

# ESE | GATE | PSUs



# MECHANICAL ENGINEERING

IM & OR 📏

**Text Book :** Theory with worked out Examples and Practice Questions

## IM & OR

(Solutions for Text Book Objective & Conventional Practice Questions)

## Chapter 1

## **PERT & CPM**

## 01. Ans: (a)

Sol: CPM deals with deterministic time durations.

## 02. Ans: (a)

## Sol: Critical Path :

- It is a longest path consumes maximum amount of resources
- It is the minimum time required to complete the project

#### 03. Ans: (a)

#### **04.** Ans: (a)

Sol: Gantt chart indicates comparison of actual progress with the scheduled progress.

#### 05. Ans: (c)

Sol:



Critical path = 1 + 3 + 7 + 9 + 10 = 30 days

**06**. Ans: (c)



Critical path (1-3-6-8-9) = 8 + 10 + 13 + 15= 46 days

#### 07. Ans: (b)

Sol: Rules for drawing Network diagram:

- Each activity is represented by one and • only one arrow in the network.
- No two activities can be identified by the same end events.
- Precedence relationships among all activities must always be maintained.
- No dangling is permitted in a network.
- No Looping (or Cycling) is permitted.

#### **08.** Ans: (b)

Sol: Activity: Resource consuming and welldefined work element.

> **Event:** Each event is represented as a node in a network diagram and it does not consume any time or resource.

> Dummy Activity: An activity does not consume any kind of resource but merely

depicts the technological dependence is called a dummy activity.

**Float:** Permissible delay period for the activity.

## 09. Ans: (b)



## 10. Ans: (a)

## 11. Ans: (b)

Sol:

- Beta Distribution is used to decide the expected duration of an activity.
- The expected duration of the project can be described by Normal distribution.

## 12. Ans: (b)

ACE Engineering Publications

**Sol:**  $T_0 = 8 \text{ min}, \quad T_m = 10 \text{ min}, \quad T_p = 14 \text{ min},$ 

$$T_{e} = \frac{T_{o} + 4T_{m} + T_{p}}{6}$$
$$= \frac{8 + 4 \times 10 + 14}{6} = \frac{62}{6} = 10.33 \text{ min}$$

2

- Sol: Take 4-3,  $T_e = 6$  days Critical path = 1-2-4-3 = 5 + 14 + 4 = 23 days  $\sigma_{\text{critical path}} = \sqrt{V_{1-2} + V_{2-4} + V_{4-3}}$   $= \sqrt{2^2 + 2.8^2 + 2^2} = 3.979$   $z = \frac{\text{Due date} - \text{critical path duration}}{\sigma_{\text{critical path}}}$   $z = \frac{27 - 23}{3.979} = 1.005$  $\therefore P(z) = 0.841$
- 14. Ans: (b)

15. Ans: (c)  
Sol: D = 36 days, V = 4 days  
$$Z = \frac{36 - 36}{\sqrt{4}} = 0$$
$$\Rightarrow P(z) = 50\%$$

16. Ans: (c) Sol:  $\sigma_{cp} = \sqrt{V_{a-b} + V_{b-c} + V_{c-d} + V_{d-e}}$  $= \sqrt{4 + 16 + 4 + 1} = 5$ 

## 17. Ans: (a)

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Sol: The latest that an activity can start from the beginning of the project without causing a delay in the completion of the entire project. It is the maximum time up to which an activity can be delayed to start without effecting the project completion duration time. (LST = LFT – duration).

ESE – Text Book Solutions



Common solutions for Q.29 & Q.30

29. Ans: (b)

## 30. Ans: (b)

Sol:

| Paths           | Duration   |
|-----------------|------------|
| 1-2-4-5 = (AEF) | 8+9+6=23   |
| 1-2-3-4-5=(ADF) | 8+9+6=23   |
| 1-3-4-5 (BDF)   | 6+9+6 = 21 |
| 1-4-5 (CF)      | 16+6=22    |



... Critical path's are AEF and ADF

Critical paths are '2'.

- Possible cases to crash
- A by 1 day that cost = 80
- F by 1 day that cost = 130

E and D by 1 day that cost = 20 + 40 = 60

## 31. Ans: (c)

## 32. Ans: (c)

Sol:

| Path | Duration |
|------|----------|
| AB   | 7+5 = 12 |
| CD   | 6+6 = 12 |
| EF   | 8+4 = 12 |

Three critical paths, number of activities to be crashed are 3.



TF + 7 = 18 - 4 $\Rightarrow TF = 14 - 7 = 7$ 

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

4

33.

Ans: (c)

## ESE - Text Book Solutions

## 02. Ans: 31 days

## Sol:

| Activity | Time estimated                         | Standard deviation              |
|----------|----------------------------------------|---------------------------------|
|          | $T_e = \frac{T_o + 4T_m + T_p}{6}$     | $\sigma = \frac{T_p - T_o}{6}$  |
| Α        | $\frac{5 + 4 \times 10 + 15}{6} = 10$  | $\frac{15-5}{6} = \frac{5}{3}$  |
| В        | $\frac{2+4\times5+8}{6} = 5$           | $\frac{8-2}{6} = 1$             |
| С        | $\frac{10 + 4 \times 12 + 14}{6} = 12$ | $\frac{14-10}{6} = \frac{2}{3}$ |
| D        | $\frac{6+4\times8+16}{6} = 9$          | $\frac{16-6}{6} = \frac{5}{3}$  |





Minimum completion time = 32 days Maximum completion time = 50 days



**Critical path :** 

$$1-2-3-4 = 10 + 12 + 9 = 31 \text{ days}$$

 $\wedge$ 

$$\sigma_{cp} = \sqrt{V_{1-2} + V_{2-3} + V_{3-4}}$$
$$= \sqrt{\left(\frac{5}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{5}{3}\right)^2} = \sqrt{6}$$

03.

Sol:

| Paths | Duration       |
|-------|----------------|
| AD    | 22             |
| ACE   | 41 <b>←</b> CP |
| BE    | 20             |

| $1-2-6 \rightarrow AC$             | 2 + 1 = 3 |  |
|------------------------------------|-----------|--|
| $1-2-4-5-6 \rightarrow AEF$        | 2+3+2=7   |  |
| $1-3-6 \rightarrow BD$             | 4+2 = 6   |  |
| $1-3-4-5-6 \rightarrow \text{BEF}$ | 4+3+2=9   |  |
|                                    |           |  |

Duration

4

Paths

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Highest Duration is '9'.

∴ CP is BEF

ACE Engineering Publication

05.



**06.** 

Sol:

|   | 3) |   | GIN |
|---|----|---|-----|
|   | 8  | 7 |     |
|   |    | र |     |
| ( | 4) |   |     |

(6

| Paths       | Normal duration |
|-------------|-----------------|
| 1-2-3-6-7-8 | 25              |
| 1-2-3-5-7-8 | 28              |
| 1-2-4-5-7-8 | 26              |

 $\therefore$  1-2-3-5-7-8 is the critical path

"Crashing on critical path"

| Possible       | No. of    | Extra     |
|----------------|-----------|-----------|
| activities for | day's can | cost/cost |
| crashing       | crash     | saved     |
| 1 - 2          | 4-3 = 1   | 250/day   |
| 2 - 3          | 5 - 3 = 2 | 500/day   |
| 3 - 5          | 8 - 4 = 4 | 50/day    |
| 5 - 7          | 7 - 5 = 2 | 300/day   |
| 7 - 8          | 4 - 2 = 2 | 400/day   |

Among all the option the minimum cost slope option is 3-5, which can be reduced by 4 days, at a cost of 50/day

The difference between longest path and next longest path is the maximum duration we can do crashing. Only if the duration is available in the activity taken for crashing.

- $\therefore$  The Critical path can be crashed for '2' days only
- $\therefore$  Crash Cost = 2 × 50 = 100

07.

6

Sol:

|      | Activity | $Cost slope = \frac{C_{\rm C} - N_{\rm C}}{N_{\rm T} - C_{\rm T}} $ (Rs/week) | Crashing<br>possibility<br>(N <sub>T</sub> – N <sub>C</sub> ) |
|------|----------|-------------------------------------------------------------------------------|---------------------------------------------------------------|
|      | 1-2      | 150                                                                           | 1 week                                                        |
|      | 2-3      |                                                                               | -                                                             |
|      | 2-4      | 50                                                                            | 2 week                                                        |
|      | 2-5      | -                                                                             | -                                                             |
| 1994 | 3-4      | 30                                                                            | 3                                                             |
| S    | 4-6      | 40                                                                            | 1                                                             |
|      | 5-6      | 25                                                                            | 2                                                             |

Indirect cost = 100/week





ACE Engineering Publications

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

| Path      | Duration |                   |
|-----------|----------|-------------------|
| 1-2-3-4-6 | 13       | Critical path     |
| 1-2-4-6   | 11       | Sub-critical path |
| 1-2-5-6   | 10       |                   |

Crashing possibility from the network = critical path duration – sub critical path

= 13 - 11 = 2 weeks

7

To reduce the project duration by 2 weeks

| Option | Cost slope | Crashing possibility |
|--------|------------|----------------------|
| 1-2    | 150        | 1 week               |
| 2-3    | -          | -                    |
| 3-4    | 30         | 3 week               |
| 4-6    | 40         | 1 week               |

From the option crash 3-4 by 2weeks by crashing 3-4 by 2 weeks the project duration becomes 11 weeks.

Crashing  $cost = 2 \times 30 = Rs. 60$ 

Net savings by means of crashing

$$= 2 \times 100 - 60 = \text{Rs.} 140$$



| Path      | Duration |
|-----------|----------|
| 1-2-4-6   | 11       |
| 1-2-3-4-6 | 11       |
| 1-2-5-6   | 10       |

Crashing possibility from the network

= 11 - 10 = 1 week

To reduce project duration by 1 week

| Option    | Cost slope | Crashing<br>possibility |
|-----------|------------|-------------------------|
| 1-2       | 150        | 1 week                  |
| 4-6       | 40         | 1 week                  |
| 3-4 & 2-4 | 30+50 = 80 | 1 week                  |

Among the best option, crash 4-6 by 1 week, the project duration will become 10 weeks Crashing  $cost = 1 \times 40 = 40$ 

Net savings by crashing (4-6) = 100 - 40 = 60



| Path      | Duration |
|-----------|----------|
| 1-2-3-4-6 | 10       |
| 1-2-4-6   | 10       |
| 1-2-5-6   | 10       |

To reduce by project duration by 1 week

| 5 | Option         | Cost slope     |
|---|----------------|----------------|
|   | 1-2            | 150            |
|   | 3-4, 2-4 , 5-6 | 30+50+25 = 105 |

As crashing cost is more than indirect cost/week = further crashing is not economical

Optimum project duration = 10 weeks

Total cost of the project (with crashing) = direct cost + indirect cost/week × project duration + crashing cost

 $= 945 + 100 \times 10 + 30 \times 2 + 40 \times 1 = 2045$ 

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

19

## IM & OR

|             | ACE<br>Engineering Publications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8    | ESE – Text Book Solutions                                                                                                                                                                                        |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Total cost without crashing<br>= $945 + 100 \times 13 = 945 + 1300 = 2245$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | $\therefore$ Minimum duration of project = 19                                                                                                                                                                    |
| <b>08</b> . | Ans:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | (b) To reduce the project by 1 day the available option is crashing 'C' by 1 day                                                                                                                                 |
| Sol:        | $\begin{array}{c} (2) \\ A(4) \\ C(2) \\ B(3) \\ \hline \\ F(1) \\ \hline \\ \\ \end{array} \begin{array}{c} (2) \\ E(1) \\ \hline \\ \\ \hline \\ \\ \end{array} \begin{array}{c} (2) \\ G(3) \\ \hline \\ \\ \\ \\ \end{array} \begin{array}{c} (3) \\ \hline \\ \\ \\ \\ \end{array} \begin{array}{c} (3) \\ \hline \\ \\ \\ \\ \end{array} \begin{array}{c} (3) \\ \hline \\ \\ \\ \\ \end{array} \begin{array}{c} (3) \\ \hline \\ \\ \\ \\ \\ \end{array} \begin{array}{c} (2) \\ \hline \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} (2) \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} (2) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} (2) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | OptionCrashing possibilities<br>$(N_T - C_T)$ A $8 - 8 = 0$                                                                                                                                                      |
|             | Critical Path :<br>1-2-3-4-5-6 = 4+2+1+0+2=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | $\begin{array}{c c} C & 6-5=1 \\ \hline D & 5-5=0 \\ \end{array}$                                                                                                                                                |
|             | $1-2-4-6 = 4+4+3 = 11 \rightarrow CP$<br>1-2-3-4-6 = 4+2+1+3 = 10<br>1-3-5-6 = 3+1+2=6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ERI  | By crashing activity C we can reduce the project duration by 1 day.<br>Network diagram                                                                                                                           |
| 09.<br>Sol: | a $b$ $d$ $f$ $(5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | $\begin{array}{c} E(10) \\ \hline \\ A(8) \\ \hline \\ B(4) \\ \hline \\ 1 \\ \hline \\ \hline \\ B(4) \\ \hline \\ \hline \\ B(4) \\ \hline \\ \hline \\ D(5) \\ \hline \\ \\ D(5) \\ \hline \\ \\ \end{array}$ |
| 10.<br>Sol: | c e Sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ce 1 | PathDurationA-E $8+10 = 18$ A-C-D $8+5+5 = 18$ B-D $4+5 = 9$                                                                                                                                                     |
|             | $\begin{array}{c} 2 \\ \hline \\ A(8) \\ \hline \\ B(4) \\ \hline \\ B(4) \\ \hline \\ B(5) \\ \hline \\ \\ B(5) \\ \hline \\ B(5) \\ \hline \\ \\ \\ B(5) \\ \hline \\ \\ \\ B(5) \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ |      | Further crashing is not possible due to $(A - C - D)$ critical path.                                                                                                                                             |
|             | (a) Critical path :<br>Path Duration<br>A-E 8+10 = 18<br>A-C-D 8+6+5 = 19<br>B-D 4+5 = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                                                                                                  |

## IM & OR

## Chapter **2**

## Network Models

## 01. Ans: (c)

## Sol:

- $d_{ij} \rightarrow$  "Distance from any node i to next node j"
- $s_j \rightarrow$  "Denotes shortest path from node P to any node j".
- $d_{ij} = d_{QG}$  (Adjacent nodes)

 $d_{ij} = d_{RG}$  (Adjacent from node R to G)

 $S_j = S_Q$  (Shortest path from node P to node Q)

 $S_j = S_R$  (Shortest path from node P to node R)

We can go from P to G via Q or via R.

P to G via Q

 $S_G = S_Q + d_{QG}$ 

P to G via R.

 $S_G = S_R + d_{RG}$ 

Optimum answer is minimum above two answers.

 $S_G = MIN [S_Q + d_{QG}; S_R + d_{RG}]$ 



| Path        | Cost           |
|-------------|----------------|
| 1-3-4-6     | 9+4+2 = 15     |
| 1-3-2-4-6   | 9+2+3+2 = 16   |
| 1-3-4-5-6   | 9+4+7+2=22     |
| 1-3-2-5-6   | 9+2+2+2=15     |
| 1-3-2-4-5-6 | 9+2+3+7+2 = 23 |
| 1-2-4-6     | 3+3+2=8        |
| 1-2-5-6     | 3+2+2=7        |
| 1-2-4-5-6   | 3+3+7+2 = 15   |
| 1-3-5-6     | 9+8+2 = 19     |

From the given statement, we got shortest path (least total cost) is 1-2-5-6 and a path which does not have 1-2, 2-5, 5-6 activities should be considered.

The next path which does not have the above activities is 1-3-4-6 = 15

and 
$$1-3-2-4-6 = 16$$
.

 $\therefore$  In this second least total cost is 15.

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

## ACE

#### 03. Ans: 7

Sol:

| Path        | Arc length |
|-------------|------------|
| 1-2-4-6     | 8          |
| 1-2-5-4-6   | 7          |
| 1-2-5-6     | 8          |
| 1-2-3-5-4-6 | 9          |
| 1-3-5-4-6   | 10         |
| 1-3-5-6     | 11         |

Duration

ESE – Text Book Solutions

| Path          | Duration       |
|---------------|----------------|
| 1 - 3 - 4 - 6 | 4 + 4 + 5 = 13 |
| 1 - 2 - 5 - 6 | 5 + 2 + 4 = 11 |
| 1 - 3 - 5 - 6 | 4 + 6 + 4 = 14 |

 $\therefore$  Shortest path from node 1 to node 6 is 11.

02.

1995



| Path          | Duration       |
|---------------|----------------|
| 1-2-4         | 5 + 3 = 8      |
| 1 - 3 - 4     | 2 + 5 = 7      |
| 1 - 2 - 3 - 4 | 5 + 2 + 5 = 12 |

 $\therefore$  Shortest path from node 1 to node 4 is 7.

Shortest path length from node 1 to node 6

is 7.



## **Conventional Practice Solutions**

01.

Sol:



ACE Engineering Publications

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

## ACE

Chapter

3

**Linear Programming** 

#### 01. Ans: (d)

- Sol: A restriction on the resources available to a firm (stated in the form of an inequality or an equation) is called constraint.
- 02. Ans: (d)
- 03. Ans: (c)
- **04.** Ans: (d)
- Sol: The theory of LP states that the optimal solution must lie at one of the corner points.

#### 05. Ans: (b)

- **Sol:** The feasible region of a linear programming problem is convex. The value of the decision variables, which maximize or minimize the objective function, is located on the extreme point of the convex set formed by the feasible solutions. Since
- **06**. Ans: (a)



**07.** Ans: (a) **Sol:**  $Z_{max} = x + 2y$ , Subjected to  $4y - 4x \ge -1$ .....(1)  $5x + y \ge -10$  ......(2) x and y are unrestricted in sign

11



Only one value gives max value, then solution is unique.

IM & OR

|                                                                                                     | g Publications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12  |                                      | ESI                                                                                                                                                                                                                                                                                  | E – T                                                                                                                                                                                                                                                                        | ext Bo                          | ook Solutions                                                                        |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------|
| 08. Ans<br>Sol: Z <sub>max</sub><br>Sub                                                             | $x_{x} = 3x_{1} + 2x_{2}$<br>jected to<br>$4x_{1} + x_{2} \le 60 \qquad \dots \dots \dots (1)$<br>$8x_{1} + x_{2} \le 90 \qquad \dots \dots \dots (2)$<br>$2x_{1} + 5x_{2} \le 80 \qquad \dots \dots \dots (3)$<br>$x_{1}, x_{2} \ge 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 09.<br>Sol:                          | Ans: (c)<br>Let, P type toys p<br>Q type toys produ<br>Time<br>Raw material<br>Electric switch<br>Profit                                                                                                                                                                             | roduc<br>iced =<br>1<br>1<br>-<br>3<br>x                                                                                                                                                                                                                                     | ced = y $Q$ $2$ $1$ $1$ $5$ $y$ | x ,<br>2000<br>1500<br>600                                                           |
| (1):<br>(2):<br>(3):<br>$x_2$<br>90<br>88<br>76<br>55<br>4<br>3<br>22<br>1<br>0(0,0<br>From<br>poin | $\Rightarrow \frac{x_1}{15} + \frac{x_2}{60} \le 1$<br>$\Rightarrow \frac{x_1}{11.25} + \frac{x_2}{90} \le 1$<br>$\Rightarrow \frac{x_1}{40} + \frac{x_2}{16} \le 1$<br>$\Rightarrow \frac{x_1}{10} + \frac{x_2}{10} = \frac{x_1}{10} + \frac{x_2}{10} = \frac{x_1}{10} = x_$ | ERI | NG<br>199<br>2<br>1<br>1<br>1<br>8(0 | $Z_{max} = 3x + 5y$ $x + 2y \le 2000 ;$ $x + y \le 1500 ;$ $y \le 600 ;$ $x, y \ge 0$ $Z_{max} = 3x + 5y$ $Z_{A} = 3 \times 1500 + 5$ $Z_{B} = 3 \times 0 + 5 \times 6$ $Z_{C} = 3 \times 1000 + 5$ $Z_{D} = 3 \times 800 + 5$ $Z_{D} = 3 \times 800 + 5$ $Z_{D} = 3 \times 800 + 5$ | $\begin{array}{c} x \\ 2000 \\ x \\ 1500 \\ \hline y \\ 600 \\ \hline 5 \times 0 \\ 500 \\ \hline 5 \times 50 \\ \hline 5 \times 600 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ A(1) \\ \hline \end{array}$ |                                 | $rac{1}{0} \le 1$<br>$rac{1}{0} \le 1$<br>500<br>500<br>400<br>)<br>$rac{1}{2000}$ X |



|             | ACE<br>Engineering Publications                                                                                                                                                                  | 14          |                   | ESE – Text Book Solutions                                                                                                                                                                           |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12.         | Ans: (d)                                                                                                                                                                                         |             | 15.<br>Sol:       | Ans: (b)<br>Solution is optimal; but Number of zeros                                                                                                                                                |
| 13.<br>Sol: | Ans: (a)<br>$Z_{max} = 4 x_1 + 6 x_2 + x_3$<br><u>s.t</u><br>$2 x_1 - x_2 + 3x_3 \le 5$                                                                                                          |             |                   | are greater than the number of basic Variables in $C_j - Z_j$ (net evaluation row) hence multiple optimal solutions.                                                                                |
| _           | $x_1, x_2, x_3 \ge 0$<br>$2 x_1 - x_2 + 3x_3 + s_1 = 5$<br>$Z_{max} = 4x_1 + 6x_2 + x_3 + 0 s_1$                                                                                                 |             | 16.<br>Sol:       | Ans: (b)<br>If all the elements in the objective row are<br>non-negative incase of maximization, then<br>the solution is said to be optimal.                                                        |
|             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                             |             | NG<br>17.<br>Sol: | Here, the solution is optimal, $Z_{max} = 1350$ .<br><b>Ans: (a)</b><br>A tie for leaving variable in simplex                                                                                       |
|             | EV<br>Entering vector exists but leaving vector<br>doesn't exist as minimum ratio column is<br>having negative values. It is a case of<br>unbounded solution space and unbounded                 | r<br>S<br>f | •<br>Com<br>18.   | procedure implies degeneracy.<br>If in a basic feasible solution, one of the<br>basic variables takes on a zero value then it<br>is case of degenerate solution<br>mon Data Solutions<br>Ans: (d) & |
|             | optimal solution to problem.                                                                                                                                                                     |             | 19.               | Ans: (a)                                                                                                                                                                                            |
| 14.<br>Sol: | Ans: (d)<br>Number of zeros in Z row = 4<br>Number of basic variable = 3<br>As the number of zeros in Z row is greater<br>than number of basic variable so it has<br>multiple optimal solutions. | 5           | Sol:              | As the No. of zeros greater than No. of basic variables hence it is a case of multiple solutions or alternate optimal solution exists.                                                              |

## ACE

| Basic                 | <b>x</b> <sub>1</sub> | <b>X</b> <sub>2</sub> | $S_1$ | $S_2$ | <b>S</b> <sub>3</sub> | RHS |
|-----------------------|-----------------------|-----------------------|-------|-------|-----------------------|-----|
| Z                     | 0                     | 0                     | 0     | 2     | 0                     | 48  |
| $\mathbf{s}_1$        | 0                     | 5/3                   | 1     | -2/3  | 0                     | 14  |
| <b>S</b> <sub>3</sub> | 0                     | -1/3                  | 0     | 1/3   | 1                     | 5   |
| <b>x</b> <sub>1</sub> | 1                     | 2/3                   | 0     | 1/3   | 0                     | 8   |

From the table gives the optimum  $x_2 = 0$ ,

$$x_1 = 8$$
,  $Z_{max} = 48$ 

Look at the coefficient of the non basic variable in the z-equation of iterations. The coefficient of non basic x<sub>2</sub> is zero, indicating that x<sub>2</sub> can enter the basic solution without changing the value of Z, but causing a change in the values of the variables.

Alternate optimal solution :

Here  $x_2$  is the entering variable.

|                |                       |                       |      |                |                |                  |      |              | _                 |
|----------------|-----------------------|-----------------------|------|----------------|----------------|------------------|------|--------------|-------------------|
| Row            | Basic                 | <b>x</b> <sub>1</sub> | X2   | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> C | RHS  | Ratio        |                   |
| R <sub>1</sub> | Z                     | 0                     | 0    | 0              | 2              | 0                | 48 - |              |                   |
| R <sub>2</sub> | <b>s</b> <sub>1</sub> | 0                     | 5/3  | 1              | -2/3           | 0                | 14   | 14/(5/3)=8.4 | →Leaving variable |
| R <sub>3</sub> | <b>S</b> <sub>3</sub> | 0                     | -1/3 | 0              | 1/3            | 1                | 5    | 2-           |                   |
| R <sub>4</sub> | <b>x</b> <sub>1</sub> | 1                     | 2/3  | 0              | 1/3            | 0                | 8    | 8/(2/3)=12   |                   |

15

Entering variable

| Row                                                         | Basic                 | <b>X</b> 1 | <b>X</b> <sub>2</sub> | S <sub>1</sub> | S <sub>2</sub> | <b>S</b> <sub>3</sub> | RHS  |
|-------------------------------------------------------------|-----------------------|------------|-----------------------|----------------|----------------|-----------------------|------|
| $R_1$                                                       | z                     | 0          | 0                     | 0              | 2              | 0                     | 48   |
| $\mathbf{R}_{2}' = \frac{\mathbf{R}_{2}}{\left(5/3\right)}$ | x <sub>2</sub>        | Sin        | ce                    | 13/595         | -2/5           | 0                     | 42/5 |
| $R'_{3} = R'_{3} + \frac{R'_{2}}{3}$                        | S3                    | 0          | 0                     | 1/5            | 1/5            | 1                     | 39/5 |
| $R'_{4} = R_{4} - \frac{2}{3}R'_{2}$                        | <b>X</b> <sub>1</sub> | 1          | 0                     | -3/5           | 3/5            | 0                     | 12/5 |

In the above table  $x_1 = \frac{12}{5}$ ,  $x_2 = \frac{42}{5}$ ,  $s_3 = \frac{39}{5}$ 

ACE Engineering Publications

| ACE                      |
|--------------------------|
| Engineering Publications |

## ESE - Text Book Solutions

| 20. | Ans: | (C) | ) |
|-----|------|-----|---|
| 20. | Ans: | (C) | ) |

#### 21. Ans: (a)

#### 22. Ans: (c)

**Sol:**  $Z_{\min} = 10x_1 + x_2 + 5x_3 + 0S_1$ Dual,  $W_{min} = 50y_1$ subjected to  $5y_1 \le 10$ ,  $y_1 \le 2$ ,  $W_{max} = 100$  $3y_1 \le 5$ ,  $y_1 \le 5/3$ ,  $W_{max} = 250/3$  $y_1, y_2 \ge 0$  $\Rightarrow$  Z<sub>max</sub> = 250 / 3

## **Common Data for Questions**

23. Ans: (c)

**Sol:** Given,  $Z_{max} = 5x_1 + 10x_2 + 8x_3$ Subjected to

 $3x_1 + 5x_2 + 2x_3 \le 60 \rightarrow Material$ 

 $4x_1 + 4x_2 + 4x_3 \le 72 \rightarrow$  Machine hours

 $2x_1 + 4x_2 + 5x_3 \le 100 \rightarrow$  Labour hours

 $x_1, x_2, x_3 \ge 0$ 

 $3x_1 + 5x_2 + 2x_3 + s_1 = 60$ 

 $4x_1 + 4x_2 + 4x_3 + s_2 = 73$  $2x_1 + 4x_2 + 5x_2 + s_2 = 100$ 

$$2x_1 + 4x_2 + 5x_3 + s_3 - 100$$

$$Z_{\max} = 5x_1 + 10x_2 + 8x_3 + 0s_1 + 0s_2 + 0s_3$$

| Cj | $\rightarrow$  | 5             | 1<br>0 | 8 | 0             | 0              | 0 | Bo | Min   |
|----|----------------|---------------|--------|---|---------------|----------------|---|----|-------|
| С  | S              | X1            | X2     | х | <b>S</b> 1    | \$2            | s | 20 | Ratio |
| В  | V              | 1             | 2      | 3 |               | 2              | 3 |    |       |
| 10 | x <sub>2</sub> | $\frac{1}{3}$ | 1      | 0 | $\frac{1}{3}$ | $\frac{-1}{6}$ | 0 | 8  |       |

| ACE Engineering rubications | ACE | Engin | eering | Publ | icat | tions |
|-----------------------------|-----|-------|--------|------|------|-------|
|-----------------------------|-----|-------|--------|------|------|-------|

 $\frac{-1}{3}$  $\frac{2}{3}$ 5 0 1 0 10 8 X3 12 -17 -8 1 0 0 0 1 18  $S_3$ 12 3 3 2 1 26 5 8 3 0 160  $Z_j$ 3 3 0 -2 -5 -11 0 0 0  $C_j - Z_j$ 3 3 3 10 - 2 =LL=2  $C_j - Z_j$ 8 0 0 11 -210 0 UL=1  $\mathbf{x}_2$ 10 + 100 =20 8-4=4  $C_j - Z_i$ -11 LL=4 0 2 0 8+2=12 0 -4 x <sub>3</sub> UL=2 0

> In  $C_i - Z_i$  row all elements are negatives or zeros, hence the solution is optimal and unique..

Basic variables are:

 $x_3 = 10$ ,  $x_2 = 8$ ,  $s_3 = 18$ i.e., production of B = 8 units, C = 10 units 18 labours hours remained unutilized Non Basic variable

 $x_1 = 0$ ,  $s_1 = 0$ ,  $s_2 = 0$ 

Resource materials and resource machine hours are fully utilized. In  $(C_i - Z_i)$  row at optimality, the values under  $s_1$ ,  $s_2$  and  $s_3$ columns represents the shadow prices.

So, If 1 kg material increases, contribution increases by  $\frac{2}{2}$ .

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

199

## ACE

- If 1 kg material decreases, contribution decreases by  $\frac{2}{3}$ . If 1 kg material increases, then production B increases by  $\frac{1}{3}$  and production C decreases by  $\frac{1}{3}$ If m/c hr increases by 1 units, contribution increases by 5/3. If m/c hr decreases by 1 units, contribution
- decreases by  $\frac{5}{3}$ If m/c hr increases by 1 units, production B decreases by  $\frac{1}{6}$  and production increases by
- $\frac{5}{12}$
- I2 If m/c hr decreases by 1 units, production B increases by  $\frac{1}{6}$  and production C decreases
- by  $\frac{5}{12}$ If 1 unit of A produces, contribution decreases by  $\frac{11}{3}$ , production B decreases by  $\frac{1}{3}$ , production C decreases by  $\frac{2}{3}$ .
- 24. Ans: (a) Sol: If 3 kg material increases, contribution increases by  $3 \times \frac{2}{3} = \text{Rs. } 2$

25. Ans: (a)

17

- Sol: Present profit =  $160 \Rightarrow 160 \frac{5}{3} \times 12 = 140/-$
- 26. Ans: (b)
- Sol: New production of B

$$= 8 - \left(12 \times \frac{-1}{6}\right) = 8 + \left(12 \times \frac{1}{6}\right)$$

- = 8 + 2 = 10 units
- 27. Ans: (c)
- Sol: If materials are increased by 3kgs then the

new production of C is = 
$$10 + \left(3 \times \frac{-1}{3}\right)$$
  
=  $10 - \left(3 \times \frac{1}{2}\right) = 10 - 1 = 9$ 

- 28. Ans: (a) Sol: If 1 unit of A produces, contribution decreases by  $\frac{11}{3}$
- 29. Ans: (a)Sol: If 6 units of A are produced then the new profit is,

$$160 - \left(6 \times \frac{11}{3}\right) = 138$$

- 30. Ans: (a)
- Sol: Production of B,  $3 \times \frac{1}{3} = 1$ Production of C,  $3 \times \frac{2}{3} = 2$

## 

## Common data 35 & 36

31. Ans: (b), 32. Ans: (b)

**Sol:** Basic variables

 $x_1 = 20$ ,  $x_2 = 10$ 

Non-basic variables

 $s_1 = 0 \implies$  first constraint is fully consumed.

 $s_2 = 0 \implies$  second constraint is fully consumed.

 $x_3 = 0$  (unwanted variable)

|                       | <b>x</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | <b>X</b> <sub>3</sub> | $s_1$ | <b>S</b> <sub>2</sub> | RHS |                |
|-----------------------|-----------------------|-----------------------|-----------------------|-------|-----------------------|-----|----------------|
| z-row                 | 0                     | 0                     | 2                     | 1     | 2                     | 110 | E              |
| <b>x</b> <sub>1</sub> | 1                     | 0                     | 1                     | 1     | -1                    | 20  | Clearer of the |
| x <sub>2</sub>        | 0                     | 0                     | 0                     | -1    | 2                     | 10  |                |

If RHS value of 1<sup>st</sup> constraint increases by 1 unit then

## From the table

z increases by 1 unit,  $x_1$  increases by 1 unit,

 $x_2$  decreases by 1 unit,

If RHS value of 2nd constraint increases by 1 unit then

|                       | <b>s</b> <sub>2</sub> |
|-----------------------|-----------------------|
| z-row                 | 2                     |
| <b>X</b> <sub>1</sub> | -1                    |
| <b>X</b> <sub>2</sub> | 2                     |

## From the table

z increases by 2 units,  $x_1$  decreases by 1 unit  $x_2$  decreases by 2 units,

If RHS value of 1st constraint decreases by 10 units then z decreases by 10 units,

The new objective value,

$$Z_{max} = 110 - 10 = 100$$

## 33. Ans: (c)

Sol:

|                | $X_1$ | X <sub>2</sub> | $S_1$ | $S_2$ | RHS | Ratio |
|----------------|-------|----------------|-------|-------|-----|-------|
| z-row          | -3    | -5             | 0     | 0     | 0   | 0     |
| Sil            | 2     | 1              | 1     | 0     | 2   | 2/1=2 |
| S <sub>2</sub> | 3     | 2              | 0     | 1     | 4   | 4/2=2 |
|                |       |                |       |       |     |       |

Entering variable X<sub>2</sub>

Minimum ratio =  $min(2/1, 4/2) = 2^*$ 

<sup>\*</sup>Tie w.r.t leaving variables  $S_1$  and  $S_2$ Thus it has degenerate solution.

#### 34. Ans: (d)

Sol:

|   |                       |                       | inter-         |       |       |     |
|---|-----------------------|-----------------------|----------------|-------|-------|-----|
| 5 |                       | <b>X</b> <sub>1</sub> | X <sub>2</sub> | $S_1$ | $S_2$ | RHS |
|   | z-row                 | -2                    | -1             | 0     | 0     | 0   |
|   | <b>S</b> <sub>1</sub> | -2                    | 1              | 1     | 0     | 4   |
|   | S <sub>2</sub>        | 0                     | 1              | 0     | 1     | 3   |
|   | •                     | •                     |                |       |       |     |

Entering variable X1

I

Ratio =  $Min\{4/-2, 3/0\}$ 

As there is no least positive ratio, there is no leaving variable which results the problem has unbounded solution.

## ACE

35.

Sol:

|             | Prod                     | Maximum           |           |  |
|-------------|--------------------------|-------------------|-----------|--|
| Demand      | Chairs                   | Tables            | available |  |
|             | <b>(x</b> <sub>1</sub> ) | (X <sub>2</sub> ) | available |  |
| Wood        | 1                        | 2                 | 200       |  |
| Chairs      | 1                        | _                 | 150       |  |
| Tables      | _                        | 1                 | 80        |  |
| Profit/loss | 100                      | 300               |           |  |

 $Z_{max} = 100x_1 + 300x_2$ 

Subject to

$$x_1 + 2x_2 \le 200$$
  
 $x_1 \le 150$  and  $x_2 \le 80$ 

## 36.

Sol:

|                 | Proc                      | lucts             |           |  |
|-----------------|---------------------------|-------------------|-----------|--|
| Demand          | Α                         | В                 | Maximum   |  |
|                 | ( <b>x</b> <sub>1</sub> ) | (x <sub>2</sub> ) | available |  |
| Raw material    | 1                         | 1                 | 850       |  |
| Special type of | 1                         |                   | 500       |  |
| buckle          | 1                         |                   | 500       |  |
| Ordinary buckle | _                         | 1                 | 700       |  |
| Time            | 1                         | 1/2               | 500       |  |
| Profits/unit    | 10/-                      | 5/-               |           |  |

## Constraints :

 $x_1 = No.$  of belts of type 'A'

 $x_2 = No.$  of belts of type 'B'

19





$$Z_{\text{max}} = (10 \times 0) + (5 \times 500) = 2500 / -$$

## **Conventional Practice Solutions**

## 01.

**Sol:** Let,  $x_1$  be the number of ash trays  $x_2$  be the number of tea trays Production to be maximized  $Z = 20x_1 + 30 x_2$ From the table given, constrained are  $10x_1 + 20x_2 \le 30000$  $15x_1 + 5x_2 \le 30000$ Fixed daily cost = Rs. 45000

ACE Engincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

## IM & OR



From the graph, common feasible region is OABC O(0,0), A(0,1500), C(2000,0)B would be obtained by solving the constraints. B(1800, 600)

|   | A(0,1500)   | $20 \times 0 + 30 \times 1500 = \text{Rs.}45000$   |
|---|-------------|----------------------------------------------------|
| Ζ | B(1800,600) | $20 \times 1800 + 30 \times 600 = \text{Rs.}54000$ |
|   | C(2000,0)   | $20 \times 2000 + 30 \times 0 = \text{Rs.}40000$   |

 $Z_{max} = Rs. 54000 at B$ 

## 02.

Sol:  $Z_{max} = 60x_1 + 50x_2$ s.t  $x_1 + 2x_2 \le 40$  $3x_1 + 2x_2 \le 60$  $\frac{x_1}{40} + \frac{x_2}{20} \le 1$ ,  $\frac{x_1}{20} + \frac{x_2}{30} \le 1$ 



ESE - Text Book Solutions



 $(Z_{max})_{(10,15)} = 60 \times 10 + 50 \times 15 = 1350$  /-

## 03.

Sol:

| Type of | Proc | lucts | Total time |  |  |
|---------|------|-------|------------|--|--|
| machine | A    | В     | available  |  |  |
| Р       | 10   | 7.5   | 75         |  |  |
| Q       | 6    | 9     | 54         |  |  |
| R       | 5    | 13    | 65         |  |  |

Profit for product, A = Rs. 60 per unit Profit for product, B = Rs. 70 per unit Let, x = number of A type products y = number of B type products  $\therefore$  Maximization problem  $Z_{max} = 60x + 70y$ Constraints are, (in times)  $10x + 7.5y \le 75$   $6x + 9y \le 54$   $5x + 13y \le 65$ Common feasible region is OABCDO O(0,0), A(0,5), D(7.5,0)

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Sinc

| Engineering Publications                                                                                                                                                                                                                          | 21          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IM & OR                                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| B is point of intersection of lines                                                                                                                                                                                                               |             | 04.                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
| $6x + 9y \le 54 ,$                                                                                                                                                                                                                                |             | Sol:                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
| $5x + 13y \le 65$                                                                                                                                                                                                                                 |             |                                                                                                                | Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Availability                            |  |
| Solving this $B = (3.55, 3.64)$                                                                                                                                                                                                                   |             | Wood                                                                                                           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                     |  |
| C is the point of intersection of the lines                                                                                                                                                                                                       |             | Labour                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110                                     |  |
| $6x + 9y \le 54 ,$                                                                                                                                                                                                                                |             | Profit/unit                                                                                                    | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |  |
| $10x + 7.5y \le 75$                                                                                                                                                                                                                               |             |                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | У                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |  |
| Solving these, $C = (6,2)$                                                                                                                                                                                                                        |             | $Z_{max} = 8x$                                                                                                 | x + 6y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
| Graphically solving :                                                                                                                                                                                                                             |             | Subject to                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
| y<br>10x + 7.5y $\leq$ 75<br>10x + 7.5y $\leq$ 75<br>10x + 7.5y $\leq$ 75<br>6x + 9y $\leq$ 54<br>1-<br>0 1 3 5 7 0 9 11 13<br><b>Points Z</b> = 60x + 70y<br>A (0,5) 60 × 0 + 70 × 5 = 350<br><b>B</b> (3 53 3 64) 3 55 × 60 + 70 × 3 64 = 464.8 |             | 30x + 202<br>5x + 10y<br>y<br>20<br>16<br>B(0,11)<br>8<br>4<br>0 (0,0)<br>"C' is the<br>Solve equ<br>We will 6 | $y \le 300$ ,<br>$y \le 110$ ,<br>C (4,9)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4)<br>A(4 | $\frac{x}{10} + \frac{y}{15} \le 1$<br>$\frac{x}{22} + \frac{y}{11} \le 1$<br>$x, y \ge 0$<br>$\frac{x}{10} + \frac{y}{11} \le 1$<br>$x, y \ge 0$<br>$\frac{x}{10} + \frac{y}{11} \le 1$<br>$x, y \ge 0$<br>$\frac{x}{10} + \frac{y}{11} \le 1$<br>$\frac{x}{20} + \frac{y}{11} \le 1$<br>$x, y \ge 0$<br>$\frac{x}{10} + \frac{y}{11} \le 1$<br>$\frac{x}{20} + \frac{y}{11} \le 1$<br>$x, y \ge 0$<br>$\frac{x}{10} + \frac{y}{10} \le 1$<br>$\frac{x}{10} + \frac{x}{10} = \frac{x}{$ | (1)<br>1 (2)<br>24<br>x<br>nd (2)<br>,y |  |
| C (6,2) $60 \times 6 + 70 \times 2 = 500$                                                                                                                                                                                                         |             | We will get $x = 4$ , $y = 9$                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
| D (7.5,0) $7.5 \times 60 + 0 \times 70 = 450$                                                                                                                                                                                                     |             | Z = 8x +                                                                                                       | бу                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
| O (0,0) $0 \times 60 + 0 \times 70 = 0$                                                                                                                                                                                                           |             | $Z_0 = 0$                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
| $\therefore Z_{\text{max}} = 500 \text{ at C(6,2)}$                                                                                                                                                                                               |             | $Z_A = 8 \times 1$                                                                                             | $0 + 6 \times 0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |  |
| $\therefore$ A type products = 6.                                                                                                                                                                                                                 |             | $Z_{\rm B} = 8 \times 0$                                                                                       | $+ 6 \times 11 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |  |
| B type products $= 2$                                                                                                                                                                                                                             |             | $Z_{\rm C} = 8 \times 4 + 6 \times 9 = 86$                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
|                                                                                                                                                                                                                                                   |             | Solution                                                                                                       | is optimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | at (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |  |
|                                                                                                                                                                                                                                                   |             | Z <sub>max</sub>                                                                                               | = 86 at x =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 4 , y = 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |  |
| ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa                                                                                                                                                                       | ır • Luckno | ow • Patna • Bengaluru                                                                                         | • Chennai • Vijaya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | wada • Vizag • Tiru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pati • Kolkata • Ahmedabad              |  |

|                  | Engineering Publications                                                                   | 22     |             | ESE – Text Book Solutions                                                                                                                                            |
|------------------|--------------------------------------------------------------------------------------------|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                                                                                            |        | 05.<br>Sol: | <b>Ans: (b)</b><br>At EOQ, Carrying cost = Ordering cost                                                                                                             |
| Cha <sub>l</sub> | Inventory Control                                                                          |        | 06.<br>Sol: | Ans: (d)<br>Inventory carrying cost involves the cost of                                                                                                             |
| 01.<br>Sol:      | Ans: (b)<br>$FOO = \sqrt{2AS}$                                                             |        |             | investment in inventories, of storage, of obsolescence, of insurance, of maintaining inventory records, etc.                                                         |
| 501.             | $EOQ = \sqrt{CI}$ $EOQ_1 = \sqrt{2} \times \sqrt{\frac{2AS}{CI}}$                          |        | 07.<br>Sol: | Ans: (a)<br>A = 800, S = 50/-,                                                                                                                                       |
|                  | $EOQ_1 = \sqrt{2} \times EOQ$                                                              | ERJ    | NG          | $C_s = 2 \text{ per unit} = CI$<br>$(TIC)_{EOQ} = \sqrt{2ASCI}$                                                                                                      |
| 02.              | Ans: (c)                                                                                   |        |             | $=\sqrt{2 \times 800 \times 50 \times 2} = 400$                                                                                                                      |
| Sol:             | $EOQ = \sqrt{\frac{2DC_o}{C_c}}$                                                           |        | 08.<br>Sol: | <b>Ans: (c)</b><br>$TC(Q_1) = TC(Q_2)$                                                                                                                               |
| 03.<br>Sol:      | <b>Ans: (b)</b><br>A = 900 unit                                                            |        |             | $\frac{\mathrm{kd}}{\mathrm{Q}_1} + \frac{\mathrm{hQ}_1}{2} = \frac{\mathrm{kd}}{\mathrm{Q}_2} + \frac{\mathrm{hQ}_2}{2}$                                            |
|                  | S = 100 per order<br>CI = 2 per unit per year                                              |        | _           | $kd\left(\frac{Q_2-Q_1}{Q_1Q_2}\right) = \frac{h}{2}(Q_2-Q_1)$                                                                                                       |
|                  | $EOQ = ELS = \sqrt{\frac{2AS}{CI}}$ Sin                                                    | ce '   | 199         | $\frac{2kd}{5h} = Q_1 Q_2$                                                                                                                                           |
|                  | $=\sqrt{\frac{2\times900\times100}{2}}=300$                                                |        |             | $(Q^*)^2 = Q_1 \times Q_2$<br>$Q^* = \sqrt{Q_1 \times Q_2} = \sqrt{300 \times 600} = 424.264$                                                                        |
| 04.              | Ans: (c)                                                                                   |        | 09.         | Ans: (c)                                                                                                                                                             |
| Sol:             | <b>Inventory carrying cost:</b><br>It involves the cost of investment in                   | ı      | Sol:        | $\frac{\text{EOQ}_1}{\text{EOQ}_2} = \sqrt{\left(\frac{2\text{AS}}{\text{CI}}\right)_{\text{A}}} \times \sqrt{\left(\frac{\text{CI}}{2\text{AS}}\right)_{\text{B}}}$ |
|                  | inventories, of storage, of obsolescence, o<br>insurance, of maintaining inventory records | f<br>, |             | $=\sqrt{\left(\frac{2\times100\times100}{4}\right)}\times\sqrt{\left(\frac{1}{2\times400\times100}\right)}$                                                          |
|                  | etc.                                                                                       |        |             | $(EOQ)_{A}$ : $(EOQ)_{B} = 1:4$                                                                                                                                      |

1

## 10. Ans: (d)

**Sol:** (No of orders  $=\frac{A}{Q} = \frac{12 \text{ months}}{45 \text{ days}} = \frac{12}{1.5} = 8$ )



$$\Gamma VC = \frac{A}{Q} S + \frac{Q}{2} CI.$$
  
=  $8 \times 100 + \frac{100}{2} \times 120 = Rs. 6800$ 

## 11. Ans: (b)

Sol: Average inventory

$$= \frac{Q}{2} = \frac{6000}{2} = 3000 \text{ per year}$$
$$= 250 \text{ per month}$$

## 12. Ans: (b)

Sol: P = 1000, r = 500, Q = 1000  $I_{max} = \frac{1000}{1000} (1000 - 500) = 500$ 

## 13. Ans: (c)

Sol: D = 1000 units,  $C_0 = Rs.100$ /order,  $C_c = 100$ /unit/year,  $C_s = 400$ /unit/year

$$Q_{max} = EOQ_s \times \frac{C_s}{C_c + C_s}$$
$$= \sqrt{\frac{2DC_0}{C_c}} \sqrt{\frac{C_c + C_s}{C_s}} \times \left(\frac{C_s}{C_c + C_s}\right)$$
$$= 40 \text{ units}$$

23

- 14. Ans: (d)
- **Sol:** Re-order level =  $1.25[\Sigma x p(x)]$ 
  - $= 1.25 \ [80 \times 0.2 + 100 \times 0.25 + 120 \times 0.3 + 140 \times 0.25]$
  - = 140 units

| Demand                 | 80   | 100  | 120  | 140  |
|------------------------|------|------|------|------|
| Probability            | 0.20 | 0.25 | 0.30 | 0.25 |
| Cumulative probability | 0.2  | 0.45 | 0.75 | 1.0  |
| (Service level)        | 0.2  | 0.45 | 0.75 | 1.0  |

Service Level = 100 %

1

Since

17. Ans: (d)

Sol: C – Class means these class items will have very less consumption values. – least consumption values

$$B \rightarrow 300 \times 0.15 = 45$$
  

$$F \rightarrow 300 \times 0.1 = 30$$
  

$$C \rightarrow 2 \times 200 = 400$$
  

$$E \rightarrow 5 \times 0.3 = 1.5$$
  

$$J \rightarrow 5 \times 0.2 = 1.0$$
  

$$G \rightarrow 10 \times 0.05 = 0.5$$
  

$$H \rightarrow 7 \times 0.1 = 0.7$$

 $\therefore$  G, H items are classified as C class items because they are having least consumption values.

## 18. Ans: (b)

1995

Sol: In ABC analysis : Category "A" = Low safety stock Category "B" = Medium safety stock Category "C" = High safety stock

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

IM & OR

## **Conventional Practice Solutions**

## 01.

Sol: Given, A = 5000 units/year, S = 16/-I = 0.02 + 0.12 + 0.06 = 0.2, C = 20/-EOQ =  $\sqrt{\frac{2AS}{CI}}$   $= \sqrt{\frac{2 \times 5000 \times 16}{20 \times 0.2}} = 200 \text{ units}$ (TVC)<sub>EOQ</sub> =  $\sqrt{2ASCI}$   $= \sqrt{2 \times 5000 \times 16 \times 20 \times 0.2}$ = Rs. 800 /-

02.

Sol: Given, A = 1000 units/year, S = 40/-I = 0.1, C = 500/a) EOQ =  $\sqrt{\frac{2AS}{CI}} = \sqrt{\frac{2 \times 1000 \times 40}{500 \times 0.1}} = 40$  units b) No. of annual orders =  $\frac{A}{Q} = \frac{1000}{40} = 25$ c) (TAC)<sub>EOQ</sub> = AC +  $\sqrt{2ACSI}$ = 1000 × 500 +  $\sqrt{2 \times 1000 \times 500 \times 40 \times 0.1}$ = 5,02,000/-Order per month =  $\frac{1000}{12} = 83.33$  units. (TAC)<sub>Q</sub> = AC +  $\frac{A}{Q}$ .S +  $\frac{Q}{2}$ .CI

 $(TAC)_{83.38} = 1000 \times 500 + \frac{1000}{83.33} \times 40 + \frac{83.33}{2} \times 500 \times 0.1$ = 5,02,563/-Savings =  $(TAC)_Q - (TAC)_{EOQ}$ = 502563 - 502000 = Rs. 563/-

**ESE – Text Book Solutions** 

## 03.

Sol: Simultaneous consumption producing Model A = 15,000 units, C.I = 5/ units/year S = 25 /-, P = 100 units/day No. of working days = 250 /year Consumption rate =  $r = \frac{15,000}{250} = 60$  units/day

$$EBQ = EPQ = ELS$$

$$EPQ = \frac{2AS(P)}{P}$$

$$Q = \sqrt{\frac{CI}{CI}} \left(\frac{P-r}{P-r}\right)$$
$$Q = \sqrt{\frac{2 \times 15000 \times 25}{5}} \left(\frac{100}{100-60}\right)$$

$$Q = 612.37$$
 units

$$VC)_{EPQ} = \sqrt{2ASCI \frac{(P-I)}{P}}$$
$$= \sqrt{2 \times 15000 \times 25 \times 5 \times \left(\frac{100-60}{100}\right)}$$

No of production runs = 
$$\frac{A}{Q}$$
  
=  $\frac{15000}{612.37}$  = 24.5  $\approx$  25

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

|       | ACE<br>Engineering Publications                                                                | 25         |         | IM & OR                                                                        |
|-------|------------------------------------------------------------------------------------------------|------------|---------|--------------------------------------------------------------------------------|
| 04.   |                                                                                                |            | 05.     |                                                                                |
| Sol:  | D = 192000 units,                                                                              |            | Sol:    | A = 10,000 units                                                               |
|       | A = Rs. 1080 / set-up,                                                                         |            |         | S = 200/order                                                                  |
|       | $h = 0.3 \times 12 = 3.60$ /pack/year,                                                         |            |         | CI = 4/unit/year                                                               |
|       | $d = \frac{192000}{240} = 800$ packs per day                                                   |            |         | C = 20/-                                                                       |
|       | $p = \frac{20000}{20} = 1000 \text{ packs/day.}$                                               |            | (a)     | $EOQ = \sqrt{\frac{2AS}{CI}}$                                                  |
| (a)   | Optimum lots size = $\sqrt{\frac{2DA}{h}\left(\frac{p}{p-d}\right)}$                           |            | Ţ       | $=\sqrt{\frac{2 \times 10000 \times 200}{4}} = 1000 \text{ units.}$            |
|       | $2 \times 192000 \times 1080(1000)$                                                            |            |         | Total annual cost at EOQ,                                                      |
|       | $=\sqrt{\frac{3.60}{3.60}}\left(\frac{1000-800}{1000-800}\right)$                              | ERI        | NG      | $(TAC)_{EOQ} = AC + \sqrt{2ACSI}$                                              |
|       | = 24000 packs                                                                                  |            |         | $= 10000(20) + \sqrt{2(10000)4(200)}$                                          |
|       | 34                                                                                             |            |         | = 2,04,000/-                                                                   |
| (b)   | Optimum number of production runs                                                              |            |         |                                                                                |
|       | $=\frac{\text{Annual demand}}{\text{Optimum lot size}}$                                        |            | (b)     | $(EOQ)_{shortage} = \sqrt{\frac{2AS}{CI} \times \frac{C_s + CI}{C_s}}$         |
|       | $=\frac{192000}{24000}=8$                                                                      |            |         | $= \sqrt{\frac{2 \times 10000 \times 200}{4} \times \frac{20 + 4}{20}}$        |
| (c)   | Time interval between successive                                                               | e          |         | V 4 20                                                                         |
|       | production runs                                                                                |            |         | = 1095.45 units                                                                |
|       | = No.of working days Sin                                                                       | ce 1       | 99      | Optimal level of shortages                                                     |
|       | No. of runs                                                                                    |            |         | $S^* = Q^* \times \left(\frac{C_s}{C_s}\right)$                                |
|       | $=\frac{240}{2}$                                                                               |            |         | $(C_s + CI)$                                                                   |
|       | = 30 working days                                                                              |            |         | $=1095.45 \times \frac{20}{20+4}$                                              |
|       | $\sqrt{\left(\frac{n}{d}\right)}$                                                              |            |         | = 912.87 units                                                                 |
| (d)   | Total variable cost = $\sqrt{2DAh}\left(\frac{p-u}{p}\right)$                                  |            |         | Maximum inventory level = $Q^* - S^*$                                          |
|       |                                                                                                | -          |         | = 1095.45 - 912.87                                                             |
|       | $= \sqrt{2 \times 192000 \times 1080 \times 3.60 \times \left(\frac{1000 - 800}{1000}\right)}$ |            |         | = 182.58                                                                       |
|       | = Rs. 17,280 /-                                                                                |            |         |                                                                                |
| ACE E | ngineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa                         | r • Luckno | w • Pat | na • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad |

| <b>06.</b>        |                                                                                                                                                                     |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sol:              | Given :                                                                                                                                                             |
|                   | C = Rs. 5/unit,                                                                                                                                                     |
|                   | A = 4000 units                                                                                                                                                      |
|                   | S = Rs. 30/order ,                                                                                                                                                  |
|                   | CI = Rs. 1.5                                                                                                                                                        |
|                   | $EOQ = \sqrt{\frac{2 \times 4000 \times 30}{1.5}} = 400 \text{ units}$                                                                                              |
|                   | no. of order per year = $\frac{4000}{400}$ = 10 runs                                                                                                                |
|                   | $(\text{Total yearly cos t})_{EOQ} = AC + \sqrt{2ASCI}$                                                                                                             |
|                   | $= (4000 \times 5) + \sqrt{2 \times 4000 \times 30 \times 1.5}$                                                                                                     |
|                   | = Rs. 20600/-                                                                                                                                                       |
|                   | $\left(\mathrm{TC}\right)_{\mathbf{Q}_{1}@\mathbf{R}_{1}\%} = \mathrm{AC}\left(1 - \frac{\mathbf{R}_{1}}{100}\right) + \frac{\mathbf{A}}{\mathbf{Q}_{1}}\mathbf{S}$ |
|                   | $+ \frac{Q_1}{2} CI \left(1 - \frac{R_1}{100}\right)$ $= \left(4000 \times 5\right) \left(1 - \frac{2}{100}\right) + \frac{4000}{1000} \times 30$                   |
|                   | $+ \frac{1000}{2} \times 1.5 \left(1 - \frac{2}{100}\right)$<br>= Rs 20455/-                                                                                        |
| (TC) <sub>Q</sub> | $h_{2@\%} = 4000 \times 5 \left( 1 - \frac{3}{100} \right) + \frac{4000}{2000} \times 30 + \frac{2000}{2} \times 1.5 \times \left( 1 - \frac{3}{100} \right)$       |
|                   | = Rs. 20915/-                                                                                                                                                       |
|                   | Among all 2% discount for ordering                                                                                                                                  |
|                   | quantities of 1000 or more                                                                                                                                          |
| 07.               |                                                                                                                                                                     |

Sol: Given:

ACE

A = 2000 units/year,

S = Rs. 20/-, I = 25%  $C_u = Rs. 8/-$  (Lowest with unit price)

EOQ 
$$|_{C_u=8\%} = \sqrt{\frac{2 \times 2000 \times 20}{8 \times 0.25}} = 200 \text{ units}$$

The  $EOQ_{at Cu} = Rs. 8/-$  is satisfying the Quantity range hence it is declared as an optimal order quantity.

08.

Sol:

| Daily | No. of | Probability | SL   | SOR  |
|-------|--------|-------------|------|------|
| sales | days   | Pi          |      |      |
| 10    | 15     | 0.15        | 0.15 | 1    |
| 11    | 20     | 0.20        | 0.35 | 0.85 |
| 12    | 40     | 0.40        | 0.75 | 0.65 |
| 13    | 25     | 0.25        | 1    | 0.25 |

$$Cus = SP - CP = 5 - 2 = 3$$
$$Cos = CP = 2$$
$$SL = \frac{Cus}{Cus + Cos}$$

$$=\frac{3}{3+2}=0.6$$

SOR = 1 - SL = 1 - 0.6 = 0.4As SL = 0.6 falling in the range 11 to 12 sales, hence order 12 for 40 days. (*Cus*) = *Cost of under stock* (*Cos*) = *Cost of over stock* (*SL*) = *Service levels* 

(SOR) = Stock out risk

*SP* = *selling price*, *CP* = *cost price* 

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

## 27

## 09.

Sol: 
$$Cus = SP - CP = 2 - 0.8 = 1.2$$
  
 $Cos = CP - Salvage value = 0.8 - 0 = 0.8$   
 $SL = \frac{Cus}{Cus + +Cos} = \frac{1.2}{1.2 + 0.8} = 0.6$   
For 60% - Service levels  
 $Q_{Optimum} = I_{min} + SL (I_{max} - I_{min})$   
 $= 20000 + 0.6(24000 - 20000)$   
 $= 22400$ 

10.

Sol:

**Stage – I:** Let C = Rs. 185 /-

$$EOQ|_{C=185} = \sqrt{\frac{2AS}{C \times I}}$$
$$= \sqrt{\frac{2 \times 8000 \times 1800}{185 \times 0.1}} = 1247.7 \text{ units}$$

aniGINE

EOQ does not satisfy the quantity range. Hence we calculate

$$TC|_{\substack{Q=2000\\C=185}} = \frac{Q}{2} \times C.I + \frac{A}{Q}S + AC$$

$$= \left(\frac{2000}{2} \times 185 \times 0.1\right) + \left(\frac{8000}{2000} \times 1800\right) + (8000 \times 185)$$

$$= Rs \ 1505700/-$$

## Stage -II:

$$EOQ|_{C=190} = \sqrt{\frac{2AS}{CI}} = \sqrt{\frac{2 \times 8000 \times 1800}{190 \times 0.1}}$$
$$= 1231.17 \text{ units}$$
EOQ does not satisfy the quantity range.  
Hence we calculate

 $TC|_{\substack{Q=1500\\C=190}} = \frac{Q}{2} \times CI + \frac{A}{Q}S + AC$  $= \left(\frac{1500}{2} \times 190 \times 0.1\right) + \left(\frac{8000}{1500} \times 1800\right) + (8000 \times 190)$  $= Rs \ 1543850 / -$ 

Stage – III:

$$EOQ|_{C=200} = \sqrt{\frac{2AS}{CI}} = \sqrt{\frac{2 \times 8000 \times 1800}{200 \times 0.1}}$$

= 1200 units

EOQ satisfy the quantity range. Hence we calculate

$$\Gamma C\Big|_{EOQ=1200} = \sqrt{2ASCI} + AC$$

 $= \sqrt{2 \times 8000 \times 1800 \times 2000 \times 0.1} + 8000 \times 200$ = Rs 1675894.66 /-

Among all the total cost, the minimum in

 $TC |_{\substack{Q=2000\\C=185}}$ 

So the best order size is 2000 units

## 11.

Sol: Annual demand (A) = 2000 units Cost per item (C) = 20/-Ordering cost = 50/-Inventory carrying cost (I) = 0.25  $EOQ = \sqrt{\frac{2AS}{CI}} = \sqrt{\frac{2 \times 2000 \times 50}{20 \times 0.25}} = 200 \text{ units}$   $(TAC)_{EOQ} = AC + \sqrt{2ACSI}$   $= (2000 \times 20) + \sqrt{2 \times 2000 \times 20 \times 50 \times 0.25}$  = 41,000/-Now, TAC at Q<sub>1</sub> with discount r%

For Item B  $(TAC)_{Q1} = AC\left(1 - \frac{r_1}{100}\right) + \frac{A}{Q_1}S + \frac{Q_1}{2}CI\left(1 - \frac{r_1}{100}\right)$  $ROL = D.D \times L.T$  $= 2000 \times 20 \left(1 - \frac{3}{100}\right) + \frac{2000}{1000} \times 50 + \frac{1000}{2} 20 \times 0.25 \left[1 - \frac{3}{100}\right]$  $216 = \frac{A}{250} \times 6$ =41325/-A = 9000 units As the total annual cost (TAC) with discount  $EOQ = \sqrt{\frac{2AS}{CL}} = \sqrt{\frac{2 \times 9000 \times 40}{0.18}} = 2000 \text{ units}$ r% is greater than (TAC) at EOQ, hence reject the discount and order 200 at a time. For Item C 12.  $EOQ = \sqrt{\frac{2AS}{CI}}$ **Sol:** EOQ =  $\sqrt{\frac{2AS}{CI}} = \sqrt{\frac{2 \times 25 \times 25}{0.4}}$  $300 = \sqrt{\frac{2 \times 7500 \times S}{30}}$ = 55.9 units  $\approx$  56 units N Re-order point =  $\begin{pmatrix} Daily \\ demand \end{pmatrix}$  × Lead Time S = Rs. 180/order $ROL = D.D \times L.T$  $= 25 \times 16 = 400$  units  $210 = \frac{7500}{250} \times LT$ 13. Lead Time = 7 daysSol: Given, Daily demand - D. D, 14. Lead Time - L.T Sol: Re-order Level - ROL ROL = 1401995 SOR Min inventory For Item A Max Inventory  $EOQ = \sqrt{\frac{2AS}{CI}}$  $\mu - 3\sigma$  $\mu + 3\sigma$ 120 - 3(20) = 60120 + 3(20) = 180 $\mu = 120$  $=\sqrt{\frac{2 \times 8000 \times 15}{0.06}} = 2000$  units SOR = 2%, a)  $R.O.L = daily demand \times Lead Time$ For service level (SL) = 98% to be safety  $=\frac{8000}{250}\times 10 = 320$  units factor on  $\sigma$  basis,  $SF_{\sigma} = 2.05$ Safety stock (SS) =  $SF_{\sigma} \times \sigma$  $= 2.05 \times 20 = 41$ Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad ACE Engineering Publications

28

ESE - Text Book Solutions

ACE

## ACE

29

Re-order point (ROP)

- = Avg lead time demand + SS = 120 + 41 = 161
- $SF_{\sigma} = ?$ Given, ROP = 140 units, b)  $140 = 120 + SF_{\sigma} 20$ 
  - $SF_{\sigma} = 1$

i.e., as  $SF_{\sigma}$  basis is 1 will achieve service levels (SL) 84.13%.

- Stock out risk (SOR) = 100 SL
- (:: SOR + SL = 100%)= 100 - 84.13SOR = 15.87% Stock out = 140 - 100 = 40 units

## 15.

 $\sigma = 60$  units ,  $SL = \frac{51}{52} = 98\%$ Sol: (Consider 52 weeks/year)  $SS = SF_{\sigma} \times \sigma = 2.05 \times 60 = 123$ ROL = ALTd + SS $= ALT \times CR + SF_{\sigma}\sigma$  $= 500 \times 1 + 123 = 623$  units Where, CR = consumption rateALT = Average lead time

## 16.

**Sol:** Lead Time > order cycle  $\sigma_{\rm OC} = \sqrt{n\sigma^2} = \sqrt{6 \times 5^2} = 12.21$ Safety stock (SS) =  $SF_{\sigma} \times \sigma$  $= 1.28 \times 12.21 = 15.67 \text{ m} \approx 16.$ (:: For 90% SL  $\rightarrow$  SF<sub> $\sigma$ </sub> = 1.28) ROL = ALTd + SS = 40 + 16 = 56ACE Engincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

## 17.

Sol: Raking of items according to their usage values

| Part  | Price per | Units | Total     | % of  | Ranking |
|-------|-----------|-------|-----------|-------|---------|
| code  | unit Rs   | /year | cost (Rs) | total |         |
|       |           |       |           | cost  |         |
| P01   | 100       | 100   | 10000     | 0.2   | Х       |
| P02   | 200       | 300   | 60000     | 1.2   | VI      |
| P03   | 50        | 700   | 35000     | 0.7   | IV      |
| P04   | 300       | 400   | 120000    | 2.4   | IV      |
| P05   | 500       | 1000  | 500000    | 10    | III     |
| P06   | 3000      | 30    | 60000     | 1.2   | VII     |
| P07   | 1000      | 100   | 100000    | 2     | V       |
| P08   | 7000      | 500   | 3500000   | 70.5  | Ι       |
| P09   | 5000      | 105   | 525000    | 10.6  | II      |
| P10   | 60        | 1000  | 60000     | 1.2   | VIII    |
| Total | 1         |       | 4970000   | 100   |         |

## **ABC PLAN**

| DANK  | Part code  | % of total | Cumulative |
|-------|------------|------------|------------|
| NAIVI | I all coue | cost%      | percentage |
| Ι     | P08        | 70.5       | 70.5       |
| II    | P09        | 10.6       | 81.1       |
|       | P05        | 10         | 91.1       |
| o IV  | P04        | 2.4        | 93.5       |
| V     | P07        | 2          | 95.5       |
| VI    | P02        | 1.2        | 96.7       |
| VII   | P06        | 1.2        | 97.9       |
| VIII  | P10        | 1.2        | 99.1       |
| IX    | P03        | 0.7        | 99.8       |
| Х     | P01        | 0.2        | 100        |

Class A items  $\rightarrow$  Nil Class B items  $\rightarrow$  I, II Class C items  $\rightarrow$  III, IV, V, VI, VII, VIII, IX, X

## ACE

## Chapter 5

## Forecasting

01. Ans: (d)

#### 02. Ans: (d)

Sol:

- A simple moving average is a method of • computing the average of a specified number of the most recent data values in a series.
- This method assigns equal weight to all observations in the average.
- Greater smoothing effect could be obtained by including more observations in the moving average.

#### 03. Ans: (a)

**Sol:** 3 period moving avg = 
$$\frac{100 + 99 + 101}{3}$$

= 100

4 period moving average

$$=\frac{102+100+99+101}{4}=100.5$$

5 period moving average

$$=\frac{99+102+100+99+101}{5}=100.2$$

Arithmetic Mean

$$= \frac{101+99+102+100+99+101}{6}$$
$$= 100.33$$

## 04. Ans: (a)

30

- **Sol:**  $D_t = 100$  units,  $F_t = 105$  units  $\alpha = 0.2$  $F_{t+1} = 105 + 0.2 (100 - 105) = 104$
- 05. Ans: (c)
- **Sol:**  $D_t = 105$ ,  $F_t = 97$ ,  $\alpha = 0.4$  $F_{t+1} = 97 + 0.4 (105 - 97) = 100.2$

06. Ans: (c) **Sol:**  $F_{t+1} = F_t + a (X_t - F_t)$ 

- 07. Ans: (c)
- Sol: Another form of weighted moving average is the exponential smoothed average. This method keeps a running average of demand and adjusts if for each period in proportion to the difference between the latest actual demand and the latest value of the forecast.

08. Ans: (a)

09. Ans: (b)

Sol:

Since

| Period | Di  | Fi                | $(\mathbf{D}_{i} - \mathbf{F}_{i})^{2}$ |
|--------|-----|-------------------|-----------------------------------------|
| 14     | 100 | 75                | 625                                     |
| 15     | 100 | 87.5              | 156.25                                  |
| 16.    | 100 | 93.75             | 39.0625                                 |
|        |     | $\Sigma(D_i - 1)$ | $(F_i)^2 = 820.31$                      |

$$F_{15} = F_{14} + \alpha (D_{14} - F_{14})$$
  
= 75 + 0.5(100 - 75) = 87.5

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

## ESE - Text Book Solutions

 $F_{16} = F_{15} + \alpha (D_{15} - F_{15})$ = 87.5 + 0.5(100 - 87.5) = 93.75 Mean square error (MSE) =  $\frac{\sum (D_i - F_i)^2}{n}$ =  $\frac{820.31}{3}$  = 273.13

10. Ans: (a)

Sol:

| Period | Di | Fi   | $ (\mathbf{D}_i - \mathbf{F}_i) $ |    |
|--------|----|------|-----------------------------------|----|
| 1      | 10 | 9.8  | 0.2                               |    |
| 2      | 13 | 12.7 | 0.3                               | IN |
| 3      | 15 | 15.6 | 0.6                               |    |
| 4      | 18 | 18.5 | 0.5                               |    |
| 5      | 22 | 21.4 | 0.6                               |    |
|        |    |      |                                   |    |

## $\Sigma |D_i - F_i| = 2.2$

## 11. Ans: (d)

Sol:

- $m_1$  = moving average periods give forecast  $F_1(t)$
- $m_2$  = moving average periods give forecast  $F_2(t)$

 $m_1 > \ m_2$ 

- $F_1(t)$  is a stable forecast has less variability.
- $F_2(t)$  is a sensitive (inflationary) forecast and has high variability.

## 12. Ans: (d)

ACE Engineering Publications

- **Sol:** Following are the purposes of long term forecasting :
  - To plan for the new unit of production.
  - To plan for the long-term financial requirement.

To make the proper arrangement for training the personal.

IM & OR

• Budgetary allegations are not done in the beginning of a project. So, deciding the purchase program is not the purpose of long term forecasting.

## 13. Ans: (d)

## Sol:

31

- Time horizon is less for a new product and keeps increasing as the product ages. So, statement (I) is correct.
- Judgemental techniques apply statistical method like random sampling to a small population and extrapolate it on a larger scale. So, statement (II) is correct.
- Low values of smoothing constant result in stable forecast. So statement (3) is correct.

## 14. Ans: (i) 50, (ii) 52.5, (iii) (42.5, 40) Sol:

(i) 
$$F_7 = \frac{60+50+40}{3} = 50$$

(ii) 
$$F_7 = \frac{60 \times 0.5 + 50 \times 0.25 + 40 \times 0.25}{0.5 + 0.25 + 0.25} = 52.5$$

(iii) 2 period moving average = 
$$\frac{60+50}{2} = 55$$

4 period moving average

$$=\frac{60+50+40+20}{4}=42.5$$

5 period moving average

$$=\frac{60+50+40+20+30}{5}=40$$

## ACE

## 15. Ans: (114.8 units, 9 periods)

**Sol:** At  $\alpha = 0.2$ 

 $F_{may} = 100 + 0.2 (200 - 100) = 120$   $F_{june} = 120 + 0.2 (50 - 120) = 106$  $F_{july} = 106 + 0.2 (150 - 106) = 114.8$ 

| Time  | Demand | Forecast |
|-------|--------|----------|
| April | 200    | 100      |
| May   | 50     | 120      |
| June  | 150    | 106      |
| July  | -      | 114.8    |

$$\alpha = \frac{2}{n+1}$$

$$n+1=\frac{2}{\alpha} \Rightarrow n=\frac{2}{0.2}-1=9$$
 period

## **Conventional Practice Solutions**

## 01.

Sol: In, Jun, July, Aug, Sep demand is Stable In Oct, Nov, Dec – demand is Fluctuating

$$F_{Jan} = \frac{327 + 339 + 355}{3} = 340.33$$
 units.

Last '3' months average is forecast for next month

The inflation start only from October hence considering last 3 months data was highly significant

Simple exponential  $\alpha = 0.1$ 

$$F_{Jan} = F_{Dec} + \alpha (D_{Dec} - F_{Dec})$$
  
= 307 + 0.1(355-307)  
= 311.8

ACE Engineering Publications

## 02.

32

## Sol: Simple exponential method

$$\alpha = 0.2, \quad D_{Jan} = 200$$
  

$$F_{Jan} = 175, \quad D_{Feb} = 170$$
  

$$F_{feb} = F_{Jan} + \alpha (D_{Jan} - F_{Jan})$$
  

$$= 175 + 0.2 (200 - 175) = 180$$
  

$$F_{march} = F_{Feb} + \alpha (D_{Feb} - F_{Feb})$$
  

$$= 180 + 0.2(170 - 180) = 178$$

## 03.

Sol: Linear Regression model:

| (x)             | y (Rs)            | xy                 | x <sup>2</sup>      |
|-----------------|-------------------|--------------------|---------------------|
| 14              | 450               | 450                | 1                   |
| 2               | 550               | 1110               | 4                   |
| 3               | 625               | 1875               | 9                   |
| 4               | 650               | 2600               | 16                  |
| 5.              | 750               | 3750               | 25                  |
| $\Sigma x = 15$ | $\Sigma y = 3025$ | $\Sigma xy = 9775$ | $ \Sigma x^2 = 55 $ |

```
y = a + bx \implies \Sigma y = na + b\Sigma x
xy = ax + bx^{2} \implies \Sigma xy = a\Sigma x + b\Sigma x^{2}
3025 = 5a + 15b \dots (1)
9775 = 15a + 55b \dots (2)
Now, solve (1) and (2) for a, b

a = 395, \quad b = 70
Forecast equ. y_{c} = a + bx

y_{c} = 395 + 70x
Forecast for month - 6,

y_{6} = 395 + 70(6) = 815
Forecast For month - 7

y_{7} = 395 + 70(7) = 885
```

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ESE – Text Book Solutions

## ACE

## **04.**

**Sol:** Deviation =  $D_i - F_i$ 

$$MAD = \sum_{i=1}^{n} |D_i - F_i|$$
$$MAD = \frac{7.5 + 18 + 0 + 28. + 12}{6}$$
$$= \frac{70}{6} = 11.66$$

Cumulativedeviation Tracking signal = MAD  $= \left| \frac{-24}{11.66} \right| = 2.05 < 4$ 

If tracking signal < 4 - No significant deviation in data If tracking signal > 4 - significant deviation in data

## 05.

**Sol:** n = 20,  $\Sigma(y-\overline{y})^2 = 2800$  $\Sigma x = 80$ ,  $\Sigma y = 1200$ ,  $\Sigma x^2 = 340$ ,  $\Sigma y^2 = 74,800,$  $\Sigma xy = 5000$ y = a + bx $\Rightarrow \Sigma y = na + b\Sigma x$ 1200 = 20a + b(80)....(1) $xy = ax + bx^2$  $\Rightarrow \Sigma x y = a \Sigma x + b \Sigma x^2$ 5000 = a(80) + b(340)....(2) IM & OR

Solve (1) and (2) for a, b

$$a = 20, b = 10$$

Standard error

$$S_{yx} = \sqrt{\frac{\Sigma y^2 - a\Sigma y - b\Sigma xy}{n-2}}$$
$$= \sqrt{\frac{74800 - (20 \times 1200) - (10 \times 5000)}{20 - 2}}$$

= 6.67

Correlation coefficient,

$$r = \frac{n\Sigma xy - \Sigma x \Sigma y}{\sqrt{(n\Sigma x^2 - (\Sigma x)^2)((n\Sigma y^2 - (\Sigma y)^2))}}$$
$$= \frac{20 \times 500 - 80 \times 1200}{\sqrt{(20 \times 340 - (80)^2)(20 \times 74800 - (1200)^2)}}$$
$$= 0.84$$

As 'r' closer to '1' i.e., good correlation

ACE Engincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

33

Since



34

## **Conventional Practice Solutions**

## 01.

Sol: 
$$\lambda = 8 \text{ hr}^{-1}$$
;  $\mu = \frac{60}{5} = 12 \text{ hr}^{-1}$   
 $W_s = \frac{1}{\mu - \lambda} = \frac{1}{12 - 8} = \frac{1}{4}$ 

02.

Sol:  $\lambda = 100 \text{ h}^{-1}$ ;  $\mu = 120 \text{ h}^{-1}$  $\rho = \frac{\lambda}{\mu} = \frac{100}{120} = \frac{10}{12}$ 

P<sub>0</sub> (no customer in the system)

$$= 1 - \rho = 1 - \frac{10}{12} \implies \frac{2}{12} = \frac{1}{6}$$

03.

**Sol:**  $\lambda = 8 \text{ h}^{-1}$ 

$$\mu = \frac{60}{5} h^{-1} = 12 h^{-1}$$
(a)  $L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{(8)^2}{12 \times 4} = 1.33$ 
(b)  $L_s = \frac{\lambda}{(\mu - \lambda)} = \frac{8}{12 - 8} = 2$ 

(c) 
$$W_q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{8}{12 \times 4} = 0.1666$$

(d) 
$$W_s = \frac{1}{(\mu - \lambda)} = \frac{1}{4} = 0.25$$

(e) 
$$\rho = \frac{\lambda}{\mu} = \frac{8}{12} = 0.666$$

## 35

## 04.

Sol: 
$$\lambda = 20 \text{ h}^{-1}$$
;  $\mu = \frac{60}{2} \text{ h}^{-1} = 30 \text{ h}^{-1}$   
(a)  $P_0 = \left(1 - \frac{\lambda}{\mu}\right) = \left(1 - \frac{20}{30}\right) = \frac{1}{3}$   
(b)  $W_q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{20}{30(30 - 20)} = 0.066$   
(c)  $L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{(20)^2}{30(30 - 20)} = 1.33$   
(d)  $\rho = \frac{\lambda}{\mu} = \frac{20}{30} = 0.66$ 

05.

Since

**Sol:**  $\lambda = 2 \text{ hr}^{-1}$ ,  $\mu = 5 \text{ hr}^{-1}$ 

- **a)** Traffic intensity ( $\rho$ ) =  $\frac{\lambda}{\mu} = \frac{2}{5} = 0.4$
- b) No customer  $\Rightarrow$  service facility idle P<sub>0</sub> = 1 -  $\rho$  = 1 - 0.4 = 0.6
- c) The probability that there is no customer waiting to be served = Probability that atmost 1 customer at the counter who is getting the service or no one in the counter =  $P_0 + P_1$

$$P_0 + P_1 = \left(1 - \frac{\lambda}{\mu}\right) + \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)$$
$$= \left(1 - \frac{\lambda}{\mu}\right) \left(1 + \frac{\lambda}{\mu}\right) = 1 - \left(\frac{\lambda}{\mu}\right)^2$$
$$= 1 - 0.16 = 0.84$$

As  $\mu > \lambda \Rightarrow L_q$  is finite If  $\mu = \lambda \Rightarrow L_q$  is infinite

**06.** 

 Sol:
 A
 B

  $\lambda = 3 \text{ hr}^{-1}$   $\lambda = 3 \text{ hr}^{-1}$ 
 $\mu = 6 \text{ hr}^{-1}$   $\mu = 4 \text{ hr}^{1}$  

 NPC/hr = 15 Rs
 NPC/hr = 15

 LC/hr = 20
 LC/hr = 12

L<sub>S</sub> represents non productive machining

$$L_{S} = \frac{\lambda}{\mu - \lambda} \qquad \qquad L_{S} = \frac{\lambda}{\mu - \lambda}$$
$$= \frac{3}{6 - 3} = 1 \qquad \qquad = \frac{3}{4 - 3} = 3 \text{ m/c}$$

NPC/hr = $1 \times 15$ Rs NPc/hr = $3 \times 15$  = Rs. 45

LC/hr = 20/-

"A" should be hired

## Sequencing & Scheduling

01. Ans: (a)

Chapter

7

Sol: SPT rule

|   | Job | Process time (days) | Completion time |
|---|-----|---------------------|-----------------|
|   | 1   | 4                   | 4               |
|   | 3   | 5                   | 9               |
|   | 5   | 6                   | 15              |
|   | 6   | 8                   | 23              |
|   | 2   | 9                   | 32              |
| G | 4   | 10                  | 42              |
|   |     | $\Sigma C_i =$      | 125             |
|   |     |                     |                 |

Average Flow Time = 
$$\frac{\sum C_i}{\sum C_i}$$

$$=\frac{125}{6}=20.83$$

02. Ans: (a)

**Sol:** According to SPT rule total inventory cost is minimum.

## 03. Ans: (d)

Since

Sol: EDD rule can minimize maximum lateness. The job sequence is  $\mathbf{R} - \mathbf{P} - \mathbf{Q} - \mathbf{S}$ 

## 04. Ans: (d)

## Sol: Johnson's rule :

Optimum job sequence III - I - IV - IIDo the job 1<sup>st</sup> if the minimum time happens to be on the machine (M) and do it on the end if .it is on second machine (N). Select either in case of a tie.

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

## 05. Ans: (b)

Sol:

| Job | Μ  |    |     | Ν  |    |     | Idle |
|-----|----|----|-----|----|----|-----|------|
|     | In | РТ | Out | In | РТ | Out |      |
| III | 0  | 1  | 1   | 1  | 2  | 3   | -    |
| Ι   | 1  | 3  | 4   | 4  | 6  | 10  | 1    |
| IV  | 4  | 7  | 11  | 11 | 5  | 16  | 1    |
| II  | 11 | 5  | 16  | 16 | 2  | 18  | -    |

Total idle time on machine (N) = 3

## 06. Ans: (a)

Sol: Optimum sequence of jobs



R T S Q U P

## 07. Ans: (b)

**Sol:** Optimum sequence is

| Job | M <sub>1</sub> M <sub>2</sub> |    |     |     |    |      |  |  |  |
|-----|-------------------------------|----|-----|-----|----|------|--|--|--|
|     | In                            | РТ | Out | In  | РТ | Out  |  |  |  |
| R   | 0                             | 8  | 8   | 8   | 13 | 21   |  |  |  |
| Т   | 8                             | 11 | 19  | 21  | 14 | 35 S |  |  |  |
| S   | 19                            | 27 | 46  | 46  | 20 | 66   |  |  |  |
| Q   | 46                            | 32 | 78  | 78  | 19 | 97   |  |  |  |
| U   | 78                            | 16 | 94  | 97  | 7  | 104  |  |  |  |
| Р   | 94                            | 15 | 109 | 109 | 6  | 115  |  |  |  |

The optimal make-span time = 115 days

08. Ans: (c)

## **Conventional Practice Solutions**

## 01.

**Sol:** SPT rule is used for minimizing mean flow time

| ĺ | Job        | t <sub>i</sub> | Ci         | di | $C_i - d_i$ |       |
|---|------------|----------------|------------|----|-------------|-------|
| Ī | 4          | 2              | 2          | 9  | -7 -        | → E J |
|   | 2          | 3              | 5          | 12 | -7 —        | → E J |
|   | 1          | 5              | 10         | 10 |             | ► OS  |
|   | 5          | 6              | 16         | 8  | 8 —         | ► T J |
| N | <b>G</b> 3 | 8              | 24         | 20 | 4 —         | ► T J |
|   | ~          | ζ              | $C_i = 57$ |    |             |       |

EJ - EARLY JOB , OS - ON SCHEDULE

TJ - TARDY JOB

Minimum total  $cost = 57 \times 60 = 3,420$ Number of jobs which fail to meet due date are 2.

## 02.

Sol: SPT – rule minimizes average flow time

|    |                                         |         |                                   | _      |        |
|----|-----------------------------------------|---------|-----------------------------------|--------|--------|
| Tj | $C_i - D_i$                             | Di      | Ci                                | Ti     | Job    |
| 0  | -13                                     | 15      | 2                                 | 2      | 5      |
| 0  | -17                                     | 21      | 4                                 | 2      | 2      |
| 0  | -10                                     | 17      | 7                                 | 3      | 1      |
| 0  | -1                                      | 12      | 11                                | 4      | 4      |
| 0  | -9                                      | 24      | 15                                | 4      | 6      |
| 19 | 19                                      | 5       | 24                                | 9      | 3      |
|    |                                         |         |                                   |        |        |
| 19 | $\Sigma C_i - D_i = 49$                 |         | $\sum C_i = 63$                   |        |        |
|    | $\frac{-9}{19}$ $\Sigma C_i - D_i = 49$ | 24<br>5 | $\frac{15}{24}$ $\Sigma C_i = 63$ | 4<br>9 | 6<br>3 |

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

- Mean Flow Time, MFT =  $\frac{63}{6} = 10.5$ Mean Tardiness, MT =  $\frac{19}{6} = 3.17$
- No. of tardy job = 1

## EDD - rule minimizes mean tardiness

| Job | Ti | Ci              | Di         | $C_i - D_i$ | Tj |
|-----|----|-----------------|------------|-------------|----|
| 3   | 9  | 9               | 5          | 4           | 4  |
| 4   | 4  | 13              | 12         | 1           | 1  |
| 5   | 2  | 15              | 15         |             | 0  |
| 1   | 3  | 18              | 17         | 1           | 1  |
| 2   | 2  | 20              | 21         | -1          | 0  |
| 6   | 4  | 24              | 24         | 0           | 0  |
|     |    | $\sum C_i = 99$ | $\sum C_i$ | $-D_i = 6$  | 6  |
|     |    |                 |            |             |    |

MFT= 
$$\frac{\Sigma C_i}{n} = \frac{99}{6} = 16.5$$

$$MT = \frac{\Sigma C_i - D_i}{n} = \frac{6}{6} = 1$$

 $T_i$  = Process Time,  $C_i$  = Completion Time  $D_i$  = Due Date , No. of tardy job = 3

03.

Sol:

| FCFS | EDD  |   | FCFS EDD |   | SPT        | LPT | STACK | STA | CK |
|------|------|---|----------|---|------------|-----|-------|-----|----|
|      | (or) |   |          |   |            | (0  | or)   |     |    |
| А    | A    | F | С        | А | 1-10=-9    | A   | Α     |     |    |
| В    | F    | A | F        | В | 9-7=2      | Е   | F     |     |    |
| С    | Е    | Е | Е        | D | 7 - 2 =5   | F   | Е     |     |    |
| D    | С    | С | D        | Е | 7-6=1      | D   | D     |     |    |
| E    | D    | D | В        | F | 2-5=-3     | В   | В     |     |    |
| F    | В    | В | A        | C | 1 - 4 = -3 | С   | С     |     |    |

38

## ESE - Text Book Solutions

## Note:

 $Stack = Due \ Date \ (DD) - Processing \ time \ (P.T)$ 

## 04. Ans: F-C-G-B-E-D-A

Sol: Calendar date required (CDR)

Processing time (PT) Process time remained (PTR)

|    |     |     |    | <b>Critical ratio</b>           |
|----|-----|-----|----|---------------------------------|
| V  | Job | CDR | РТ | _CDR – Todays date              |
|    |     |     |    | - PTR                           |
|    | A   | 190 | 5  | (190-175)/5 = 3                 |
| G  | AC  |     |    | $\rightarrow$ Ahead of schedule |
|    | В   | 178 | 2  | (178 - 175)/2 = 1.5             |
|    |     | EZ. |    | $\rightarrow$ Ahead of schedule |
|    | С   | 184 | 10 | (184 - 175)10 = 0.9             |
|    |     |     |    | $\rightarrow$ Behind schedule   |
|    | D   | 181 | 3  | (181 - 175)/3 = 2               |
|    |     |     |    | $\rightarrow$ Ahead of schedule |
|    | Е   | 205 | 17 | (205-175)/17 = 1.76             |
|    |     |     |    | $\rightarrow$ Ahead of schedule |
|    | F   | 187 | 15 | (187 - 175)/15 = 0.8            |
| 99 | 5   |     |    | $\rightarrow$ Behind schedule   |
|    | G   | 184 | 9  | (184 - 175)/9 = 1               |
|    |     |     |    | $\rightarrow$ on schedule       |

If critical ratio is one job will be on schedule. If critical ratio is less than one job will be behind schedule.

If critical ratio is greater than one job will be ahead of schedule.

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

IM & OR

## 05.

Sol:

| Job | $T_j$ | $\mathbf{F}_{\mathbf{j}}$ | Dj | $\mathbf{L}_{\mathbf{j}}$ | $T_j = \max \text{ of } (0, L_j)$ |
|-----|-------|---------------------------|----|---------------------------|-----------------------------------|
| а   | 8     | 8                         | 9  | -1                        | 0                                 |
| b   | 7     | 15                        | 18 | -3                        | 0                                 |
| с   | 9     | 24                        | 21 | 3                         | 3                                 |
| d   | 12    | 36                        | 38 | -2                        | 0                                 |
| e   | 14    | 50                        | 41 | 9                         | 9                                 |
| f   | 10    | 60                        | 60 | 0                         | 0                                 |

- (i) Make-span time = 60 days
- (ii) Mean flow time =  $\frac{\Sigma F_y}{n} = \frac{193}{6} = 32.16$
- (iii) No. of tardy jobs = 2 (c & e)
- (iv) Mean tardiness,  $\overline{T} = \frac{\Sigma T_j}{n} = \frac{12}{6} = 2$

## **06.**

Sol: Sequence by Johnson's Rule is: 6, 3, 4, 1, 2, 5

| Job | DEN | TER                              | PAI | NTERS |
|-----|-----|----------------------------------|-----|-------|
|     | Tin | T <sub>in</sub> T <sub>out</sub> |     | Tout  |
| 6   | 0   | 1                                | 1   | 7     |
| 3   | 1   | 3                                | 7   | 12    |
| 4   | 3   | 8                                | 12  | 16    |
| 1   | 8   | 12                               | 16  | 19    |
| 2   | 12  | 22                               | 22  | 24    |
| 5   | 22  | 28                               | 28  | 30    |

Minimum Make Span = 30

## 07.

39

**Sol:** Optimum sequence :



## **TABULAR METHOD :**

| Γ | Ioh                | M/0               | C -I           | <b>M</b> /      | C - II         |
|---|--------------------|-------------------|----------------|-----------------|----------------|
|   | 300                | Ti                | T <sub>0</sub> | Ti              | T <sub>0</sub> |
|   | А                  | 0                 | 2              | 2               | 12             |
| ų | В                  | 2                 | 5              | 12              | 20             |
|   | С                  | 5                 | 12             | 20              | 25             |
| G | Е                  | 12                | 18             | 25              | ×29            |
| ſ | C D                | 18                | 27             | 29              | 30             |
|   | Processing<br>time | 2                 | 7              |                 | 28             |
|   | Idle time          | 30-2              | 27=3           | (30-28=2)       |                |
|   | %utilization       | $\frac{27}{30}$ × | 100            | $\frac{28}{30}$ | ×100           |

## GANTT CHART

| $\langle$ | 0 2    | 2 5 | 5 1  | 12 1 | 8  |     | 27 | ,     | 3   | 0  |
|-----------|--------|-----|------|------|----|-----|----|-------|-----|----|
| M/C I     | A-2    | В-3 | C-7  | E6   |    | D-9 |    | Idle- | -3  |    |
| M/C II    | Idle-2 |     | A-10 | B-8  |    | C-5 | Е  | -4    | D-1 | ]  |
|           | 0      | 2   |      | 12   | 20 | 2:  | 5  | 2     | 9 3 | 50 |
|           |        |     |      |      |    |     |    |       |     |    |

**08**.

Sol: Optimum Sequence :

| A C D B E |
|-----------|
|-----------|

PT = processing time

ACE Engineering Publications

| Iah | Ma | achin | e – 1 | Ma | achin | e – 2 | Idle |
|-----|----|-------|-------|----|-------|-------|------|
| JOD | In | РТ    | Out   | In | РТ    | Out   | Time |
| А   | 0  | 2     | 2     | 2  | 4     | 6     | -    |
| С   | 2  | 5     | 7     | 7  | 6     | 13    | 1    |
| D   | 7  | 6     | 13    | 13 | 7     | 20    | -    |
| В   | 13 | 7     | 20    | 20 | 8     | 28    | -    |
| E   | 20 | 5     | 25    | 28 | 3     | 31    | _    |

Minimum time for completion of all jobs = 31

## **09.**

**Sol:** Condition : Max  $(t_{2j}) \le Min (t_{ij} \text{ or } t_{3j})$  $4 \le 4 \text{ or } 4$ 

| Comp | Χ | Μ | W  |
|------|---|---|----|
| N    | 8 | 3 | -5 |
| А    | 4 | 4 | 6  |
|      |   |   |    |

| 0 | 7 | 3 | 7 |
|---|---|---|---|
| L | 5 | 4 | 8 |
| Е | 6 | 4 | 4 |

ESE – Text Book Solutions

Since the condition is satisfied, we can create two virtual Machines 'G' & 'H'.

$$X = t_{1j}$$
,  $M = t_{2j}$ ,  $W = t_{3j}$ 

| Comp  | Machine G (X+M) | Μ | [ach | ine ] | H (N | 1+W | <i>'</i> ) |  |  |  |
|-------|-----------------|---|------|-------|------|-----|------------|--|--|--|
| Ν     | 11              |   |      | 00    | 8    |     |            |  |  |  |
| А     | 8               |   |      | 1     | 0    |     |            |  |  |  |
| 0     | O 10            |   |      |       | 10   |     |            |  |  |  |
| L     | L 9             |   |      |       | 12   |     |            |  |  |  |
| Е     | 10              |   |      |       | 8    |     |            |  |  |  |
| V Opt | A               | L | 0    | N     | Е    |     |            |  |  |  |

|      |    |         |     |    |        |     |      | 17 A. |        |     |      |
|------|----|---------|-----|----|--------|-----|------|-------|--------|-----|------|
| Comp | N  | lachine | X   | Μ  | achine | Μ   | Idle | M     | achine | W   | Idle |
|      | In | РТ      | Out | In | РТ     | Out |      | In    | РТ     | Out |      |
| А    | 0  | 4       | 4   | 4  | 4      | 8   | 4    | 8     | 6      | 14  | 8    |
| L    | 4  | 5       | 9   | 9  | 4      | 13  | 1    | 14    | 8      | 22  | -    |
| 0    | 9  | 7       | 16  | 16 | 3      | 19  | 3    | 22    | 7      | 29  | -    |
| N    | 16 | 8       | 24  | 24 | 3      | 27  | 5    | 29    | 5      | 34  | -    |
| Е    | 24 | 6       | 30  | 30 | 4      | 34  | 3    | 34    | 4      | 38  | -    |



ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

41

## (iii) % utilization :

Machine X = 
$$\frac{30}{38} \times 100 = 78.94\%$$
  
Machine m =  $\frac{38 - 20}{38} \times 100 = 47.73\%$   
Machine W =  $\frac{38 - 8}{38} \times 100 = 78.94\%$ 

А

10.

Sol: Optimum Sequence :

|   | N  | <b>Aachi</b> | nes |    | Polis | h   | Idle |
|---|----|--------------|-----|----|-------|-----|------|
|   | In | РТ           | Out | In | РТ    | Out |      |
| D | 0  | 4            | 4   | 4  | 5     | 9   | 4    |
| С | 4  | 5            | 9   | 9  | 12    | 21  | -    |
| Е | 9  | 6            | 15  | 21 | 9     | 30  | -    |
| F | 15 | 9            | 24  | 30 | l     | 41  | -    |
| G | 24 | 7            | 31  | 41 | 6     | 47  | -    |
| В | 31 | 6            | 37  | 47 | 3     | 50  | -/   |
| А | 37 | 10           | 47  | 50 | 2     | 52  | -    |

D C E F G B

Minimum flow time = 52

## 11.

**Sol:** The given machine sequence is 'ACB' hence, we need to re-arrange the given data

| Job | Α | С | В |
|-----|---|---|---|
| 1   | 5 | 2 | 3 |
| 2   | 7 | 1 | 7 |
| 3   | 6 | 4 | 5 |
| 4   | 9 | 5 | 6 |
| 5   | 5 | 3 | 7 |

Max {  $t_{2j}$ }  $\leq \min{\{t_{1j} \text{ or } t_{3j}\}}$ 5  $\leq$  5 or 3

| Job |    | Machine G | Machine H |
|-----|----|-----------|-----------|
|     | 40 | (A+C)     | (C+B)     |
|     | 1  | 7         | 5         |
|     | 2  | 8         | 8         |
|     | 3  | 10        | 9         |
|     | 4  | 14        | 11        |
|     | 5  | 8         | 10        |

## **Optimum sequence 1**

| 9 | Machine |   |   |   | Machine |
|---|---------|---|---|---|---------|
|   | G       |   |   |   | Н       |
|   | 5       | 4 | 3 | 2 | 1       |

## **Optimum sequence 2**

| Machine |   |   |   | Machine |
|---------|---|---|---|---------|
| G       |   |   |   | Н       |
| 2       | 5 | 4 | 3 | 1       |

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

| Job |    | Α  |     |    |    | B   |      |    |    | С   |      |
|-----|----|----|-----|----|----|-----|------|----|----|-----|------|
| 000 | In | РТ | Out | In | РТ | Out | Idle | In | РТ | Out | Idle |
| 5   | 0  | 5  | 5   | 5  | 3  | 8   | 5    | 8  | 7  | 15  | 8    |
| 4   | 5  | 9  | 14  | 14 | 5  | 19  | 6    | 19 | 6  | 25  | 4    |
| 3   | 14 | 6  | 20  | 20 | 4  | 24  | 1    | 25 | 5  | 30  | _    |
| 2   | 20 | 7  | 27  | 27 | 1  | 28  | 3    | 30 | 7  | 37  | _    |
| 1   | 27 | 5  | 32  | 32 | 2  | 34  | 4    | 37 | 3  | 40  |      |





## Chapter 8

## **Transportation Model**

- 01. Ans: (c)
- **Sol:** A no. of allocations : m + n 1 $\Rightarrow 5+3-1=7$

#### 02. Ans: (a)

Sol: For degeneracy in transportations, number of allocations < (m + n) - 1where m = no. of rows,n = no. of columns

## 03. Ans: (b)

Sol: In Transportation problem for solving the initial feasible solution for total cost, approximation Vogel's methods are employed for obtaining solutions which are faster than LPP due to the reduced number of equations for solving.

> Optimality is reached using MODI/ U-V method or stepping stone method.

#### **04**. Ans: (b)

Sol: It generates the best initial basic feasible solution. This method is the best choice in order to get an optimal solution within minimum number of iterations.

> The Vogel's approximation method is also known as the penalty method.

#### 05. Ans: (a)

**Sol:** No. of allocations = 5

 $\therefore$  no. of allocations = m + n - 1

m + n - 1 = 4 + 3 - 1

: It is a degenerate solution

#### **06**. Ans: (a)

| Sol: |  |
|------|--|
|      |  |
|      |  |
|      |  |
| NGA  |  |

|        | 1  | 2       | 3       | 4        | Supply   |
|--------|----|---------|---------|----------|----------|
| A      | 10 | 5       | 20      | 11<br>10 | 15       |
| В      | 12 | 7<br>10 | 9<br>15 | 20       | 25       |
| AC-46  | 5  | 14      | 16      | 18<br>5  | 10       |
| Demand | 5  | 15      | 15      | 15       | 50<br>50 |

Evaluation of empty cells:

Cell (A1) Evaluation =  $C_{A1}-C_{A4}+C_{C4}-C_{C1}$ 

=10 - 11 + 18 - 5 = 12

Cell (A3) Evaluation =  $C_{A3} - C_{A2} + C_{B2} - C_{B3}$ = 20 - 9 + 7 - 2 = 16

Cell (B1) Evaluation =12-7+2-11+18-4 = 10Cell (B4) Evaluation = 20 - 7 + 2 - 11 = 4Cell (C2) Evaluation = 14 - 2 + 11 - 18 = 5Cell (C3) Evaluation = 16-9+7-2-18=5If cell cost evaluation value is '-ve', indicates further unit transportation cost is decreasing and if cost evaluation value is '+ve' indicates further unit transportation cost is increases. If cost evaluation value is zero, unit transportation cost doesn't change.

|             | ACE<br>Engineering Fublications                                                                                                                                                | 44             | ESE – Text Book Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ∴<br>Comr   | As for A3 cell cost evaluation is +1<br>means that, if we transport goods to A3 th<br>unit transportation cost is increased by 16/-<br>non Data for Questions Q07, Q08 & Q09 : | 6,<br>ne<br>·. | <ul> <li>∴ The reduction in the transportation cost is 25 × 19 = 475</li> <li>10. Ans: (c) Sol:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 07.         | Ans: (b) 08. Ans: (a)                                                                                                                                                          |                | 10 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 09.<br>Sol: | Ans: (b)<br>$ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                            | st<br>is<br>m  | $\frac{1}{7}$ $\frac{1}{5}$ $\frac{1}$ |
| ACE En      | gineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubanesw                                                                                                           | ar • Luckno    | ow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

IM & OR

## **Conventional Practice Solutions**

01.

Sol: Total supply = 80+60+40+20=200 & Total demand = 60+60+30+40+10=200

 $\therefore$  Total supply = Total demand

The problem is balanced

| Destination<br>Source | 1  | 2  | 3  | 4  | 5   | Available |
|-----------------------|----|----|----|----|-----|-----------|
| Α                     | 4  | 3  | 1  | 2  | 6   | 80        |
| В                     | 5  | 2  | 3  | 4  | 5   | 60        |
| С                     | 3  | 50 | 6  | 3  | 2 4 | 40        |
| D                     | 2  | 4  | 4  | 5  | 3   | 20        |
| Required              | 60 | 60 | 30 | 40 | 10  | 200       |

(i) By North West Corner rule :



Total transportation cost =  $4 \times 60 + 3 \times 20 + 2 \times 40 + 3 \times 20 + 6 \times 10 + 3 \times 30 + 5 \times 10 + 3 \times 10 = 670$  /-

## 02.

**Sol:** Total supply = 14 + 16 + 5 = 35

Total demand = 6 + 10 + 15 + 4 = 35

 $\therefore$  Total supply = Total demand

It is a balanced transportation model

### ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

| Engineering Publications | 46 | ESE – Text Book Solutions |
|--------------------------|----|---------------------------|
|                          |    |                           |



By North West corner rule

 $\times 2 + 18 \times 14 + 60 \times 1 + 52 \times 4 = 862 / -$ 

(ii) Least Cost Method :



Transportation cost =  $15 \times 6 + 22 \times 8 + 18 \times 15 + 40 \times 1 + 35 \times 2 + 52 \times 3 = \text{Rs. } 802 /-$ 

## (iii) VAM

(i)

- Step 1: Find out the difference between least and next highest numbers for rows and columns. Which is called as the penalty.
- Step 2: Select the maximum penalty row and column and allocate the maximum possible amount to the box with least cost.

|            | S <sub>1</sub>      | $S_2$                              | S <sub>3</sub>             | <b>S</b> <sub>4</sub>                    | Supply   |                       |    |    |    |
|------------|---------------------|------------------------------------|----------------------------|------------------------------------------|----------|-----------------------|----|----|----|
| $W_1$      | 6                   | 5                                  |                            | 3                                        | 14/8/3/0 | 7                     | 3  | 3  | 1  |
|            | 15                  | 22                                 | 26                         | -25                                      |          | 1                     |    | _  |    |
| $W_2$      |                     |                                    | 15                         | 1                                        | 16/1/0   | 18                    | 10 | 10 | 22 |
|            | 36                  | 38                                 | 18                         | 40                                       |          |                       |    |    |    |
| $W_3$      |                     | 5                                  |                            |                                          | 5 / 0    | 10                    | 17 | -  | -  |
|            | 45                  | 35                                 | 60                         | 52                                       |          |                       |    |    |    |
| <b>р</b> 1 | ~                   |                                    |                            |                                          | <b>N</b> | -                     |    |    |    |
| Demand     | 6                   | 10                                 | 15                         | 4                                        | 35       | and the second second |    |    |    |
| Demand     | 6<br>/ 0            | 10<br>/ 5                          | 15<br>/ 0                  | 4<br>/ 0                                 | 35       |                       |    |    |    |
| Demand     | 6<br>/ 0            | 10<br>/ 5<br>/ 0                   | 15<br>/ 0                  | 4<br>/ 0                                 | 35       |                       |    |    |    |
| Demand     | 6<br>/ 0<br>21      | 10<br>/ 5<br>/ 0<br>13             | 15<br>/ 0<br>8             | 4<br>/ 0<br>15                           | 35       |                       |    |    |    |
| Demand     | 6<br>/ 0<br>21<br>- | 10<br>/ 5<br>/ 0<br>13<br>13       | 15<br>/ 0<br><u>8</u><br>8 | 4<br>/ 0<br><u>15</u><br>15              | 35       |                       |    |    |    |
| Demand     | 6<br>/ 0<br>21<br>- | 10<br>/ 5<br>/ 0<br>13<br>13<br>16 | 15<br>/ 0<br>8<br>8<br>6   | 4<br>/ 0<br><u>15</u><br><u>15</u><br>15 | 35       |                       |    |    |    |

Transportation cost =  $15 \times 6 + 22 \times 5 + 25 \times 3 + 18 \times 15 + 40 \times 1 + 35 \times 5 = 760$  /-

## ACE

47



 $P-S_2 - 120$  $Q-S_3 - 140$  $R-S_1 - 125$ **Total = 385** 

#### Ans: (1-B, 2-D, 3-C, 4-A) 05.

## Sol: Step-1:

Take the row minimum of subtract it from all elements of corresponding row.

|   | 1 | 0 | 2 | 3 |
|---|---|---|---|---|
|   | 0 | 2 | 2 | 1 |
|   | 8 | 5 | 0 | 1 |
| 0 | 0 | 6 | 2 | 4 |

## **Step – 2** :

Take the column minimum & substract it from all elements of corresponding column.

| J | 1  | 0 | 2 | 2 |
|---|----|---|---|---|
|   | 0  | 2 | 2 | 0 |
|   | 8  | 5 | 0 | 0 |
|   | 0  | 6 | 2 | 3 |
| L | -/ |   | · |   |

## Step – 3 :

Select single zero row or column and assign at the all where zero exists. If there is no single zero row or column. Then use straight line method.

|   | А | В | С | D |
|---|---|---|---|---|
| 1 | 1 | 0 | 2 | 2 |
| 2 | 0 | 2 | 2 | 0 |
| 3 | 8 | 5 | 0 | 0 |
| 4 | 0 | 6 | 2 | 3 |

1 - B: 7 2 - D: 8 3 - C: 2 4 - A: 5Total cost = 22

## **Conventional Practice Solutions**

## 01.



It may be noted there are no remaining zeroes and row -4 and column -4 each has no assignment. Thus optimal solution is not reached at this stage. Therefore, proceed to following important steps.

ESE – Text Book Solutions

## **Step – 4 :**

48

Draw the minimum number of horizontal and vertical lines necessary to cover all zeroes at least once.

## Take the above Table



- (i) Mark row 4 in which there is no assignment
- (ii) Mark column 1 which have zeroes in marked column.
  - (iii) Next mark row 2 because this row contains assignment in marked column 1.

No further rows or columns will be required to mark during this procedure.

- (iv) Draw the required lines as follows.
  - (a) Draw  $L_1$  through marked column 1
  - (b) Draw L<sub>2</sub> and L<sub>3</sub> through unmarked row (1 and 3)

## IM & OR

## Step – 5 :

Select the smallest element (2).

Among all the uncovered elements of the above table and substract this value from all the elements of the matrix not covered by lines and add to every element that lie at the intersection of the lines  $L_1$ ,  $L_2$ , and  $L_3$  and leaving the remaining element unchange.

|       | $\mathbf{J}_1$ | $J_2$ | $J_3$ | $J_4$ |
|-------|----------------|-------|-------|-------|
| $C_1$ | 7              | 0     | 10    | 7     |
| $C_2$ | 0              | 4     | 3     | 1     |
| C3    | 10             | 5     | 0     | 0     |
| $C_4$ | 0              | 4     | 0     | 5     |

It may be added that there are no remaining zeroes and every row and column has an assignment.

Since, the no. of assignment = no. of row or column

... The solution is optimal

The pattern of assignment at which job has been assigned to each contractor.

| Contractor     | Job            | Amount (Rs)×1000 |
|----------------|----------------|------------------|
| C <sub>1</sub> | J <sub>2</sub> | 5                |
| $C_2$          | $\mathbf{J}_1$ | 3                |
| C <sub>3</sub> | $J_4$          | 3                |
| $C_4$          | $J_3$          | 7                |
|                |                | 18×1000=18000    |

Minimum amount = Rs. 18,000/-

## 02.

49

## Sol:

|     |   | Job   | Job                 | Job | Job |             |
|-----|---|-------|---------------------|-----|-----|-------------|
|     |   | 1     | 2                   | 3   | 4   |             |
|     | A | 20    | 36                  | 31  | 27  |             |
|     | B | 24    | 34                  | 45  | 22  |             |
|     | С | 22    | 45                  | 38  | 18  |             |
|     | D | 37    | 40                  | 35  | 28  |             |
|     |   |       |                     | •   |     |             |
| 200 | А | 0     | 16                  | 11  | 7   | Row         |
|     | В | 2     | 12                  | 23  | 0   | Transaction |
|     | С | 4     | 27                  | 20  | 0   |             |
|     | D | 9     | 12                  | 7   | 0   |             |
|     |   |       |                     |     |     |             |
|     | А | 0     | 4                   | 4   | 7   | Column      |
|     | В | 2     | Ø                   | 16  | 0   | Iransaction |
|     | С | 4     | 15                  | 13  | 0   |             |
|     | D | 9     | Ø                   | 0   | 0   |             |
|     |   |       |                     | T   | •   |             |
|     |   | A – J | $J_1 \rightarrow 2$ | 0   |     |             |
| 9   |   | B – J | $f_2 \rightarrow 3$ |     |     |             |
|     |   | C – J | $4 \rightarrow 18$  |     |     |             |
|     |   | D - J | $J_3 \rightarrow 3$ | 5   |     |             |
|     | 1 |       | 10                  | 7   |     |             |

| ESE – | Text E   | Book | Solu | tions  |
|-------|----------|------|------|--------|
| LOL   | I ONLO L | 0011 | 0010 | 010110 |

## 03.

- **Sol:** Here no. of rows  $\neq$  no. of column
  - $\therefore$  The algorithm is not balanced so add one dummy column.

| Operates | Machine |    |    |       |  |  |  |  |
|----------|---------|----|----|-------|--|--|--|--|
|          | Α       | В  | С  | Dummy |  |  |  |  |
| 1        | 9       | 26 | 15 | 0     |  |  |  |  |
| 2        | 13      | 27 | 6  | 0     |  |  |  |  |
| 3        | 35      | 20 | 15 | 0     |  |  |  |  |
| 4        | 18      | 30 | 20 | -0    |  |  |  |  |

**Step – 1:** 

| 9  | 26 | 15 | 0 | k |
|----|----|----|---|---|
| 13 | 27 | 6  | 0 |   |
| 35 | 20 | 15 | 0 |   |
| 18 | 30 | 20 | 0 |   |
| -  |    |    | 1 |   |

**Step – 2:** 

| 0  | 6  | 9  | 0 |
|----|----|----|---|
| 4  | 7  | 0  | 0 |
| 26 | 0  | 9  | 0 |
| 9  | 10 | 14 | 0 |

Here the operator - 4 is assigned to dummy column.

- $\therefore$  He is the idle worker.
- TC = 9 + 6 + 20 + 0 = 35

Since 1995

|   | ACE                      |
|---|--------------------------|
| 3 | Engineering Publications |

51



01. Ans: (d) 02. Ans: (b)

03. Ans: (b)

Sol:

| Μ | onths | Month 1      | Month 2   | Month 3          | Unused<br>capacity | Capacity<br>Available |
|---|-------|--------------|-----------|------------------|--------------------|-----------------------|
|   | RT    | 90           | 22<br>10  | A C 24           | 10                 | 100                   |
| 1 | ОТ    | 24<br>V      | 26        | 28               | 32                 | 20                    |
|   | RT    |              | 20<br>100 | 22               | 51                 | 100                   |
| 2 | ОТ    | $\mathbf{N}$ | 24        | 26               |                    | 20                    |
|   | RT    |              |           | 20<br>80         |                    | 80                    |
| 3 | ОТ    |              |           | 2 <u>4</u><br>30 | 10                 | 40                    |
|   | RT    |              |           |                  |                    |                       |
|   | ОТ    | 90           | 130       | 110              |                    |                       |

Level of planned production in overtimes in 3<sup>rd</sup> period is '30'.

RT = Regular time

OT = Over time

ACE Engineering Publications

| 52 | ESE – Text Book Solutions |
|----|---------------------------|
|    |                           |

## 04. Ans: (b)

Sol:

|       | Cumulativa | Cumulativa | Ir  | iventory  | Cost             |                   |  |
|-------|------------|------------|-----|-----------|------------------|-------------------|--|
| Month | Production | Demand     | End | Stock out | End<br>inventory | Stock<br>out cost |  |
| 1     | 100        | 80         | 20  | -         | 40               | -                 |  |
| 2     | 180        | 180        | -   | -         | -                | -                 |  |
| 3     | 250        | 260        | -   | 10        | -                | 100               |  |
| 4     | 320        | 300        | 20  | -         | 40               | -                 |  |
|       |            |            |     |           | 80               | 100               |  |
|       |            |            |     | Total     | 180              |                   |  |

## 05. Ans: (b)

06. Ans: (d)

**Conventional Practice Solutions** 

## 01. Ans:

Sol:

| Supply from         |          |                 |    |                   | Total Capacity |                   |                   |                     |                       |
|---------------------|----------|-----------------|----|-------------------|----------------|-------------------|-------------------|---------------------|-----------------------|
|                     |          | Period 1 Period |    | Period 2          | P              | eriod 3           | Period 4          | Un used<br>capacity | Available<br>(supply) |
| Beginning inventory |          | 200             | 0  | 5                 |                | 10                | 15                |                     | 200                   |
| 1                   | Regular  | 700             | 60 | 65                |                | 70                | 75                | 0                   | 700                   |
| 1                   | Overtime | 7               | 0  | 75                |                | 80                | 85                | 300                 | 300                   |
| 2                   | Regular  |                 |    | <sup>500</sup> 60 |                | 65                | 200 70            | 0                   | 700                   |
| 2                   | Overtime |                 |    | 70                |                | 75                | 80                | 300                 | 300                   |
| 3                   | Regular  |                 |    |                   | -              | <sup>200</sup> 60 | <sup>500</sup> 65 | 0                   | 700                   |
| 5                   | Overtime |                 |    |                   |                | 70                | <sup>200</sup> 75 | 100                 | 300                   |
| 1                   | Regular  |                 |    |                   |                |                   | <sup>700</sup> 60 | 0                   | 700                   |
| -                   | Overtime |                 |    |                   |                |                   | <b>300</b> 70     | 0                   | 300                   |
|                     |          | 90              | )0 | 500               |                | 200               | 1900              | 700                 | 4200                  |

 $Total \ cost = (700 \times 60) + (500 \times 60) + (200 \times 70) + (200 \times 60) + (500 \times 65) + (200 \times 75)$ 

 $+(700 \times 60)+(300 \times 70) = \text{Rs } 2,08,500/-$ 

|  | Engineering Publications | 53 | IM & OR |
|--|--------------------------|----|---------|
|--|--------------------------|----|---------|

## 02. Ans:

Sol:

|   |             |                   | Total Capacity    |              |                   |                    |                       |
|---|-------------|-------------------|-------------------|--------------|-------------------|--------------------|-----------------------|
|   | Supply from | Period1           | Period2           | Period3      | Period4           | Unused<br>capacity | Available<br>(supply) |
|   | Beginning   | <sup>150</sup> 0  | 2                 | 4            | 6                 | -                  | 150                   |
|   | Inventory   |                   |                   |              |                   |                    |                       |
| 1 | Regular     | <sup>900</sup> 25 | 27                | 29           | 31                | -                  | 900                   |
|   | Overtime    | <sup>150</sup> 30 | 32                | 34           | 36                | -                  | 150                   |
|   | Subcontract | 200 35            | GIN               | EERIN        | AC                | 100 _              | 300                   |
| 2 | Regular     |                   | <sup>600</sup> 25 | 27           | 29                |                    | 600                   |
|   | Overtime    | A                 | <sup>125</sup> 30 | 32           | 34                |                    | 125                   |
|   | Subcontract | 10                | 175 35            | -            | -                 | 125                | 300                   |
| 3 | Regular     |                   |                   | 700 25       | 27                | - / /              | 700                   |
|   | Overtime    |                   |                   | 100 30       | 50 32             |                    | 150                   |
|   | Subcontract |                   | Si                | 35<br>nce 19 | 95                | 300 -              | 300                   |
| 4 | Regular     |                   |                   |              | 800 25            | -                  | 800                   |
|   | Overtime    |                   |                   |              | 200 30            | -                  | 200                   |
|   | Subcontract |                   |                   |              | <sup>250</sup> 35 | <sup>50</sup> -    | 300                   |
|   |             | 1400              | 900               | 800          | 1200+100          | 575                | 4975<br>4975          |

Total cost =  $(900 \times 25) + (150 \times 30) + (200 \times 35) + (600 \times 25) + (125 \times 30) + (175 \times 35) + (700 \times 25) + (100 \times 30) + (50 \times 32) + (800 \times 25) + (200 \times 30) + (250 \times 35) = \text{Rs } 1,15,725/-$ 

## 01. Ans: (b)

## 02. Ans: (c)

**Sol:** Based on master production schedule, a material requirements planning system :

- Creates schedules, identifying the specific parts and materials required to produce end items.
- Determines exact unit numbers needed.
- Determines the dates when orders for those materials should be released, based on lead times.

## 03. Ans: (d)

Sol: Refer to the solution of Q.No. 02

## 04. Ans: (c)

Sol: MRP has three major input components:

- Master production Schedule of end items required. It dictates gross or projected requirements for end items to the MRP system.
- 2. Inventory status file of on-hand and onorder items, lot sizes, lead times etc.
- 3. Bill of materials (BOM) or Product structure file what components and sub assemblies go into each end product.

**06.** Ans: (c) 07. Ans: (b)

Ans: (c)

08. Ans: (b)



Maximum Lead time = 12 weeks

## **Conventional Practice Solutions**

01.  
Sol: 
$$A \rightarrow 1 \times 10 = 10$$
  
 $B \rightarrow 2 \times 10 = 20$   
 $C \rightarrow (1 \times 2 \times 10) + (3 \times 4 \times 2 \times 10) = 260$   
 $D \rightarrow (4 \times 2 \times 10) = 80$   
 $E \rightarrow (3 \times 4 \times 2 \times 10) + (2 \times 2 \times 10) + (4 \times 10) = 320$ 

ACE Engincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

1005

54

05.

| Engineering Publications |  | <b>ACE</b> |
|--------------------------|--|------------|
|--------------------------|--|------------|

## 02.

Sol:

| Order Quantity = 200  | Week |    |     |     |     |     |    |     |
|-----------------------|------|----|-----|-----|-----|-----|----|-----|
| LT = 3 Weeks          | 1    | 2  | 3   | 4   | 5   | 6   | 7  | 8   |
| Project required      | 40   | 85 | 10  | 60  | 130 | 110 | 50 | 170 |
| Receipts              |      |    |     | 200 |     | 200 |    | 200 |
| On hand inventory     | 100  | 15 | 5   | 145 | 15  | 105 | 55 | 85  |
| Planned order release | 200  |    | 200 |     | 200 |     |    |     |

(On hand inventory)<sub>t</sub>

- $1^{st}$  week = 140 + 0 40 = 100 $3^{rd}$  week = 15 + 0 - 10 = 5 $5^{th}$  week = 145 + 0 - 130 = 15 $7^{th}$  week = 105 + 0 - 50 = 55
- .: Order before 3-weeks

 $2^{nd}$  week = 100 + 0 - 85 = 15  $4^{th}$  week = 5 + 200 - 60 = 145  $6^{th}$  week = 15 + 200 - 110 = 105 $8^{th}$  week = 55 + 200 - 170 = 85

## 03.

Sol:



ACE Engineering Publications



ESE - Text Book Solutions

 $A = (1 \times 100) = 100$   $B = (1 \times 100) = 100$   $C = (1 \times 100) = 100$   $D = (2 \times 1 \times 100) = 200$   $E = (2 \times 1 \times 100) = 100$   $F = (1 \times 1 \times 100 + 1 \times 1 \times 100) = 200$   $G = (1 \times 1 \times 100) = 100$   $H = (3 \times 1 \times 100) = 300$   $J = (2 \times 1 \times 100 + 2 \times 2 \times 1 \times 100) = 600$  $K = (1 \times 2 \times 1 \times 100) = 200$ 

04.

Sol:



Net required

 $A = (1 \times 1 \times 20 - 10) = 10$   $B = 1 \times 20 - 1 \times 5 = 15$   $C = (1 \times 1 \times 20 - 1 \times 10 - 10) = 0$  $D = 2 \times 1 \times 20 - 2 \times 10 - 10 = 10$ 

Chapter **Break Even Analysis** 12 01. Ans: (c) Sol: Total fixed cost, TFC = Rs 5000/-Sales price, SP = Rs 30/-Variable cost, VC = Rs 20/-Break even production per month,  $Q^* = \frac{TFC}{SP - VC} = \frac{5000}{30 - 20} = 500$  units 02. Ans: (a) **Sol:** Total cost = 20 + 3X -----(1) Total cost = 50 + X -----(2) By solving equ. (1) and (2)2X = 30X = 15 units · . When X = 10 units  $TC_1 = 20 + (3 \times 10) = Rs 50/ TC_2 = 50 + (1 \times 10) = Rs 60/-$ Among both, total cost for process is less So process-1 is choose.

## 03. Ans: (c)

**Sol:** In automated assembly there are less labour, so variable cost is less, but fixed is more because machine usage is more. In job shop production, labour is more but machine is less. So variable cost is more and fixed cost is less.

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

04. Ans: (c) Sol: TC = Total cost TC<sub>A</sub> = Total cost for jig-A TC<sub>B</sub> = Total for jig-B TC<sub>A</sub> = TC<sub>B</sub> 800 + 0.1X = 1200 + 0.08X 0.02X = 400 $\therefore X = \frac{400}{0.02} = \frac{400}{2} \times 100 = 20,000$  units

## 05. Ans: (d)

- Sol: Sales price Total cost = Profit  $(C_P \times 14000) - (47000 + 14000 \times 15) = 23000$ ∴  $C_P = 20$
- 06. Ans: (b)

07. Ans: (a)

- 08. Ans: (c)
- 09. Ans: 1500
- Sol: X

 $S_1 = 100$  $S_2 = 120$  $F_1 = 20,000$  $F_2 = 8000$  $V_1 = 12$  $V_2 = 40$ 

$$P = q(S - V) - F$$

$$P_1 = q(100 - 12) - 20,000$$

$$P_2 = q(120 - 40) - 80,000$$

$$P_1 = P_2$$

$$88q - 20,000 = 80q - 80,000$$

$$12000 = 8q$$

$$\Rightarrow q = 1500$$

57

Sol: At breakeven point Total cost = Total revenue FC + VC × Q = SP × Q  $Q = \frac{FC}{(SP - VC)}$ FC = 1000/-, VC = 3/-, SP = 4/-  $Q = \frac{1000}{(4-3)} = 1000$  units If sales price is increased to 25%  $SP = 4 + \frac{1}{4} \times 4 = 5/ Q^* = \frac{1000}{(5-3)} = 500$  units  $\therefore$  Breakeven quantity decreases by  $\frac{100 - 500}{100} \times 100 = 50\%$ 

## **Conventional Practice Solutions**

## 01. Ans: (d) Sol: 5

|              | Standard<br>machine tool                   | Automatic<br>machine tool                    |  |  |  |
|--------------|--------------------------------------------|----------------------------------------------|--|--|--|
| $F_1 = F.C.$ | $\frac{30}{60} \times 200 = \text{Rs.}100$ | $2 \times 800 =$<br>Rs.1600 = F <sub>2</sub> |  |  |  |
| V.C          | $=\frac{20}{60} \times 200$<br>= Rs. 73.33 | $=\frac{5}{60} \times 800$<br>= Rs. 66.67    |  |  |  |

Since

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 58 | ESE – Text Book Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $q = \frac{1600 - 100}{73.33 - 66.67} = 225 \text{ volts}$<br>If greater than 225 units then automatimachine tool is economic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c  | Chapter13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>02.</b> Ans: 16<br><b>Sol:</b> Preparation cost for<br>Conventional lathe = 30,<br>CNC lathe = 150<br>Production time of<br>Conventional lathe = 30 min,<br>Variable cost per hour<br>Conventional lathe = 75 per hour<br>$=\frac{75}{60} \times 30$ per product<br>CNC lathe = 120 per hour<br>$=\frac{120}{60} \times 15$ per product<br>Total cost for Q products<br>Conventional lathe = 30 + 37.5 Q<br>CNC lathe = 150 + 30 Q<br>At break even quantities<br>$(TC)_1 = (TC)_2$<br>$\Rightarrow 30 + 37.5 Q = 150 + 30 Q$<br>$\Rightarrow 7.5 Q = 120$<br>$\Rightarrow Q = 16$<br>$\therefore$ CNC lathe is economical whe production per day is above 16. |    | 01. Ans: (c)<br>Sol:<br>$10 - 8 - 6 - 9 - 10$ $\Sigma t_i = 43;  n = 5; \qquad C = 10$ Balance delay = $1 - \frac{\Sigma t_i}{nC}$ $= 1 - \frac{43}{5 \times 10}$ $= 0.14 \text{ or } 14 \%$ 02. Ans: (d)<br>Sol: Cycle Time = Total time<br>Total production<br>$= \frac{8 \times 60 \times 60}{3000}$ $CT = \frac{48}{5} = 9.6 \text{ sec onds}$ Time to assemble one unit<br>= 10+20+15+5+30+15+5 = 100  sec No. of work station<br>$= \frac{\text{Time to assemble one unit}}{\text{Cycle Time } \times \eta}$ $= \frac{100}{9.6} = 11  (\text{consider } \eta = 100\%)$ |

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

## 03. Ans: (c)

## Sol: Assembly line balancing :

Line balancing is done to meet the production rate for a given time, minimizing the idle time and maximizing the work output. As the time is minimized, the idle time at the stations decreases, decreasing the in-process inventory.

Statements 1, 3, 4 apply to the benefits of assembly line balancing.

## 04. Ans: (c)

**Sol:** Cycle Time =  $\frac{\text{Total time}}{\text{Total production}}$ 

$$=\frac{8\times60}{320}=1.5\,\mathrm{min}$$

Time to assemble one unit

$$= 1.3 + 1.5 + 1.4 + 1.5 + 1.3 = 7 \min$$

No. of work station

 $= \frac{\text{Time to assemble one unit}}{\text{Cycle Time}}$ 

 $=\frac{7}{1.5}=\frac{14}{3}\approx 5$ 

 $\eta = \frac{\text{Time to assemble one unit}}{\text{No. of work stations} \times \text{Cycle Time}}$ 

$$=\frac{7}{5\times1.5}=0.93$$

## 05. Ans: (d)

59

Sol: Cycle Time = 
$$\frac{480 \times 60}{1450}$$
 = 19.87 sec  
No. of work station =  $\frac{310}{19.87}$  = 15.6 ≈ 16

$$\eta = \frac{310}{16 \times 19.87} \times 100 = 97.5\%$$

## 06. Ans: (a)

**Sol:** Cycle time is equal to the time of the bottleneck operation or the maximum station time.

## **Conventional Practice Solutions**

01. Sol:

Since

Work Work Work Total stations time/w<sub>s</sub> elements element times resp 1995 A, B 4, 3 7 Π С 8 8 III D, F 8 4,4 IV Е 6 6 V G 5 5 VI Η 6 6

Cycle time = 8 minutes

No. of unit produced =  $\frac{60 \times 8}{8} = 60$ 

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

## IM & OR

# 60 ESE – Text Book Solutions 0 Technological precedence diagram :

ACE



#### ACE 61 IM & OR Smoothness index (SI) = $\sqrt{\sum_{i=1}^{n} (T - T_i)^2}$ The sum of the work element times =1.1+0.4+0.5+1.1+0.3+0.4+3.2+0.8+0.7+0.3 Where T = cycle time = 8.8 = 528 sec/units $T_i$ = Time allotted to the highest work station Theoretical no. of work stations $\frac{\sum t_i}{\text{Cycletime}} = \frac{528 \text{sec/unit}}{72 \text{sec/unit} - \text{station}}$ $\overline{(15-14)^2 + (15-10)^2 + (15-8)^2 + (15-15)^2}$ SI = $\sqrt{ + (15 - 15)^2 + (15 - 13)^2 + (15 - 14)^2 }$ + $(15 - 14)^2 + (15 - 13)^2 + (15 - 14)^2$ $= 7.33 \approx 8$ stations (iii) Cycle time = 72 sec/ unit - station= 1.2 min/unit-station $SI = \sqrt{1 + 25 + 289 + 4 + 1 + 1 + 4 + 1}$ No. of work stations = 8 $SI = \sqrt{326}$ 04. If SI is zero then it indicates 100% line Sol: efficiency (a) By using Kil bridge and Wester method : 03. activity one node. Sol: Stage-1 Stage-2 Stage-3 Stage-4 Stage-5 Stage-6 Stage-7 (i) 0.1 0.8 9 2 4 5 10 8 (4 8 6 0.3 (10) 2 5 0.5 4, 5, 6 3 3 199 Given cycle time = 10 minutes WS = work station(ii) Given, Available production Time, T = 8 hours 5+5=1010 10 No. of units to be produced, N = 400 units 1, 3 2 7 WS-1 WS-2 WS-3 WS-4 WS-5 Cycle time = $\frac{T}{N} = \frac{(8 \times 60) - 40}{400 \text{ units}}$ 9 10 = 1.1 min/unit stationWS-6 WS-7

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications

For all line balancing problems, we use





|   | 63 | IM & OR |
|---|----|---------|
| 3 |    |         |
|   |    |         |

| Work    | Idle time   | (Idle time) <sup>2</sup>               |
|---------|-------------|----------------------------------------|
| station |             |                                        |
| Ι       | 10 - 10 = 0 | 0                                      |
| II      | 10 - 10 = 0 | 0                                      |
| III     | 10-7 = 3    | 9                                      |
| IV      | 10 - 10 = 0 | 0                                      |
| V       | 10–9 = 1    | 1                                      |
| VI      | 10-5 = 5    | 25                                     |
| VII     | 10-7 = 3    | 9                                      |
|         |             | $\Sigma$ (idle time) <sup>2</sup> = 44 |

 $\therefore$  Smoothing Index =  $\sqrt{44} = 6.63$ 

