} = \sqrt{\frac{g}{\delta}}$, $\delta = \frac{mg}{K}$

$$\therefore \omega_{n} = \sqrt{\frac{g}{\left(\frac{mg}{K}\right)}} = \sqrt{\frac{K}{m}}$$


 $\therefore \omega_n$ is constant every where.

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

58

ESE – Text Book Solutions

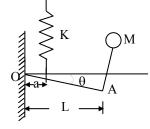
	59	Theory of Machines & Vibrations
 Q Q mightoning i abitettorio		

By energy method

$$E = \frac{1}{2}I\dot{\theta}^{2} + \frac{1}{2}Kx^{2} = \text{constant}$$
$$E = \frac{1}{2}I\dot{\theta}^{2} + \frac{1}{2}K \times \left(\frac{\ell}{2}\theta\right)^{2} = \text{constant}$$

Differentiating w.r.t

$$\frac{dE}{dt} = I \frac{\Theta}{\Theta} + \frac{K}{2} \times \frac{\ell^2}{4} \times 2\Theta = 0$$


$$I = \frac{m\ell^2}{12}$$

$$\frac{m\ell^2}{12}\ddot{\theta} + \frac{K\ell^2}{4}\theta = 0$$
$$\Rightarrow \ddot{\theta} + \frac{3K}{m}\theta = 0$$

$$\Rightarrow \omega_n = \sqrt{\frac{3K}{m}} = 30 \, \text{rad/sec}$$

06. Ans: (a)

Sol:

Assume that in equilibrium position mass M is vertically above 'A'. Consider the displaced position of the system at any instant as shown above figure.

If Δ_{st} is the static extension of the spring in equilibrium position, its total extension in the displaced position is $(\Delta_{st} + a\theta)$.

From the Newton's second law, we have

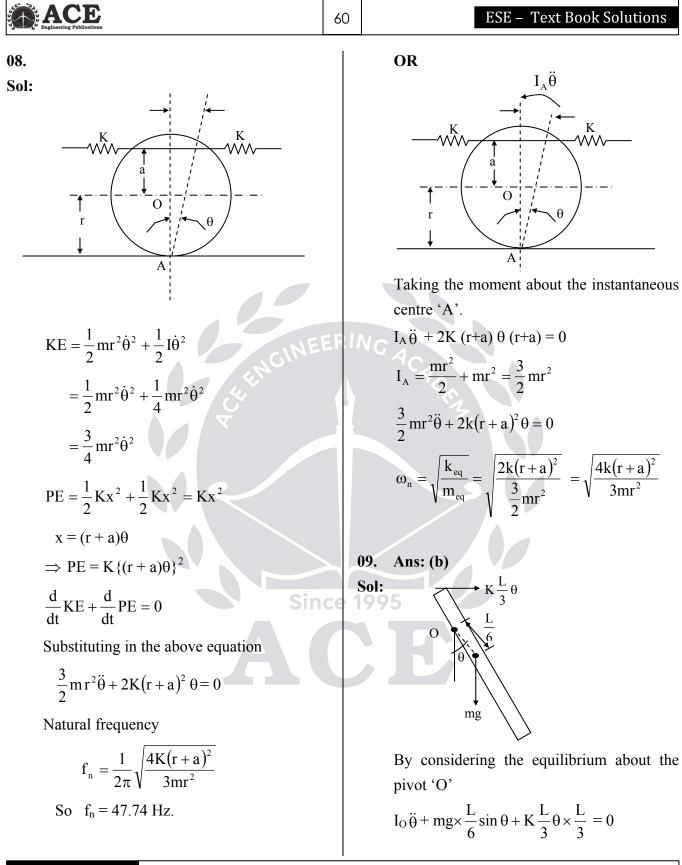
$$I_0 \theta = Mg(L + b\theta) - k(\Delta_{st} + a\theta)a...(1)$$

But in the equilibrium position

MgL= $k\Delta_{st}a$ Substituting the value in equation (1), we have $I_0 \stackrel{\bullet}{\theta} = (Mgb - ka^2)\theta$ $\Rightarrow I_0 \stackrel{\bullet}{\theta} + (ka^2 - Mgb)\theta = 0$

$$\omega_{n} = \sqrt{\frac{ka^{2} - Mgb}{I_{0}}}$$
$$\tau = 2\pi \sqrt{\frac{I_{0}}{ka^{2} - Mgb}}$$

The time period becomes an imaginary quantity if $ka^2 < Mgb$. This makes the system unstable. Thus the system to vibrate the limitation is


 $ka^2 > Mgb$ $b < \frac{ka^2}{Mg}$

Where W = Mg

07. Ans: (a)

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

ACE 61 13. Ans: 0.0658 N.m² $\frac{mL^2}{9}\ddot{\theta} + \left(mg \times \frac{L}{6} + \frac{KL^2}{9}\right)\theta = 0 \quad (\because \sin\theta \approx \theta)$ **Sol:** For a Cantilever beam stiffness, $K = \frac{3EI}{\ell^3}$ $\omega_{n} = \sqrt{\frac{\frac{mg \times \frac{L}{6} + \frac{KL^{2}}{9}}{\frac{mL^{2}}{2}}} \Rightarrow \omega_{n} = \sqrt{\frac{3g}{2L} + \frac{K}{m}}$ Natural frequency, $\omega_n = \sqrt{\frac{K}{m}} = \sqrt{\frac{3EI}{m\ell^3}}$ Given $f_n = 100 \text{ Hz}$ $\Rightarrow \omega_n = 2\pi f_n = 200 \pi$ $200\pi = \sqrt{\frac{3\overline{\text{EI}}}{m^{\ell^3}}}$ 10. Ans: (d) $X_0 = 10 \text{ cm}, \quad \omega_n = 5 \text{ rad/sec}$ Sol: Flexural Rigidity $\mathbf{X} = \sqrt{\mathbf{x}_0^2 + \left(\frac{\mathbf{v}_0}{\boldsymbol{\omega}_n}\right)^2}$ $EI = \frac{(200.\pi)^2 .m\ell^3}{3} = 0.0658 \text{ N.m}^2$ If $v_0 = 0$ then $X = x_0$ $\therefore X = x_0 = 10$ cm Ans: (d) 14. Sol: Free body diagram Ans: (c) & 12. Ans: (c) 11. krθ $m2r\theta$ Sol: mg sin θ Iθ Moment equilibrium about hinge $m2r\ddot{\theta}.2r + k\theta.r = 0$ $K_t \theta$ $19954\mathrm{mr}^2\ddot{\theta} + \mathrm{kr}^2\theta = 0$ Since $\omega_{n} = \sqrt{\frac{\mathrm{kr}^{2}}{4\mathrm{mr}^{2}}} = \sqrt{\frac{\mathrm{k}}{4\mathrm{m}}} = \sqrt{\frac{400}{4}}$

 $I = mL^2$ The equation of motion is $mL^2\ddot{\theta} + (k_t - mgL)\theta = 0$ Inertia torque = mL^2 Restoring torque = $k_t - mgL \sin\theta$ $= (k_t - mgL)\theta$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

15. Ans: (a)

 $ka\theta \leq \frac{1}{2}$

m2a $\ddot{\theta}$

Sol:

Theory of Machines & Vibrations

ACE Engineering Publications

By taking the moment about 'O', $\Sigma m_o = 0$ $(m2a\ddot{\theta} \times 2a) + (ka\theta \times a) = 0$ $\Rightarrow 4a^2 m\ddot{\theta} + ka^2\theta = 0$ Where, $m_{eq} = 4a^2m$, $k_{eq} = ka^2$ Natural frequency, $\omega_n = \sqrt{\frac{k_{eq}}{m_{eq}}}$ $= \sqrt{\frac{ka^2}{4a^2m}} = \sqrt{\frac{k}{4m}} \frac{rad}{sec}$ $[\because \omega_n = 2\pi f]$ $\Rightarrow f = \frac{\omega_n}{2\pi} = \frac{1}{2\pi} \times \sqrt{\frac{k}{4m}} Hz$

16. Ans: (a)

Sol: Moment equilibrium above instantaneous centre (contact point)

0

$$-k(a+d)\theta(a+d) = I_c\theta$$

$$I_{c} = \frac{3}{2}Ma^{2},$$

$$\omega_{a} = \sqrt{\frac{k(a+d)^{2}}{\frac{3}{2}Ma^{2}}}$$

$$\omega_{n} = \sqrt{\frac{2k(a+d)^{2}}{3Ma^{2}}}$$

62

17. Ans: 10 (range 9.9 to 10.1) Sol: $KE = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}I\dot{\theta}^2$ $m = 5 \text{ kg}, \qquad \theta = \frac{x}{r}$ $I = \frac{20 \times r^2}{2} = 10r^2$ $KE = \frac{1}{2}5\dot{x}^2 + \frac{1}{2}10r^2 \cdot \frac{\dot{x}^2}{r^2} = \frac{1}{2}(15)\dot{x}^2$ $\therefore m_{eq} = 15$ $PE = \frac{1}{2}kx^2$ $\therefore k_{eq} = k = 1500 \text{ N/m}$ Natural frequency $\omega_n = \sqrt{\frac{k_{eq}}{m_n}} = \sqrt{\frac{1500}{15}} = 10 \text{ rad/sec}$

18. Ans: (b)

- **Sol:** In damped free vibrations the oscillatory motion becomes non-oscillatory at critical damping.
- 199 Hence critical damping is the smallest damping at which no oscillation occurs in free vibration

19. Ans: (a)

Sol:
$$\omega_n = 50 \text{ rad/sec} = \sqrt{\frac{5}{m}}$$

If mass increases by 4 times

$$\omega_{n_1} = \sqrt{\frac{k}{4m}} = \frac{1}{2} \times \sqrt{\frac{k}{m}} = \frac{50}{2} = 25 \text{ rad/sec}$$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ESE – Text Book Solutions

ACE Engineering Publications	63Theory of Machines & Vibrations
Damped frequency natural frequency, $\omega_{d} = \sqrt{1 - \xi^{2}} \times \omega_{n}$ $\Rightarrow 20 = \sqrt{1 - \xi^{2}} \times 25 = 0.6 = 60\%$	$I_{o} \ddot{\theta} + c2l\dot{\theta} \times 2l + kl\theta \times l = 0$ $\Rightarrow ml^{2}\ddot{\theta} + 4l^{2}c \dot{\theta} + kl^{2}\theta = 0$ $I_{equivalent} = ml^{2}, \ C_{eq} = 4l^{2}c, \ k_{eq} = kl^{2}$
20. Ans: (a) Sol: $K_1, K_2 = 16 \text{ MN/m}$ $K_3, K_4 = 32 \text{ MN/m}$ $K_{eq} = K_1 + K_2 + K_3 + K_4$ m = 240 kg $\omega_n = \sqrt{\frac{K_e}{m}}$	22. Ans: (b) Sol: Damping ratio, $\xi = \frac{c}{c_c} = \frac{c_{eq}}{2\sqrt{k_{eq}m_{eq}}}$ $= \frac{4\ell^2 c}{2 \times \sqrt{k\ell^2 \times m\ell^2}}$ $= \frac{4\ell^2 c}{2 \times \sqrt{mk\ell^4}} = \frac{2c}{\sqrt{km}}$
K _{eq} = $((16 \times 2) + (32 \times 2)) \times 10^{6} = 96 \times 10^{6} \text{ N/m}$ $\omega_{n} = \sqrt{\frac{96 \times 10^{6}}{240}} = 632.455 \text{ rad/sec}$ $N = \frac{\omega_{n} \times 60}{2\pi} = 6040 \text{ rpm}$ 21. Ans: (a) Sol:	23. Ans: (a) Sol: $\frac{c \ell}{2} \dot{\theta}$ $k \ell \theta$ mgcos θ mgsin θ = mg θ
Sin θ $I_0 \ddot{\theta}$ For slender rod, $I_0 = \left[\rho \frac{x^3}{3}\right]_{-\ell}^{2\ell}$ $= \frac{\rho}{3} \times \left(8\ell^3 + \ell^3\right) = \frac{9\rho\ell^3}{3} = 3\rho\ell^3 = m\ell^2$	The equation motion is $(m \times (2\ell)^2 + m\ell^2)\ddot{\theta} + \frac{c\ell^2}{4}\dot{\theta} + k\ell^2\theta + mg\ell\theta = 0$ $= 5m\ell^2\ddot{\theta} + \frac{c\ell^2}{4}\dot{\theta} + k\ell^2\theta + mg\ell\theta = 0$ $\omega_n = \sqrt{\frac{k_{eq}}{m_{eq}}} = \sqrt{\frac{k\ell^2 + mg\ell}{5m\ell^2}}$
Where, $\rho = m/3l$ Considering the equilibrium at hinge 'O'. ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	$= \sqrt{\frac{400}{5 \times 10}} = 3.162 \text{ rad / s}$

	ACE Engineering Publications	64	ESE – Text Book Solutions
24.	Ans: (a)		Note: For angular co-ordinate
Sale	$\xi = \frac{c_{eq}}{2\sqrt{k_{eq}m_{eq}}} = \frac{\left(\frac{c\ell^2}{4}\right)}{2\sqrt{(k\ell^2 + mg\ell) \times 5m\ell^2}}$		Unit of Equivalent inertia = $\frac{N-m}{rad/s^2} = kg - m^2$
501:	$\zeta = \frac{1}{2\sqrt{k_{eq}m_{eq}}} = \frac{1}{2\sqrt{(k\ell^2 + mg\ell) \times 5m\ell^2}}$	-	Unit of equivalent damping coefficient = $\frac{N-m}{rad/s}$
	$\frac{400\times1^2}{4}$		Unit of equivalent stiffness = N-m/rad
$=\frac{1}{2\sqrt{2}}$	$\frac{4}{\sqrt{(400 \times 1^2 + 10 \times 9.81 \times 1) \times 5 \times 10 \times 1^2}} = 0.310$	6	27 Apple (a)
			27. Ans: (a)Sol: Given length of cantilever beam,
25. Sol:	Ans: (a) KLθ		l = 1000 mm = 1 m, m = 20 kg
501.	Caθ	ERI	l = 1 m
	K ₀ 0		25 Cross section of beam = square
	$\xrightarrow{a} I \theta$		$W = mg$ $\downarrow x$
	By moment equilibrium		δ
	$I\ddot{\theta} + Ca^{2}\dot{\theta} + KL^{2}\theta + K_{\theta}\theta = 0$		
	$\frac{mL^2}{3} \stackrel{\bullet}{\theta} + Ca^2 \stackrel{\bullet}{\theta} + (KL^2 + K_{\theta})\theta = 0$		Moment of inertia of the shaft, $I = \frac{1}{12}bd^3 = \frac{25 \times (25)^3}{12} = 3.25 \times 10^{-8} m^4$
	$\omega_{n} = \sqrt{\frac{K_{eq}}{m_{eq}}} = \sqrt{\frac{KL^{2} + K_{\theta}}{mL^{2}/3}}$ Sin		1005
	$w_n = \sqrt{m_{eq}} = \sqrt{mL^2/3}$		$E_{\text{steel}} = 200 \times 10^9 \text{Pa}$
	$\omega_{\rm n} = \sqrt{\frac{1500}{0.833}} = 42.26 \text{ rad/sec}$		Mass, $M = 20 \text{kg}$ Stiffness, $K = \frac{3\text{EI}}{\ell^3}$
20			Critical damping coefficient,
26. Sol:	Ans: (c) Refer to the above equilibrium equation		$C_c = 2\sqrt{Km} = 1250 \text{ Ns/m}$
-	$C_{eq} = Ca^2$		~
	$= 500 \times 0.4^2 = 80 \frac{\mathrm{N} - \mathrm{m} - \mathrm{sec}}{\mathrm{rad}}$		28. Ans: (c)
	\Rightarrow C = 80 Nms/rad		
ACE E	ngineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	r • Luckno	ow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	65 Theory of Machines & Vibrations
29. Ans: (d)	31. Ans: (a)
Sol: $x = 10 \text{ cm at } \frac{\omega}{\omega_n} = 1;$	Sol: $\delta = ln \left(\frac{x_1}{x_2} \right) = ln 2 = 0.693$
$\xi = 0.1$	$\xi = \frac{\delta}{\sqrt{4\pi^2 + \delta^2}}$
At resonance $x = \frac{x_0}{2\xi} = 10$ cm	$=\frac{0.693}{\sqrt{4\pi^2+0.693^2}}=0.109$
$\Rightarrow x_0 = 2 \times 0.1 \times 10 = 2 \text{ cm}$ x ₀ = static deflection	$\sqrt{4\pi^2 + 0.693^2}$ $c = 2\xi\sqrt{km} = 2 \times 0.109 \times \sqrt{100 \times 1}$
At $\frac{\omega}{\omega_n} = 0.5$,	$c = 2\zeta_{V} \text{ k m} = 2 \times 0.109 \times \sqrt{100 \times 1}$ = 2.19 N-sec/m
$\mathbf{x} = \frac{\mathbf{x}_{0}}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2} + \left[2\xi\frac{\omega}{\omega_{n}}\right]^{2} + \left[1-\xi\frac{\omega}{\omega_{n}}\right]^{2} + \left[2\xi\frac{\omega}{\omega_{n}}\right]^{2} + \left[1-\xi\frac{\omega}{\omega_{n}}\right]^{2} + \left[1-\xi\frac{\omega}{\omega_{n}}$	32. Ans: (b) Sol: $x_{static} = 3mm$, $\omega = 20$ rad/sec
$\sqrt{\left[1 - \left(\frac{\omega}{\omega_{n}}\right)\right] + \left[2\xi - \frac{\omega}{\omega_{n}}\right]}$	As $\omega > \omega_n$
$x = \frac{2}{\sqrt{\left[1 - (0.5)^2\right]^2 + (2 \times 0.1 \times 0.5)^2}} = 2.64 \mathrm{cm}$	So, the phase is 180°. $-x = \frac{x_{\text{static}}}{\left(\left(\frac{1}{2}\right)^2\right)^2 \left(\frac{1}{2}\right)^2}$
30. Ans: (a)	$\sqrt{\left(1 - \left(\frac{\omega}{\omega_{n}}\right)^{2}\right)^{2} + \left(2\xi\frac{\omega}{\omega_{n}}\right)^{2}}$
Sol: $m\ddot{x} + Kx = F\cos \omega t$	$x = \frac{3}{\sqrt{(20)^2} (20)^2}$
m = ? K = 3000 N/m,	$\mathbf{x} = \frac{1}{\sqrt{\left(1 - \left(\frac{20}{10}\right)^2\right) + \left(2 \times 0.109 \times \frac{20}{10}\right)^2}}$
X = 50 mm = 0.05 m	= 1 mm opposite to F.
F = 100 N, $\omega = 100 \text{ rad/sec}$	33. Ans: (c)
$X = \frac{F}{K - m\omega^2}$	Sol: At resonance, magnification factor = $\frac{1}{2\xi}$
\Rightarrow m = $\frac{K}{\omega^2} - \frac{F}{X\omega^2} = 0.1$ kg	$\Rightarrow 20 = \frac{1}{2\xi}$
ω Αω	$\Rightarrow \xi = \frac{1}{40} = 0.025$

		66	ESE – Text Book Solutions
34. Sol:	Ans: (c) M = 100 kg, m = 20 kg, e = 0.5 mm $K = 85 \text{ kN/m}, C = 0 \text{ or } \xi = 0$		Magnification factor = $\frac{x}{x_{static}}$ F 8
	$\omega = 20\pi \text{ rad/sec}$ Dynamic amplitude		$x_{\text{static}} = \frac{F}{k} = \frac{8}{80} = 0.1$ Magnification factor = $\frac{0.1}{0.1} = 1$
	$X = \frac{me\omega^2}{\pm (k - M\omega^2)} = \frac{20 \times 5 \times 10^{-4} \times (20\pi)^2}{\pm (8500 - 100 \times (20\pi)^2)}$ $= 1.27 \times 10^{-4} \mathrm{m}$		37. Ans: (c) Sol: Given, $m = 250 \text{ kg}$
35. Sol:	Ans: $m=50 \text{kg}$ \uparrow $x(t) = X \sin(\omega t - \phi)$	261	K = 100, 000 N/m N = 3600 rpm $\xi = 0.15$
	$k \neq y(t) = 0.2 \sin(200\pi t) \text{mm}$		$\omega_n = \sqrt{\frac{K}{m}} = 20 \text{ rad /sec}$ $\omega = \frac{2\pi \times N}{60} = 377 \text{ rad/sec}$
I	$\omega = 200\pi \text{ rad/sec}, -X = 0.01 \text{ mm}$ $Y = 0.2 \text{ mm}$ $\frac{X}{Y} = \frac{k}{k - m\omega^2}$		$TR = \frac{\sqrt{1 + \left(2\xi \frac{\omega}{\omega_n}\right)^2}}{\sqrt{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\xi \frac{\omega}{\omega_n}\right)^2}} = 0.0162$
	$\Rightarrow \frac{-0.01}{0.2} = \frac{k}{k - 50 \times (200\pi)^2}$ $\Rightarrow \qquad k = 939.96 \text{ kN/m}$		38. Ans: 10 N.sec/mSol: Given systems represented by
36. Sol:	Ans: (b) m = 5 kg, c = 20, $k = 80, F = 8, \omega = 4$		m\overline{x} + c\overline{x} + kx = F cos \overline{\overline{w}} t For which, $X = \frac{F}{\sqrt{(K - m\omega^2)^2 + (C\omega)^2}}$
	$x = \frac{F}{\left(k - m\omega^{2}\right) + \left(c\omega\right)^{2}}$		Given, K = 6250 N/m, m = 10 kg, F = 10 N $\omega = 25 \text{ rad/sec}, \qquad X = 40 \times 10^{-3}$ $\omega_n = \sqrt{\frac{K}{m}} = 25 \text{ rad/sec}$
ACE E	$= \frac{8}{\sqrt{(80 - 5 \times 4^2) + (20 \times 4)^2}} = 0.1$ ingineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	r • Luckno	$\omega_n = \sqrt{\frac{1}{m}} = 25 \text{ rad/sec}$ $\omega t = 25 t \Longrightarrow \omega = 25 \text{ rad/sec}$ ow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications

$\omega = \omega_n \text{ or } K = m\omega_n^2$ $\therefore X = \frac{F}{C\omega} \Longrightarrow C = \frac{F}{X\omega}$ $= \frac{10}{40 \times 10^{-3} \times 25} = 10 \frac{N - \sec}{m}$

39. Ans: (b)

Sol: Transmissibility (T) reduces with increase in damping up to the frequency ratio of $\sqrt{2}$. Beyond $\sqrt{2}$, T increases with increase in damping

40. Ans: (c).

Sol: Because f = 144 Hz execution frequency. f_{R_n} (Natural frequency) is 128.

$$\frac{\omega}{\omega_{\rm Re}} = \frac{f}{f_{\rm Re}} = \frac{144}{128} = 1.125$$

It is close to 1, which ever sample for which

 $\frac{\omega}{\omega_n}$ close to 1 will have more response, so

sample R will show most perceptible to vibration

 $\left(1-\left(\frac{\omega}{\omega}\right)^2\right)+\left(2\xi\frac{\omega}{\omega}\right)$

41. Ans: (b)

Sol: Given Problem of the type $m\ddot{x} + c\dot{x} + kx = F \cos \omega t$

X = -

for which,
$$X = \frac{F}{(k - m\omega^2)^2 + (c\omega)^2}$$

or

Given F = 10,

$$k = 150 \text{ N/m}$$
 or $\frac{\omega}{\omega_n} = \frac{1}{10} = 0.1$
 $\xi = 0.2$
 $X = \frac{10/150}{\sqrt{(1-0.1)^2 + (2 \times 0.2 \times 0.1)^2}}$
 $= 0.0669 \simeq 0.07$

42. Ans: 6767.7 N/m

Sol: Given
$$f = 60 \text{ Hz}$$
, $m = 1 \text{ kg}$
 $\omega = 2\pi f = 120 \, \pi \text{rad/sec}$
Transmissibility ratio, $TR = 0.05$
Damping is negligible, $C = 0$, $K = ?$
We know $TR = \frac{K}{K - m\omega^2}$ when $C = 0$
As TR is less than $1 \Rightarrow \omega/\omega_n \gg \sqrt{2}$
TR is negative
 $\therefore -0.05 = \frac{K}{K - m\omega^2}$
Solving we get $K = 6767.7 \text{ N/m}$

Where,
$$a = acceleration of train$$

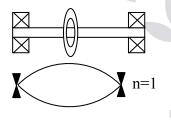
T $\cos \alpha = mg$
T $\sin \alpha = ma$
 $\tan \alpha = \frac{ma}{mg}$
 $a = g \tan \alpha = 9.81 \tan(9.81^{\circ})$
 $= 1.69 \text{ m/s}^2$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

67

Theory of Machines & Vibrations

ACE


44. Ans: (a) 45. Ans: (b) Sol: $e = 2mm = 2 \times 10^{-3}m$, $\omega_n = 10 \text{ rad/s}$, N = 300 rpm

$$\omega = \frac{2\pi N}{60} = 10\pi \, \text{rad} \, / \, \text{sec}$$

$$X = \frac{me\omega^2}{k - m\omega^2} = \frac{e\omega^2}{\left(\frac{k}{m}\right)^2 - \omega^2} = \frac{e\omega^2}{\omega_n^2 - \omega^2}$$
$$X = \frac{e\left(\frac{\omega}{\omega_n}\right)^2}{1 - \left(\frac{\omega}{\omega_n}\right)^2} = \frac{2 \times 10^{-3} \times \left(\frac{10\pi}{10}\right)^2}{\pm \left(1 - \left(\frac{10\pi}{10}\right)^2\right)}$$
$$= 2.25 \times 10^{-3} \text{ m} = 2.25 \text{ mm}$$

46. Ans: (a)

Sol: Number of nodes observed at a frequency of 1800 rpm is 2

n-mode number

The whirling frequency of shaft,

$$f = \frac{\pi}{2} \times n^2 \sqrt{\frac{gEI}{WL^4}}$$

For 1st mode frequency, $f_1 = \frac{\pi}{2} \times \sqrt{\frac{gEI}{WL^4}}$ $f_n = n^2 f_1$

As there are two nodes present in 3rd mode,

ESE - Text Book Solutions

$$f_3 = 3^2 f_1 = 1800 \text{ rpm}$$

 $\therefore f_1 = \frac{1000}{9} = 200 \,\mathrm{rpm}$

 \therefore The first critical speed of the shaft = 200 rpm

47. Ans: (b)

68

Sol: Critical or whirling speed

$$\omega_{\rm c} = \omega_{\rm n} = \sqrt{\frac{\rm K}{\rm m}} = \sqrt{\frac{\rm g}{\delta}} \, {\rm rad} \, / \, {\rm sec}$$

If N_C is the critical or whirling speed in rpm

then
$$\frac{2\pi N_{\rm C}}{60} = \sqrt{\frac{g}{\delta}}$$

 $\Rightarrow \frac{2\pi N_{\rm C}}{60} = \sqrt{\frac{9.81 {\rm m/s}^2}{1.8 \times 10^{-3} {\rm m}}}$

$$\Rightarrow$$
 N_C = 705.32 rpm \approx 705 rpm

Conventional Practice Solutions

01.

Since

Sol: Total energy (T) of the system = kinetic energy (K.E) + Potential energy (P.E)

K.E =
$$\frac{1}{2}$$
 I θ^2 + $\frac{1}{2}$ m₂($b\dot{\theta}$)² + $\frac{1}{2}$ m₁($c\theta$)²
P.E = $\frac{1}{2}$ k₂($b\theta$)² + $\frac{1}{2}$ k₃($a\theta$)² + $\frac{1}{2}$ k₁($c\theta$)²
T = K.E + P.E

ACE Engineering Publications	69 Theory of Machines & Vibrations
$\frac{d(T)}{dt} = 0 \text{ as the sum of energy is constant}$ It gives , $(I + m_2b^2 + m_1c^2)\ddot{b} + (k_2b^2 + k_1c^2 + k_3a^2)\theta = 0$ It is of the form $I\ddot{\theta} + k_1\theta = 0$ So natural frequency of the system can be expressed as $\omega_n = \sqrt{\frac{(k_2b^2 + k_1c^2 + k_3a^2)}{(I + m_2b^2 + m_1c^2)}}rad/sec$ 02. Sol: $x + \frac{1}{(I + m_2b^2 + m_1c^2)}rad/sec$ $I\ddot{\theta} + kxr + m_2\ddot{x}r = 0$ I $\ddot{\theta} + k\theta r^2 + m_2\ddot{\theta}r^2 = 0$ ($\because \theta = \frac{x}{r}$) $(I + m_2r^2)\ddot{\theta} + kr^2\theta = 0$ ($\because x = \theta r$) $(I + m_2r^2)\ddot{\theta} + kr^2\theta = 0$ ($\because x = \theta r$) $(I + m_2r^2)\ddot{\theta} + kr^2\theta = 0$ ($\because x = \theta r$) $M_{eq} = I + m_2r^2$ $\therefore \omega_n = \sqrt{\frac{k_{eq}}{m_{eq}}} = \sqrt{\frac{Kr^2}{I + m_2r^2}}$	03. Sol: $m = 250 \text{ kg}$, K = 5 N/mm Let $X_3 = X$ and $X_4 = 0.8X$ $\Rightarrow \frac{X_4}{X_3} = 0.8$ but $\frac{X_1}{X_2} = \frac{X_2}{X_3} = \frac{X_3}{X_4}$ (i) $\ln \frac{X_3}{X_4} = \delta = \frac{2\pi\zeta}{\sqrt{1-\zeta^2}} \Rightarrow$ $\frac{2\pi\zeta}{\sqrt{1-\zeta^2}} = \ln(1/0.8) = 0.223$ $\Rightarrow 1 - \zeta^2 = 793.87\zeta^2$ $\zeta = 0.0355$ Damping coefficient $C = 2m\omega_n\zeta$ $= 2 \times 250 \times \sqrt{\frac{5 \times 10^3}{250}} \times 0.0355 \times 10^{-3}$ = 79.38 N-s/m (ii) Critical damping coefficient C_c

Engineering Publications	70	ESE – Text Book Solutions
04.	((i) Damping coefficient
Sol: Given that $m = 100 \text{ kg}$,		$c = 2 m\omega_n \zeta = 2 \times 100 \times 35.97 \times 0.45$
$\delta_{\text{static}} = 8 \text{ mm}$		= 3151.53 N/m/s
$\omega_{\rm n} = \sqrt{\frac{g}{\delta_{\rm static}}} = \sqrt{\frac{9.81}{8 \times 10^{-3}}} = 35.017 \text{rad/s}$	((ii) Critical damping coefficient c 3151.53 7002 (A)/
Let F be the vertical harmonic force at 80%	6	$c_c = \frac{c}{\zeta} = \frac{3151.53}{0.45} = 7003.4 \text{ N/m/s}$
of resonance frequency		
$\therefore \omega = 0.8 \ \omega_n = 0.8 \times 35.017$	((iii) Damping ratio, $\zeta = 0.45$
= 28.0136 rad/sec	((iv) Logarithmic decrement
$\Rightarrow \frac{\omega}{\omega_{\rm n}} = 0.8$		$\delta = \frac{2\pi\zeta}{\sqrt{1-\zeta^2}} = \frac{2\pi \times 0.45}{\sqrt{1-0.45^2}} = 3.166$
Let A ₁ is amplitude without damping $A_{1} = \frac{F/K}{\left[1 - \left(\frac{\omega}{\omega}\right)^{2}\right]} = \frac{F/K}{(1 - 0.8^{2})}$ (1)	ERI ((v) Damping force = $c \dot{x} = cA_2 \omega$ = $3151.53 \times \frac{2}{1000} \times 35.017$
$\left[\left(\omega_{n} \right) \right]$		= 220.714 N
Let A_2 is the amplitude with damping a	at	
resonance, i.e., $\frac{\omega}{\omega_n} = 1$		05.
п	5	Sol: Given that total motor mass $m = 100 \text{ kg}$
\Rightarrow A ₂ = $\frac{F/K}{}$		Eccentric mass, $m = 30 \text{ kg}$,
$\Rightarrow A_2 = \frac{F/K}{\sqrt{\left(2\zeta\frac{\omega}{\omega_n}\right)^2 + \left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2}}$ Sin	ce 1	r = 0.5 mm Let total stiffness of the springs = 5k Damping is neglected, i.e $\xi = 0$
$=\frac{\mathrm{F/K}}{2\zeta}$ (2)		Transmissibility, $TR = \frac{F_T}{F} = \frac{1}{11}$
$\frac{\text{equ.(1)}}{\text{equ.(2)}} \Rightarrow \frac{A_1}{A_2} = \frac{2\zeta}{1 - 0.8^2}$		\Rightarrow where F_T = transmitted force F = applied force
$\zeta = \frac{A_1}{2A_2} \times 1 - 0.8^2 = \frac{5}{2 \times 2} (1 - 0.8^2)$ $\zeta = 0.45$		But $TR = \frac{1}{11} = \pm \frac{1}{1 - \left(\frac{\omega}{\omega_n}\right)^2}$ (:: $\xi = 0$)
		$\omega = \frac{2\pi N}{60} = \frac{2\pi \times 1400}{60} = 146.6 \text{rad/s}$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	ar • Luckno	ow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

$\left(\frac{\omega}{\omega_{\rm n}}\right)^2 - 1 = 11 \Longrightarrow \omega_{\rm n} = \frac{\omega}{\sqrt{12}} = 42.32 \, \text{rad/s}$

(i)
$$\omega_n = \sqrt{\frac{5k}{M}} = 42.32 \Longrightarrow k = 35.82 \text{ kN/m}$$

ACE

(ii) The unbalanced force that is exciting vibrations = $mr\omega^2$

$$= 30 \times 0.5 \times 10^{-3} \times (146.6)^{2}$$

F = 322.37 N

Dynamic force transmitted to the floor

$$F_T = F \times TR = \frac{322.37}{11} = 29.31 N$$

06.

Sol: Given that M = 68 kg, k = 100 N/mm $\zeta = 0.2$, m = 2 kg, $\omega = 314 \text{ rad/s}$, s = 75 mm = 2r $r = \frac{s}{2} = \frac{75}{2} = 37.5 \text{ mm}$ N = 3000 rpm $\omega_n = \sqrt{\frac{k}{M}} = \sqrt{\frac{100 \times 10^3}{68}} = 38.34 \text{ rad/s}$ $\omega = \frac{2\pi N}{60} = \frac{2\pi \times 3000}{60} = 314.159 \text{ rad/s}$ $\omega_n = \frac{314.159}{38.34} = 8.188$ Amplitude $X = \frac{\frac{\text{mr}}{M} \left(\frac{\omega}{\omega_n}\right)^2}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left(2\zeta \frac{\omega}{\omega_n}\right)^2}}$

$$= \frac{\frac{2 \times 37.5}{68} (8.188)^2}{\sqrt{(1-8.188^2)^2 + (2 \times 0.2 \times 8.188)^2}}$$

$$X = 1.118 \text{ mm}$$
Transmissibility, $\varepsilon = \frac{\sqrt{1+(2\zeta\frac{\omega}{\omega_n})^2}}{\sqrt{\left[1-\left(\frac{\omega}{\omega_n}\right)^2\right]^2 + \left(2\zeta\frac{\omega}{\omega_n}\right)^2}}$

$$\varepsilon = \frac{\sqrt{1+(2 \times 0.2 \times 8.188)^2}}{\sqrt{(1-8.188^2)^2 + (2 \times 0.2 \times 8.188)^2}}$$

$$\varepsilon = 0.0517$$
But the force produced due to reciprocating part

But
$$\varepsilon = \frac{F_T}{F} \Rightarrow F_T = \varepsilon F$$

 $F = mr\omega^2 = 2 \times 37.5 \times 10^{-3} \times (314.159)^2$

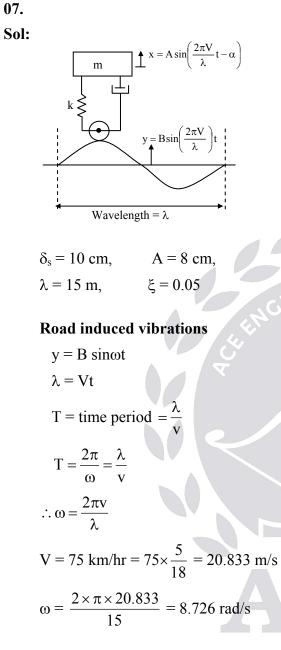
= 7402.19 N

:. Transmitted force,

$$F_{\rm T} = 7402.19 \times 0.0517$$

Phase angle,

$$\tan \phi = \frac{2\zeta \left(\frac{\omega}{\omega_n}\right)}{1 - \left(\frac{\omega}{\omega_n}\right)^2} = \frac{2 \times 0.2 \times 8.188}{1 - 8.188^2}$$
$$\phi = -2.83^\circ$$
$$\phi = 180 - 2.83 = 177.17^\circ$$


ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

71

Theory of Machines & Vibrations

ACE Engineering Publications

ESE - Text Book Solutions

Support motion:

$$\therefore \frac{\mathbf{A}}{\mathbf{B}} = \frac{\sqrt{1 + \left(2\zeta \frac{\omega}{\omega_{n}}\right)^{2}}}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_{n}}\right)^{2}\right]^{2} + \left(2\zeta \frac{\omega}{\omega_{n}}\right)^{2}}}$$

Resonance occurs if $\omega = \omega_n$

$$\therefore \ \omega_{n} = \sqrt{\frac{k}{m}} = \sqrt{\frac{g}{\delta_{s}}} = \sqrt{\frac{9.81}{0.1}} = 9.964 \text{ rad/s}$$

$$\omega_{n} = \frac{2 \times \pi \times V_{\text{critical}}}{\lambda}$$

$$V_{\text{critical}} = \frac{9.964 \times 15}{2\pi}$$

$$= 23.64 \text{ m/s} = 85.123 \text{ km/hr}$$

$$q = \frac{\omega}{\omega_{n}} = \frac{8.722}{9.964} = 0.88$$

$$\frac{A}{8} = \frac{\sqrt{1 + (2 \times 0.05 \times 0.88)^{2}}}{\sqrt{(1 - 0.88^{2})^{2} + (2 \times 0.05 \times 0.88)^{2}}}$$

$$A = 33.17 \text{ cm}$$

08.

Since

72

Sol:	: Given that vertical, shaft in the bearings.			
	Shaft diameter $d = 15 \text{ mm}$			
	Distance between the bearings			
	l = 100 cm = 1 m			
<	weight of disc, $W = 147.15 N$			
	Eccentricity, $e = 0.3 \text{ mm}$			
99	$E = 19.6 \times 10^6 \text{ N/cm}^2 = 196 \text{ GPa},$			
	$\sigma_{\rm allow} = 6867 \text{ N/cm}^2 = 68.67 \text{ MPa}$			
	Because of the eccentricity, the amount of			
	dynamic deflection (r) is depends on the			
	allowable stress.			
(i)	Natural frequency $\omega_n = \sqrt{\frac{g}{s}}$			

Where,
$$\delta_{st}$$
 = static deflection
Since the shaft is held in long be

 $\sqrt{\left\lfloor 1 - \left\lfloor \frac{\omega_n}{\omega_n} \right\rfloor} + \left\lfloor 2\zeta \frac{\omega_n}{\omega_n} \right\rfloor}$ Since the shaft is held in long bearings, therefore it is assumed to be fixed at both ACE Engineering Publications
Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad the ends, we know that the static direction at the centre of the shaft.

$$\delta_{st} = \frac{mg\ell^3}{192EI}$$

$$I = \frac{\pi}{4} \times \left(\frac{d}{2}\right)^4 = \frac{\pi}{64} d^4 = 2.5 \times 10^{-9} m^4$$

$$\delta_{st} = \frac{47.15 \times (1)^3}{192 \times 196 \times 10^9 \times \left(\frac{\pi}{64} \times 15^4\right) \times 10^{-12}}$$

$$\delta_{st} = 1.57 \times 10^{-3} m$$

Critical speed

ACE

$$\omega_{\rm n} = \sqrt{\frac{g}{\delta_{\rm st}}} = 78.93 \text{ rad/se}$$

Critical speed of the shaft is equal to the speed at the natural frequency

$$N_{c} = \frac{60\omega_{n}}{2\pi} = 753.74 \text{rpm}$$

(ii) Maximum allowable stress in the shaft due to bending moment produced by the whirling

$$\frac{M}{I} = \frac{\sigma_{allow}}{d/2}$$

Where bending moment, M = $\frac{m_d g}{8}$

Here m_d is the dynamic mass due to the whirling

$$\frac{m_{d}g\ell}{8} = \frac{\sigma I}{d/2}$$
$$m_{d} = \frac{8 \times 2 \times 68.67 \times 10^{6} \times 2.5 \times 10^{-9}}{0.015 \times 9.81}$$

ACE Engineering Publications

= 18.67 kg

Static deflection $\delta_{st} \propto mass$ of the system for same stiffness

$$\Rightarrow \delta_{st} \propto m \quad \text{and} \quad r \propto m_d$$

$$\Rightarrow r = \frac{W_d}{W} \times \delta_{st} = \frac{183.15}{147.15} \times 1.57 \times 10^{-3}$$

$$= 1.958 \times 10^{-3} m$$

$$r = \frac{\pm e}{\left(\frac{\omega_n}{\omega}\right)^2 - 1}$$

$$(\omega)^2 \qquad (e) \qquad 0.3 \times 10^{-3}$$

$$\left(\frac{\omega_n}{\omega}\right)^2 - 1 = \left(\frac{e}{r}\right) = \frac{0.3 \times 10^{-3}}{1.9 \times 10^{-3}} = \pm 0.1532$$

<u>Case 1:</u>

$$\left(\frac{\omega_n}{\omega}\right)^2 = 1.1532 \implies \omega^2 = \frac{\omega_n^2}{1.1532}$$
$$\omega^2 = \frac{(78.93)^2}{1.1532}$$
$$\omega = 73.5 \text{ rad/s}$$
$$\implies N = \frac{60 \times \omega}{2\pi} = \frac{60 \times 73.5}{2\pi} = 702 \text{ rpm}$$

Case 2

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

$$\left(\frac{\omega_{\rm n}}{\omega}\right)^2 = 1 - 0.1532 = 0.8468$$

$$\omega = 85.77 \text{ rad/sec}$$
$$N = \frac{60 \times 85.77}{2\pi} = 819 \text{ rpm}$$

∴Range of speed is 702 to 819 rpm.

73

ACE Engineering Publication

Since

ESE – Text Book Solutions

09.

Sol: Given that m = 10 kg, d = 20 mmBearing span l = 1 m

$$e = 0.1 \text{ mm},$$

$$\omega = \frac{2\pi \times 3000}{60} = 100\pi$$
$$\omega_{n} = \sqrt{\frac{g}{\delta_{st}}}$$

Where ' δ_{st} ' is static deflection of simply supported beam with midpoint load.

$$\delta_{st} = \frac{mg\ell^3}{48EI}$$

$$I = \frac{\pi}{64} \times d^4 = \frac{\pi}{64} \times (2 \times 10^{-2})^4$$

$$= 7.854 \times 10^{-9} \text{ m}^4$$

$$\delta_{st} = \frac{10 \times 9.81 \times 1^3}{48 \times 2 \times 10^{11} \times 7.854 \times 10^{-9}}$$

$$= 1.301 \times 10^{-3} \text{ m}$$

$$\omega_{n} = \sqrt{\frac{9.81}{1.301 \times 10^{-3}}} = 86.83 \text{ rad/s}$$
$$y = \frac{e\left(\frac{\omega}{\omega_{n}}\right)^{2}}{1 - \left(\frac{\omega}{\omega_{n}}\right)^{2}} = \frac{0.1 \times 10^{-3} \left(\frac{314.16}{86.83}\right)^{2}}{1 - \left(\frac{314.16}{86.83}\right)^{2}}$$
$$y = -1.0827 \times 10^{-3} \text{ m}$$

The negative sign indicates that the displacement is out of phase with the centrifugal force.

Dynamic force on the bearings = $m \omega_n^2 y$

$$= 10 \times (86.83)^2 \times 1.0827 \times 10^{-3}$$
$$= 86.63 \text{ N}$$