

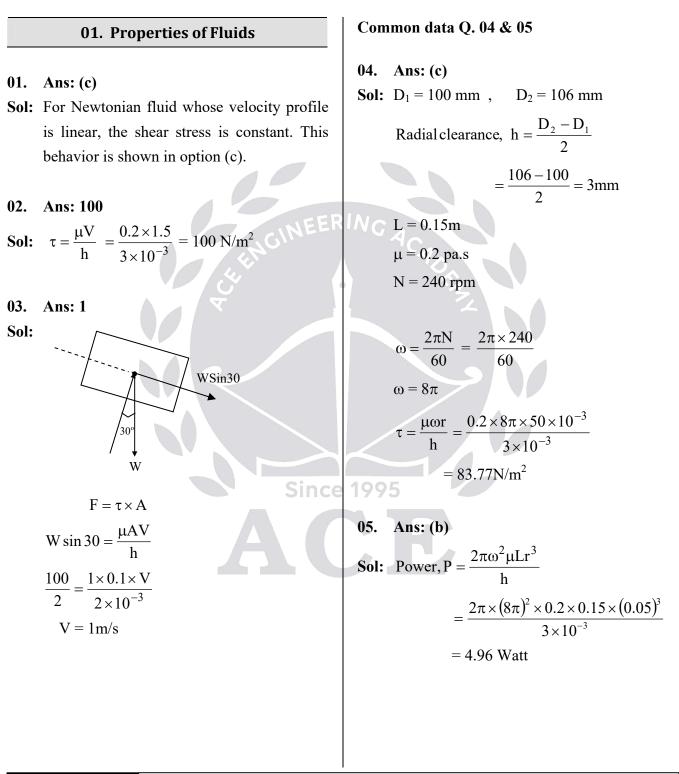
ESE | GATE | PSUs

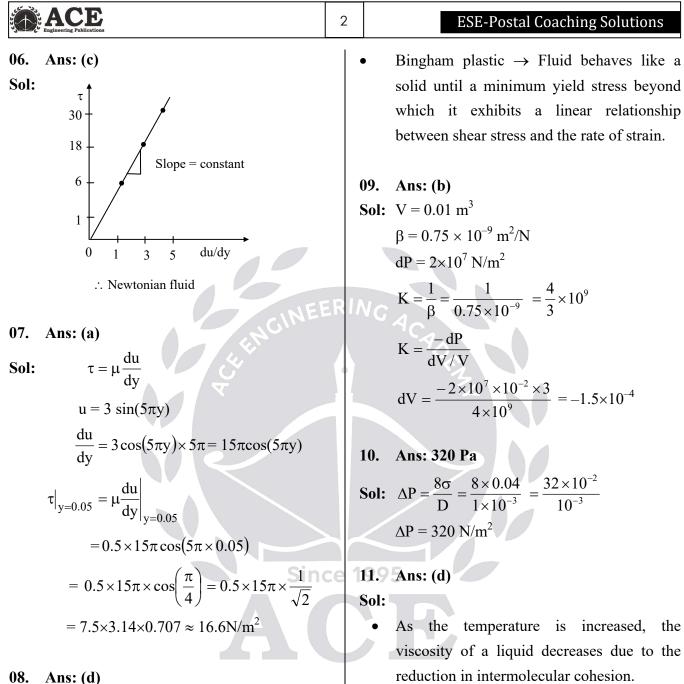
A

Text Book : Theory with worked out Examples and Practice Questions

Fluid Mechanics

(Solutions for Text Book Practice Questions)



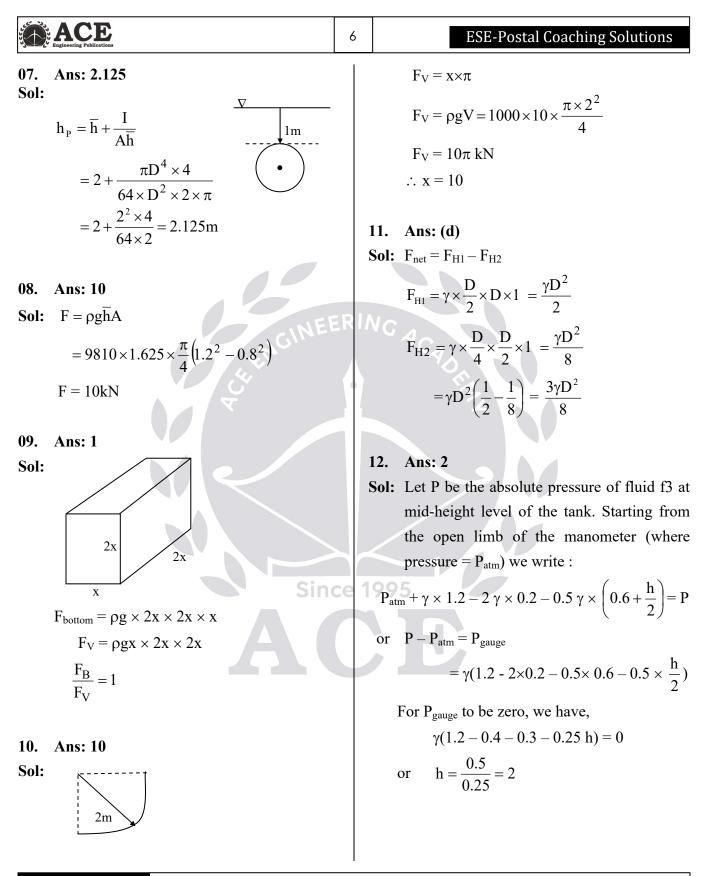


- Sol:
- Ideal fluid \rightarrow Shear stress is zero.
- Newtonian fluid → Shear stress varies linearly with the rate of strain.
- Non-Newtonian fluid → Shear stress does not vary linearly with the rate of strain.
- In gases, the viscosity increases with the rise in temperature due to increased
- molecular activity causing an increase in the change of momentum of the molecules, normal to the direction of motion.

 $\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2 \; ,$

Engineering Publications	4 ESE-Postal Coaching Solutions
$F = \frac{\mu_1 VA}{h - y} + \frac{\mu_2 VA}{y} ,$ [V, A, μ_1 & μ_2 , h are constant] For minimum force, $\frac{dF}{dy} = 0$ $-\mu_1 VA(h - y)^{-2} (-1) - \mu_2 VAy^{-2} = 0$	 Assumptions: The gap between two cylinders is narrow and hence velocity profile in the gap is assumed linear. No change in properties
$\frac{\mu_2 VA}{y^2} = \frac{\mu_1 VA}{(h-y)^2}$ $\frac{(h-y)^2}{y^2} = \frac{\mu_1}{\mu_2} \implies \frac{h-y}{y} = \sqrt{\frac{\mu_1}{\mu_2}}$ $\frac{h}{y} = 1 + \sqrt{\frac{\mu_1}{\mu_2}} \text{ where y is the distance of th}$	Torque = Tangential force × radius Force = shear stress×Area $= \frac{\mu \times VA}{h}$ Where h is the clearance (radial) $h = \frac{15-14.75}{2}$
thin flat plate from the bottom flat surface. $y = \frac{h}{1 + \sqrt{\frac{\mu_1}{\mu_2}}}$	= 0.125 cm = 1.25×10^{-3} m Area = π DL = $\pi \times 0.15 \times 2.5 \times 10^{-2}$ = 11.781×10^{-3} m ²
02. Ans: 0.372 Pa. s Sol: Torque = 1.2 N-m Speed, N = 600 rpm Diameter, D ₁ = 15 cm , D ₂ = 14.75 cm H = 2.5 cm	$F_{s} = \frac{\mu \times \omega r \times A}{h}$ $\omega = \frac{2\pi N}{60} = \frac{2\pi \times 600}{60} = 20\pi \text{ rad/s}$ Torque = F _s ×r $= \frac{\mu \omega r A}{h} \times r$ $= \frac{\mu \omega r^{2}}{h} \times A$ $1.2 \mu \times 20\pi \times (0.07375)^{2} \times 11.781 \times 10^{-3}$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	$1.2 = \frac{\mu \times 20\pi \times (0.07375)^2 \times 11.781 \times 10^{-3}}{1.25 \times 10^{-3}}$ $\mu = 0.3726 \text{ Pa.s}$ ar · Lucknow · Patna · Bengaluru · Chennai · Vijayawada · Vizag · Tirupati · Kolkata · Ahmedabad

ACE Engineering Publications	5 Fluid Mechanics
 02. Pressure Measurement & Fluid Statics 01. Ans: (a) Sale 1 milliber = 10⁻³ × 10⁵ = 100 N/m² 	• The manometer shown in Fig. 4 is an open ended manometer for positive pressure measurement.
Sol: 1 millibar = $10^{-3} \times 10^{5} = 100 \text{ N/m}^{2}$ One mm of Hg = $13.6 \times 10^{3} \times 9.81 \times 1 \times 10^{-3}$ = 133.416 N/m^{2} 1 N/mm ² = $1 \times 10^{6} \text{ N/m}^{2}$ 1 kgf/cm ² = $9.81 \times 10^{4} \text{ N/m}^{2}$	05. Ans: 2.2 Sol: h_p in terms of oil $s_o h_o = s_m h_m$ $0.85 \times h_0 = 13.6 \times 0.1$ $h_0 = 1.6m$
02. Ans: (b) Sol: 710 mm	$h_{p} = 0.6+1.6$ $\Rightarrow h_{p} = 2.2m \text{ of oil}$ (or) $P_{p} - \gamma_{oil} \times 0.6 - \gamma_{Hg} \times 0.1 = P_{atm}$ $\frac{P_{p} - P_{atm}}{\gamma_{oil}} = \left(\frac{\gamma_{Hg}}{\gamma_{oil}} \times 0.1 + 0.6\right)$ $= \frac{13.6}{0.85} \times 0.1 + 0.6 = 2.2 \text{ m of oil}$
 03. Ans: (c) Sol: Pressure does not depend upon the volume of liquid in the tank. Since both tanks have the same height, the pressure P_A and P_B are same. 	e 06. Ans: (b)
 04. Ans: (b) Sol: The manometer shown in Fig.1 is an oper ended manometer for negative pressure measurement. The manometer shown in Fig. 2 is for measuring pressure in liquids only. The manometer shown in Fig. 3 is for measuring pressure in liquids or gases. 	e r



Fluid Mechanics

ACE

13. Ans: (b)

Sol: The depth of centre of pressure from the free liquid surface is given by

$$h_{cp} = \overline{h} + \frac{I_{xx,c}}{A\overline{h}} \qquad -----(1)$$

Or,
$$h_{cp} - \overline{h} = \frac{I_{xx,c}}{A\overline{h}}$$

From the above relationship, as \overline{h} increases, $\frac{I_{xx,c}}{A\overline{h}}$ decreases. Thus, at great depth, the difference $(h_{cp} - \overline{h})$ becomes negligible. Hence, statement (I) is correct. Also, it is clear from equation (1) that h_{cp} is independent of the density of the liquid.

$$= \gamma_{w} \times 6.727 \times \frac{\pi \times 3^{2}}{2}$$

$$= \gamma_{w} \times 6.727 \times 4.5\pi$$

$$= 932.94 \text{ kN}$$

$$h_{cp} = 6.727 + \frac{0.10976 \text{ R}^{4}}{\frac{\pi \text{R}^{2}}{2} \times 6.727}$$

$$= 6.727 + \frac{0.10976 \times 3^{2} \times 2}{\pi \times 6.727}$$

$$= 6.727 + 0.0935$$

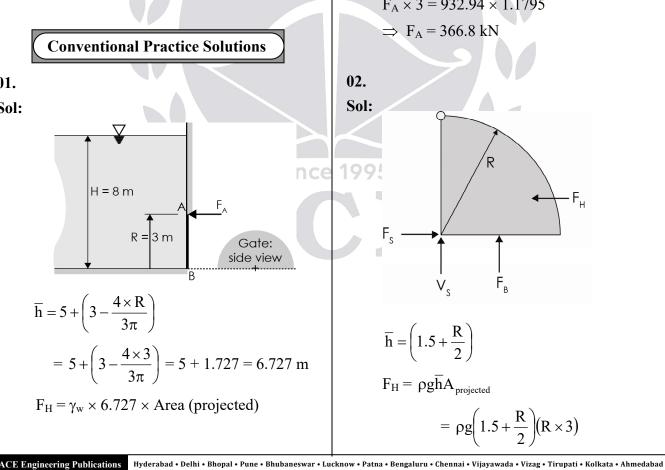
$$= 6.8205 \text{ m} \text{ from free liquid surface}$$

$$= (8 - 6.8205) \text{ m} \text{ from base B}$$

$$= 1.1795 \text{ m} \text{ from base B}.$$
Taking moment about B
$$F_{A} \times 3 = 932.94 \times 1.1795$$

$$\Rightarrow F_{A} = 366.8 \text{ kN}$$

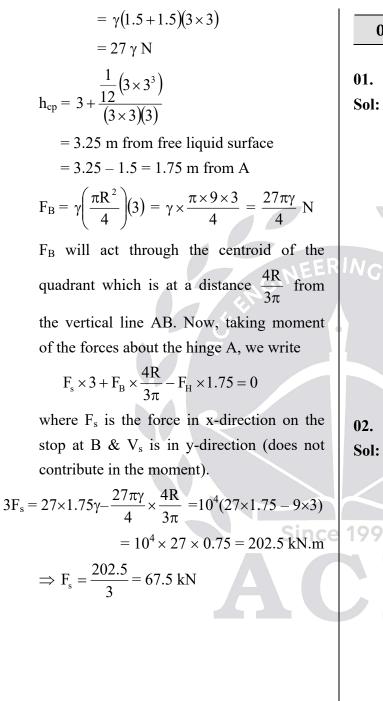
01. Sol:



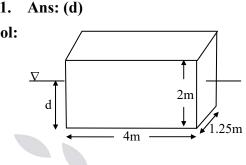
7

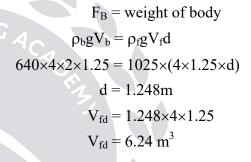
ACE Engineering Publications

ESE-Postal Coaching Solutions

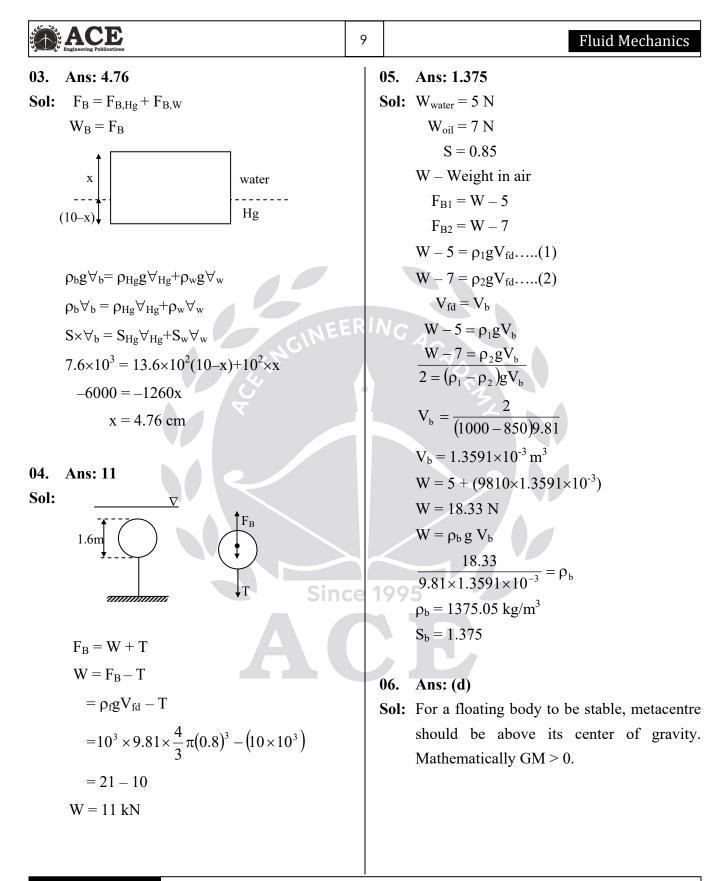


03. Buoyancy and Metacentric Height

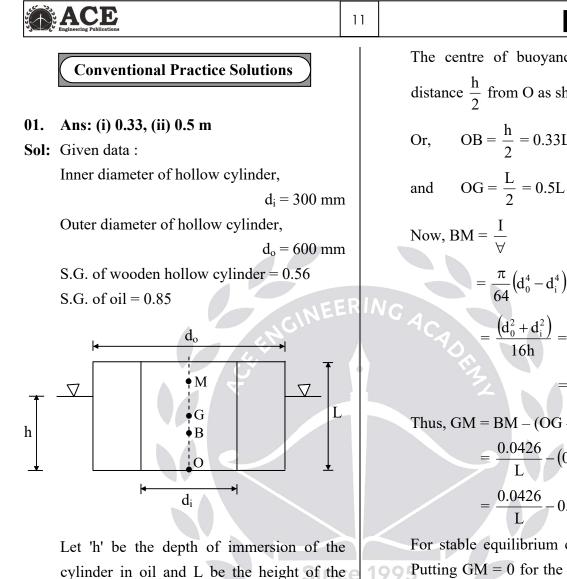




02. Ans: (c) Sol: Surface area of cube = $6 a^2$ Surface area of sphere = $4 \pi r^2$ $4\pi r^2 = 6a^2$ $\frac{2\pi}{3} = \left(\frac{a}{r}\right)^2$ $F_{b,s} \propto V_s$ $= \frac{4}{3} \frac{\pi r^3}{a^3}$ $= \frac{4}{3} \frac{\pi r^3}{\left(r\sqrt{\frac{2\pi}{3}}\right)^3} = \frac{4}{3} \frac{\pi r^3}{\left(\sqrt{\frac{2\pi}{3}} \times \sqrt{\frac{2\pi}{3}} r^3\right)} = \sqrt{\frac{6}{\pi}}$



Engineering Publications	10	ESE-Postal Coaching Solutions
07. Ans: (b)		Shear stress on one side of the plate
Sol: $W = F_B$		$ au = \frac{\mu dU}{dy}$
$\rho_b g V_b = \rho_f g V_{fd}$		dy
$\rho_b V_b = \rho_f V_{fd}$		F_s = total shear force (considering both sides
$0.6 \times \frac{\pi}{4} d^2 \times 2d = 1 \times \frac{\pi}{4} d^2 \times x$		of the plate)
4^{-1}		$=2A \times \tau = \frac{2A\mu V}{y}$
$\mathbf{x} = 1.2 \mathbf{d}$		У
GM = BM - BG		$=\frac{2\times1.5\times1.5\times2.5\times0.1}{100}$
$BM = \frac{I}{2} = \frac{\pi d^4}{2} = \frac{d}{2} = 0.052$	bd	= 11×10 ⁻³
$BM = \frac{I}{V} = \frac{\pi d^4}{64 \times \frac{\pi}{4} d^2 \times 1.2 d} = \frac{d}{19.2} = 0.052$	a	= 102.2727 N
4 NE	ERI	Weight of plate, $W = 50 N$
BG = d - 0.6d = 0.4d		Upward force on submerged plate,
Thus, $GM = 0.052d - 0.4d = -0.348 d$		$F_v=\rho g V=900\times9.81\times1.5\times1.5\times10^{-3}$
GM < 0		= 29.7978 N
\Rightarrow Hence, the cylinder is in unstable conditio	n.	
09 4 122 475		Total force required to lift the plate
D8. Ans: 122.475 Sol: \blacktriangle V=0 1m/s		$= F_s + W - F_v$
Sol: V=0.1m/s		= 102.2727 + 50 - 29.7978
F		= 122.4749 N
Sin	ce 1	09. Ans: (d)
$F_s \downarrow F_s$		Sol:
		• Statement (I) is wrong because the balloon
		filled with air cannot go up and up, if it i
▼ W		released from the ground.
· · · · ·		• However, with increase in elevation, the
The thickness of the oil layer is same of	on	atmospheric pressure and temperature both
either side of plate		decrease resulting into a decrease in ai
y = thickness of oil layer		density. Thus, statement (II) is correct.
$=\frac{23.5-1.5}{2}=11$ mm		
	I	



cylinder.

Weight of hollow cylinder = Buoyant force acting on the hollow cylinder

Or,
$$\gamma_{\text{cyl}} \times \frac{\pi}{4} \left(d_0^2 - d_i^2 \right) \times L = \gamma_{\text{oil}} \times \frac{\pi}{4} \left(d_0^2 - d_i^2 \right) \times h$$

Or,
$$h = \frac{\gamma_{cyl}}{\gamma_{oil}} \times L = \frac{0.56}{0.85} L = 0.66 L$$

Let us then calculate the maximum height of the cylinder, L for the stable equilibrium condition.

The centre of buoyancy B will be at a distance $\frac{h}{2}$ from O as shown in the figure.

Fluid Mechanics

$$Or, \qquad OB = \frac{h}{2} = 0.33L$$

$$= \frac{\pi}{64} \left(d_0^4 - d_i^4 \right) \times \frac{4}{\pi \times \left(d_0^2 - d_i^2 \right) \times h}$$
$$= \frac{\left(d_0^2 + d_i^2 \right)}{16h} = \frac{\left(0.6^2 + 0.3^2 \right)}{16 \times 0.66L}$$
$$= \frac{0.0426}{16h}$$

L

Thus, GM = BM - (OG - OB)
=
$$\frac{0.0426}{L} - (0.5L - 0.33L)$$

= $\frac{0.0426}{L} - 0.17L$

For stable equilibrium condition, $GM \ge 0$. Putting GM = 0 for the maximum height of the cylinder, we get

$$\frac{0.0426}{0.17} = L^2$$

$$\Rightarrow \qquad L = 0.5 \text{ m}$$
Thus,
$$h = 0.66 \times 0.5 = 0.33 \text{ m}$$

Ans: Unstable 02.

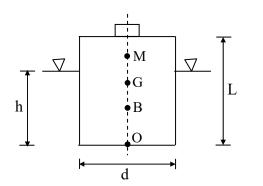
Sol: Given data:

d = 1.0 m, L = 1.5 m,

 $\rho_{sea water} = 1026 \text{ kg/m}$

 $m_{buov} = 80 \text{ kg}$ m = 10 kg

ESE-Postal Coaching Solutions



$$(80+10)\times g = \frac{\pi}{4}\times 1^2 \times h \times 1026 \times g$$

where h is the depth of immersion of the buoy.

Thus,
$$h = \frac{4 \times 90}{\pi \times 1026} = 0.1117 \text{ m}$$

OB = $\frac{h}{2} = 0.05585 \text{ m}$

The position of G due to a mass of 10 kg added to the cylindrical buoy is evaluated as:

$$80 \times 0.75 + 10 \times 1.5 = 90 \times OG$$
Or, OG = $\frac{75}{90} = 0.833m$
BM = $\frac{I}{\forall} = \frac{\pi}{64} \times 1^4 \times \frac{4}{\pi \times 1^2 \times h}$
= $\frac{1}{16 \times 0.1117} = 0.5595 m$
Thus, GM = BM - (OG - OB)
= 0.5595 - (0.833 - 0.05585)
= - 0.21765 m
Or, GM < 0

Thus, the buoy floats in unstable condition.

04. Fluid Kinematics

01. Ans: (b)

Sol:

- Constant flow rate signifies that the flow is steady.
- For conically tapered pipe, the fluid velocity at different sections will be different. This corresponds to non-uniform flow.

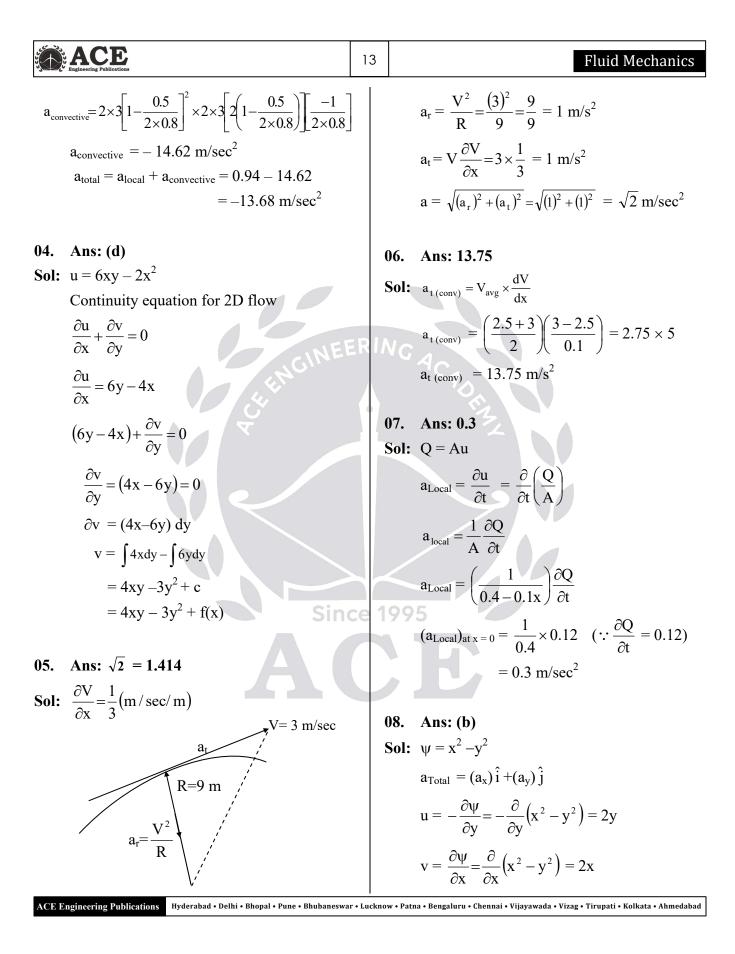
Common Data for Questions 02 & 03

02. Ans: 0.94
Sol:
$$a_{Local} = \frac{\partial V}{\partial t}$$

 $= \frac{\partial}{\partial t} \left(2t \left(1 - \frac{x}{2L} \right)^2 \right)$
 $= \left(1 - \frac{x}{2L} \right)^2 \times 2$
199 $(a_{Local})_{at x} = 0.5, L = 0.8 = 2 \left(1 - \frac{0.5}{2 \times 0.8} \right)^2$
 $= 2(1 - 0.3125)^2 = 0.945 \text{ m/sec}^2$
03. Ans: -13.68
Sol: $a_{convective} = v \cdot \frac{\partial v}{\partial x} = \left[2t \left[1 - \frac{x}{2L} \right]^2 \right] \frac{\partial}{\partial x} \left[2t \left(1 - \frac{x}{2L} \right)^2 \right]$

$$= \left[2t \left[1 - \frac{x}{2L} \right]^2 \right] 2t \left[2\left(1 - \frac{x}{2L} \right) \left(-\frac{1}{2L} \right) \right]$$

At t = 3 sec; x = 0.5 m; L = 0.8 m



Experimental equations

$$a_{x} = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}$$

$$= (2y)(0) + (2x)(2)$$

$$\therefore a_x = 4x$$

$$a_y = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y}$$

$$= (2y) \times (2) + (2x) \times (0)$$

$$a_y = 4y$$

$$\therefore a = (4x)\hat{i} + (4y)\hat{j}$$

09. Ans: (b)

Sol: Given, The stream function for a potential flow field is $\psi = x^2 - y^2$ $\phi = ?$

$$u = \frac{-\partial \phi}{\partial x} = -\frac{\partial \psi}{\partial y}$$
$$u = -\frac{\partial \psi}{\partial y} = -\frac{\partial (x^2 - y^2)}{\partial y}$$

$$u = -\frac{\partial \phi}{\partial x} = 2y$$

u = 2v

$$\int \partial \phi = -\int 2\, y \partial x$$

 $\phi = -2 xy + c_1$ Given. ϕ is zero at (0,0)

Given,
$$\phi$$
 is zero at (0

$$\therefore$$
 c₁ = 0

$$\therefore \phi = -2xy$$

10. Ans: 4

Sol: Given, 2D - flow field Velocity, V = 3xi + 4xyju = 3x, v = 4xy

ESE-Postal Coaching Solutions

$$\omega_{z} = \frac{1}{2} \left(\frac{dv}{dx} - \frac{du}{dy} \right)$$

$$\omega_{z} = \frac{1}{2} (4y - 0)$$

$$(\omega_{z})_{at(2,2)} = \frac{1}{2} \times 4(2) = 4 \text{ rad/sec}$$

Ans: (b)
 Sol: Given, u = 3x,

14

The shear stress, τ_{xy} is given by

v = Cy,w = 2

$$\tau_{xy} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = \mu \left[\frac{\partial}{\partial y} (3x) + \frac{\partial}{\partial x} (Cy) \right]$$
$$= \mu (0+0) = 0$$

12. Ans: (d) Sol:

The total acceleration is given as $D\vec{V} = \vec{N}$

$$\frac{\mathbf{D}\mathbf{V}}{\mathbf{D}\mathbf{t}} = \frac{\partial\mathbf{V}}{\partial\mathbf{t}} + (\vec{\nabla}.\nabla)\vec{\nabla}$$

where the first term on the R.H.S is the local acceleration and the second term is the convective acceleration.

- If the flow is steady, then local acceleration will be zero, not the convective acceleration.
- The convective acceleration arises due to the fact that a fluid element experiences different velocities at different locations. Thus, statement (I) is wrong whereas statement (II) is correct.

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since 199

ACE

Conventional Practice Solutions

- 01. Ans: (ii) $y = \pm x$ (iii) (0, 0)
- **Sol:** Given: $u = c(x^2 y^2)$ and v = -2cxy

The equation of a streamline is given by

$$\frac{dx}{u} = \frac{dy}{v}$$

Or,
$$\frac{dy}{dx} = \frac{v}{u} = -\frac{2cxy}{c(x^2 - y^2)} = -\frac{2xy}{x^2 - y^2}$$

For flow to be parallel to y-axis, u = 0(ii)

Or, $\frac{dy}{dx} = \frac{v}{x^2 - y^2} = \infty$

This is possible when $x = \pm y$

(iii) The fluid is stationary when u & v both are zero.

> From the velocity components given, it is possible when (x, y) = (0, 0)

From the equation of streamline (i)

> $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2xy}{x^2 - y^2}$ Or, $\frac{dx}{dy} = -\frac{x^2 - y^2}{2xy}$ -----(1)

Let x = fy or dx = fdy + ydf
Or,
$$\frac{dx}{dy} = f + y \frac{df}{dy}$$
-----(2)

Equating (1) with (2),

$$f + y\frac{df}{dy} = -\frac{f^2y^2 - y^2}{2fy \times y} = -\frac{f^2 - 1}{2f} = \frac{1 - f^2}{2f}$$

Or, $y\frac{df}{dy} = \frac{1 - f^2}{2f} - f = \frac{1 - 3f^2}{2f}$

Or,
$$\frac{2f}{1-3f^2}df = \frac{dy}{y}$$
$$\frac{6f}{3f^2-1}df = -\frac{3dy}{y}$$

Integrating

15

$$\ln(3f^{2} - 1) + 3\ln y = \ln C$$

Or, $(3f^{2} - 1) \times y^{3} = C$
Or, $\left(3\frac{x^{2}}{y^{2}} - 1\right)y^{3} = C$

Or,
$$3x^2y - y^3 = C$$

Or, $x^2y - y^3/3 = \text{constant}$, proved

05. Energy Equation and its Applications

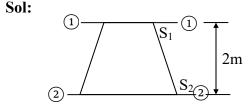
y

01. Ans: (c)

Sol: Applying Bernoulli's equation for ideal fluid

$$\frac{P_1}{\rho g} + Z_1 + \frac{V_1^2}{2g} = \frac{P_2}{\rho g} + Z_2 + \frac{V_2^2}{2g}$$
$$\frac{P_1}{\rho g} + \frac{(2)^2}{2g} = \frac{P_2}{\rho g} + \frac{(1)^2}{2g}$$
$$\frac{P_2}{\rho g} - \frac{P_1}{\rho g} = \frac{4}{2g} - \frac{1}{2g}$$
$$\frac{P_2 - P_1}{\rho g} = \frac{3}{2g} = \frac{1.5}{g}$$

02. Ans: (c)



ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since 199

Fluid Mechanics

Engineering Fablications		16	ESE-Postal Coaching Solutions
$\frac{V_1^2}{2g} = 1.27m$,	$\frac{P_1}{\rho g} = 2.5m$		$V_1 = \frac{Q}{A_1} = \frac{0.1}{7.85 \times 10^{-3}} = 12.73 \text{m/sec}$
$\frac{V_2^2}{2g} = 0.203 m$,	$\frac{P_2}{\rho g} = 5.407m$		$V_2 = \frac{Q}{A_2} = \frac{0.1}{1.96 \times 10^{-3}} = 51.02 \text{m/sec}$
$Z_1 = 2 \text{ m}$, Total head at (1)			$\frac{P_{1gauge}}{\rho_{air} \times g} + \frac{(12.73)^2}{2 \times 10} = 0 + \frac{(51.02)^2}{2 \times 10}$
$=\frac{V_1^2}{2g}+\frac{1}{2g}$	$\frac{P_1}{Dg} + Z_1$		$\frac{P_1}{\rho_{air} \cdot g} = 121.53$
= 1.27 +	2.5 + 2 = 5.77 m		$P_1 = 121.53 \times \rho_{air} \times g$
Total head at (2)	-(2)	B 10	1 (1 1 1 1
$=\frac{V_2^2}{2g}+\frac{1}{2g}$	$\frac{P_2}{Dg} + Z_2$	RIA	ACA
	+5.407 + 0 = 5.61 m		Ans: 395 Sol: $Q = 100$ litre/sec = 0.1 m ³ /sec
	.77 - 5.61 = 0.16 m		$V_1 = 100 \text{ m/sec};$ $P_1 = 3 \times 10^5 \text{ N/m}^2$
	-(1) > Energy at $(2) - (2)$		$V_1 = 100 \text{ m/sec};$ $P_1 = 3 \times 10^{10} \text{ N/m}^2$ $V_2 = 50 \text{ m/sec};$ $P_2 = 1 \times 10^5 \text{ N/m}^2$
:. Flow takes f	rom higher energy to lower		Power (P) = ?
energy			Energy equation :
i.e. from (S_1)	to (S ₂)		
Flow takes place	from top to bottom.		$\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + Z_2 + h_L$
03. Ans: 1.5	Sinc	e 1	$9.9\frac{3\times10^5}{1000\times10} + \frac{100^2}{2\times10} + 0 = \frac{1\times10^5}{1000\times10} + \frac{50^2}{2\times10} + 0 + h_L$
Sol: $A_1 = \frac{\pi}{4} d_1^2 = \frac{\pi}{4} (0$	$(.1)^2 = 7.85 \times 10^{-3} \mathrm{mm}^2$		\Rightarrow h _L = 395 m
т т			$P = \rho g Q. h_L$
$A_2 = \frac{\pi}{4}d_2^2 = \frac{\pi}{4}(0$	$(0.05)^2 = 1.96 \times 10^{-3} \mathrm{mm}^2$	Y	$\mathbf{P} = 1000 \times 10 \times 0.10 \times 395$
$\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + Z_1 = \frac{1}{2g}$	$\frac{P_2}{2g} + \frac{V_2^2}{2g} + Z_2 + h_L$		P = 395 kW
$Z_1 = Z_2$, it is in h	norizontal position		
Since, at outlet, p	pressure is atmospheric		
$\mathbf{P}_2 = 0$			

 $Q = 100 \text{ lit/sec} = 0.1 \text{ m}^3/\text{sec}$

Engineering Publications	Fluid Mechanics
05. Ans: 35	$V = 1\sqrt{2g(h_{stag} - h_{stat})}$
Sol: $\int fluid, S = 0.85$	$=\sqrt{2(9.81)(0.30-0.24)} = 1.085 \text{ m/s}$
d_1 d_2 \bullet B	$= 1.085 \times 60 = 65.1$ m/min
	07. Ans: 81.5
Pressure difference Between A & B = 4 kPa	Sol: $x = 30 \text{ mm}$, $g = 10 \text{ m/s}^2$
	$\rho_{air} = 1.23 \text{ kg/m}^3; \rho_{Hg} = 13600 \text{ kg/m}^3$
$d_1 = 300 \text{ mm}, \ d_2 = 120 \text{ mm}$	$C = 1$ $V = \sqrt{2gh_{D}}$
$Q_{Th} = \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \sqrt{2gh}$	
VIII II2	$h_{\rm D} = x \left(\frac{S_{\rm m}}{S} - 1 \right)$
$=\frac{A_1A_2}{\sqrt{A_1^2-A_2^2}}\sqrt{2g\left(\frac{\Delta P}{W}\right)}$	$h_{\rm D} = 30 \times 10^{-3} \left(\frac{13600}{1.23} - 1 \right)$
$A_1 = \frac{\pi}{4} d_1^2 = \frac{\pi}{4} (0.30)^2 = 0.07 \mathrm{m}^2$	$h_{\rm D} = 331.67 \text{ m}$
$A_1 = \frac{1}{4}a_1 = \frac{1}{4}(0.50) = 0.07 \text{ m}$	$V = 1 \times \sqrt{2 \times 10 \times 331.67} = 81.5 \text{ m/sec}$
$A_2 = \frac{\pi}{4}d_2^2 = \frac{\pi}{4}(0.12)^2 = 0.011 \text{m}^2$	
$\Delta P = 4 \text{ kPa},$	08. Ans: 140
$h = \frac{\Delta P}{\Delta P} = \frac{\Delta P}{\Delta P}$	Sol: $Q_a = C_d \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \sqrt{2gh}$
w $\rho_{\rm f}.g$ ΔP 4×10^3 Since	
$=\frac{\Delta P}{s_{f}\rho_{w}g}=\frac{4\times10^{3}}{0.85\times1000\times9.81}$ Since	$1995C_{d} \propto \frac{1}{\sqrt{h}}$
0.07×0.011 $\sqrt{2 \times 9.81 \times 4 \times 10^3}$	$\frac{C_{d_{venturi}}}{C_{d_{orifice}}} = \frac{0.95}{0.65} = \sqrt{\frac{h_{orifice}}{h_{venturi}}}$
$Q_{\rm Th} = \frac{0.07 \times 0.011}{\sqrt{(0.07)^2 - (0.011)^2}} \sqrt{\frac{2 \times 9.81 \times 4 \times 10^3}{0.85 \times 1000 \times 9.81}}$	onnee
$= 0.035 \text{ m}^3/\text{sec} = 35.15 \text{ ltr/sec}$	$h_{venturi} = 140 \text{ mm}$
06. Ans: 65	09. Ans: (d)
Sol: $h_{stag} = 0.30 \text{ m}$	Sol:
$h_{\text{stat}} = 0.24 \text{ m}$	• For an orifice meter, the fluid re-establishes its flow pattern downstream of the orifice
$V = c \sqrt{2gh_{dyna}}$	plate. However, the fluid pressure

downstream of the orifice plate is not the $=\frac{\left(108\times\frac{5}{18}\right)^{2}}{2}=45----(1)$ same as that at upstream of the orifice plate. Thus, statement (I) is not correct. Bernoulli's equation when applied to any From manometer. two points (for irrotational, steady and $P_2 + \gamma_{water} \times h = P_{atm}$ incompressible flow) can be written as $P_{atm} - P_2 = \gamma_{water} \times h$ -----(2) or. $\frac{P_1}{\gamma} + \frac{V_1^2}{2\sigma} + Z_1 = \frac{P_2}{\gamma} + \frac{V_2^2}{2\sigma} + Z_2$ Hence, equation (1) becomes, $\frac{\gamma_{\text{water}}h}{1} = 45$ (from (2)) If $V_1 = V_2 \& Z_1 = Z_2$, we get $P_1 = P_2$. Thus, statement (II) is correct. $h = \frac{45 \times \gamma_{air}}{\gamma_{water}} = \frac{45 \times 1.2 \times g}{10^3 \times g} = 0.054 \text{ m}$ \Rightarrow h = 5.4 cm **Conventional Practice Solutions** Applying Bernoulli's equation for points (2) and (3) $\frac{P_2}{\gamma_{air}} + \frac{V_2^2}{2g} = \frac{P_3}{\gamma_{air}} + \frac{V_3^2}{2g}$ Ans: 5.4 cm, 540 Pa 01. Sol: Air enters into the wind tunnel at Patm and $V \approx 0$. It attains a velocity V in the test But point (3) is stagnation point where section and the pressure there is P. $P_3 = P_{stag} \& V_3 = 0$ Applying Bernoulli's equation for points (1) Thus, $\frac{P_{stag} - P_2}{\gamma_{stag}} = \frac{V_2^2}{2g} = 45$ and (2) as shown in the figure. Wind tunnel 199 Or, $P_{stag} - P_2 = 45 \times 1.2 \times 10 = 540 \text{ Pa}$ nce 108 kmph (2) 06. Momentum equation and its Fan Open Applications Water 01. Ans: 1600 $\frac{P_1}{\gamma_{11}} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\gamma_{11}} + \frac{V_2^2}{2g} + Z_2$ **Sol:** S = 0.80 $A = 0.02 \text{ m}^2$ But $P_1 = P_{atm}$, $V_1 \approx 0$ and $Z_1 = Z_2$ V = 10 m/sec $F = \rho . A . V^2$ Thus, $\frac{P_{atm} - P_2}{\gamma_{air}} = \frac{V_2^2}{2g}$ $F = 0.80 \times 1000 \times 0.02 \times 10^{2}$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

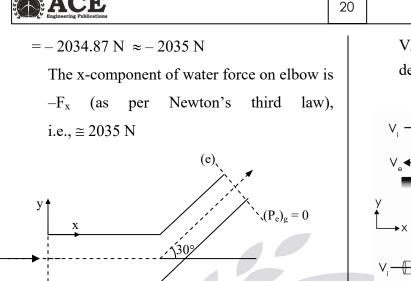
F = 1600 N

18

ACE

ESE-Postal Coaching Solutions

ACE Engineering Publications	19	Fluid Mechanics
02. Ans: 6000		$F_1 = \rho A (V - u)^2$
Sol: $A = 0.015 \text{ m}^2$		Power $(P_1) = F_1 \times u = \rho A (V - u)^2 \times u$
V = 15 m/sec (Jet velocity)		$F_2 = \rho.A.V \times V_r$
U = 5 m/sec (Plate velocity)		$= \rho.A(V).(V-u)$
$F = \rho A \left(V + U \right)^2$		Power $(P_2) = F_2 \times u = \rho AV(V-u)u$
$F = 1000 \times 0.015 (15 + 5)^2$		$P_1 = \rho A (V - u)^2 \times u$
F = 6000 N		$\frac{P_1}{P_2} = \frac{\rho A (V - u)^2 \times u}{\rho A V (V - u) \times u}$
03. Ans: 19.6	7	$=\frac{V-u}{V}=1-\frac{u}{V}$
Sol: V = 100 m/sec (Jet velocity)		
U = 50 m/sec (Plate velocity)	EERI	$=1-\frac{5}{20}=0.75$
d = 0.1 m		CAN THE REAL PROPERTY OF
$F = \rho A (V - U)^2$		06. Ans: 2035
$F = 1000 \times \frac{\pi}{4} \times 0.1^2 \times (100 - 50)^2$		Sol: Given, $\theta = 30^\circ$, $\dot{m} = 14 \text{ kg/s}$
$1 = 1000 \times \frac{1}{4} \times 0.1 \times (100 = 50)$		$(P_i)_g = 200 \text{ kPa}, \qquad (P_e)_g = 0$
F = 19.6 kN		$A_i = 113 \times 10^{-4} \text{ m}^2$, $A_e = 7 \times 10^{-4} \text{ m}^2$
		$\rho = 10^3 \text{ kg/m}^3$, $g = 10 \text{ m/s}^2$
04. Ans: (a)		From the continuity equation :
Sol: V		$\rho A_i V_i = 14$
		or $V_i = \frac{14}{10^3 \times 113 \times 10^{-4}} = 1.24 \mathrm{m/s}$
	ince 1	Similarly, $V_e = \frac{14}{10^3 \times 7 \times 10^{-4}} = 20 \text{ m/s}$
V		
$F_x = \rho a V (V_{1x} - V_{2x})$		Let F_x be the force exerted by elbow on
$= \rho a V (V - (-V))$		water in the +ve x-direction. Applying the
$= \rho a V (V - (-V))$ $= 2 \rho a V^2$		linear momentum equation to the C.V. enclosing the elbow, we write :
$= 2 \times 1000 \times 10^{-4} \times 5^2 = 5 \text{ N}$		$(P_i)_{o}A_i + F_x = \dot{m}(V_e \cos 30^\circ - V_i)$
$2 \times 1000 \times 10^{-10} \times 5^{-10} = 510^{-10}$		
05. Ans: (d)		$F_{x} = \dot{m} (V_{e} \cos 30^{\circ} - V_{i}) - (P_{i})_{g} A_{i}$
Sol: Given, $V = 20 \text{ m/s}$,		$= 14 (20 \times \cos 30^{\circ} - 1.24) - 200 \times 10^{3} \times 113 \times 10^{-4}$
u = 5 m/s		= 225.13 - 2260



07. Ans: (a)

(i)

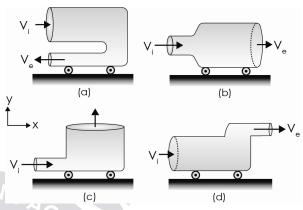
Sol: In a convergent nozzle, as the area decreases in the direction of flow, the flow velocity will increase (AV = Constant) in the direction of flow. This will result in increase in its momentum. Thus, statement (I) is correct and statement (II) is the correct explanation of statement (I).

F(x)on water

Conventional Practice Solutions

01. Ans: Right: a, b, c; Left: d

Sol: Let F_x be the force exerted by the fluid on the device which will be different for different devices. Since inlet and outlet sections of the devices are at atmospheric pressure, there will be no contribution of pressure forces at these sections. Let V_i and V_e be the velocities at inlet and outlet of the devices in x-direction.



Applying linear momentum equation to each of the devices, we write

(a) $F_x = \dot{m}_a [V_i - (-V_e)] = \dot{m}_a [V_i + V_e]$

 F_x is acting in +ve x direction.

Therefore, the device (b) will move to the right.

(b)
$$F_x = \dot{m}_b (V_i - V_e)$$

Since $V_i > V_e$, F_x is acting in +ve x direction.

Therefore, the device (a) will move to the right.

(c)
$$F_x = \dot{m}_c (V_i - 0) = \dot{m} V_i$$

 F_x is acting in +ve x direction.

Therefore, the device (c) will move to the right.

(d) $F_x = \dot{m}_d (V_i - V_e)$

Since $V_e > V_i$

 F_x is acting in -ve x direction. Therefore, the device (d) will move to the left.

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

ESE-Postal Coaching Solutions

	ACEE Engineering Publications	21		Fluid Mechanics
02.			02.	Ans: (d)
Sol:	Given data: $A_j = 0.009 \text{ m}^2$		Sol:	The equation $\tau = \left(-\frac{\partial P}{\partial x}\right)\left(\frac{r}{2}\right)$ is valid for
	$V_j = 30.5 \text{ m/s}$			laminar as well as turbulent flow through a
	$V_s = 3 m/s$			circular tube.
	$\mathbf{A}_{s} + \mathbf{A}_{j} = 0.07 \ \mathbf{m}^{2} = \mathbf{A}_{T}$			
	$A_{\rm s} = (0.07 - 0.009) = 0.061 \ {\rm m}^2$		03.	Ans: (d)
	$A_jV_j + A_sV_s = (A_s + A_s)V_e$		Sol:	$Q = A.V_{avg}$
	(From continuity equation $0.009 \times 30.5 + 0.061 \times 3 = 0.07 \times V_e$)		$Q = A. \frac{V_{max}}{2} \qquad (\because V_{max} = 2 V_{avg})$
	Or, $V_e = 6.536 \text{ m/s} \approx 6.54 \text{ m/s}$ Applying linear momentum equation: $P_1(A_s + A_j) - P_2(A_s + A_j)$ $= \rho A_T \times V_e[V_e] - \rho A_s V_s^2 - \rho A_j V_j^2$		VG	$Q = \frac{\pi}{4} \left(\frac{40}{1000}\right)^2 \times \frac{1.5}{2}$ $= \frac{\pi}{4} \times (0.04)^2 \times 0.75$
	$P_{2}A_{T} = \rho A_{T}V_{e}^{2} - \rho A_{s}V_{s}^{2} - \rho A_{j}V_{j}^{2}$ $= \rho [0.07 \times 6.536^{2} - 0.061 \times 9 - 0.009 \times 30.5^{2}]$			$= \frac{\pi}{4} \times \frac{4}{100} \times \frac{4}{100} \times \frac{3}{4} = \frac{3\pi}{10000} \text{ m}^{3/\text{sec}}$
	$= -10^{3}(5.931)$ N		04.	Ans: 1.92
or,	$P_2 - P_1 = \frac{5.931}{0.07} = 84.73 \text{ kPa}$		Sol:	$\rho = 1000 \text{ kg/m}^3$ $Q = 800 \text{ mm}^3/\text{sec} = 800 \times (10^{-3})^3 \text{ m}^3/\text{sec}$ L = 2 m
	07. Laminar Flow	e 1	99	D = 0.5 mm
				$\Delta P = 2 MPa = 2 \times 10^6 Pa$
01.	Ans: (d)			$\mu = ?$
Sol:	In a pipe, the flow changes from lamina	r		
	flow to transition flow at $Re = 2000$. Let V	7		$\Delta P = \frac{128.\mu QL}{\pi D^4}$
	be the average velocity of flow. Then			$(128 \times \mu \times 800 \times (10^{-3})^3 \times 2)$
	$2000 = \frac{\mathbf{V} \times 8 \times 10^{-2}}{0.4 \times 10^{-4}} \Longrightarrow \mathbf{V} = 1 \mathrm{m/s}$			$2 \times 10^{6} = \frac{128 \times \mu \times 800 \times (10^{-3})^{3} \times 2}{\pi (0.5 \times 10^{-3})^{4}}$
	In laminar flow through a pipe,			$\mu = 1.917$ milli Pa – sec
	$V_{max} = 2 \times V = 2 \text{ m/s}$			
	$\mathbf{v}_{\max} = \mathbf{z} \wedge \mathbf{v} = \mathbf{z}_{\max} \mathbf{v}$			
ACE E	ngincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	r • Luckno	ow • Pa	tna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

EXENCE
122
ESE-Postal Coaching Solutions
5. Ans: 0.75
Sol:
$$U_r = U_{max} \left(1 - \left(\frac{r}{R}\right)^2\right)$$

 $\left[\because \frac{U}{U_{max}} = 1 - \left(\frac{r}{R}\right)^2\right]$
 $= 1 \left(1 - \frac{50}{200}\right)^2$
 $= 1 \left(1 - \frac{1}{4}\right) = \frac{3}{4} = 0.75 \text{ m/s}$
6. Ans: 0.08
5. Given,
 $\rho = 0.8 \times 1000 = 800 \text{ kg/m}^3$
 $\mu = 1 \text{ Poise} = 10^{-1} \text{ N-sm}^2$
 $d = 50 \text{ mm} = 0.05 \text{ m}$
Velocity $= 2 \text{ m/s}$
Reynold's Number, Re $= \frac{\rho \text{VD}}{\mu}$
 $= \frac{800 \times 2 \times 0.05}{10^{-1}} = 800$
 $(\because \text{ Re} < 2000)$
 \therefore Flow is laminar,
For laminar, Darcy friction factor
 $f = \frac{64}{\text{Re}} = \frac{64}{800} = 0.08$
5. For fully developed laminar flow,
 $h_r = \frac{32\mu \text{VL}}{\rho \text{gD}^2}$ ($\therefore \text{ Q} = \text{AV}$)
6. Ans: 16
5. Sol: For fully developed laminar flow,
 $h_r = \frac{32\mu \text{VL}}{\rho \text{gD}^2}$ ($\therefore \text{ Q} = \text{AV}$)

V = 0.52 m/sec
$Q = AV_{avg} = (0.2 \times 50 \times 10^{-3}) (0.52)$
= 5.2 lit/sec

- 09. Ans: (a)
- **Sol:** Wall shear stress for flow in a pipe is given by,

$$\tau_{o} = -\frac{\partial P}{\partial x} \times \frac{R}{2} = \frac{\Delta P}{L} \times \frac{D}{4}$$
$$= \frac{\Delta P D}{4L}$$

10. Ans: 72

Sol: Given, $\rho = 800 \text{ kg/m}^3$,

 $\mu = 0.1$ Pa.s

Flow is through an inclined pipe.

 $d = 1 \times 10^{-2} \text{ m},$ $V_{av} = 0.1 \text{ m/s},$

$$\theta = 30^{\circ}$$

$$\operatorname{Re} = \frac{\rho V_{av} d}{\mu} = \frac{800 \times 0.1 \times 1 \times 10^{-2}}{0.1} = 8$$

 \Rightarrow flow is laminar.

Applying energy equation for the two sections of the inclined pipe separated by 10 m along the pipe,

$$\begin{split} &\frac{P_1}{\gamma} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2 + h_f \\ &\text{But } V_1 = V_2 \ , \\ &(Z_2 - Z_1) = 10 \ sin 30^\circ = 5 \ m \\ &\text{and} \quad h_f = \frac{32 \mu V_{av} L}{\rho g d^2} \end{split}$$

Fluid Mechanics

$$\frac{(P_1 - P_2)}{\gamma} = (Z_2 - Z_1) + \frac{32\mu V_{av}L}{\rho g d^2}$$

$$(P_1 - P_2) = \rho g(Z_2 - Z_1) + \frac{32\mu V_{av}L}{d^2}$$

$$= 800 \times 10 \times 5 + \frac{32 \times 0.1 \times 0.1 \times 10}{(1 \times 10^{-2})^2}$$

$$=40 \times 10^3 + 32 \times 10^3 = 72$$
 kPa

11. Ans: (d)

Sol:

23

- In hydrodynamic entrance region of the pipe of uniform diameter, the average velocity remains constant in the direction of flow. Thus, statement I is wrong.
- However, in the above region the centreline velocity increases in the direction of flow as boundary layers grow on the solid surfaces. Thus, statement (II) is correct.

Conventional Practice Solutions

01.

Since 1995

Sol: The velocity profile for fully developed laminar flow between two stationary parallel plates is given by

$$\mathbf{u} = \frac{1}{2\mu} \left(\frac{-\partial \mathbf{P}}{\partial \mathbf{x}} \right) \left(\mathbf{B}\mathbf{y} - \mathbf{y}^2 \right)$$

(i)
$$\frac{\partial u}{\partial y} = \frac{1}{2\mu} \left(\frac{-\partial P}{\partial x} \right) (B - 2y)$$

At the upper surface

ACE Engineering Publications

$$\frac{\partial \mathbf{u}}{\partial \mathbf{y}}\Big|_{\mathbf{y}=\mathbf{B}} = \frac{1}{2\mu} \left(\frac{-\partial \mathbf{P}}{\partial \mathbf{x}}\right) (\mathbf{B} - 2 \times \mathbf{B})$$
$$= -\frac{1}{2\mu} \left(\frac{-\partial \mathbf{P}}{\partial \mathbf{x}}\right) \mathbf{B}$$
$$\tau_{\mathbf{y}=\mathbf{B}} = \left.\mu \frac{\partial \mathbf{u}}{\partial \mathbf{y}}\right|_{\mathbf{y}=\mathbf{B}} = -\frac{1}{2} \left(\frac{-\partial \mathbf{P}}{\partial \mathbf{x}}\right) \mathbf{B}$$
$$= \frac{-1}{2} \times 1000 \times 5 \times 10^{-3} = -2.5 \text{ Pa}$$

Thus, the magnitude of the shear stress on the upper plate is 2.5 Pa and its direction is opposite to the direction of flow.

(ii) Discharge per unit length

$$= \int_{0}^{B} u(y)(dy \times 1)$$

$$= \frac{1}{2\mu} \left(\frac{-\partial P}{\partial x} \right)_{0}^{B} (By - y^{2}) dy$$

$$= \frac{1}{2\mu} \left(\frac{-\partial P}{\partial x} \right) \left[B \frac{y^{2}}{2} - \frac{y^{3}}{3} \right]_{0}^{B}$$

$$= \frac{1}{2\mu} \left(\frac{-\partial P}{\partial x} \right) \left(\frac{B^{3}}{2} - \frac{B^{3}}{3} \right)$$
Since
$$= \frac{B^{3}}{12\mu} \left(\frac{-\partial P}{\partial x} \right)$$

$$q = \frac{(5 \times 10^{-3})^{3}}{12} \times 1000$$

$$= 20.83 \times 10^{-6} \text{ m}^{3}/\text{s}$$

02.

Sol: This is a problem of Couette flow with pressure gradient. In this case the velocity profile is given by

ESE-Postal Coaching Solutions

$$u = \frac{V}{h}y + \frac{1}{2\mu} \left(-\frac{\partial P}{\partial x} \right) (hy - y^{2})$$

$$= \frac{0.1}{0.01}y + \frac{1}{2 \times 0.1} (1200) (0.01y - y^{2})$$

$$= 10y + 6000 (0.01y - y^{2})$$

$$= 10y + 60y - 6000y^{2}$$

$$= 70y - 6000y^{2}$$
For maximum velocity
 $\frac{\partial u}{\partial y} = 0$, 70 - 12000y

$$\frac{\partial u}{\partial y} = 0 = 70 - 12000y$$

Or, $y = \frac{70 \times 1000}{12000}$ mm = 5.833 mm

$$V_{\text{max}} = 70 \times 5.833 \times 10^{-3} - 6000 \times (5.833 \times 10^{-3})^2$$

= 0.204 m/s

08. Flow Through Pipes

01. Ans: (d)

Sol:

a

24

The Darcy-Weisbash equation for head loss in written as:

$$=\frac{fLV^2}{2gd}$$

 $\mathbf{h}_{\mathbf{f}}$

- where V is the average velocity, f is friction factor, L is the length of pipe and d is the diameter of the pipe.
- This equation is used for laminar as well as turbulent flow through the pipe.
- The friction factor depends on the type of flow (laminar or turbulent) as well as

Engineering Publications	25	Fluid Mechanics
 the nature of pipe surface (smooth or rough) For laminar flow, friction factor is function of Reynolds number. 02. Ans: 481 	a	$\frac{h_{f_{A}}}{h_{f_{B}}} = \left(\frac{d_{B}}{d_{A}}\right)^{5} = \left(\frac{d_{B}}{1.2d_{B}}\right)^{5}$ $= \left(\frac{1}{1.2}\right)^{5} = 0.4018 \approx 0.402$ 04. Ans: (a)
Sol: Given data, $\dot{m} = \pi \text{ kg/s}, \qquad d = 5 \times 10^{-2} \text{ m},$ $\mu = 0.001 \text{ Pa.s}, \qquad \rho = 1000 \text{ kg/m}^3$ $V_{av} = \frac{\dot{m}}{\rho A} = \frac{4\dot{m}}{\rho \pi d^2} = \frac{4 \times \pi}{\rho \pi d^2} = \frac{4}{\rho d^2}$ $\text{Re} = \frac{\rho V_{av} d}{\mu} = \rho \times \frac{4}{\rho d^2} \times \frac{d}{\mu} = \frac{4}{\mu d}$ $= \frac{4}{0.001 \times 5 \times 10^{-2}} = 8 \times 10^4$ $\Rightarrow \text{ Flow is turbulent}$ $f = \frac{0.316}{\text{Re}^{0.25}} = \frac{0.316}{(8 \times 10^4)^{0.25}} = 0.0188$ $\Delta P = \rho g \frac{f L V_{av}^2}{2gd} = f \rho L \times \left(\frac{4}{\rho d^2}\right)^2 \times \frac{1}{2d}$ $\frac{\Delta P}{L} = f \times \frac{16}{\rho d^5} \times \frac{1}{2} = \frac{8f}{\rho d^5} = \frac{8 \times 0.0188}{10^3 \times (5 \times 10^{-2})^5}$ = 481.28 Pa/m		Sol: Given, $d_1 = 10 \text{ cm}; d_2 = 20 \text{ cm}$ $f_1 = f_2;$ $l_1 = l_2 = l$ $l_e = l_1 + l_2 = 2l$ $\frac{l_e}{d_e^5} = \frac{l_1}{d_1^5} + \frac{l_2}{d_2^5} \implies \frac{2l}{d_e^5} = \frac{l}{10^5} + \frac{l}{20^5}$ $\therefore d_e = 11.4 \text{ cm}$ O5. Ans: (c) Sol: $\downarrow \qquad \qquad$
03. Ans: (a) Sol: In pipes Net work, series arrangement $\therefore h_{f} = \frac{f.IV^{2}}{2gd} = \frac{f.IQ^{2}}{12.1 \times d^{5}}$ $\frac{h_{f_{A}}}{h_{f_{B}}} = \frac{f_{A}.\ell_{A}.Q_{a}^{2}}{12.1 \times d_{A}^{5}} \times \frac{12.1 \times d_{B}^{5}}{f_{B}.\ell_{B}.Q_{B}^{2}}$ Given $l_{A} = l_{B}$, $f_{A} = f_{B}$, $Q_{A} = Q_{B}$		By continuity equation, $Q = A_1 V_1 = A_2 V_2$ $\therefore \frac{V_2}{V_1} = \frac{A_1}{A_2} = \left(\frac{d_1}{d_2}\right)^2 = \left(\frac{1}{2}\right)^2$ $h_L = \frac{V_1^2}{2g} \left(1 - \frac{1}{4}\right)^2$

Engineering Publications	26 ESE-Postal Coaching Solutions
$h_{\rm L} = \frac{9}{16} \times \frac{V_1^2}{2g}$ $\frac{h_{\rm L}}{\frac{V_1^2}{2g}} = \frac{9}{16}$	Given data, $L = 930 \text{ m}$, $k_{valve} = 5.5$ $k_{entry} = 0.5$, $d = 0.3 \text{ m}$ $f = 0.03$, $g = 10 \text{ m/s}^2$ Applying energy equation for points (1) and (2), we write :
06. Ans: (b) Sol: Pipes are in parallel $Q_e = Q_A + Q_B$ (i) $h_{Le} = h_{L_A} = h_{L_B}$ $L_e = 175 \text{ m}$	$\frac{P_{1}}{\gamma_{w}} + \frac{V_{1}^{2}}{2g} + Z_{1} = \frac{P_{2}}{\gamma_{w}} + \frac{V_{2}^{2}}{2g} + Z_{2} + h_{L,entry} + h_{L,valve} + h_{L,exit} + h_{f,pipe}$ But $P_{1} = P_{2} = P_{atm} = 0$ $V_{1} = 0 = V_{2}$
$f_{e} = 0.015$ $\frac{f_{e}L_{e}Q_{e}^{2}}{12.1D_{e}^{5}} = \frac{f_{A}.L_{A}Q_{A}^{2}}{12.1D_{A}^{5}} = \frac{f_{B}L_{B}Q_{B}^{2}}{12.1D_{B}^{5}}$ $\frac{0.020 \times 150 \times Q_{A}^{2}}{12.1 \times (0.1)^{5}} = \frac{0.015 \times 200 \times Q_{B}^{2}}{12.1 \times (0.08)^{5}}$ $Q_{A} = 1.747 Q_{B}(ii)$ From (i) $Q_{e} = 1.747 Q_{B} + Q_{B}$ $Q_{e} = 2.747 Q_{B}(iii)$ $\frac{0.015 \times 175(2.747Q_{B})^{2}}{12.1 \times D_{e}^{5}} = \frac{0.015 \times 200 \times Q_{B}^{2}}{12.1 \times (0.08)^{5}}$	$Z_{1} - Z_{2} = 20 \text{ m}, k_{exit} = 1$ $Z_{1} - Z_{2} = 0.5 \frac{V^{2}}{2g} + 5.5 \frac{V^{2}}{2g} + 1 \times \frac{V^{2}}{2g} + \frac{f L V^{2}}{2gd}$ $= 7 \frac{V^{2}}{2g} + \frac{f L V^{2}}{2gd} = \frac{V^{2}}{2g} \left(7 + \frac{f L}{d}\right)$ or $20 = \frac{V^{2}}{2g} \left[7 + \frac{0.03 \times 930}{0.3}\right] = 100 \frac{V^{2}}{2g}$ or $V^{2} = \frac{20 \times 2g}{100} = \frac{20 \times 2 \times 10}{100}$ $\Rightarrow V = 2 \text{ m/s}$
$D_e = 116.6 \text{ mm} \simeq 117 \text{ mm}$ 07. Ans: 0.141 Sol:	Thus, discharge, $Q = \frac{\pi}{4} \times 0.3^2 \times 2$ = 0.1414 m ³ /s
$\begin{array}{c} \begin{array}{c} \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline $ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\	08. Ans: (c) Sol: Given data : Fanning friction factor, $f = m \operatorname{Re}^{-0.2}$ For turbulent flow through a smooth pipe. $\Delta P = \frac{\rho f_{\text{Darcy}} L V^2}{2d} = \frac{\rho (4f) L V^2}{2d}$

Engineering Publications	27	Fluid Mechanics
EVENENCE: $= \frac{2\rho \mathrm{m}\mathrm{Re}^{-0.2}\mathrm{L}\mathrm{V}^2}{\mathrm{d}}$ or $\Delta P \propto \mathrm{V}^{-0.2}\mathrm{V}^2 \propto \mathrm{V}^{1.8}$ (as all other parameters remain constant) We may thus write : $\frac{\Delta P_2}{\Delta P_1} = \left(\frac{\mathrm{V}_2}{\mathrm{V}_1}\right)^{1.8} = \left(\frac{2}{1}\right)^{1.8} = 3.4822$ or $\Delta P_2 = 3.4822 \times 10 = 34.82 \mathrm{kPa}$ 09. Ans: (b) Sol: Given data : Rectangular duct, L = 10 m, X-section of duct = 15 cm × 20 cm Material of duct - Commercial steel, $\varepsilon = 0.045 \mathrm{mm}$ Fluid is air ($\rho = 1.145 \mathrm{kg/m^3}$, $\nu = 1.655 \times 10^{-5} \mathrm{m^2/s}$) $\mathrm{V_{av}} = 7 \mathrm{m/s}$ $\mathrm{Re} = \frac{\mathrm{V_{av}} \times \mathrm{D_h}}{\mathrm{v}}$ where, D _h = Hydraulic diameter $= \frac{4 \times \mathrm{Crosssectionalarea}}{\mathrm{Perimeter}}$		$\frac{1}{\sqrt{f}} \simeq -1.8 \log \left[\frac{6.9}{Re} + \left(\frac{\epsilon/D_h}{3.7} \right)^{1.11} \right]$ $\frac{1}{\sqrt{f}} = -1.8 \log \left[\frac{6.9}{72495.5} + \left(\frac{0.045 \times 10^{-3}}{0.1714 \times 3.7} \right)^{1.11} \right]$ $= -1.8 \log [9.518 \times 10^{-5} + 2.48 \times 10^{-5}]$ $= -1.8 \log (11.998 \times 10^{-5})$ $\frac{1}{\sqrt{f}} = 7.058$ f = 0.02 The pressure drop in the duct is, $\Delta P = \frac{\rho f L V^2}{2D_h}$ $= \frac{1.145 \times 0.02 \times 10 \times 7^2}{2 \times 0.1714} = 32.73 \text{ Pa}$ The required pumping power will be $P_{\text{pumping}} = Q \Delta P = A V_{\text{av}} \times \Delta P$ $= (0.15 \times 0.2) \times 7 \times (32.73)$ $= 6.87 W \simeq 7 W$ 0. Ans: 26.5
Perimeter = $\frac{4 \times 0.15 \times 0.2}{2(0.15 + 0.2)} = 0.1714 \text{ m}$ Re = $\frac{7 \times 0.1714}{1.655 \times 10^{-5}} = 72495.5$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1.655×10^{-5} \Rightarrow Flow is turbulent. Using Haaland equation to find friction factor,	n	Case I: Without additional pipe, Let Q be the discharge through the pipe. Then

ACE Engineering Publications

$$\frac{P_{\rm P}}{\gamma} + \frac{V_{\rm P}^2}{2g} + Z_{\rm P} = \frac{P_{\rm S}}{\gamma} + \frac{V_{\rm S}^2}{2g} + Z_{\rm S} + \frac{f \, L \, Q^2}{12.1 \, d^5}$$

But $V_P = V_S$ and $Z_P = Z_S$

 P_P and P_S are the pressures at sections P and S, respectively.

Thus,

$$\frac{P_{\rm P}}{\gamma} - \frac{P_{\rm S}}{\gamma} = \frac{f \, L \, Q^2}{12.1 d^5} \quad -----(1)$$

Case II: When a pipe (L/2) is connected in parallel.

In this case, let Q' be the total discharge.

$$Q_{Q-R} = \frac{Q'}{2}$$
 and $Q_{R-S} = Q'$

Then,

$$\frac{P'_{p}}{\gamma} + \frac{{V'_{p}}^{2}}{2g} + Z'_{p} = \frac{P'_{s}}{\gamma} + \frac{{V'_{s}}^{2}}{2g} + Z'_{s} + \frac{f(L/4)Q'^{2}}{12.1 d^{5}} + \frac{f(L/2)(Q'/2)^{2}}{12.1 d^{5}} + \frac{f(L/4)Q'^{2}}{12.1 d^{5}}$$

 $P_{P'}$ and $P_{S'}$ are the pressures at sections P and S in the second case.

But
$$V_{P}' = V_{S}'$$
; $Z_{P}' = Z_{S}'$
So, $\frac{P'_{P}}{\gamma} - \frac{P'_{S}}{\gamma} = \frac{f L Q'^{2}}{12.1 d^{5}} \left[\frac{1}{4} + \frac{1}{8} + \frac{1}{4} \right]$
$$= \frac{5}{8} \times \frac{f L Q'^{2}}{12.1 d^{5}} - \dots - (2)$$

Given that end conditions remain same.

i.e.,
$$\frac{P_{P}}{\gamma} - \frac{P_{S}}{\gamma} = \frac{P'_{P}}{\gamma} - \frac{P'_{S}}{\gamma}$$

Hence, equation (2) becomes,

$$\frac{f L Q^2}{12.1 d^5} = \frac{5}{8} \frac{f L Q'^2}{12.1 d^5} \text{ from eq.(1)}$$

or $\left(\frac{Q'}{Q}\right)^2 = \frac{8}{5}$
or $\frac{Q'}{Q} = 1.265$

Hence, percentage increase in discharge is

$$= \frac{Q' - Q}{Q} \times 100$$

= (1.265 - 1) × 100
= 26.5 %

11. Ans: 20%

Sol: Since, discharge decrease is associated with increase in friction.

$$\frac{df}{f} = -2 \times \frac{dQ}{Q} = 2 \left[-\frac{dQ}{Q} \right]$$
$$= 2 \times 10 = 20\%$$

12. Ans: (c)

Sol: As compared to sharp entrance, the rounded entrance will give less energy loss in flow through a pipe. For sharp entrance, the flow gets separated and there will be recirculation zone till the fluid stream gets attached to the surface. Thus, the rounded entrance increases the flow rate when everything else remains constant. Hence, statement (I) is correct. However, statement (II) is wrong as discussed above.

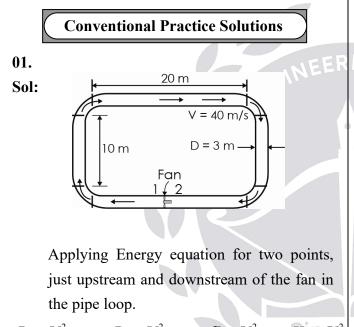
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

ACE Engineering Publications

13. Ans: (d)

Sol: The surge tanks are provided on upstream side of the valve in order to offset the effect of water hammer mainly due to the pressure rise which may damage the pipe. Thus, statement (I) is wrong. However, statement (II) is correct.



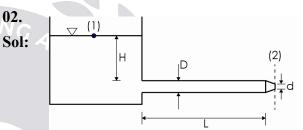
$$\frac{P_{1}}{\gamma_{air}} + \frac{V_{1}^{2}}{2g} + Z_{1} = \frac{P_{2}}{\gamma_{air}} + \frac{V_{2}^{2}}{2g} + Z_{2} + \frac{fL_{total}V^{2}}{2gD} + 4 \times \frac{K_{elbow}V^{2}}{2g}$$
where $V_{1} = V_{2} = V$; $Z_{1} = Z_{2}$
 $f = 0.01$, $D = 3m$,
 $V = 40$ m/s, $L = 60$ m,
 $K_{elbow} = 0.3$ (Given)
 $\frac{P_{1} - P_{2}}{\gamma_{air}} = \frac{V^{2}}{2g} \left[\frac{fL}{D} + 4 \times K_{elbow} \right]$
 $= \frac{40^{2}}{2g} \left[\frac{0.01 \times 60}{3} + 4 \times 0.3 \right]$

$$= \frac{40^2}{2g} \times 1.4$$
$$\Delta P = \rho_{air} \times \frac{40^2}{2} \times 1.4$$
$$= 1.2 \times \frac{40^2}{2} \times 1.4 = 1,344 \text{ Pa}$$

29

Power added to air by fan, $P = Q\Delta P$

$$=\frac{\pi}{4} \times 3^2 \times 40 \times 1,344 = 380 \text{ kW}$$



Applying energy equation between points (1) and (2)

$$\frac{P_1}{\gamma_f} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\gamma_f} + \frac{V_2^2}{2g} + Z_2 + (h_f)_{pipe}$$

But $P_1 = P_2 = P_{atm}, Z_1 = H, Z_2 = 0, V_1 = 0$
Thus,

$$H = \frac{V_{2}^{2}}{2g} + (h_{f})_{pipe} = \frac{V_{2}^{2}}{2g} + \frac{fLV_{p}^{2}}{2gD}$$

For maximum power transmission, $H = 3h_f$

-(1)

Or,
$$3 \times \frac{\text{fL}V_p^2}{2\text{gD}} = \frac{V_2^2}{2\text{g}} + \frac{\text{fL}V_p^2}{2\text{gD}}$$

Or, $\frac{2\text{fL}V_p^2}{2\text{gD}} = \frac{V_2^2}{2\text{g}}$
Or, $\left(\frac{V_2}{V_p}\right)^2 = \frac{2\text{fL}}{D}$ ------

From equation of continuity,

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

1995

EXERCISE

$$\frac{\pi}{4}D^{2}V_{r} = \frac{\pi}{4}d^{2}V_{2}$$
Or $\frac{V_{s}}{V_{p}} = \frac{D^{2}}{4^{2}}$
Thus, substituting in equation (1), we get
 $\left(\frac{D^{2}}{d^{2}}\right)^{2} = \frac{2fL}{D}$
 $\Rightarrow d = \left(\frac{D^{5}}{2fL}\right)^{\frac{1}{4}}$
...... Proved

03. Ans: 2.4
Sol: Given: $V = 2 m/s$
 $f = 0.02$
 $V_{max} = 2$
 $V_{max} = V(1 + 1.43\sqrt{f})$
 $= 2(1 + 1.43\sqrt{t})^{2}$
 $= 2 \times 1.2 = 2.4 m/s$

04. Ans: (**0**)

05. Elementary Turbulent Flow

01. Ans: (**b**)

Sol: The velocity distribution in laminar sublayer of the turbulent boundary layer for flow through a pipe is linear and is given by
 $\frac{u}{V^{*}} = \frac{yV^{*}}{v}$
where V* is the shear velocity.

02. Ans: (**d**)

Sol: $\Delta P = \rho g h_{t}$
 $= \frac{\rho f L V^{2}}{2D} = \frac{\rho g f L Q^{2}}{12.1D^{5}}$
For Q = constant
 $\Delta P \propto \frac{1}{D^{5}}$
 $\sigma r \frac{\Delta P}{R} = \frac{D^{2}}{D^{2}_{2}} = \left(\frac{D_{1}}{2D_{1}}\right)^{5} = \frac{1}{32}$

130

130

131

130

131

131

130

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

141

ACE Engineering Fublications		Fluid Mechanics
$=\frac{11.6\times0.3}{10^6\times\sqrt{\frac{0.025}{8}}}$	$\frac{k}{\delta'} = \frac{0.15 \times 10^{-3}}{\left(\frac{11.6 \times \nu}{V^*}\right)}$	
$= 6.22 \times 10^{-5} \text{ m} = 0.0622 \text{ mm}$	$=\frac{0.15\times10^{-3}}{\frac{11.6\times10^{-6}}{0.07}}=0$	0.905
05. Ans: 25	0.07	
Sol: Given:		
L = 100 m	07. Ans: (a)	
D = 0.1 m	Sol: The velocity profile	in the laminar sublayer
h _L = 10 m	is given as	
$\tau = ?$	$NG = \frac{u}{V^*} = \frac{yV^*}{v}$	
For any type of flow, the shear stress a		
wall/surface $\tau = \frac{-dP}{dx} \times \frac{R}{2}$	or $v = \frac{y(V^*)^2}{u}$	
$\tau = \frac{\rho g h_L}{L} \times \frac{R}{2}$	where, V* is the sheat 0.5×10^{-3}	-
$\tau = \frac{\rho g h_L}{L} \times \frac{D}{4}$	Thus, $v = \frac{0.5 \times 10^{-3}}{1.2}$ = 1×10 ⁻⁶ m	
$=\frac{1000\times9.81\times10}{100}\times\frac{0.1}{4}$	$= 1 \times 10^{-2} \text{ cm}$	
$= 24.525 \text{ N/m}^2 = 25 \text{ Pa}$	08. Ans: 47.74 N/m ²	
Sinc	1005	
06. Ans: 0.905	Sol: Given data : d = 100 mm =	0.1 m
Sol: $k = 0.15 \text{ mm}$	$u_{r=0} = u_{max} = 2 m/$	
$\tau = 4.9 \text{ N/m}^2$	Velocity at $r = 30 \text{ mm}$	
v = 1 centi-stoke	Flow is turbulent.	
$\overline{\tau}$ $\overline{\Lambda \Theta}$	The velocity profile	in turbulent flow is
$V^* = \sqrt{\frac{\tau_o}{\rho}} = \sqrt{\frac{4.9}{1000}} = 0.07 \text{ m/sec}$	$\frac{u_{max} - u}{V^*} = 5.75 \ local{eq:max}$	
v = 1 centi-stoke		(y) city at y and V* is the
$=\frac{1}{100}$ stoke $=\frac{10^{-4}}{100}=10^{-6}$ m ² / sec	shear velocity.	en, at y and v is the
$\frac{100}{100}$ $\frac{100}{100}$ $\frac{100}{100}$ $\frac{100}{100}$ $\frac{100}{100}$	For pipe, $y = R - r$	
		0) mm = 20 mm
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa		,

ACE Engineering Publication

32

ESE-Postal Coaching Solutions

Thus,

$$\frac{2-1.5}{V^*} = 5.75 \log\left(\frac{50}{20}\right) = 2.288$$

or $V^* = \frac{0.5}{2.288} = 0.2185 \,\text{m/s}$

Using the relation,

$$V^* = \sqrt{\frac{\tau_w}{\rho}} \text{ or } \tau_w = \rho (V^*)^2$$

$$\tau_w = 10^3 \times (0.2185)^2 = 47.74 \text{ N/m}^2$$

09. Ans: (a)

Sol:

• In turbulent flow, shear stress is given by

$$\tau = \mu \! \left(\frac{d \overline{u}}{d y} \right) \! + \eta \! \left(\frac{d \overline{u}}{d y} \right)$$

= Viscous stress + Reynolds stress

where μ is dynamic viscosity and η is the eddy viscosity which is not a fluid properly but it is a flow property which depends upon turbulence condition of the flow.

- From the above expression we say that the shear stress in turbulent flow is more than that predicted by Newton's law of viscosity. Thus, statement - I is correct.
- Statement (II) is also correct statement and it is the correct explanation of statement (I).

Conventional Practice Solutions

01.

Sol: Given data: r = 0, u = 1.5 m/s at y = R - 0 = R $r = \frac{R}{2}$, u = 1.35 m/s at $y = R - \frac{R}{2} = \frac{R}{2}$ D = 0.2 m or R = 0.1 m Centreline velocity 1.5 m/s = u_{max}

Using the logarithmic velocity profile as:

 $\frac{u_{max} - u}{V^*} = 5.75 \log\left(\frac{R}{y}\right)$

where V^* is the shear velocity, we can find V^* .

$$\frac{1.5 - 1.35}{V^*}$$
 = 5.75log $\left(\frac{R}{R/2}\right)$ = 5.75log(2)
⇒ V^{*} = 0.0867 m/s.

Similarly using the logarithmic velocity profile in terms of u, V and V^* (where V is the average velocity) we can find V as:

$$\frac{u-V}{V^*} = 5.75 \log\left(\frac{y}{R}\right) + 3.75$$

at y = R,

 $u = u_{max}$

$$\frac{1.5 - V}{0.0867} = 5.75 \log\left(\frac{R}{R}\right) + 3.75 = 0 + 3.75$$
$$\implies V = 1.5 - 0.0867 \times 3.75 = 1.175 \text{ m/s}$$

EXAMPLE 33
Find Mechanics
(i) Thus, discharge =
$$\frac{\pi}{4} \times 0.2^2 \times 1.175$$

 $-0.0369 m^3/s$
(ii) We know that $V^* = V \sqrt{\frac{f'}{2}}$
where, f' is the coefficient of friction.
Thus, f' = $2 \times \left(\frac{V'}{V}\right)^2$
 $= 2 \times \left(\frac{0.08677}{1.175}\right)^2$
 $= 0.011$
The friction factor, f = 4f' = 0.044
(iii) The relationship between height of roughness
projections, K and friction factor is given by
 $\frac{1}{\sqrt{f}} = 2.0 \log \left(\frac{R}{K}\right) + 1.74$
Substituting the values, we get
 $\frac{1}{\sqrt{0.044}} = 2.0 \log \left(\frac{R}{K}\right) + 1.74$
 $\log \left(\frac{R}{K}\right) = 1.5136$
 $\frac{R}{52.629}$
 $K = \frac{R}{32.629}$
 $K = \frac{R}{32.629} = \frac{0.1 \times 10^3}{32.629}$ mm
 $- 3.065$ mm
 $\frac{4}{9} = \frac{x_1}{x_1 + 1}$
 $\frac{4}{9} = \frac{x_1}{x_1 + 1}$
 $\frac{4}{5x_1} = \frac{x_1}{2}$ B0 cm

٦

Engineering Publications	34 ESE-Postal Coaching Solutions
04. Ans: 2	06. Ans: 22.6 Sol: Drag force,
Sol: $\tau \propto \frac{1}{\delta}$	$F_{\rm D} = \frac{1}{2} C_{\rm D}.\rho.A_{\rm Proj}.U_{\infty}^2$
$\tau \propto \frac{1}{\sqrt{x}} :: \delta \propto \sqrt{x}$	B = 1.5 m, $\rho = 1.2 \text{ kg/m}^3$ L = 3.0 m, $\nu = 0.15 \text{ stokes}$
$\frac{\tau_1}{\tau_2} = \sqrt{\frac{x_2}{x_1}} \qquad \qquad \frac{\tau_1}{\tau_2} = \sqrt{4} = 2$	$U_{\infty} = 2 \text{ m/sec}$
05. Ans: 3	$Re = \frac{U_{\infty}L}{v} = \frac{2 \times 3}{0.15 \times 10^{-4}} = 4 \times 10^{5}$
Sol: $\frac{U}{U_{\infty}} = \frac{y}{\delta}$	ERING $C_{\rm D} = \frac{1.328}{\sqrt{\text{Re}}} = \frac{1.328}{\sqrt{4 \times 10^5}} = 2.09 \times 10^{-3}$
$\frac{\delta^*}{\theta}$ = Shape factor = ?	Drag force, $F_D = \frac{1}{2} \times 2.09 \times 10^{-3} \times 1.2 \times (1.5 \times 3) \times 2^2$
$\delta^* = \int_0^\delta \left(1 - \frac{u}{U_\infty} \right) dy$	= 22.57 milli-Newton
$= \int_0^{\delta} \left(1 - \frac{y}{8}\right) dy$	07. Ans: 1.62 Sol: Given data,
$= y - \frac{y^2}{2\delta} \bigg _0^\delta = \delta - \frac{\delta}{2} = \frac{\delta}{2}$	$U_{\infty} = 30 \text{ m/s},$ $\rho = 1.2 \text{ kg/m}^3$
$\theta = \int_0^{\delta} \frac{u}{U_{\infty}} \left(1 - \frac{u}{U_{\infty}} \right) dy$	Velocity profile at a distance x from leading edge,
$= \int_{0}^{\delta} \frac{y}{8} \left(1 - \frac{y}{\delta} \right) dy$	$\frac{u}{U_{\infty}} = \frac{y}{\delta}, \qquad \delta = 1.5 \text{ mm}$ Mass flow rate of air entering section ab,
$\mathbf{v}^2 \mathbf{v}^3 \Big ^{\delta} \mathbf{\delta} \mathbf{\delta} \mathbf{\delta} \mathbf{\delta}$	$(\dot{m}_{in})_{ab} = \rho U_{\infty} (\delta \times 1) = \rho U_{\infty} \delta \text{ kg/s}$
$= \frac{y^2}{2\delta} - \frac{y^3}{3\delta} \Big _0^\circ \qquad = \frac{\delta}{2} - \frac{\delta}{3} = \frac{\delta}{6}$	Mass flow rate of air leaving section cd,
Shape factor = $\frac{\delta^*}{\theta} = \frac{\delta/2}{\delta/6} = 3$	$(\dot{m}_{out})_{cd} = \rho \int_{0}^{\delta} u(dy \times 1) = \rho \int_{0}^{\delta} U_{\infty}\left(\frac{y}{\delta}\right) dy$
	$= \frac{\rho U_{\infty}}{\delta} \left[\frac{y^2}{2} \right]_0^{\delta} = \frac{\rho U_{\infty} \delta}{2}$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	ar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications	35	Fluid Mechanics
From the law of conservation of mass : $(\dot{m}_{in})_{ab} = (\dot{m}_{out})_{ad} + (\dot{m}_{out})_{ba}$		$\frac{\mathrm{d}\theta}{\mathrm{d}x} = \frac{\tau_{\mathrm{w}}}{\rho \mathrm{U}_{\infty}^2} - \dots $
Hence, $(\dot{m}_{out})_{bc} = (\dot{m}_{in})_{ab} - (\dot{m}_{out})_{cd}$		we can find out τ_w .
$= \rho U_{\infty} \delta - \frac{\rho U_{\infty} \delta}{2}$		From linear velocity profile, $\frac{u}{U_{\infty}} = \frac{y}{\delta}$, we
$=\frac{\rho U_{\infty}\delta}{2}$		evaluate first θ , momentum thickness as
$= \frac{1.2 \times 30 \times 1.5 \times 10^{-3}}{2}$		$\theta = \int_{0}^{\delta} \frac{u}{U_{\infty}} \left(1 - \frac{u}{U_{\infty}} \right) dy$
$= 27 \times 10^{-3} \text{ kg/s}$	ERI/	$= \int_{0}^{\delta} \frac{y}{\delta} \left(1 - \frac{y}{\delta} \right) dy = \int_{0}^{\delta} \left(\frac{y}{\delta} - \frac{y^{2}}{\delta^{2}} \right) dy$
$= 27 \times 10^{-3} \times 60 \text{ kg/min}$ $= 1.62 \text{ kg/min}$		$= \left(\frac{y^2}{2\delta} - \frac{y^3}{3\delta^2}\right)_0^{\delta} = \frac{\delta}{2} - \frac{\delta}{3} = \frac{\delta}{6}$
08. Ans: (b)		$\Rightarrow \theta = \frac{\delta}{6} = \frac{1}{6} \times \frac{3.46 \text{ x}}{\sqrt{\text{Re}}}$
Sol: For 2-D, steady, fully developed lamin	ar	V x
boundary layer over a flat plate, there	is	$=\frac{3.46}{x^{1/2}}$
velocity gradient in y-direction, $\frac{\partial u}{\partial y}$ on	ly.	$=\frac{3.46}{6}\frac{x^{1/2}}{\left(\frac{U_{\infty}}{v}\right)^{1/2}}$
The correct option is (b).		Differentiating θ w.r.t x, we get :
Sol: Given data,	ice 1	$\frac{d\theta}{dx} = \frac{3.46}{6 \times 2} \frac{x^{-1/2}}{\left(\frac{U_{\infty}}{v}\right)^{1/2}} = 0.2883 \frac{1}{\sqrt{\frac{U_{\infty} x}{v}}}$
Flow is over a flat plate. L = 1 m, $U_{\infty} = 6 \text{ m/s}$		$\frac{d\theta}{dx}\Big _{x=0.5\mathrm{m}} = 0.2883 \times \frac{1}{\sqrt{\frac{6 \times 0.5}{0.15 \times 10^{-4}}}} = \frac{0.2883}{447.2}$
$v = 0.15$ stoke = 0.15×10^{-4} m ² /s		(2)
$\rho = 1.226 \text{ kg/m}^3$		From equation (1)
$\delta(\mathbf{x}) = \frac{3.46\mathbf{x}}{\sqrt{\mathrm{Re}_{\mathbf{x}}}}$		$\tau_{\rm w}\Big _{\rm x=0.5m} = \frac{d\theta}{dx}\Big _{\rm x=0.5m} \times \rho U_{\infty}^2$
Velocity profile is linear.		$=\frac{0.2883}{4472} \times 1.226 \times 6^{2}$
Using von-Karman momentum integr	ral	117.2
equation for flat plate.		$= 0.02845 \text{ N/m}^2 \simeq 28.5 \text{ mN/m}^2$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad		

ACE Engineering Publication

ESE-Postal Coaching Solutions

10. Ans: (c)

Sol:

- For laminar boundary layer over a flat plate, the velocity gradient at the surface decreases in the direction of flow.
- This results in the decrease in shear stress and hence, the decrease in skin friction coefficient in the direction of flow.
- Thus, statement (I) is correct but the statement (II) is wrong.

11. Ans: (b)

Sol:

- The velocity gradients at the wall, and thus the wall shear stress, are much larger for turbulent flow than they are for laminar flow, even though the turbulent boundary layer is thicker than the laminar one for the same value of free stream velocity. This results in higher skin friction drag in turbulent boundary layer. Thus, statement (I) is correct.
- The separation of turbulent boundary is late as compared to laminar boundary layer. Thus, statement (II) is also correct but it is not the correct explanation of statement (I).

Conventional Practice Solutions

01.

Sol: Given data: Test section dia = 40 cm Test section length = 60 cm Velocity of air at inlet = 2 m/sand $\delta^* = \frac{1.72x}{\sqrt{Re_x}}$ $\operatorname{Re}_{x} = \frac{2 \times 0.6}{10^{-5}} = 1.2 \times 10^{5}$ So, δ^* at x = 0.6m = $\frac{1.72 \times 0.6}{\sqrt{1.2 \times 10^5}}$ $= 2.979 \times 10^{-3}$ m From equation of continuity $A_{in}V_{in} = A_{exit}V_{exit}$ But $d_{exit} = 0.4 - 2\delta^*$ $= (0.4 - 2 \times 2.979 \times 10^{-3}) \text{ m}$ Thus, $V_{exit} = \left(\frac{0.4}{0.4 - 2 \times 2.979 \times 10^{-3}}\right)^2 \times 2$ 1995 = 2.061 m/s02.

Sol: Given data:

Flow over a flat plate Fluid is water.

At x = 1 m

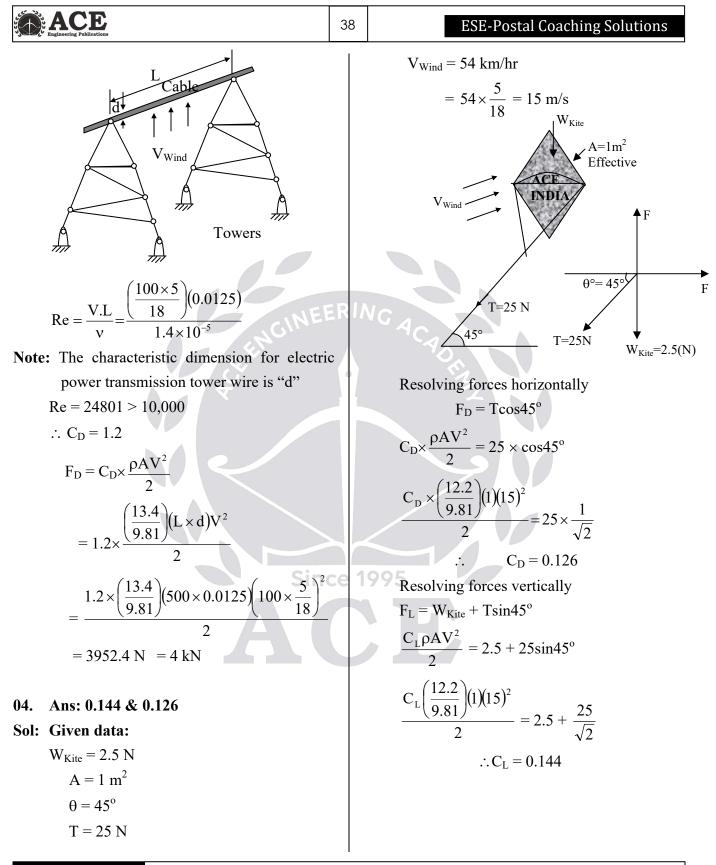
 $U_{\infty} = 1 \text{ m/s}$

L = 1 m

Case I: Flow is turbulent

$$\operatorname{Re}_{\mathrm{x}} = \frac{U_{\infty} \mathrm{x}}{v_{\mathrm{water}}} = \frac{1 \times 1}{10^{-6}} = 10^{6}$$

Engineering Publications	37	Fluid Mechanics
$\frac{\delta_{\text{tur}}}{x} = \frac{0.376}{\left(\text{Re}_{x}\right)^{\frac{1}{5}}} = \frac{0.376}{\left(10^{6}\right)^{\frac{1}{5}}}$		$\frac{\mathbf{P}_1}{\mathbf{P}_2} = \left(\frac{\mathbf{V}_1}{\mathbf{V}_2}\right)^3$
$\delta_{tur} = \frac{0.376 \times 1}{\left(10^6\right)^{\frac{1}{5}}} = 0.0237 \mathrm{m} \approx 24 \mathrm{mm}$		$\frac{P_1}{P_2} = \left(\frac{V}{2V}\right)^3$
$\frac{\tau_{\rm w}}{\frac{1}{2}\rho U_{\infty}^2} = C_{\rm f,x} = \frac{0.059}{({\rm Re}_x)^{\frac{1}{5}}}$		$P_2 = 8P_1$ Comparing the above relation with XP, We get, $X = 8$
$\tau_{\rm w} = \frac{0.059}{\left(10^6\right)^{\frac{1}{5}}} \times \frac{1}{2} \times 10^3 \times 1^2 = 1.86 \text{ N/m}^2$		02. Ans: 4.56 m
Case 2: If the flow is laminar For the comparison purpose, consider the	RI/	Sol: $F_D = C_D \cdot \frac{\rho A V^2}{2}$
same Reynolds number. $\frac{\delta_{\text{lam}}}{x} = \frac{5}{\sqrt{\text{Re}_x}}$		$W = 0.8 \times 1.2 \times \frac{\frac{\pi}{4}(D)^2 \times V^2}{2}$
$\delta_{\text{lam}} = \frac{5 \times 1}{\sqrt{10^6}} = 5 \text{ mm}$		(Note: A = Normal (or) projected Area = $\frac{\pi}{4}D^2$)
and $\tau_{w} = \frac{0.664}{\sqrt{Re_{x}}} \times \frac{1}{2} \rho U_{\infty}^{2}$		784.8 = $0.8 \times 1.2 \times \frac{\pi}{4}$ (D) ² × $\frac{10^2}{2}$
$= \frac{0.664}{\sqrt{10^6}} \times \frac{1}{2} \times 10^3 \times 1^2 = 0.332 \text{ N/m}^2$		$\therefore D = 4.56 \text{ m}$
Sinc		03. Ans: 4
11. Force on Submerged Bodies		Sol: Given data:
01. Ans: 8		l = 0.5 km = 500 m d = 1.25 cm
Sol: Drag power = Drag Force × Velocity		$V_{Wind} = 100 \text{ km/hr}$
$\mathbf{P} = \mathbf{F}_{\mathbf{D}} \times \mathbf{V}$		$\gamma_{Air} = 1.36 \times 9.81 = 13.4 \text{ N/m}^3$
$\mathbf{P} = \mathbf{C}_{\mathrm{D}} \times \frac{\rho \mathrm{AV}^2}{2} \times \mathrm{V}$		$v = 1.4 \times 10^{-5} \text{ m}^2/\text{s}$
$P - C_D \times \frac{1}{2} \times V$		$C_{\rm D} = 1.2$ for Re > 10000
$P \propto V^3$		$C_D = 1.3$ for Re < 10000



ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publication

05. Ans: (a)

Sol: Given data:

 $C_{D_2} = 0.75 C_{D_1}$ (25% reduced)

Drag power = Drag force × Velocity

$$P = F_D \times V = \frac{C_D \rho A V^2}{2} \times V$$
$$P = C_D \times \frac{\rho A V^3}{2}$$

Keeping ρ , A and power constant

$$C_D V^3 = constant = C$$

$$\frac{C_{D_1}}{C_{D_2}} = \left(\frac{V_2}{V_1}\right)$$
$$\left(\frac{C_{D_1}}{0.75C_{D_1}}\right)^{\frac{1}{3}} = \frac{V_2}{V_1}$$

$$\therefore V_2 = 1.10064V_1$$

% Increase in speed = 10.064%

06. Ans: (c)

Sol: When a solid sphere falls under gravity at its terminal velocity in a fluid, the following relation is valid :

Weight of sphere = Buoyant force + Drag force

07. Ans: 0.62

Sol: Given data,

Diameter of dust particle, d = 0.1 mmDensity of dust particle,

 $\rho = 2.1 \text{ g/cm}^3 = 2100 \text{ kg/m}^3$

 $\mu_{air} = 1.849 \times 10^{-5}$ Pa.s,

At suspended position of the dust particle,

 $W_{\text{particle}} = F_D + F_B$

where F_D is the drag force on the particle and F_B is the buoyancy force.

From Stokes law:

$$F_D = 3\pi\mu V d$$

Thus,

$$\frac{4}{3} \times \pi r^{3} \times \rho \times g = 3\pi\mu Vd + \frac{4}{3}\pi r^{3}\rho_{air}g$$

or, $\frac{4}{3}\pi r^{3}g(\rho - \rho_{air}) = 3\pi\mu_{air}V(2r)$
or $V = \frac{2}{9}r^{2}g\left(\frac{\rho - \rho_{air}}{\mu_{air}}\right)$
 $= \frac{2}{9} \times \left(0.05 \times 10^{-3}\right)^{2} \times 9.81 \times \frac{(2100 - 1.2)}{1.849 \times 10^{-5}}$
 $= 0.619 \text{ m/s} \approx 0.62 \text{ m/s}$

08. Ans: (b)

Sol: Since the two models M₁ and M₂ have equal volumes and are made of the same material, their weights will be equal and the buoyancy forces acting on them will also be equal. However, the drag forces acting on them will be different.

From their shapes, we can say that M_2 reaches the bottom earlier than M_1 .

ACE Engineering Publications

ESE-Postal Coaching Solutions

09. Ans: (a)

Sol:

- Drag of object A₁ will be less than that on A₂. There are chances of flow separation on A₂ due to which drag will increase as compared to that on A₁.
- Drag of object B₁ will be more than that of object B₂. Because of rough surface of B₂, the boundary layer becomes turbulent, the separation of boundary layer will be delayed that results in reduction in drag.
- Both the objects are streamlined but C₂ is rough as well. There will be no pressure drag on both the objects. However, the skin friction drag on C₂ will be more than that on C₁ because of flow becoming turbulent due to roughness. Hence, drag of object C₂ will be more than that of object C₁.
- Thus, the correct answer is option (a).

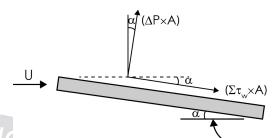
10. Ans: (a)

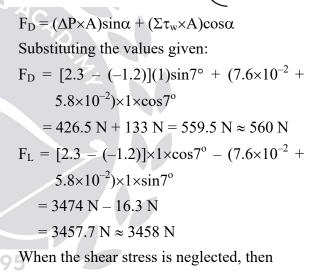
Sol:

- Dimples on a golf ball are intentionally provided to make its surface rough so that flow becomes turbulent.
- A turbulent boundary layer, having more momentum than a laminar boundary layer, can better resist an adverse pressure gradient, thus avoiding early separation.
- Thus, both statements are correct and statement (II) is the correct explanation of statement (I).

Conventional Practice Solutions

- 01.
- **Sol:** The lift force on the given plate is $F_L = (\Delta P \times A)\cos\alpha - (\Sigma \tau_w \times A)\sin\alpha$



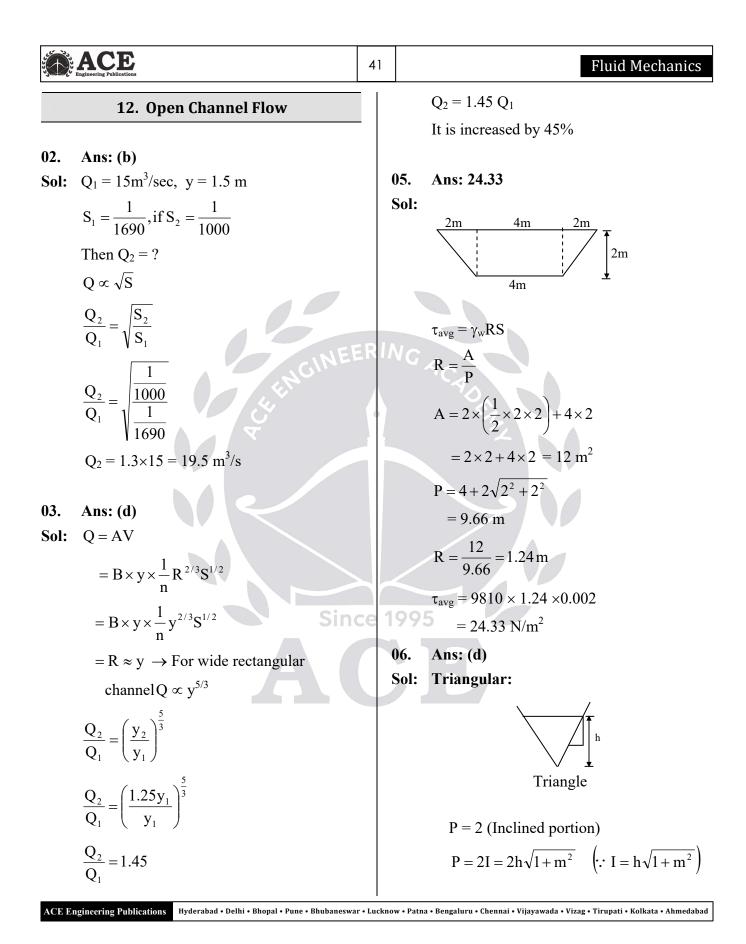


$$F_D = (\Delta P \times A)\cos\alpha = 426.5 \text{ N} \approx 427 \text{ N}$$

and
$$F_L = (\Delta P \times A) \sin \alpha = 3474 \text{ N}$$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since



ACE Engineering Publications	42 ESE-Postal Coaching Solutions
$=2h\sqrt{1+1^2}$	From (I) & (II) y= 1.519 m
$= 2h\sqrt{2}$ $\frac{P}{h} = 2\sqrt{2} = 2.83$	$\therefore D = \frac{(b+my)y}{b+2my} = 1.14 \text{ m}$
h Trapezoidal: Efficient trapezoidal section is half of the Hexagon for which all sides	\sqrt{gD}
are equal	$F_{r} = 0.37$
Trapezoidal	08. Ans: (a)Sol: Alternate depths
$I = h\sqrt{1 + m^2}$	$y_1 = 0.4 \text{ m}$ $y_2 = 1.6 \text{ m}$
$P = I = h \sqrt{\left(1\right) + \left(\frac{1}{\sqrt{3}}\right)^2} = h(1.15)$	Specific energy at section =? $y_1 + \frac{q^2}{2gy_1^2} = y_2 + \frac{q^2}{2gy_2^2}$
$\frac{P}{h} = 1.15 \times 3 = 3.46 (3 \text{ sides are equal})$	$0.4 + \frac{q^2}{2 \times 9.81 \times 0.4^2} = 1.6 + \frac{q^2}{2 \times 9.81 \times 1.6^2}$
Rectangular: P = b + 2h = 2h + 2h = 4h (b = 2y)	$q^{2} \left(\frac{1}{3.1392} - \frac{1}{50.22} \right) = 1.6 - 0.4$
$\frac{P}{h} = 4$ Since	$q^{2}(0.298) = 1.2$ $q^{2} = 4.02$
07. Ans: 0.37 Sol: $A = y (b + my)$	$q = 2 m^3 / s/m$ $E_1 = y_1 + \frac{q^2}{2gy_1^2}$
$A = \frac{Q}{V} = \frac{5}{1.25} = 4 \text{ m}^2$ $4 = \left(b + \frac{y}{\sqrt{3}}\right)y \dots (I) \left(\because \text{ m} = \frac{1}{\sqrt{3}}\right)$	$E_1 = 0.4 + \frac{2^2}{2 \times 9.81 \times 0.4^2} = 1.68 \text{ m}$
But b = I (:: Efficient trapezoidal section)	09. Ans: (b) Sol: Depth = 1.6 m
$b = y\sqrt{1 + m^{2}}$ $b = \frac{2y}{\sqrt{2}} \dots \dots \dots \dots \dots \dots \dots (II)$	Specific energy = 2.8 m
ν 5	r • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Alternate depths
$$y_1 = 0.2$$
, $y_2 = 4m$
 $E_1 = E_2$ (\therefore alternate depths), $F_r = \frac{V}{\sqrt{gD}}$
Sol: $E_1 = E_2 + (\Delta z)$
 $V_1 = \frac{Q}{A_1} = \frac{12}{2.4 \times 2} = 2.5 \text{ m/sec}$

	ACE Engineering Publications	44		ESE-Postal Coaching Solutions
	$A_2 = (b_2 + my_2)y_2 = (1.8 + 1 \times 1.6) 1.6$			$\therefore E_1 = E_2$
	$= 5.44 \text{ m}^2$			$V_1^2 = V_2^2$
	$V_2 = \frac{Q}{A_2} = \frac{12}{5.44} = 2.2 \text{m/sec}$			$y_1 + \frac{V_1^2}{2g} = y_2 + \frac{V_2^2}{2g}$
	$E_1 = y_1 + \frac{V_1^2}{2g} = 2 + \frac{(2.5)^2}{2 \times 9.81} = 2.318 \mathrm{m}$			$V_1 = \frac{Q}{B_1 y_1} = \frac{3}{2 \times 1.2} = 1.25 \text{m/sec}$
	$E_2 = y_2 + \frac{V_2^2}{2g} = 1.6 + \frac{2.2^2}{2 \times 9.81} = 1.846 \text{ m}$			$V_2 = \frac{Q}{B_2 y_2} = \frac{3}{1.5 \times y_2} = \frac{2}{y_2}$
	$2.318 = 1.846 + \Delta Z \Longrightarrow \Delta Z = 0.47 \text{ m}$			$1.2 + \frac{(1.25)^2}{2 \times 9.81} = y_2 + \frac{\left(\frac{2}{y_2}\right)^2}{2 \times 9.81}$
14.	Ans: (c)	ERI	VC,	
Sol:	$F_r > 1$			$1.27 = y_2 + \frac{4}{y_2^2 \times 19.62}$
	$B_2 < B_1$ B_1			$y_2^2 \times 19.62$
	$q_2 > q_1$			$1.27 = y_2 + \frac{0.2}{y_2^2}$
				$y_2^2(1.27) = y_2^3 + 0.2$
C				$y_2^3 - 1.27y_2^2 + 0.2 = 0$
Supe	rcritical y ₂ /q ₂			
$F_r > 1$				$y_2 = 1.12 \text{ m}$
_	Since	ce 1	99!	$F_{r_1} = \frac{1.25}{\sqrt{9.81 \times 1.2}} \left[\frac{V}{\sqrt{gD}} < 1 \right] = 0.364 < 1$
	As Potential energy (y) increases the			Approaching flow is sub critical. If
	kinetic energy (v) decreases \triangle			approaching flow is sub critical the level of
				water falls in the throat portion.
	\therefore 'y' increases and 'v' decreases.			
		-	16.	Ans: (d)
15.	Ans: (a)	\$	Sol:	Rectangular Channel
Sol:	$Q = 3m^3/s \qquad \qquad B_1 \qquad \boxed{B_2}$			$y_1 = 1.2m$
	$B_1 = 2m, D = 1.2 m$			$V_1 = 2.4 \text{m/s}$
				$\Delta Z = 0.6 m$
	Width reduce d to $1.5 \text{ m}(B_2)$			
ACE E	Assume channel bottom as horizontal ngincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	r • Luckno	ow • Patna	• Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

$$E_{1} = y_{1} + \frac{V_{1}^{2}}{2g} = 1.2 + \frac{(2.4)^{2}}{2 \times 9.81} = 1.49m$$

 $Q = 2.4 \times 1.2 = 2.88 \text{ m}^3/\text{s/m}$ Assuming channel width as constant, the critical depth

$$y_{c} = \left[\frac{Q^{2}}{gB^{2}}\right]^{\frac{1}{3}} = 0.94m$$

Critical specific energy for rectangular channel $E_C = \frac{3}{2}y_c$

$$E_{c} = \frac{3}{2}(0.94) = 1.41$$

We know for critical flow in the hump portion $E_1 = E_2 + (\Delta Z) = E_C + (\Delta Z)_C$

$$\Rightarrow 1.49 = 1.41 + (\Lambda Z)_{C}$$

$$\therefore (\Delta Z)_{\rm C} = 0.08 {\rm m}$$

If the hump provided is more than the critical hump height the u/s flow gets affected.

(or)
Fr₁ =
$$\frac{v_1}{\sqrt{gy_1}} = \frac{2.4}{\sqrt{9.81 \times 1.2}} = 0.69 < 1$$

 \Rightarrow Hence sub-critical.

If the approaching flow is sub-critical the level of water will fall in the hump portion. Option (b) is correct if the hump height provided is less than critical hump height.

As the hump height provided is more than critical, the u/s flow gets affected with the

increase of the specific energy from E_1 to E_1^1 .

In the sub-critical region as the specific energy increases, the level of water rises from y_1 to y_1^1 in the form of a surge.

y₁
y₁
y₁
E₁
Super critical
E₁¹ = y₁¹ +
$$\frac{v_1^{1'}}{2g}$$

E₁¹ = y₁¹ + $\frac{q^2}{2gy_1^{1^2}}$... (1)
Also E₁¹ = E_c + (ΔZ) provided.
= 1.41 + 0.6
= 2.01m
 $\therefore 2.01 = y_1^1 + \frac{2.88^2}{2 \times 9.81 \times y_1^2}$
Solve by trial & error
for y₁¹ > 1.2m
17. Ans: (c)
Sol: B₁ = 4 m
B₂ = 3 m
(U/S) y₁ = 0.9 m
E₁ = E₂+ ΔZ

$$y_1 + \frac{V_1^2}{2g} = y_2 + \frac{V_2^2}{2g} + \Delta Z$$

 $V_1 = V_2$

According to continuity equation

$$Q_{1} = Q_{2}$$

$$A_{1}V_{1} = A_{2} V_{2}$$

$$A_{1} = A_{2}$$

$$B_{2}y_{1} = B_{2} y_{2}$$

$$4 \times 0.9 = 3 \times y_{2}$$

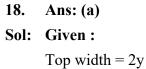
$$y_{2} = 1.2 m$$

$$y_{1} = y_{2} + \Delta Z$$

$$0.9 = 1.2 + \Delta Z$$

$$\Delta Z = -0.3 m$$

Negative indicates that the hump assumed is wrong infact it is a drop.



Area = $\frac{1}{2} \times b \times h$

$$= \frac{1}{2} \times 2\mathbf{y} \times \mathbf{y}$$
$$\mathbf{A} = \mathbf{y}^2$$

Wetted perimeter

$$I^2 = \sqrt{y^2 + y^2} = y\sqrt{2}$$

(Both sides) total wetted perimeter

(P) =
$$\sqrt{2} \cdot y + \sqrt{2} \cdot y = 2 \sqrt{2} \cdot y$$

Hydraulic mean depth
(R) = $\frac{A}{P} = \frac{y^2}{2\sqrt{2}y} = \frac{y}{2\sqrt{2}}$
 $y = y_n(say)$
Using Mannings formula
 $Q = A \cdot \frac{1}{n} \cdot (R)^{2/3} \cdot (S)^{1/2}$
 $0.2 = y_n^2 \frac{1}{0.015} \left[\frac{y_n}{2\sqrt{2}} \right]^{2/3} (0.001)^{1/2}$
 $\frac{1}{y_n^{8/3}} = \frac{1}{0.015 \times 0.2} \times \left[\frac{1}{2\sqrt{2}} \right]^{2/3} (0.001)^{1/2}$
 $y_n^{8/3} = 0.2 \times 0.015 \times (2\sqrt{2})^{2/3} \left[\frac{1}{0.001} \right]^{1/2}$
 $(y_n)^{8/3} = 0.189$
 $y_n = (0.189)^{3/8}$
 $y_n = 0.54 \text{ m}$
critical depth $(y_e) = \left[\frac{2Q^2}{g} \right]^{1/5}$
(for triangle)
 $y_c = \left[\frac{2 \times 0.2^2}{9.81} \right]^{1/5} = 0.382 \text{ m}$
 $y_n > y_c \quad (0.54 > 0.38)$
∴ mild slope
If (actual) depth at flow = 0.4m = y
 $Y_n > y > y_c [0.54 > 0.4 > 0.38]$
∴ Profile is M₂

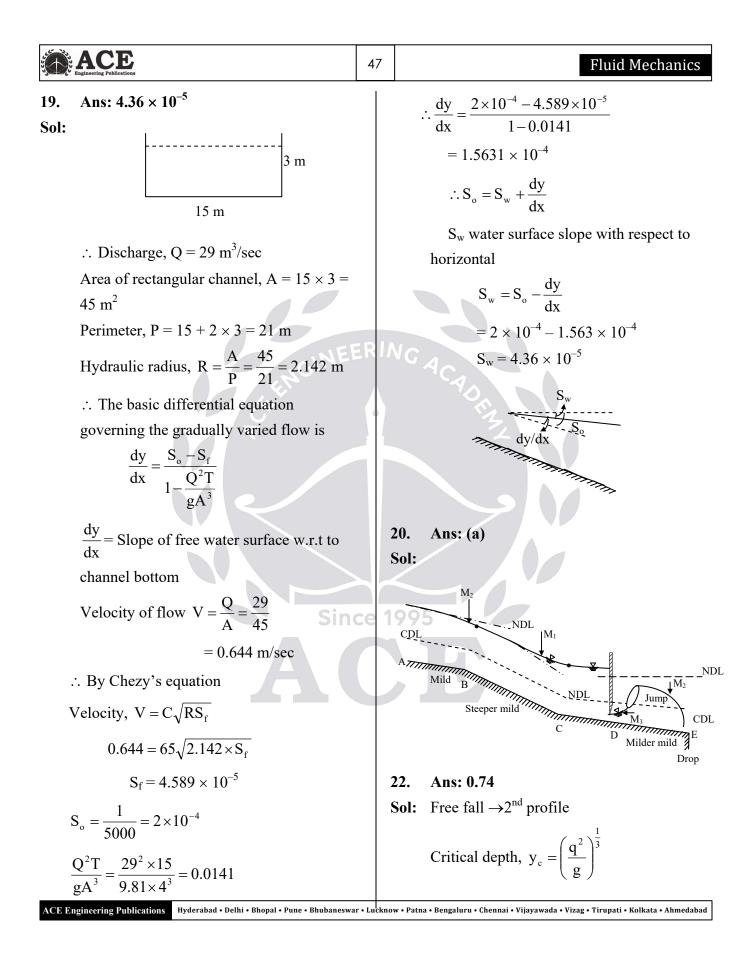
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

m =1

y

19



$$y_{c} = \left(\frac{2^{2}}{9.81}\right)^{\frac{1}{3}} = 0.74 \text{ m}$$

$$y_{c} = \left(\frac{2^{2}}{9.81}\right)^{\frac{1}{3}} = 0.74 \text{ m}$$

$$V = \frac{q}{y_{a}}$$

$$\frac{2}{y_{a}} = \frac{1}{y_{a}^{2/3}} y_{a}^{2/3} y_{a}^{1/2}$$

$$\frac{2}{y_{a}} = \frac{1}{0.012} \times y_{a}^{2/3} (0.0004)^{1/2}$$

$$y_{a} = 1.11 \text{ m}$$

$$y_{a} > y_{c}$$
Hence the water surface will have a deptic equal to y_{c}

$$y_{c} = 0.74 \text{ m}$$
25. Ans: (c)
Sol: $q = 2 \text{ m}^{2}/\text{sec}$

$$y_{c} = 0.74 \text{ m}$$
25. Ans: (c)
Sol: $Q = 1 \text{ m}^{3/s}$

$$y_{1} = 0.5 \text{ m}$$

$$y_{2} = ?$$
As it is not a rectangular channel, let us work out from fundamentals by equating specific force at the two sections.

$$\left[\frac{Q_{2}^{2}}{gA} + A^{2}\right]_{1} = \left[\frac{Q_{2}}{gA} + A^{2}\right]_{2}$$
As it is not a rectangular channel, let us work out from fundamentals by equating specific force at the two sections.

$$\left[\frac{Q_{2}^{2}}{gA} + A^{2}\right]_{1} = \left[\frac{Q_{2}^{2}}{gA} + A^{2}\right]_{2}$$

$$\left[\frac{Q_{2}}{gA} + A^{2}\right]_{1} = \left[\frac{Q_{2}}{gA} + A^{2}\right]_{2}$$

$$\left[\frac{Q_{2}}{gA} + A^{2}\right]_{1} = \left[\frac{Q_{2}}{gA} + A^{2}\right]_{2}$$
24. Ans: (d)
Sol: Given $q_{1} - Q/B = 10 \text{ m}^{3}/\text{s}$
 $v_{1} = 20 \text{ m/s}$
 $\therefore y_{1} = \frac{q_{1}}{100} = 0.5 \text{ m}$

$$26. \text{ Ans: (b)}$$
Sol: Given:
 $Head = 5 \text{ m} = (AE)$
Froud number = 8.5
Approximate sequent depths =?
$$26 \text{ Forced number = 8.5 Approximate sequent depths =?$$

ACE Engineering Publications	49	Fluid Mechanics
$\frac{y_2}{y_1} = \frac{1}{2} \left[-1 + \sqrt{1 + 8F_{r1}^2} \right]$		$V_1 = \sqrt{9.81 \times 1.2} - 2$ $V_1 = 1.43$ m/s
$= \frac{1}{2} \left[-1 + \sqrt{1 + 8(8.5)^2} \right]$ = 11.5 m		In this problem if the wave moves downstream the velocity of wave is $V_w - V_1 = \sqrt{gy_1}$
y ₂ = 11.5 y ₁ (a) y ₂ = 11.5(0.3) = 3.45 (b) y ₂ = 11.5(0.2) = 2.3 m from options		$V_{w} = \sqrt{gy_{1}} + V_{1}$ $= \sqrt{9.81 \times 1.2} + 2$
$y_1 = 0.2, y_2 = 2.3 m$ (or)	- D I	= 5.43 m/s
$\Delta E = 5 \text{ m}$ $\Delta E = \frac{(y_2 - y_1)^3}{4y_1y_2}$		 28. Ans: (b) Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-12, 79th Question -pg: 154)
$\frac{(11.5y_1 - y_1)^3}{4(11.5y_1)y_1} = 5$ $(10.5y_1)^3 = 230y_1^2$		29. Ans: (c) Refer previous ESE-Obj-(Vol-2) solutions Book (Cha-12, 87 th Question -pg: 155)
1157.625 $y_1 = 230$ $y_1 = 0.2 m$ $y_2 = 11.5(0.2)$	ce	Conventional Practice Solutions
$y_2 = 2.3 m$		01. Sol: Given data:
27. Ans: 1.43 Sol: $y_1 = 1.2 \text{ m}$ $V_w + V_1 = \sqrt{gy_1}$		$n = 0.015$ $b = 5 \text{ m}, y = 2 \text{ m}$ $S_1 = 1:1600$ $y = 2 \text{ m}$ $b = 5 \text{ m} \longrightarrow 1$
$V_{W} = V_{1} = \sqrt{SJ_{1}}$		Discharge calculation in Case - 1:
$ V_1$ $\overline{U/s} \qquad \overline{D/s}$		Wetted area $A_1 = 5 \times 2 = 10 \text{ m}^2$ Wetted perimeter $P_1 = b + 2y$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	ır • Luckn	= 5+2 (2) = 9 mnow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	50	ESE-Postal Coaching Solutions
Hydraulic Radius		$= (4.5 \times 2.25) (1.80) \qquad \left(R = \frac{y}{2} = \frac{b}{4} \right)$
$R_1 = \frac{A_1}{P_1} = \frac{10}{9} = 1.11 \mathrm{m}$		$= 18.25 \text{ m}^3/\text{sec}$
Discharge,		% increase in discharge $Q = \frac{Q_2 - Q_1}{Q_1} \times 100$
$Q = A_1 V_1 = 10 \times \left(\frac{1}{n} R^{2/3} . S^{1/2}\right)$		$=\frac{18.25 - 17.8675}{17.9} \times 100$
$= 10 \times \left(\frac{1}{0.015} \times (1.11)^{2/3} \times \left(\frac{1}{1600}\right)^{1/2}\right)$		= 2.14%
$= 10 \times (1.79)$		By Froude's number
$= 17.8675 \text{ m}^3/\text{s}$	ERI	$F_{r_{1}} = \frac{V_{1}}{\sqrt{gy_{1}}} = \frac{1.8}{\sqrt{9.81 \times 2}}$ $F_{r_{1}} = 0.40 < 1$
Case - 2:		$F_{r_{r}} = 0.40 < 1$
Consider hydraulically efficient rectangula channel so that discharge is maximum.	"	It is sub critical flow.
Given that lining area constant w.r.t	0	V_{2} 1.8
original channel.		$F_{r_2} = \frac{V_2}{\sqrt{gy_2}} = \frac{1.8}{\sqrt{9.81 \times 2.25}}$
$P_2 = P_1 = 9 m$		$F_{r_2} = 0.38 < 1$
$b_2 + 2y_2 = 9 m$		So it also sub critical flow.
For efficient rectangular channel we know		The sub critical flow is not changing into
b = 2y, Since	ce 1	99 super critical flow.
$2y_2 + 2y_2 = 9$		
$y_2 = 9/4 = 2.25 \text{ m}$		02.
$b_2 = 2 \times 2.25 = 4.5 m$		Sol: Say, $q =$ discharge per meter width,
By Manning's formula:		according to the continuity equation for
$V_2 = -\frac{1}{2} R^{2/3} . S^{1/2}$		constant width
n		$q = V_1 y_1 = V_2 y_2$
$=\frac{1}{0.015} \times \left(\frac{2.25}{2}\right)^{2/3} \left(\frac{1}{1600}\right)^{1/2}$		As y_1 and y_2 are alternative depths, the specific energy is same at both the sections.
$V_2 = 1.80 \text{m/s}$		$E_1 = E_2$
$Q = A_2 V_2$		

EXAMPLE 51
Find Mechanics

$$y_{1} + \frac{V_{1}^{2}}{2g} = y_{2} + \frac{V_{2}^{2}}{2g}$$

$$y_{1} + \frac{q^{2}}{2gy_{1}^{2}} = y_{2} + \frac{q^{2}}{2yg}$$
Hence,

$$(y_{1} - y_{2}) = \frac{q^{2}}{2g} \left(\frac{1}{y_{2}^{2}} - \frac{1}{y_{1}^{2}}\right)$$

$$2(y_{1} - y_{2}) = \frac{q^{2}}{y_{1}^{2}y_{2}^{2}} - \frac{q^{2}}{g}$$
For a rectangular channel $\frac{q^{2}}{g} = y_{1}^{*}$
Hence,

$$y_{1}^{*} = \frac{2(y_{1} - y_{2})}{y_{1}^{2}y_{2}^{2}} - \frac{q^{2}}{g}$$
Hence,

$$y_{2}^{*} = \frac{2(y_{1} - y_{2})(y_{2}^{*})}{(y_{1}^{*} - y_{2}^{*})}$$

$$y_{2}^{*} = \frac{2(y_{1}^{*} - y_{2})(y_{1}^{*})}{(y_{1}^{*} - y_{2}^{*})}$$
Specific energy, $E = y_{1} + \frac{1}{2} \left(\frac{q^{2}}{g}\right) \frac{1}{y_{1}^{2}}$
Substituting the value of $\frac{q^{2}}{g}$ in the above equation

$$E = y_{1} + \frac{1}{2} \times \frac{2y_{1}^{*}(y_{2}^{*})}{(y_{1} + y_{2})} \times \frac{1}{y_{1}^{*}}$$
Hence proved
Hence proved

$$42 \text{ Extracting the value of } \frac{q^{2}}{y_{1}^{*}} = \frac{y_{1}^{*} + \frac{1}{2} \left(\frac{q^{2}}{g}\right) \frac{1}{y_{1}^{*}}}{(y_{1} + y_{2})}$$
Hence proved

$$42 \text{ Extracting the value of } \frac{q^{2}}{y_{1}^{*}} = y_{1} + \frac{y_{2}^{*}}{(y_{1} + y_{2})} \times \frac{1}{y_{1}^{*}}$$

$$= y_{1} + \frac{y_{2}^{*}}{(y_{1} + y_{2})} \times \frac{1}{y_{1}^{*}}$$

$$= y_{1} + \frac{y_{1}^{*}}{y_{1}^{*} + y_{2}}$$

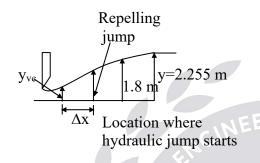
$$= \frac{y_{1}^{*} + y_{1}y_{2} + y_{2}^{*}}{(y_{1} + y_{2})}$$
Hence proved

$$42 \text{ Extracting the value of } \frac{q^{2}}{y_{1}^{*}} + \frac{q^{2}}{y_{1}^{*}} = \frac{y_{1}^{*}}{y_{1}^{*}} + \frac{1}{y_{2}^{*}} = \frac{1}{y_{1}^{*}} + \frac{1}{y_{2}^{*}} = \frac{1}{y_{1}^{*}} + \frac{1}{y_{1}^{*}} + \frac{y_{1}^{*}}{y_{1}^{*}} = \frac{1}{y_{1}^{*}} + \frac{1}{y_{2}^{*}} = \frac{1}{y_{1}^{*}} + \frac{1}{y_{2}^{*}} + \frac{1}{y_{2}^{*}} = \frac{1}{y_{1}^{*}} + \frac{1}{y_{2}^{*}} + \frac{1}{y_{2}^{*}} = \frac{1}{y_{1}^{*}} + \frac{1}{y_{2}^{*}} + \frac{1}{y_{2}^{*}} + \frac{1}{y_{2}^{*}} + \frac{1}{y_{2}^{*}} + \frac{1}{y_{1}^{*}} + \frac{1}{y_{2}^{*}} + \frac{1}{y_{$$

Engineering Publications	52	ESE-Postal Coaching Solutions
Contracted section: (Section 2)		The upstream depth will remain unaffected at
$q_2 = \frac{Q}{b_2} = \frac{7.04}{3.50} = 2.0114 \text{ m}^3/\text{s/m}$		$y_1 = 1.60 m$
$b_2 = 3.50$		Hence, with the bed level of the section 1 as
Critical double $y_{1} = \left(q_{2}^{2}\right)^{1/3}$		datum
Critical depth, $y_{c2} = \left(\frac{q_2^2}{g}\right)^{1/3}$		Elevation of upstream water surface = 1.60 m
$((2.0114)^2)^{1/3}$		Elevation of water section at the contracted
$= \left(\frac{(2.0114)^2}{9.81}\right)^{1/3} = 0.7444 \text{ m}$		section
Minimum specific energy at section $2 = E_{c2}$		$= y_2 + \Delta z = 1.158 + 0.35$
		= 1.508
$E_{c2} = y_{c2} + \frac{V_{c2}^2}{2g} = 1.5y_{c2} = 1.5 \times 0.7444 = 1.1$	165m	NGAC
At critical at conditions		
$E_1 = E_2 + \Delta Z_c$		Sol:
$1.66167 = 1.1165 + \Delta Z_{c}$		
$\therefore \Delta Z_{c} = 0.545$		$\begin{array}{l} y \rightarrow y_1 \\ = 0.15 \text{ m} \end{array}$
$\Delta Z < \Delta Z_c$ given		Even dependent of your contractor $V_{\rm VC}$
So up stream level would not get disturbed		Froud number at vena contracta = $\frac{V_{VC}}{\sqrt{gy_{VC}}}$
By energy equation,		y q 2 12.22m/a
$E_1 = 1.66167 = y_2 + \frac{V_2^2}{2g} + \Delta z$		$V_{\rm vc} = \frac{q}{y_{\rm vc}} = \frac{2}{0.15} = 13.33 \mathrm{m/s}$
2g Sin	ce 1	$Fr_{(VC)} = \frac{13.33}{\sqrt{9.81 \times 0.15}} = 10.98$
$=\mathbf{y}_2 + \frac{\mathbf{q}_2^2}{2\mathbf{g}\mathbf{y}_2^2} + \Delta \mathbf{z}$		$M_{\rm (VC)} = \sqrt{9.81 \times 0.15} = 10.56$
2^{2} $2gy_{2}^{2}$		We know
$1.66167 = y_2 + \frac{(2.0114)^2}{2 \times 9.81 \times y_2^2} + 0.35$		$y_{2} = \frac{y_{1(VC)}}{2} \left[-1 + \sqrt{1 + 8F_{r(VC)}^{2}} \right]$
$y_2 + \frac{0.2062}{y_2^2} = 1.3117$		$y_2 = \frac{0.15}{2} \left[-1 + \sqrt{1 + 8(10.98)^2} \right] = 2.255 \text{ m}$
By trail and error method		If hydraulic jump starts at vena contracta
Value of y_2 is found as		the tail water depth shall be 2.255 m given
$y_2 = 1.158 \text{ m}$		tail.
<u>,</u> 2		

ACE Engineering Publications

Water depth is 1.8 m. It means due to practical situation the jump is repelling in such a case the jump will not start at vena contracta. but slightly ahead of the vena contracta towards tail water.



$$y_{vc} = 0.15$$

$$V_{2} = \frac{q}{y_{2}} = \frac{2}{1.8} = 1.11 \text{ m/sec}$$

$$F_{r_{2}} = \frac{V_{2}}{\sqrt{gy_{2}}} = \frac{1.11}{\sqrt{9.81 \times 1.8}} = 0.264$$

$$y_{VC} = 0.15 = 0.18 = 0.21$$

$$y_{1} = 0.223$$

Actual initial depth

$$y_{1} = \frac{y_{2}}{2} \left[-1 + \sqrt{1 + 8F_{r_{2}}^{2}} \right]$$
$$= \frac{1.8}{2} \left[-1 + \sqrt{1 + 8 \times 0.264^{2}} \right]$$

= 0.223 m

The distance between vena contracta and starting of jump is Δx calculated by direct step method.

$$V = \frac{q}{y}; E = y + \frac{V^2}{2g}$$

For horizontal flow $S_o = 0$

$$\Delta \mathbf{x} = \frac{\Delta \mathbf{E}}{\mathbf{S}_{o} - \mathbf{S}_{f}} = (-)\frac{\Delta \mathbf{E}}{\overline{\mathbf{S}}_{f}}$$

SF = Energy slope

$$V = \frac{1}{n} R^{2/3} \sqrt{S_f}$$
$$S_f = \frac{V^2 n^2}{R^{4/3}} = \frac{V^2 n^2}{y^{4/3}}$$

Step	у	V	E	ΔΕ	SF	$\overline{S}F$	Δx
							(m)
	0.15	13.33	9.20		0.5016		
1				2.73		0.387	7.054
	0.18	11.11	6.47		0.273		
2				1.64		0.218	7.52
	0.21	9.52	4.83		0.163		
3				0.52		0.148	3.51
	0.223	8.96	4.31		0.133		
199	5					1	8.08 m

05.

Sol: Given discharge $Q = 4.8 \text{ m}^3/\text{sec}$

Width of the channel b = 4 m

Initial velocity of channel $V_1 = 1$ m/sec

: Discharge per meter width

$$q = \frac{Q}{4} = 1.2 \,\mathrm{m}^3/\mathrm{sec}/\mathrm{m}$$

$$y_1 = \frac{q}{V} = 1.2 = 1.2 m$$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Fluid Mechanics

53

ACE

By sudden increase of discharge the channel depth is rised by 50%.

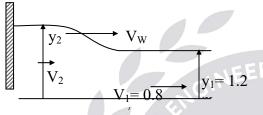
$$y_2 = 1.2 \times 1.5 = 1.8 \text{ m}$$

54

γ.

If discharge is suddenly increased surge will develop which will move

downstream with a velocity 'V_w' as shown in figure.



The surge is unsteady rapidly varid flow.

This unsteady flow case can be transformed into a steady one by

superimposing flow with velocity 'Vw' in the opposite direction shown in figure.

$$y$$

 y
 $\overline{V_w-V_2}$
 y
 $\overline{V_w-V_1}$

The continuity equation may be written as

$$A_1V_1 = A_2V_2$$

For unit width of the channel

$$y_1(V_w - V_1) = y_2 (V_w - V_2)$$

1.2(V_w - 1) = 1.8 (V_w - V_2)
$$V_w - 1 = 1.5 (V_w - V_2)$$

$$V_W - 1 = 1.5 V_W - 1.5V_2$$

 $V_{w} = 3V_{2} - 2$ \rightarrow (i) A positive surge moving downstream applying momentum equation



In rectangular channels per unit width the

force
$$F_1 = \frac{\gamma y_1^2}{2}, F_2 = \frac{\gamma y_2^2}{2}$$

 $F_2 - F_1 = \rho Q (V_{d/s} - V_{u/s})$
 $\frac{y_2^2}{2} - \frac{\gamma y_1^2}{2} = \rho y_1 (V_W - V_1) [(V_W - V_1) - (V_W - V_2)]$
 $\left(\frac{y_2^2 - y_1^2}{2}\right) \rho g = \rho y_1 (V_W - V_1) (V_2 - V_1)$
 $\left(\frac{1.8^2 - 1.2^2}{2}\right) 9.81 = 1.2 (V_W - 1) (V_2 - V_1)$
 $+ 7.3575 = (V_W - 1) (V_2 - 1)$
 $7.3575 = (V_W - 1) (V_2 - 1)$
From equation (i)
 $V_W = 3V_2 - 2$
 $7.3575 = (3V_2 - 2 - 1) (V_2 - 1)$
 $7.3575 = (3V_2 - 3) (V_2 - 1)$
 $7.3575 = (3V_2 - 1)^2$
 $V_2 = 2.566$
 \therefore From equation (i) $V_W = 3(2.566) - 2$
 $V_W = 5.698$ m/sec
 \therefore New flow rate = by_2V_2
 $= 4 \times 1.8 \times 2.566$
 $Q_2 = 18.4752$ m³/sec

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ESE-Postal Coaching Solutions

ACE Engineering Publications	55 Fluid Mechanics
13. Dimensional Analysis	04. Ans: (c)
13. Dimensional Analysis 01. Ans: (c) Sol: Total number of variables, n = 8 and $m = 3$ (M, L & T) Therefore, number of π 's are $= 8 - 3 = 5$ 02. Ans: (b) Sol: 1. $\frac{T}{\rho D^2 V^2} = \frac{MLT^2}{ML^{-3} \times L^2 \times L^2 \times T^{-2}} = 1.$ \rightarrow It is a non-dimensional parameter. 2. $\frac{VD}{\mu} = \frac{LT^{-1} \times L}{ML^{-1}T^{-1}} \neq 1.$ \rightarrow It is a dimensional parameter.	 Sol: Mach Number → Launching of rockets Thomas Number → Cavitation flow in soil Reynolds Number → Motion of a submarine Weber Number → Capillary flow in soil 05. Ans: (b) Sol: According to Froude's law T_r = √L_r
3. $\frac{D\omega}{V} = 1$. \rightarrow It is a non-dimensional parameter. 4. $\frac{\rho VD}{\mu} = \text{Re}$. \rightarrow It is a non-dimensional parameter. 03. Ans: (b) Sol: T = f (l, g) Total number of variable, n = 3, m = 2 (L & T only) Hence, no. of π terms = 3 - 2 = 1	$t_p = 50 \text{ min}$ 06. Ans: (a) Sol: L = 100 m $V_p = 10 \text{ m/s}$,

	ACE
3	Engineering Publications

07. Ans: (d)

Sol: Froude number = Reynolds number.

 $v_r = 0.0894$

If both gravity & viscous forces are important then

 $\nu_{\rm r} = (L_{\rm r})^{3/2}$ $\sqrt[3]{(\nu_{\rm r})^2} = L_{\rm r}$ $L_{\rm r} = 1:5$

08. Ans: (c)

Sol: For distorted model according to Froude's law

 $Q_{\rm r} = L_{\rm H} L_{\rm V}^{3/2}$ $L_{\rm H} = 1:1000 ,$ $L_{\rm V} = 1:100$ $Q_{\rm m} = 0.1 \text{ m}^3/\text{s}$ $Q_{\rm r} = \frac{1}{1000} \times \left(\frac{1}{100}\right)^{3/2} = \frac{0.1}{Q_{\rm p}}$ $Q_{\rm P} = 10^5 \text{ m}^3/\text{s}$

09. Ans: (c)

Sol: For dynamic similarity, Reynolds number should be same for model testing in water and the prototype testing in air. Thus,

$$\frac{\rho_{w} \times V_{w} \times d_{w}}{\mu_{w}} = \frac{\rho_{a} \times V_{a} \times d_{a}}{\mu_{a}}$$

or $V_{w} = \frac{\rho_{a}}{\rho_{w}} \times \frac{d_{a}}{d_{w}} \times \frac{\mu_{w}}{\mu_{a}} \times V_{a}$

(where suffixes w and a stand for water and air respectively)

Substituting the values given, we get

$$V_{w} = \frac{1.2}{10^{3}} \times \frac{4}{0.1} \times \frac{10^{-3}}{1.8 \times 10^{-5}} \times 1 = \frac{8}{3} \text{ m/s}$$

To calculate the drag force on prototype, we equate the drag coefficient of model to that of prototype.

ESE-Postal Coaching Solutions

i.e,
$$\left(\frac{F_{\rm D}}{\rho A V^2}\right)_{\rm P} = \left(\frac{F_{\rm D}}{\rho A V^2}\right)_{\rm m}$$

Hence,
$$(F_D)_p = (F_D)_m \times \frac{\rho_a}{\rho_w} \times \frac{A_a}{A_w} \times \left(\frac{V_a}{V_w}\right)^2$$
$$= 4 \times \frac{1.2}{10^3} \times \left(\frac{4}{0.1}\right)^2 \times \left(\frac{1}{8/3}\right)^2$$

10. Ans: 47.9

Sol: Given data,

		Sea water	Fresh water
		(Prototype testing)	(model testing)
	V	0.5	?
	ρ	1025 kg/m ³	10^3 kg/m^3
C	μ	1.07×10^{-3} Pa.s	1×10 ⁻³ Pa.s

For dynamic similarity, Re should be same in both testing.

i.e.,
$$\frac{\rho_{\rm m} V_{\rm m} d_{\rm m}}{\mu_{\rm m}} = \frac{\rho_{\rm p} V_{\rm p} d_{\rm p}}{\mu_{\rm p}}$$
$$V_{\rm m} = V_{\rm p} \times \frac{\rho_{\rm p}}{\rho_{\rm m}} \times \frac{d_{\rm p}}{d_{\rm m}} \times \frac{\mu_{\rm m}}{\mu_{\rm p}}$$
$$= 0.5 \times \frac{1025}{10^3} \times 100 \times \frac{10^{-3}}{1.07 \times 10^{-3}}$$
$$= 47.9 \text{ m/s}$$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

19

	ACCE Engineering Publications	57		Fluid Mechanics
11.	Refer previous GATE solutions Book (Cha	-	17	7. Ans: (a)
	8, One marks 5 th Question -pg: 575)	3	So	bl: $L_r = \frac{1}{100}$
12.	Refer previous ESE-Obj-(Vol-2) solution	S		$a_{m} = 0.013$
	Book (Cha-14, 5 th Question -pg: 205)			$\frac{a_{\rm m}}{a_{\rm p}} = \left(L_{\rm r}\right)^{\frac{1}{6}}$
13.	Ans: (a)			a _ a _m _ 0.013
Sol:	$V_P = 10 \text{ m/s} \text{ dia} = 3 \text{ m}$			$a_{p} = \frac{a_{m}}{(L_{r})^{\frac{1}{6}}} = \frac{0.013}{\left(\frac{1}{100}\right)^{1/6}}$
	$V_m = 5 m/s, \qquad F_m = 50 N, \qquad F_p = ?$			(100)
	Acc to Froude's law:- $F_r = L_r^3$			$a_{p} = 0.028$
	(But L _r is not given)	ERI	N	GACIN
	$P \propto \rho V^2 = \frac{F}{\Delta}$			3. Ans: (a)
	A $\rho AV^2 = F$ Reynolds law		So	bl: $L_r = \frac{1}{9}$
	pAv – F Reynolds law			$y_{p1} = 0.5 \text{ m}$, $y_{p2} = 1.5 \text{ m}$
	Now scale ratio:			$q_{\rm m} = ?$, $q_{\rm p} = ?$
	$\frac{F_{m}}{F_{p}} = \frac{V_{m}^{2}}{V_{p}^{2}} \times \frac{A_{m}}{A_{p}} \times \frac{\rho_{m}}{\rho_{p}}$			$\frac{2q_{P}^{2}}{g} = y_{1p} \cdot y_{2p} (y_{1p} + y_{2p})$
	$\frac{50}{F_{\rm P}} = \left(\frac{1}{10}\right)^2 \times \left(\frac{5}{10}\right)^2 \left(A = L_{\rm r}^2\right) \text{ (\therefore same fluid}$)	<	$\frac{2q_{\rm P}^2}{9.81} = 0.5 \times 1.5 \times (0.5 + 1.5)$
	$F_{\rm P} = 20000 {\rm N}$ Since	ce 1	9	$\frac{2q_{\rm P}^2}{9.81} = (0.5)(1.5)(2)$
14.	Refer previous ESE-Obj-(Vol-2) solution	s		$q_{p} = 2.71$
	Book (Cha-14, 4 th Question -pg: 205)	4		$q_{p} = 2.71$ $q_{r} = \frac{q_{m}}{q} = L_{r}^{3/2}$
15.	Repeated (Same as 13 th Question)			γ_p
				$q_{\rm m} = \left(\frac{1}{9}\right)^{3/2} \times q_{\rm p} = 0.1 \ {\rm m}^3/{\rm s}/{\rm m}$
16.	Refer previous ESE-Obj-(Vol-2) solution	s		(7)
	Book (Cha-14, 21 st Question -pg: 208)		19	0. Refer previous ESE-Obj-(Vol-2) solutions
			• /	Book (Cha-14, 03^{rd} Question -pg: 205)

ACE

Conventional Practice Solutions

01.

Sol: Buckingham π -theorem is stated as:

If there are n variables (dependent and independent variables) in a dimensionally homogeneous equation and if these variables contain m fundamental dimensions (such as M, L, T, etc.) then the variables are arranged into (n-m) dimensionless terms. These dimensionless terms are called π -terms.

Given that drag force on partially submerged body is a function of

$$F_D = f(V, v, K, \rho, g, L)$$

Thus, n = 7

and m = 3 (M, L & T)

Hence, no. of π - terms = n - m = 7 - 3 = 4 Out of 4- π terms, one of the obvious π -term

will be, say $\pi_1 = \frac{K}{I}$

Let us choose ρ , V and L as the repeating variables. Then,

$$\pi_2 = F_{\rm D} \rho^{a_1} V^{b_1} L$$

$$M^{o}L^{o}T^{o} = MLT^{-2} (ML^{-3})^{a_{1}} (LT^{-1})^{b_{1}} (L)^{c_{1}}$$
$$= M^{1+a_{1}}L^{1-3a_{1}+b_{1}+c_{1}}T^{-2-b_{1}}$$

Equating the indices of M, L and T:

For M: $1 + a_1 = 0 \Longrightarrow a_1 = -1$ For T: $-2-b_1 = 0 \Longrightarrow b_1 = -2$

For L: $1-3a_1 + b_1 + c_1 = 0$

Or,
$$1+3-2+c_1=0$$

$$\Rightarrow c_{1} = -2$$
Thus, $\pi_{2} = F_{D}\rho^{-1}V^{-2}L^{-2} = \frac{F_{D}}{\rho L^{2}V^{2}}$
Similarly,
 $\pi_{3} = \nu \rho^{a_{2}}V^{b_{2}}L^{c_{2}}$
Or, $M^{o}L^{o}T^{o} = L^{2}T^{-1}(ML^{-3})^{a_{2}}(LT^{-1})^{b_{2}}(L)^{c_{2}}$
 $= M^{a_{2}}L^{2-3a_{2}+b_{2}+c_{2}}T^{-1-b_{2}}$

For M:
$$a_2 = 0$$

For T: $-1 - b_2 = 0 \Rightarrow b_2 = -1$
For L: $2 - 3a_2 + b_2 + c_2 = 0$
Or, $2 - 0 - 1 + c_2 = 0$

Thus,
$$\pi_3 = \nu \rho^o V^{-1} L^{-1} = \frac{\nu}{VL} = \frac{1}{Re}$$

Similarly,

 \Rightarrow c₂ = -1

$$\begin{aligned} \pi_4 &= g \rho^{a_3} V^{b_3} L^{c_3} \\ M^o L^o T^o &= L T^{-2} (M L^{-3})^{a_3} (L T^{-1})^{b_3} (L)^{c_3} \\ &= M^{a_3} L^{1-3a_3+b_3+c_3} T^{-2-b_3} \end{aligned}$$

So, For M : $a_3 = 0$

For T: $-2 - b_3 = 0 \Rightarrow b_3 = -2$ For L: $1 - 3a_3 + b_3 + c_3 = 0$ Or, $1 - 0 - 2 + c_3 = 0$ \Rightarrow c₃ = 1 So, $\pi_4 = g\rho^{\circ}V^{-2}L^1 = \frac{gL}{V^2} = \frac{1}{F^2}$

Thus, we can write:

$$\pi_2 = f(\pi_1, \pi_3, \pi_4)$$

Or, $\frac{F_D}{\rho L^2 V^2} = f\left(\frac{K}{L}, \frac{1}{Re}, \frac{1}{Fr^2}\right)$

าร

	ACEE Engineering Publications	59	Fluid Mechanics
02. Sol:	TransmissionGiven:River RectangularPier (Prototype)Model $W_p = 1.5 \text{ m},$ $L_r = 1/25$ $L_p = 4.5 \text{ m},$ $V_m = 0.65 \text{ m/s}$ $F_m = 3.92 \text{ N}$ $H_m = 3.5 \text{ cm}$		$= \frac{\rho_m}{\rho_p} \times \frac{L_m^2}{L_p^2} \times \frac{V_m^2}{V_p^2} = \rho_r . L_r^2 . V_r^2$ $= L_r^2 \times \left(\sqrt{L_r}\right)^2 = L_r^3$ $\therefore F_p = \frac{F_m}{L_r^3} = 3.92 \times (25)^3$ $= 61,250 \text{ N} = 61.25 \text{ kN}$ $(\because \rho_r = 1, \text{ fluid being same in model and})$
(i)	where H is the height of standing wave. The corresponding speed in the prototyp V_p : As the flow in a river is a free surface flow affected by gravity, the dynamic similarity between the model and its prototype will be achieved by equating the Froude's number.	v y	(iii) The height of the standing wave in the prototype, H _p : $\frac{H_p}{H_m} = \frac{1}{L_r} = 25$ $H_p = H_m \times 25 = 3.5 \times 25 = 87.5 \text{ cm}$
(ii)	$\therefore \frac{V_{p}}{\sqrt{L_{p}g_{p}}} = \frac{V_{m}}{\sqrt{L_{m}g_{m}}}$ Or, $\frac{V_{p}}{V_{m}} = \sqrt{\frac{L_{p}}{L_{m}}} = \sqrt{25} = 5$ ($\because g_{p} = g_{m}$) $\therefore V_{p} = V_{m} \times 5 = 0.65 \times 5 = 3.25 \text{ m/s}$ The force acting on the prototype, F_{p} : Force = mass × acceleration = $\rho L^{3} \times \frac{V}{T}$		$\therefore \mathbf{C}_{\mathrm{D}} = \frac{\mathrm{F}}{\frac{1}{2} \times \rho \mathrm{AV}^2}$
	$= \rho L^{3} \times \frac{V}{(L/V)} \left[\because V = \frac{L}{T} \text{ or } T = \frac{L}{V} \right]$ $= \rho L^{3} \times \frac{V^{2}}{L} = \rho L^{2} V^{2}$ Force ratio, $F_{r} = \frac{F_{m}}{F_{p}}$		Or, $(C_D)_p = \frac{F_p}{\frac{1}{2} \times \rho_p A_p V_p^2}$ where, F_p = Force acting on the prototype (= 61,250 N), ρ_p = Density of water (= 1000 kg/m ³)

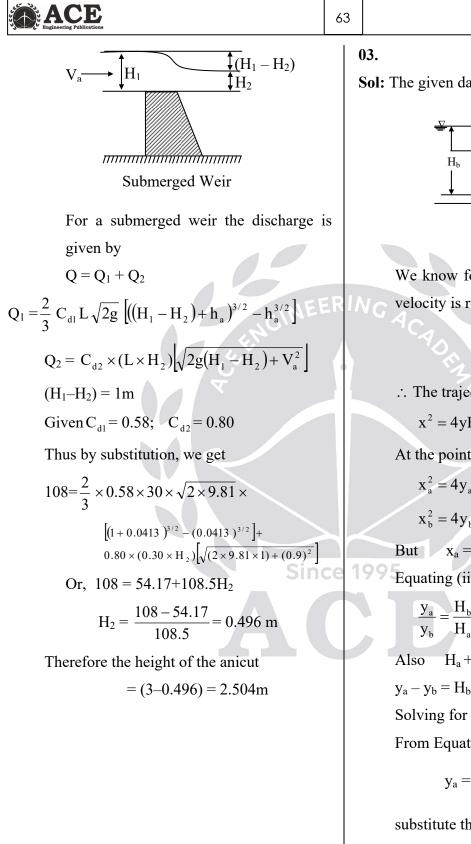
ACE Engineering Publications	60	ESE-Postal Coaching Solutions
A_p = width of the pier × depth of water in the river = 1.5 × 3 = 4.5 m ² , and	n	$\frac{t_2}{t_1} = \left(\frac{d_1}{d_2}\right)^2$
V_p = velocity of flow in the prototyp (= 3.25 m/s).	e	$t_1 = (d_2)$ $t_2 = 20 \times \left(\frac{d_1}{2d_1}\right)^2 = \frac{200}{4} = 50$
$(C_D)_p = \frac{61,250}{\frac{1}{2} \times 1000 \times 4.5 \times 3.25^2} = 2.58$		$(2d_1)$ 4
$\frac{-\times1000\times4.5\times5.25}{2}$ The drag co-efficient will be same for		05. Ans: (a) Sol: $Q \propto H^{3/2}$
model and prototype, i.e., $(C_D)_m = (C_D)_p = 2.58$		$=\frac{Q_2-Q_1}{Q_1}$
14. Flow Through Orifices, Mouth Pieces,		$G = \frac{H_2^{3/2} - H_1^{3/2}}{H_1^{3/2}}$
Notches and Weirs 01. Ans: (c)		$= \left(\frac{\mathrm{H}_2}{\mathrm{H}_1}\right)^{3/2} - 1$
Sol: $C_V = \frac{V_{act}}{C_{th}}$		$= \left(\frac{31}{3D}\right)^{3/2} - 1 = 5.041\%$
$V_{th} = \sqrt{2gh}$ $= \sqrt{2 \times 9.81 \times 1.25}$	(06. Ans: (b)
= 4.952 m/s	5	Sol: $Q = C_D \frac{2}{3} \sqrt{2g} L(H)^{3/2}$
$v_{act} = \sqrt{2 \times 9.61 \times 1.2}$ = 4.852 m/s $C_v = 0.98$		$Q \propto L H^{3/2}$ $\frac{dQ}{Q} = \frac{dL}{L} + \frac{2}{3} \frac{dH}{H}$
02. Ans: (d)		$= -1.5 + \frac{3}{2} \times 1$
Sol: $t = \frac{2A}{C_d a \sqrt{2g}} (H_1^{1/2} - H_2^{1/2})$		= -1.5 + 1.5 = 0 07. Ans: 0.792
C_d , A, H ₁ , H ₂ are constant t $\propto \frac{1}{d^2}$		Sol: $a = 0.0003 \text{ m}^2$ H = 1 m
d²		$C_{d} = 0.60$ $\sqrt{2g} = 4.4$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	r • Lucknov	V – S · · · · w • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	61 Fluid Mechanics
$Q = C_d . a \sqrt{2gH}$	10. Ans: (d)
$Q = 0.60 \times 0.0003 \times 0.44 \times \sqrt{1}$ $Q = 7.92 \times 10^{-4} \text{ m}^3/\text{sec}$	Sol: $Q = \frac{8}{15}C_d\sqrt{2g}\tan\left(\frac{\theta}{2}\right)H^{\frac{3}{2}}$
= 0.792 ltr/sec	$Q \propto H^{\frac{5}{2}}$
08. Ans: 16 : 1 Discharge through an orifice, Q = A. V	$\frac{\mathbf{Q}_2}{\mathbf{Q}_1} = \left(\frac{\mathbf{H}_2}{\mathbf{H}_1}\right)^{\frac{5}{2}}$
$Q_{Actual} = C_{d} \cdot \frac{\pi}{4} d^{2} \sqrt{2gh}$ $Q = d^{2} \sqrt{h}$	$\frac{Q_2}{Q_1} = \left(\frac{0.2}{0.1}\right)^{\frac{5}{2}} = 5.66$
$\frac{\mathbf{Q}_1}{\mathbf{Q}_2} = \left(\frac{\mathbf{d}_1}{\mathbf{d}_2}\right)^2 \sqrt{\frac{\mathbf{h}_1}{\mathbf{h}_2}}$	11. Ans: (d)
For same discharges $Q_1 = Q_2$ $\left(\frac{d_2}{d_1}\right)^2 = \sqrt{\frac{h_1}{h_2}}$	Sol: $Q \propto f\left(\tan\frac{\theta}{2}\right)$ $Q = K \tan\frac{\theta}{2}$
$\frac{\mathbf{h}_1}{\mathbf{h}_2} = \left(\frac{\mathbf{d}_2}{\mathbf{d}_1}\right)^4 \Longrightarrow \frac{\mathbf{h}_1}{\mathbf{h}_2} = \left(\frac{2}{1}\right)^4 = \frac{\mathbf{h}_1}{\mathbf{h}_2} = 16:1$	$dQ = K \sec^2 \frac{\theta}{2} \frac{1}{2} d\theta$ $\frac{d\theta}{\theta} = 2\% \qquad (Given)$
—	ee 199% Error in discharge,
Sol: $Q = 1.418 H^2$ $Q \propto H^{\frac{5}{2}}$	$\frac{dQ}{Q} \times 100 = \frac{K \sec^2 \frac{\theta}{2} \times \frac{1}{2} d\theta}{K \tan \frac{\theta}{2}} \times 100$
$\frac{Q_2}{Q_1} = \left(\frac{H_2}{H_1}\right)^{\frac{5}{2}} \qquad \qquad \frac{Q_2}{Q_1} = \left(\frac{0.3}{0.15}\right)^{\frac{5}{2}}$ $\frac{Q_2}{Q_1} = 5.657$	$= \frac{1}{2} \times \frac{1}{\cos^2 \frac{\theta}{2}} \times \frac{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}} \times 100$
	$=\frac{1}{\sin\theta}d\theta \times 100$
ACE Engincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	= cosec 90 = π r • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE 62 **Conventional Practice Solutions** 01. Sol: Volume of water falling down= discharge × time Adh = Odt $A = 0.93 \text{ m}^2$ $Q = \frac{8}{15} C_d \sqrt{2g} H^{5/2}$ H = 0.075 m $\frac{dh}{dt} = 2.54 \text{ mm} = 2.54 \times 10^{-3} \text{ m/s}$ Thus substitution $0.93 \times 2.54 \times 10^{-3} = \frac{8}{15} C_d \times \sqrt{2 \times 9.81} \times (0.075)^{5/2}$ $C_d = 0.649$ 02. Sol: Given: Width of river = crest length Since 199 L = 30 mDepth of flow, y = 3m \therefore Area of flow section = (30×3) = 90 m² Mean velocity of flow V = 1.2 m/secDischarge Q = AV $=(90\times1.2)=108$ m³/sec Since the anicut (Weir) is constructed to raise the water level by 1m, the depth of flow on the upstream of the anicut becomes

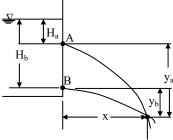
ESE-Postal Coaching Solutions (3+1) = 4 mVelocity of approach $V_a = \frac{Q}{A} = \frac{108}{30 \times 4} = 0.9 \text{m/s}$ Head due to velocity of approach $h_a = \frac{V_a^2}{2\sigma} = \frac{(0.9)^2}{2 \times 9.81} = 0.0413m$ Assuming that the weir is discharging free, then $Q = \frac{2}{3} C_{dl} L \sqrt{2g} \left[(H + h_a)^{3/2} - h_a^{3/2} \right]$ → |H Free Weir Assume $C_{d1} = 0.58$ Thus by substitution, $108 = \frac{2}{3} \times 0.58 \times 30 \times \sqrt{2 \times 9.81}$ $\left[\left(H + 0.0413 \right)^{3/2} - \left(0.0413 \right)^{3/2} \right]$ \Rightarrow H = 1.604m The height of the weir is then Z = (4 - 1.604) = 2.396mSince the depth of water in the channel on the downstream of the weir will also be 3m,

the anicut will be submerged.



Fluid Mechanics

Sol: The given data is shown in figure below



We know for the orifices, the coefficient of velocity is related as

$$C_{v} = \sqrt{\frac{x^{2}}{4yH}}$$

:. The trajectory is given by

 $x^2 = 4yHC_v^2$ (i)

At the point of intersection of the two jets

$$x_a^2 = 4y_a H_a C_v^2$$
.....(ii)
 $x_b^2 = 4y_b H_b C_v^2$(iii)

But $x_a = x_b = x$

 $H_a + y_a = H_b + y_b$

$$y_a - y_b = H_b - H_a$$
(v)

Solving for y_a from Eqs. (iv) and (v)

From Equation (iv)

$$y_a = \frac{H_b}{H_a} \times y_b$$
(vi)

substitute the value of y_a in equation of (v)

Regineering Publications	64	ESE-Postal Coaching Solutions
$\frac{\mathbf{H}_{\mathbf{b}}}{\mathbf{H}_{\mathbf{a}}} \times \mathbf{y}_{\mathbf{b}} - \mathbf{y}_{\mathbf{b}} = \mathbf{H}_{\mathbf{b}} - \mathbf{H}_{\mathbf{a}}$		Substituting the value of y_b in equation (vi) $y_a = H_b$
$y_{b}\left(\frac{H_{b}}{H_{a}}-1\right) = H_{b} - H_{a}$		Now, Substituting in Eq. (i), $x^{2} = 4y_{a}H_{a}C_{v}^{2} = 4y_{b}H_{b}C_{v}^{2}$
$\mathbf{y}_{b}\!\left(\frac{\mathbf{H}_{b}-\mathbf{H}_{a}}{\mathbf{H}_{a}}\right) = \mathbf{H}_{b} - \mathbf{H}_{a}$		$x = \sqrt{4y_a H_a C_v^2} = 2C_v \sqrt{H_a H_b}$
\Rightarrow y _b = H _a		

