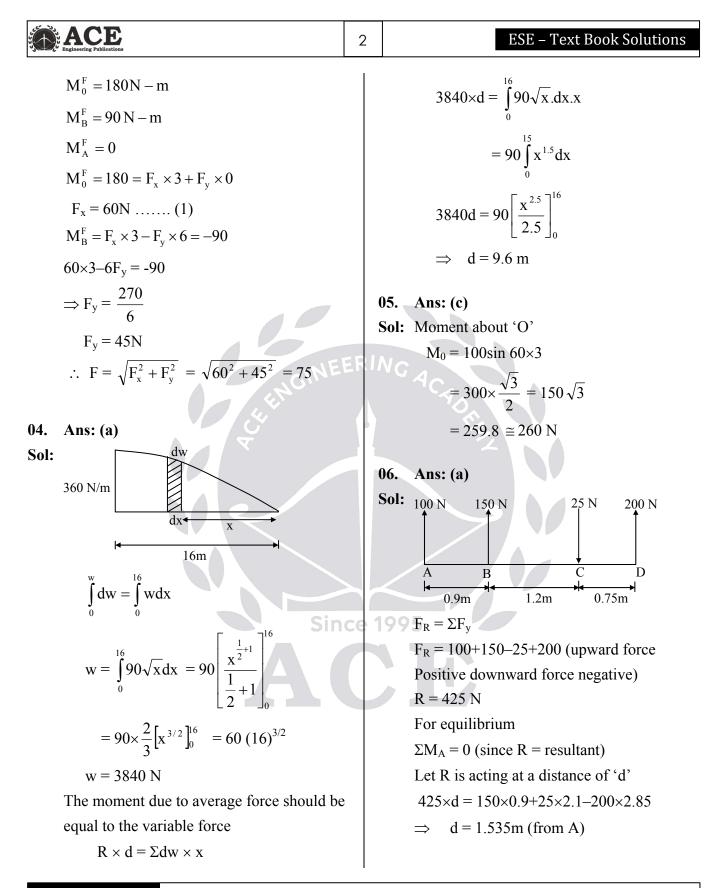
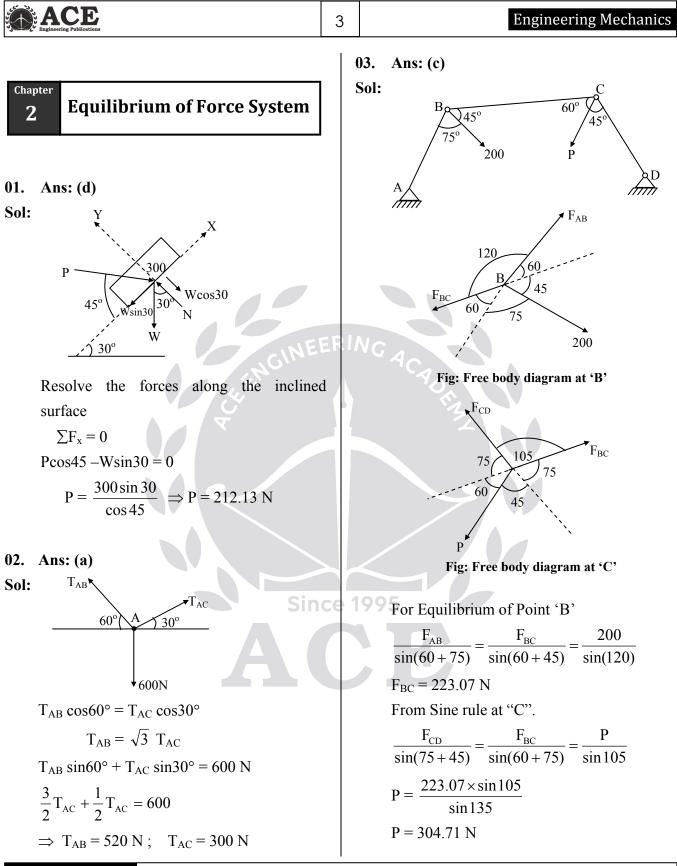
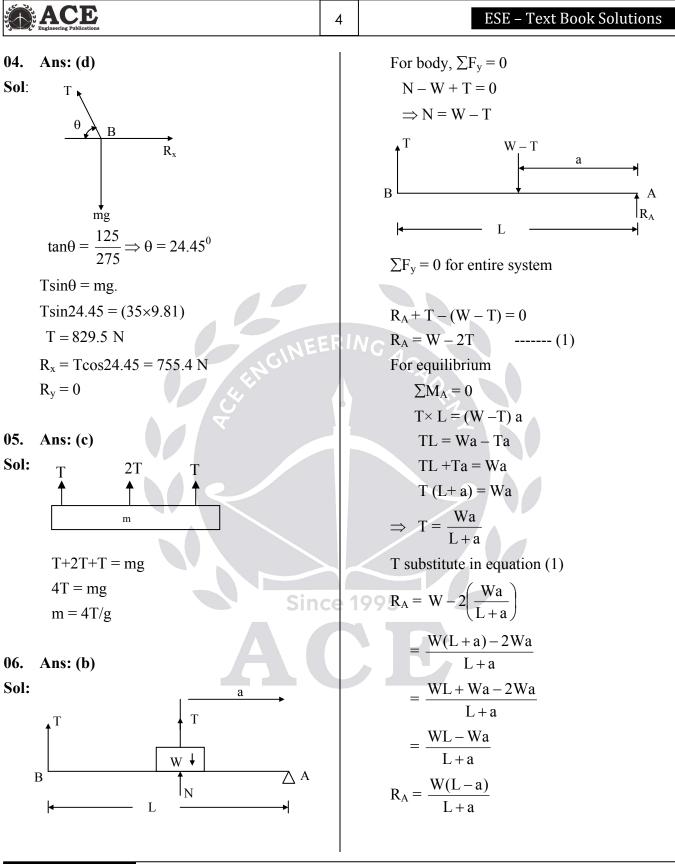
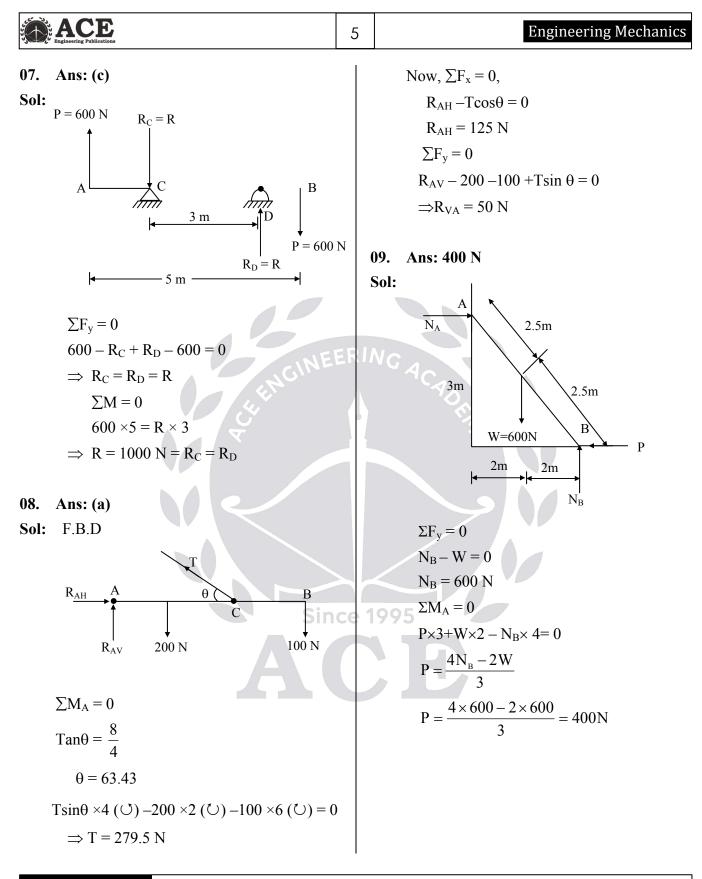

ESE | GATE | PSUs



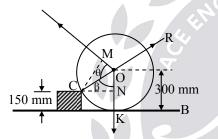
Text Book & Work Book : Theory with worked out Examples and Practice Questions


Engineering Mechanics


(Solutions for Text Book Objective & Conventional Practice Questions)



eini • Dilopai • Fuile • Dilubaneswai • Luckilow • Fatila • Dengalui (


Conventional Practice Solutions

01.

Sol:

(a) When the wheel is about to turn, its contact with the ground will be lost. Hence the wheel has to be in equilibrium under the action of its weight W and the force P.

> With reference to figure, CM and CN are the perpendiculars dropped on the lines of action of forces P and W respectively.

OC = OK = 300 mm, ON = OK = NK = 300 - 150 = 150 mm

 $CN = \sqrt{OC^2 - ON^2}$

Taking moments about point C,

 $=\sqrt{300^2-150^2}=259.81$ mm

$$P \times CM - W \times CN = 0$$

$$P \times OC \sin \theta - 20 \times 259.81 = 0$$

$$P = \frac{20 \times 259.81}{OC \sin \theta} = \frac{20 \times 259.81}{300 \sin \theta} = \frac{17.32}{\sin \theta}$$

The force P will be minimum when $\sin\theta$ is maximum.

For that $\sin\theta = 1$ or $\theta = 90^{\circ}$

Hence, $P_{min} = 17.32$ kN when pull is applied perpendicular to OC.

(b) The reaction R can be determined by resolving W along OC

R = W cos
$$\beta$$
 [Where, $\beta = \angle CON$]
cos $\beta = \frac{ON}{OC} = \frac{150}{300} = \frac{1}{2}$
R = $20 \times \frac{1}{2} = 10$ kN

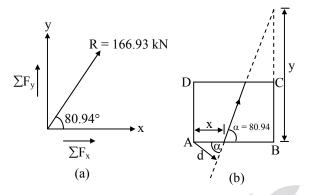
The force P acts perpendicular to OC and as such its resolved part along OC is zero.

02.

Sol: Resolving the forces in the horizontal and
vertical directions, we get
$$\Sigma F_x = 80 - 100 \cos 30^\circ + 120 \cos 45^\circ - 60 \cos 30^\circ$$

 $= 80 - 86.6 + 84.85 - 51.96$
 $= + 26.29 \text{ N} \rightarrow$
 $\Sigma F_y = -100 \sin 30^\circ + 120 \sin 45^\circ + 100 + 60 \sin 30^\circ$
 $= -50 + 84.45 + 100 + 30 = 164.85 \text{ N}^\uparrow$
Resultant force R = $\sqrt{(\Sigma F_x)^2 + (\Sigma F_y)^2}$
 $= \sqrt{(26.69)^2 + (164.85)^2} = \sqrt{27866.68}$
 $= 166.93 \text{ N}$

Inclination α of the resultant with the horizontal,


$$\tan \alpha = \frac{\Sigma F_y}{\Sigma F_x} = \frac{164.85}{26.29} = 6.27; \ \alpha = 80.94^{\circ}$$

Since both ΣF_x and ΣF_y are positive, the resultant lies in first quadrant at an angle

ACE Engincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

80.94° with horizontal, i.e., with x-axis as shown in figure.

Position of resultant force:

Taking moments about point A (clockwise +ve), we get

$$\Sigma M_{a} = (100 \sin 30^{\circ}) \times 6 - (120 \sin 45^{\circ}) \times 6 + (120 \cos 45^{\circ}) \times 4 - 100 \times 3 - (60 \cos 30^{\circ}) \times 4$$

$$= 300 - 509.1 + 339.4 - 300 - 207.8$$
$$= -377.5 \text{ Nm (anticlockwise)}$$

The resultant R should then lie as shown in figure so that it can produce anticlockwise (negative) moment about point A.

If d is the perpendicular distance of the resultant from A, then

 $R \times d = \Sigma M_a$ $d = \frac{\Sigma M_a}{R} = \frac{377.5}{166.93} = 2.261 \text{m}$

.

The intercepts x on x-axis and y on y-axis are then given by

$$x = \frac{d}{\sin \alpha} = \frac{2.261}{\sin 80.94} = 2.29 \,\mathrm{m}$$
$$y = \frac{d}{\cos \alpha} = \frac{2.261}{\cos 80.94} = 14.36 \,\mathrm{m}$$

The intercepts on x-axis and y-axis can also be worked out as

$$x = \frac{\Sigma M_a}{\Sigma F_y} = \frac{377.5}{164.85} = 2.29 \,\mathrm{m}$$
$$y = \frac{\Sigma M_a}{\Sigma F_y} = \frac{377.5}{26.29} = 14.36 \,\mathrm{m}$$

Since intercept y is greater than BC, the resultant meets the arm when produced.

03.

7

Sol: Force F =
$$30i-20j+16k$$

Vector joining the points A(1,2,-3) and B(-
1, -3, 4) is
 $\overrightarrow{AB} = \overrightarrow{r} = (-1-1)i + (-3-2)j + [4-(-3)]k$
 $= -2i - 5j + 7k$
Unit vector along

$$\hat{e}_{AB} = \frac{-2i - 5j + 7k}{\sqrt{(-2)^2 + (-5) + (7)^2}} = \frac{-2i - 5j + 7k}{\sqrt{78}}$$

The component of force F along AB is

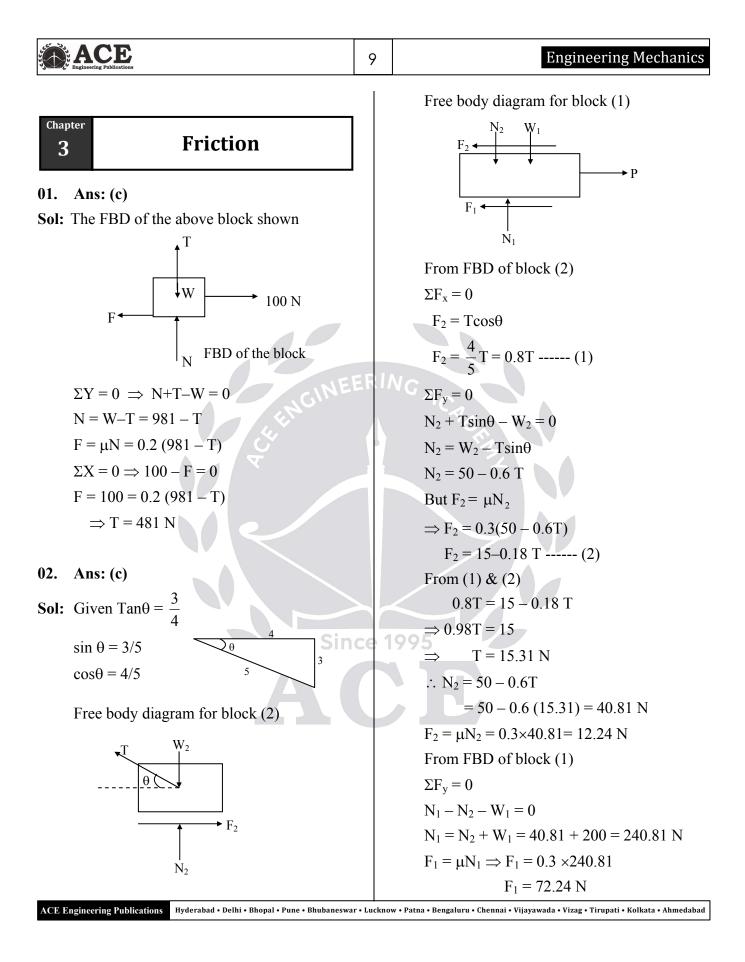
$$= \vec{F} \hat{e}_A$$

5 =
$$(30i-20j+16k)$$
. $\left(\frac{-2i-5j+7k}{\sqrt{78}}\right)$

∼ 17.224 kN

04.

199


Sol: Free-Body Diagram

There are five unknown force magnitude shown on the free-body diagram figure.

Equations of Equilibrium:

Expressing each force in Cartesian vector form, we have

$F = \{-1000j\}N$ $F_{A} = A_{x}i + A_{x}j + A_{x}k$ $T_{C} = 0.707T_{C}i - 0.707T_{C}k$ $T_{D} = T_{D}\left(\frac{f_{BD}}{T_{BD}}\right) = -\frac{3}{9}T_{D}i + \frac{6}{9}T_{D}j - \frac{6}{9}T_{D}k$ Applying the force equation of equilibrium gives $\Sigma F = 0;$ $F + F_{A} + T_{C} + T_{D} = 0$ $(A_{x} + 0.707T_{C} - \frac{3}{9}T_{D})i + (-100s0 + A_{y} + \frac{6}{9}T_{D})j + (A_{z} - 0.7077T_{C} - \frac{6}{9}T_{D})k = 0$ $\Sigma F_{x} = 0;$ $A_{x} + 0.707T_{C} - \frac{3}{9}T_{D} = 0 \dots (1)$ $\Sigma F_{y} = 0;$ $A_{x} + 0.707T_{C} - \frac{6}{9}T_{D} = 0 \dots (2)$ $\Sigma F_{x} = 0;$ $A_{x} - 0.707T_{C} - \frac{6}{9}T_{D} = 0 \dots (2)$ $\Sigma F_{x} = 0;$ $A_{x} - 0.707T_{C} - \frac{6}{9}T_{D} = 0 \dots (2)$ $\Sigma F_{x} = 0;$ $A_{x} - 0.707T_{C} - \frac{6}{9}T_{D} = 0 \dots (3)$ $F^{=1000} N \xrightarrow{Z}_{T_{D}} = 0 \dots (3)$ $F^{=1000} N \xrightarrow{Z}_{T_{D}$	Engineering Publications	8	ESE – Text Book Solutions
$\frac{3}{9}T_{D}i + 69T_{D}j - \frac{6}{9}T_{D}k) = 0$	$F_{A} = A_{x}i + A_{y}j + A_{z}k$ $T_{C} = 0.707T_{C}i - 0.707T_{C}k$ $T_{D} = T_{D}\left(\frac{r_{BD}}{r_{BD}}\right) = -\frac{3}{9}T_{D}i + \frac{6}{9}T_{D}j - \frac{6}{9}T_{D}k$ Applying the force equation of equilibrium gives $\Sigma F = 0;$ $F + F_{A} + T_{C} + T_{D} = 0$ $(A_{x} + 0.707T_{C} - \frac{3}{9}T_{D})i + (-100s0 + A_{y} - \frac{6}{9}T_{D})j + (A_{z} - 0.7077T_{C} - \frac{6}{9}T_{D})k = 0$ $\Sigma F_{x} = 0; A_{x} + 0.707T_{C} - \frac{3}{9}T_{D} = 0 (1)$ $\Sigma F_{y} = 0; A_{y} + \frac{6}{9}T_{D} - 1000 = 0 (2)$ $\Sigma F_{z} = 0; A_{z} - 0.707T_{C} - \frac{6}{9}T_{D} = 0 (3)$ $F = 1000 \text{ N} \xrightarrow{Z} T_{C} \xrightarrow{B} T_{D} \qquad Sin$ $F = 1000 \text{ N} \xrightarrow{Z} T_{C} \xrightarrow{B} T_{D} \qquad Sin$ $F = 1000 \text{ N} \xrightarrow{Z} T_{C} \xrightarrow{B} T_{D} \qquad Sin$ $F = 1000 \text{ N} \xrightarrow{Z} T_{C} \xrightarrow{B} T_{D} \qquad Sin$ $F = 1000 \text{ N} \xrightarrow{Z} T_{D} \qquad Sin$ $F = 1000 \text{ N} \xrightarrow{Z} T_{C} \xrightarrow{B} T_{D} \qquad Sin$	+ ERJ	\int_{A}^{B} Evaluating the cross product and combining terms yields $(-4T_D + 6000)i + (4.24T_C - 2T_D)j = 0$ $\Sigma M_x = 0; -4T_D + 6000 = 0 \dots (4)$ $\Sigma M_y = 0; -4.24T_C - 2T_D = 0 \dots (5)$ The moment equation about the z axis $\Sigma M_z = 0$, is automatically satisfied. Why? Solving equations 1 through 5 we have $T_C = 707 N$ $T_D = 1500 N$ $A_x = 0 N$ $A_y = 0 N$ $A_z = 1500 N$

 $\Sigma F_x = 0$ $P - F_1 - F_2 = 0$ $P = F_1 + F_2 = 72.24 + 12.24$ P = 84.48 N

03. Ans: (b)

Sol: Free Body Diagram

$$I_{10} \stackrel{\text{cm}}{\text{F}_{\text{p}}} \stackrel{\text{N}_{\text{B}}}{\text{N}_{\text{B}}} \stackrel{\text{P}}{\text{P}}$$

$$I_{10} \stackrel{\text{M}_{\text{B}}}{\text{F}_{\text{P}}} \stackrel{\text{N}_{\text{B}}}{\text{P}} \stackrel{\text{P}}{\text{P}}$$

$$W = 100 \text{ N}$$

$$F_{\text{A}} = \mu N_{\text{A}} = \frac{1}{3} N_{\text{A}}$$

$$F_{\text{B}} = \mu N_{\text{B}} = \frac{1}{3} N_{\text{B}}$$

$$\Sigma M_{\text{B}} = 0$$

$$-100 \times 30(\bigcirc) + (N_{\text{A}} \times 20)(\bigcirc) + (F_{\text{a}} \times 12)(\bigcirc) = 0$$

$$-3000 + N_{\text{A}} \times 20 + \frac{1}{3} N_{\text{A}} \times 12 = 0$$

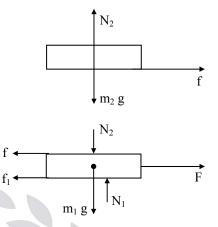
$$\Rightarrow N_{\text{A}} = 125 \text{ N}$$

$$\Sigma F_{\text{y}} = 0$$

$$N_{\text{A}} - N_{\text{B}} - 100 = 0$$

$$\Rightarrow N_{\text{B}} = 25 \text{ N}$$

$$\Sigma F_{\text{x}} = 0$$


$$P = F_{\text{A}} + F_{\text{B}} = \frac{1}{3} (N_{\text{A}} + N_{\text{B}})$$

$$= \frac{1}{3} (125 + 25) = 50 \text{ N}$$

ESE - Text Book Solutions

04. Ans: (d)

Sol: F.B.D of both the books are shown below.

where, f is the friction between the two books.

f₁ is the friction between the lower book and ground.

Now, maximum possible acceleration of upper book.

$$a_{max} = \frac{f_{max}}{m_2} = \frac{\mu m_2 g}{m_2} = \mu \times g$$
$$= 0.3 \times 9.81 = 2.943 \text{ m/s}^2$$

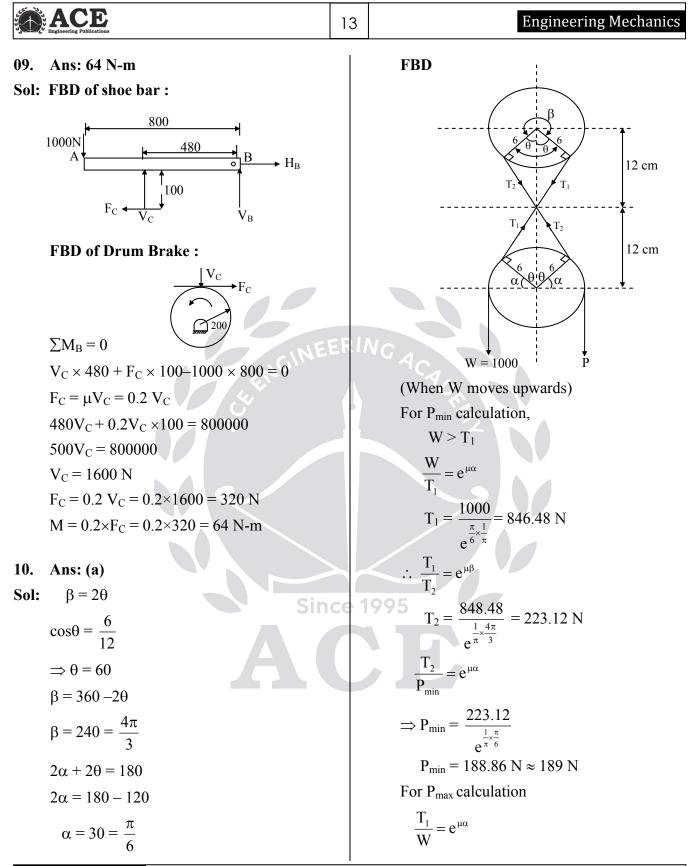
For slip to occur, acceleration (a₁) of lower

book. i.e,
$$a_1 \ge a_{max}$$

$$\frac{F - f - f_1}{m_1} \ge 2.943$$

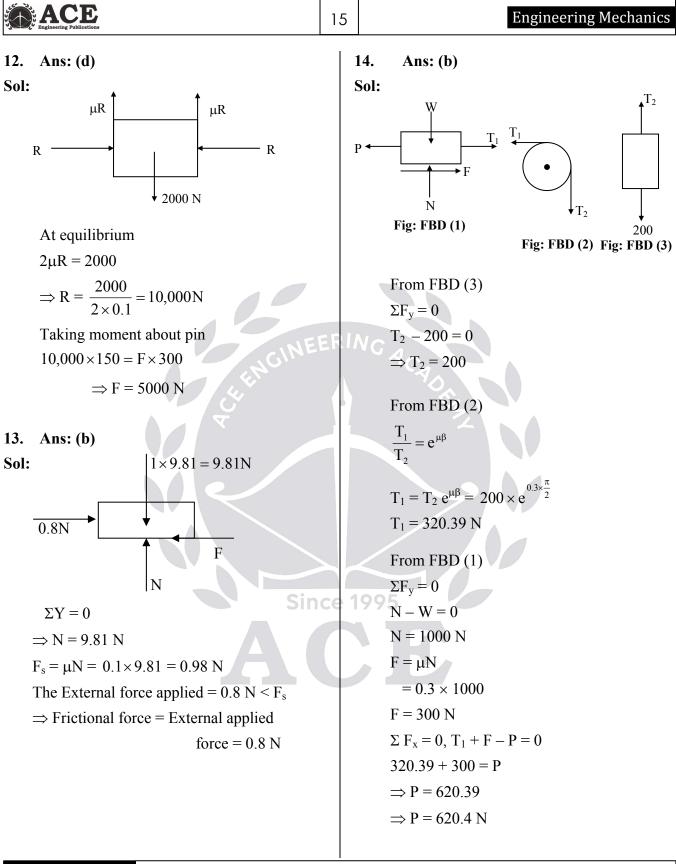
 $F - 2.943 - 0.3 \times 2 \times 9.81 \ge 2.943$ [\because f = f_{max} = 2.943 and

$$f_1 = \mu \times (m_1 + m_2) g = 0.3 \times 2 \times 9.81$$
]


$$F \ge 11.77 \text{ N}$$

 $F_{min} = 11.77 \text{ N}$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad


995

ACE Engineering Publications	11 Engineering Mechanics
9.100 Productions 9.100 Productions 9.100 Productions 9.100 Productions 100	N ₁ = 600 N But, F ₁ = μ N ₁ = 0.4 ×600 F ₁ = 240 N Σ F _x = 0 P = F ₁ +F ₂ = 240 + 80 P = 320 N 06. Ans: (a) Sol: Given, W _A = 200 N, μ _A = 0.2 W _B = 300 N, μ _B = 0.5
Given W = 280 N, W ₁ = 400 N Now, $\Sigma M_B = 0$ $-W \times 4 (\bigcirc) + N_2 \times 8(\bigcirc) - F_2 \times 6 (\bigcirc) = 0$ $-280 \times 4 + N_2 \times 8 - \mu N_2 \times 6 = 0$ $\Rightarrow N_2 = 200 N$ But, $F_2 = \mu N_2 = 0.4 \times 200 = 80 N$ From FBD of block (1) $\Sigma F_y = 0$ $N_1 - N_2 - W_1 = 0$ $N_1 = N_2 + W_1$ = 200 + 400 M24 Standard Control (1) M35 Standard Control (1) Standard Control (1) M35 Standard Control (1) Standard Con	$= 150 \cos\theta$ $\Sigma F_x = 0$ $T + W_B \sin\theta - F_B = 0$ $T = F_B - W_B \sin\theta$ $T = 150 \cos\theta - 300 \sin\theta - \dots (1)$ FBD for block 'A' X V V V V V V V V

Sol: FBD for the block $N_1 + \mu N_2 - W = 0$ $N_1 + \mu^2 N_1 - W = 0$ $N_1 + \mu^2 N_1 - W = 0$ $N_1 + \mu^2 N_1 - W = 0$ $N_1 = \frac{W}{1 + \mu^2}$ $N_2 = \frac{\mu W}{2}$		ACE Engineering Publications	12		ESE – Text Book Solutions
$\Sigma F_{y} = 0$ $N - W \sin 45 - P \sin 45 = 0$ $Couple = (F_{1} + F_{2}) \times r$ $= \mu r (N_{1} + N_{2})$ $\mu r \times W(1 + \mu)$	07. Sol:	$N_{A} - W_{A}\cos\theta = 0$ $N_{A} = 200 \cos\theta$ $F_{A} = \mu N_{A} = 0.2 \times 200 \cos\theta$ But, $F_{A} = 40 \cos\theta$ $\Sigma F_{x} = 0$ $T + F_{A} - W_{A}\sin\theta = 0$ $T = W_{A}\sin\theta - F_{A}$ $T = 200 \sin\theta - 40\cos\theta$ But from equation (1) $T = 150 \cos\theta - 300 \sin\theta$ $\therefore 150\cos\theta - 300\sin\theta = 200\sin\theta - 40\cos\theta$ $190 \cos\theta = 500 \sin\theta$ $\tan\theta = \frac{190}{500}$ $\Rightarrow \theta = 20.8^{\circ}$ Ans: (d) FBD for the block V V $W = 500$ $\Sigma F_{y} = 0$	ERI	Sol: NG	$\Sigma F_{x} = 0$ Pcos45 + F - Wsin45 = 0 P cos 45 + 0.25 $\left(\frac{500}{\sqrt{2}} + \frac{P}{\sqrt{2}}\right) - 500 \times \frac{1}{\sqrt{2}} = 0$ $\Rightarrow P = 300 \text{ N}$ Ans: (a) FBD of block F_1 = μN_1 F_2 = μN_2 $\Sigma F_x = 0$ $N_2 - F_1 = 0$ $\Rightarrow N_2 = F_1 (\because F_1 = \mu N_1)$ $N_2 = \mu N_1$ $\Sigma F_y = 0$ $N_1 + \mu N_2 - W = 0$ $N_1 + \mu^2 N_1 - W = 0$ ($\because N_2 = \mu N_1$) $N_1 (1 + \mu^2) = W$ $N_1 = \frac{W}{1 + \mu^2}$ $N_2 = \frac{\mu W}{1 + \mu^2}$ Couple = (F_1 + F_2) × r $= \mu r (N_1 + N_2)$
$N = \frac{500}{5\pi} + \frac{1}{5\pi}$ $1 + \mu^2$		$N = \frac{300}{\sqrt{2}} + \frac{\Gamma}{\sqrt{2}}$			$1 + \mu^2$ (1 μ 1)

Engineering Publications	14	ESE – Text Book Solutions
T ₁ = 1000 × $e^{\frac{1}{\pi} \frac{\pi}{6}}$ T ₁ = 1181.36 N $\frac{T_2}{T_1} = e^{\mu\beta}$ T ₂ = 1181.36 × $e^{\frac{1}{\pi} \times \frac{4\pi}{3}} = 4481.65$ N $\frac{P_{max}}{T_2} = e^{\mu\alpha}$ P _{max} = 4481.68 × $e^{\frac{1}{\pi} \times \frac{\pi}{6}}$ P _{max} = 5300 N 11. Ans: (b) Sol: Given $\mu = 0.2$, $\tan\theta = \frac{3}{4}$ $\Rightarrow \cos\theta = \frac{4}{5}$ $\sin\theta = \frac{3}{5}$ V Fig: FBD (1) $\psi_{1}\sin\theta$ $\psi_{1}=1000$		From FBD (1) $\Sigma F_y = 0$ $N_2 - W_2 \cos\theta = 0$ $N_2 = W_2 \cos\theta = W \times 0.8$ $N_2 = 0.8 W$ $\therefore F_2 = \mu N_2 = 0.2 \times 0.8 W$ $F_2 = 0.16 W$ $\Sigma F_x = 0$ $T_1 - W_2 \sin\theta - F_2 = 0$ $T_1 = F_2 + W_2 \sin\theta = 0.16 W + 0.6W$ $T_1 = 0.76 W$ From FBD (2) $\Sigma F_y = 0$ $N_2 + W_1 \cos\theta = N_1$ $N_1 = N_2 + W_1 \cos\theta$ $N_1 = 0.8W + 1000 \times \frac{4}{5}$ $N_1 = 0.8W + 1000 \times \frac{4}{5}$ $N_1 = 0.8 W + 800$ $F_1 = \mu N_1 = 0.2 (0.8 W + 800)$ = 0.16 W + 160 $\frac{T_2}{T_1} = e^{\mu\beta}$ $T_2 = T_1 e^{\mu\beta} = 0.76 W e^{0.2 \times \pi}$ $T_2 = 1.42 W$ $\Sigma F_x = 0$ $T_2 + F_1 + F_2 = W_1 \sin\theta$ $1.42W + 0.16W + 160 + 0.16W = 1000 \times \frac{3}{5}$ 1.74 W = 440
Fig: FBD (2)		\Rightarrow W = 252.87 N

Conventional Practice Solutions

01.

Sol: Limiting force of friction between contacting surfaces,

 $F = \mu r = \mu W$

 \therefore Limiting force of friction between A and B,

$$F_{ab} = \mu_{ab} \times W_a = 0.3 \times 150 = 45 \text{ N}$$

Limiting force of friction between B and C,

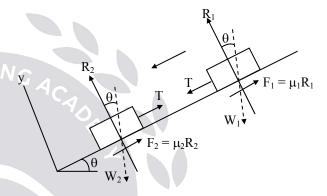
 $F_{bc} = \mu_{bc} (W_a + W_b) = 0.2(150+50) = 40 N$

Limiting force of friction between B and C,

$$F_{cg} = \mu_{cg}(W_a + W_b + W_c)$$

= 0.1 (150 + 50 + 100) = 30 N

With gradual increase in applied force P, the frictional force increases till it attains the maximum (limiting) values. Any further increase in P sets the body in motion. Now


- (i) When P = 30 N, the block A exerts a force of 30 N on block B. However this force is less than the limiting friction between A and B, and obviously there will be no relative motion between A and B.
- (ii) The block B also exerts a force of 30 N on block C. This force is again less the limiting friction between B and C. Obviously no relative motion between B and C.
- (iii) The block C too is subjected to a pull of 30N. This equals the limiting friction between block C and the ground. As such the block C will be on the point of motion.

The above remarks tell us that when a horizontal P equals to 30 N is applied, all the three blocks would be in a state of impending motion as a single body.

02.

Sol:

(a) Below figure for the arrangement and the free body diagrams for the two blocks.

Let T be the tension in the string and θ be the inclination of the plane with the horizontal. Considering equilibrium for block of weight W₁

 $\sum F_x = 0$ (along the plane)

 $\mu_1 R_1 - T - W_1 \sin \theta = 0....(i)$

 $\sum F_y = 0$ (perpendicular to the plane)

 $R_1 - W_1 \cos \theta = 0; R_1 = W_1 \cos \theta...(ii)$

From identities (i) and (ii)

 $\mu_1 W_1 \cos \theta - W_1 \sin \theta - T = 0 \dots (a)$

Similarly, considering equilibrium for block of weight W₂, we may write

 $\mu_1 R_2 - W_2 \sin \theta + T = 0$

 $R_2 - W_2 \cos \theta = 0; \quad R_2 = W_2 \cos \theta$

or $\mu_2 W_2 \cos \theta - W_2 \sin \theta + T = 0$ (b)

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Mechanics

Adding expressions (a) and (b), we get $(\mu_1 W_1 + \mu_2 W_2) \cos \theta - (W_1 + W_2) \sin \theta = 0$ $\therefore \tan \theta = \frac{\mu_1 W_1 + \mu_2 W_2}{W_1 + W_2}$

which is the required expression.

ACE

(b) When $W_1 = W_2 = W$, the above expression reduces to

 $\tan \theta = \frac{\mu_1 + \mu_2}{2}$

Substituting $\mu_1 = 1/2$ and $\mu_2 = 1/3$,

$$\tan \theta = \frac{\frac{1}{2} + \frac{1}{3}}{2} =$$

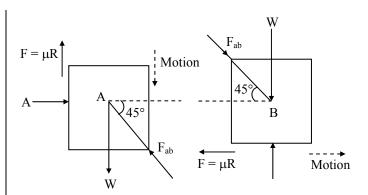
 \therefore Inclination of plane,

$$\theta = \tan^{-1} \frac{3}{12} = 22.62^{\circ}$$

03.

Sol: Let F_{ab} be the force in the rod. With reference to free body diagram of block A and for its limiting equilibrium

 $\Sigma F_x = 0$ and $\Sigma F_y = 0$ $\therefore \Sigma F_x = R - F_{ab} \cos 45^\circ = 0$ or $R = 0.707 F_{ab}$


 $\Sigma F_{\rm v} = F - W - F_{\rm ab} \sin 45^\circ = 0$

Making substitution for $F = \mu R$

$$= \mu \times 0.707 \text{ F}_{ab},$$

we have $~\mu \times 0.707~F_{ab}-W-0.707~F_{ab}=0$

$$F_{ab} = \frac{W}{0.707(1+\mu)}$$

From free body diagram of block b, the equations for limiting equilibrium are $\sum F_x = -\mu R + F_{ab} \cos 45^\circ = 0;$ $NG R = \frac{0.707 F_{ab}}{1000}$ $\sum F_{v} = -F_{ab} \sin 45^{\circ} - W + R = 0$ Making substitution for $r = 0.707 F_{ab}/\mu$, we get $-0.707 F_{ab} - W + \frac{0.707 F_{ab}}{U} = 0$ $0.707 F_{ab} \left(\frac{1}{11} - 1\right) = W$ or $F_{ab} = \frac{W}{0.707} \frac{\mu}{1 - \mu} \dots \dots \dots (ii)$ From expression (i) and (ii) $\frac{W}{0.707(1+\mu)} = \frac{W}{0.707} \frac{\mu}{1-\mu}$ $(1 + \mu)\mu = 1 - \mu$; $\mu^2 + 2\mu - 1 = 0$ or Solution of this quadratic equation gives: $\mu = \frac{-2 \pm \sqrt{2^2 - 4 \times (-1) \times 1}}{2 \times 1} = \frac{-2 \pm 2.828}{2}$ Neglecting -ve value which is impossible,

 $\mu = 0.414$

we obtain

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	18 ESE – Text Book Solutions
 Chapter 4 Kinematics of Particle Rectilinear and Curvilinear Motion 	$V = 9t^2$
01. Ans: (d) Sol: $x = 2t^{3} + t^{2} + 2t$ $V = \frac{dx}{dt} = 6t^{2} + 2t + 2$	But $V = \frac{ds}{dt} = 9t^2$ $\int ds = \int 9t^2 dt$ $S = 3t^3 + C_2$ At, $t = 2 \sec$, $S = 30 m$
NON	$\Rightarrow 30 = 3(2)^{3} + C_{2}$ $\Rightarrow C_{2} = 6$ $\therefore S = 3t^{3} + 6$ At t = 3 sec $S = 2(2)^{3} + 6$
02. Ans: (a) Sol: $V = kx^3 - 4x^2 + 6x$ $V_{at x = 2 if k = 1} = 2^3 - 4(2)^2 + 6(2) = 4$ $a = \frac{dV}{dt} = k.3x^2 \frac{dx}{dt} - 8x \frac{dx}{dt} + 6 \frac{dx}{dt}$ $a = 3x^2(V) - 8x(V) + 6(V)$ $= 3(2)^2 \times 4 - (8 \times 2 \times 4) + 6(4)$ $= 8 m/s^2$	S = 3(3) ³ + 6 S = 87 m 04. Ans: (a) Sol: Given A = -8S ⁻² $\Rightarrow \frac{dV}{dt} = \frac{d^2s}{dt^2} = -8s^{-2} = a$ We know that, $\int V dv = \int a ds$
03. Ans: (d) Sol: Given, $a = 6\sqrt{V}$ $\frac{dV}{dt} = 6\sqrt{V}$ $\int \frac{dV}{\sqrt{V}} = \int 6 dt$ $2\sqrt{V} = 6t + C_1$ Given, at $t = 2 \sec$, $V = 36$ $\Rightarrow 2\sqrt{36} = 6(2) + C_1$	

Engineering Publications	19		Engineerin	g Mechanics
$V = \frac{4}{\sqrt{s}}$		$\int dx = \int \left(\frac{4t}{3}\right)^2$	$-2t+C_1$ dt	
$\Rightarrow \frac{\mathrm{ds}}{\mathrm{dt}} = \frac{4}{\sqrt{\mathrm{s}}}$		$\mathbf{x} = \frac{4\mathbf{t}^4}{3 \times 4} - 2$	$2 \cdot \frac{t^2}{2} + C_1 t + C_2$	
$\Rightarrow \int \sqrt{s} ds = \int 4 dt$ $\frac{2}{3} s^{3/2} = 4t + C_2$		$x = \frac{t^4}{3} - t^2$		
3 At t = 1, S = 4		Given condi At $t = 0$, x		
		$\Rightarrow -2^{\pm}$		
$\Rightarrow \frac{2}{3}(4)^{3/2} = 4(1) + C_2$		At $t=2, x=$	2	
$\Rightarrow C_2 = \frac{16}{3} - 4 = \frac{4}{3}$	ERI	$\Rightarrow -20 = \frac{2^4}{3}$	$-2^2 + 4(2) + (-2)$	
$\therefore \frac{2}{3}s^{3/2} = 4t + C_2$		$\Rightarrow C_1 = \frac{-2}{3}$	9	
$\Rightarrow \frac{2}{3}s^{3/2} = 4t + \frac{4}{3}$		$\therefore x = \frac{t^4}{3} - 1$	$t^2 - \frac{29}{3}t - 2$	
At $t = 2 \sec 2$		\therefore at t = 4 set	c	
$\frac{2}{3}s^{3/2} = 4(2) + \frac{4}{3}$		$x = \frac{4^4}{3} - 4^2$	$-\frac{29}{3}(4)-2$	
\Rightarrow s = 5.808 m		= 28.67 m	3	
$a = \frac{-8}{s^2} = \frac{-8}{5.808^2} = -0.237 \text{ m/sec}^2$				
Sin	ce 1	06. Ans: (b)		
05. Ans: (c)		Sol:		
Sol: Given, $a = 4t^2 - 2$		$u_A = 20 \text{ m/sec}$ $a_A = 5 \text{ m/sec}^2$	$u_{\rm B} = 60 \text{ m/sec}$ $a_{\rm B} = -3 \text{ m/sec}^2$	
$\frac{\mathrm{d}v}{\mathrm{d}t} = 4t^2 - 2$		0	0	0
ut		Pt "A"	Pt "B"	A & B
$dv = (4t^2 - 2) dt$		•	S _A	S _B
$v = \frac{4t^3}{3} - 2t + C_1$			5 _A	
5		Let S _A be th	e distance traveled	d by "A"
$\frac{\mathrm{dx}}{\mathrm{dt}} = \frac{4\mathrm{t}^3}{3} - 2\mathrm{t} + \mathrm{C}_1$		Let S_B be th	e distance traveled	l by "B"
	I			

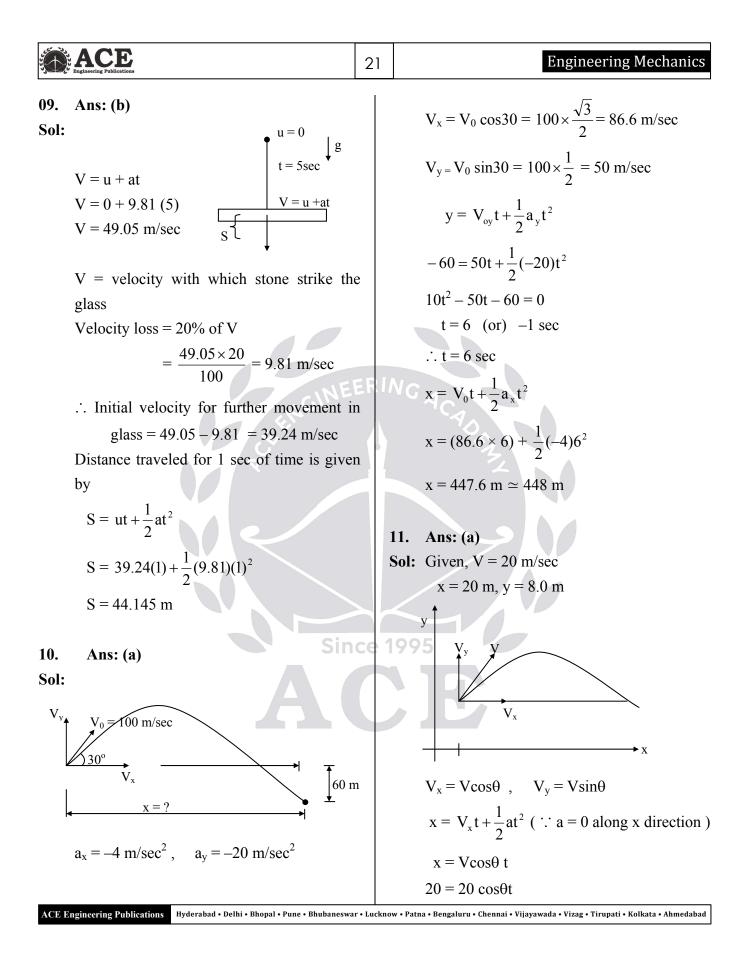
$S_{A} = S_{B} + 384$ $u_{\rm A}t + \frac{1}{2}a_{\rm A}t^2 = u_{\rm B}t + \frac{1}{2}a_{\rm B}t^2 + 384$ $20t + \frac{1}{2}5t^2 = 60t - \frac{1}{2}3t^2 + 384$ $4t^2 - 40t - 384 = 0$ t = 16 sec (or) t = -6 sec \therefore t = 16 sec

ACE

07. Ans: (b) **Sol:** Take, $y = x^2 - 4x + 100$ $\therefore x_1 + x_2 = 36$ Initial velocity, $V_0 = 4\hat{i} - 16\hat{j}$ $x_1 = 0(t) + \frac{1}{2}gt^2$ (:: $s = ut + \frac{1}{2}at^2$) If V_x is constant V_y , a_y at x = 16 m $x_1 = \frac{1}{2}gt^2$ ------ (1) $V_x = V_{1x} = \frac{dx}{dt} = 4$ $x_2 = 18(t) - \frac{1}{2}$ $V_{y} = \frac{dy}{dt} = 2x\frac{dx}{dt} - 4\frac{dx}{dt}$ $(V_v) = 2x (4) - 4(4)$ $x_1 + x_2 = 36$ $V_{v} = 8x - 16$ $\Rightarrow \frac{1}{2}gt^2 + 18t - \frac{1}{2}gt^2 = 36$ $(V_y)_{at x = 16} = 8 (16) - 16 = 112 \text{ m/sec}$ Since $a_{y} = \frac{dV}{dt} = \frac{d}{dt} (2xV_{x} - 4V_{x})$ \Rightarrow 18 t = 36 \Rightarrow t = 2 sec (:: $V_x = constant$) $= 2V_x \frac{dx}{dt} = 2V_x V_x$ $a_{v} = 2V_{x}^{2}$ $(a_v)_{x=16} = 2 \times 4^2 = 32 \text{ m/sec}^2$

08. Ans: (c) Sol: h = 36

Let at distance of " x_1 " ball (1) crossed ball (2)

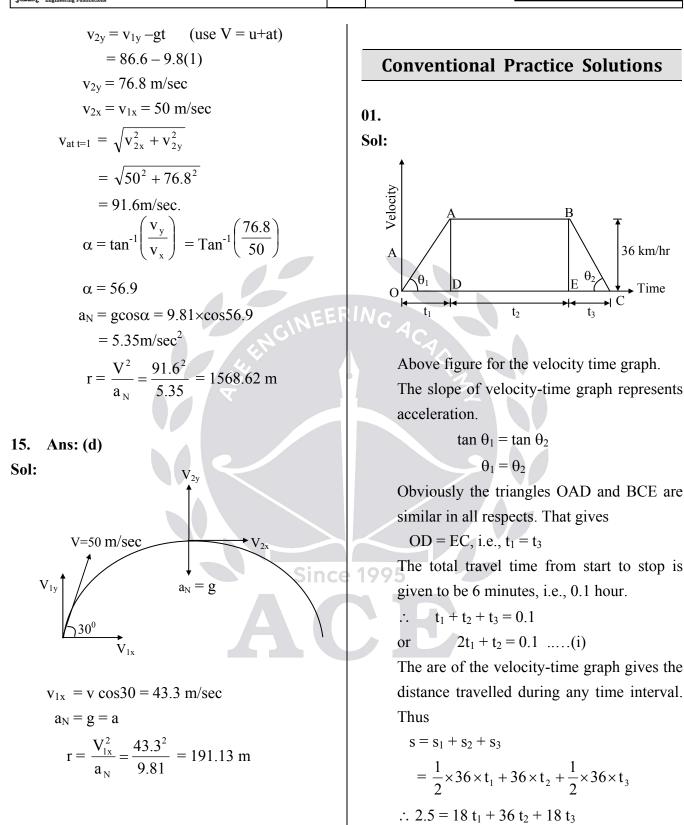

$$gt^{2}$$

(::a = -g moving upward)

$$x_1 = \frac{1}{2}(9.81).2^2$$

= 19.62 m (from the top) $x_2 = 36 - 19.62$ = 16.38 m (from the bottom)

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad


ESE - Text Book Solutions

Engineering Mechanics

Time

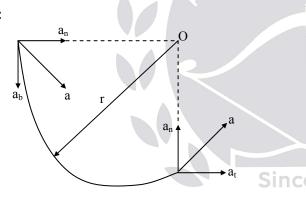
23

ACE

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad ACE Engineering Publications

$$= 36 t_1 + 36 t_2 \quad (\because t_1 = t_3)$$

or $t_1 + t_2 = 0.0694 \dots$ (ii)
From expressions (i) and (ii)
 $2t_1 + (0.0694 - t_1) = 0.1$
 $t_1 = 0.1 - 0.0694 = 0.0360$ hr
From the triangle OAD representing
accelerating motion,


Acceleration a = rate of change of velocity

$$= \frac{V_{a} - V_{0}}{t_{1}} = \frac{36 - 0}{0.0306} = 1176.47 \text{ km/hr}^{2}$$

Since retardation is stated to be numerically equal to acceleration, the magnitude of retardation is also 1176.47 km/hr^2 .

02.

Sol:

Above the figure, let the automobile travel from A to B.

$$V_{a} = 30 \text{ km/hr} = \frac{30 \times 1000}{3600} = 8.33 \text{ m/s}$$
$$V_{b} = 48 \text{ km/hr} = \frac{48 \times 1000}{3600} = 13.33 \text{ m/s}$$

Using the kinematic equation

$$v^2 - u^2 = 2as$$

Tangential acceleration $a_t = \frac{13.33^2 - 8.33^2}{2 \times 400}$

 $= 0.1356 \text{ m/s}^2$

If r is the radius of the circular track, then

$$\frac{1}{4}(2\pi r) = 400;$$

r = $\frac{400 \times 2}{\pi} = 254.77 \text{ m}$

At end A:

$$a_n = \frac{V_a^2}{r} = \frac{8.33^2}{254.77} = 0.272 \text{ m/}^2$$

$$a_t = 0.135 \text{ m/s}^2$$

: Resultant acceleration

$$a = \sqrt{(0.272)^2 + (0.135)^2} = 0.304 \text{ m/}^2$$

If α is the direction of resultant with tangential acceleration, then

$$\tan \alpha = \frac{a_n}{a_t} = \frac{0.272}{0.135} = 2.0148;$$

 $\alpha = 63.60$

At end B:

$$a_n = \frac{V_b^2}{r} = \frac{13.33^2}{254.77} = 0.697 \text{ m/s}^2$$
$$a_t = 0.135 \text{ m/s}^2$$

Resultant acceleration,

$$a = \sqrt{(0.697)^2 + (0.135)^2} = 0.71 \text{ m/s}^2$$

If α is the direction of resultant with tangential acceleration, then

$$\tan \alpha = \frac{a_n}{a_t} = \frac{0.697}{0.135} = 5.163;$$
$$\alpha = 79.04^{\circ}$$


ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

24

ESE – Text Book Solutions

	ACE Engineering Publications	25	Engineering Mechanics
03.			t = 2.5 ln(0.4 s + 5) + 2.5 ln 5
Sol:	a-s Graph.		At $s = 50 m$,
	Since the equations for segments of the v -	s	t = 2.5 ln(0.4s + 5) + 2.5 ln5 = 12.07 s.
	graph are given, the a-s graph can b	e	Therefore, for the second segment of
	determined using a ds = υ d υ .		motion,
	$0 \leq s \leq 50 \text{ m}; \qquad \upsilon = 0.4s + 5$		$25 \text{ m} < \text{s} \le 100 \text{ m};$
	a = v = 0.4s + 5		v = 25;
	$a = \upsilon \frac{d\upsilon}{ds} = (0.4s + 5) \frac{d}{ds} (0.4s + 5)$		$dt = \frac{ds}{\upsilon} = \frac{ds}{25}$
	= 0.16s + 2		$\int_{12.07}^{t} dt = \int_{50}^{s} \frac{ds}{25}; t - 12.07 = \frac{s}{25} - 2$
	$50 \text{ m} < \text{s} \le 100 \text{ m};$	_	
	$\upsilon = 25;$	ERI	$N_{GA} t = \frac{s}{25} + 10.07$
	$a = \upsilon \frac{d\upsilon}{ds} = (25)\frac{d}{ds}(25) = 0$		Therefore, at $s = 100$ m,
	The results are plotted in figure.		$t = \frac{100}{50} + 10.07 = 12.07$
	a (m/s ²) 10 2 a = 0.16s a = 0 50 100 a = 0 s (m)		
	Time:		1005
	The time can be obtained using the v-		1995
	graph and $v = ds/dt$, because this equation	n	
	relates υ , s, and t. For the first segment o	f	
	motion, $s = 0$ at $t = 0$, so		
	$0 \le s < 50 m;$		
	v = 0.4s + 5;		
	$dt = \frac{ds}{u} = \frac{ds}{0.4s + 5}$		
	$\int_0^t dt = \int_0^s \frac{ds}{0.4s+5}$		
ACE E	ngineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	r • Luckn	ow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE

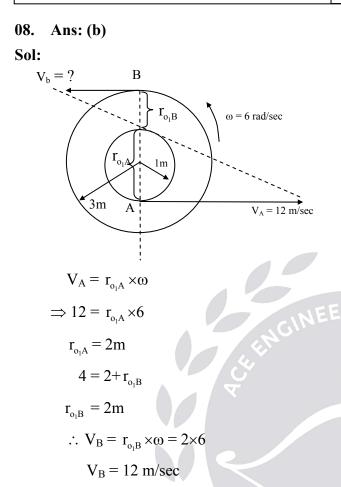
26

Sol: Given
$$\omega = 4\sqrt{t}$$

 $\theta = 2$ radians at t = 1 sec $\theta = ? \alpha = ?$ at t = 3 sec

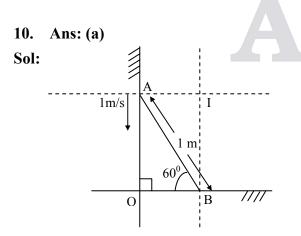
$$\omega = \frac{d\theta}{dt} \Longrightarrow \int d\theta = \int \omega dt$$
$$\theta = \int 4\sqrt{t} dt$$

$$\theta = \frac{8}{3}t^{3/2} + c...(1)$$


From given condition, at t = 1, $\theta = 2rad$

$$(1) \Rightarrow 2 = \frac{8}{3}(1)^{3/2} + c_1 \Rightarrow c_1 = \frac{-2}{3}$$
$$\therefore \theta = \frac{8}{3}t^{3/2} - \frac{2}{3}$$
$$At t = 3 \sec, \theta = \frac{8}{3}(3)^{3/2} - \frac{2}{3}$$
$$\theta_{t=3} = 13.18 \text{ rad}$$
$$\alpha = \frac{d\omega}{dt} = \frac{d(4\sqrt{t})}{dt} = \frac{2}{\sqrt{t}}$$

Ans: (b)
:
$$r = 2 \text{ cm}, \quad \omega = 3 \text{ rad/sec}, \quad a = 30 \text{ cm/s}^2$$


Since total acceleration $a = \sqrt{a_T^2 + a_N^2}$ $\Rightarrow a^2 = a_T^2 + a_N^2$ $30^2 = a_T^2 + 18^2$ $a_T = 24 \text{ cm/sec}^2$ $a_T = r\alpha = 24$ $\alpha = \frac{24}{2} = 12 \text{rad/sec}^2$

	ACE Engineering Publications	27		Engineering Mechanics
04.	Ans: (d)		06.	Ans: (c)
Sol:	Given angular acceleration, $\alpha = \pi \operatorname{rad/sec}^2$		Sol	angular speed, $\omega = 5$ rev/sec
	Angular displacement in time t_1 and t_2			$= 5 \times 2\pi$ rad/sec
	$=\pi$ rad $=\theta_2-\theta_1$			$\omega = 10\pi \text{ rad/sec}$
	$\omega_{t2} = 2\pi \text{ rad/sec}$			Radius, $r = 0.1m$
	$\omega_{t1} = ?$			If ω is constant, $d\omega = 0$
	$\omega_{t1}^2 - \omega_0^2 = 2\alpha\theta_1$			$\Rightarrow \alpha = 0 \Rightarrow a_T = 0$ (since $a_T = r\alpha$)
	$\omega_{t2}^2 - \omega_0^2 = 2\alpha\theta_2$			Since $a_T = 0$
	$\omega_{t2}^2 - \omega_{t1}^2 = 2\alpha(\theta_2 - \theta_1)$			$a = \sqrt{a_{\rm N}^2 + a_{\rm T}^2}$
	$4\pi^2 - \omega_{t1}^2 = 2\pi^2$	- 5 1		v^2 $(r\omega)^2$
	$\omega_{t1}^2 = 2\pi^2$	ERI	NC	$a = a_N = \frac{v^2}{r} = \frac{(r\omega)^2}{r} = r\omega^2$
	$\omega_{t1} = \pi \sqrt{2}$			$= 0.1 \times (10\pi)^2 = 10\pi^2 \text{ m/sec}^2$
05.	Ans: (c)		07.	Ans: $a = 40 \text{m/s}^2$
Sol:	Given retardation		Sol	
	$\alpha = -3t^2$			
	$\frac{d\omega}{dt} = -3t^2$			2 m a_{T}
				$\alpha = 12 \text{ rad/s}^2$
	$\int d\omega = \int -3t^2 dt$			$\omega = 4 \text{ rad/s}^2$
	$\omega = -t^3 + c_1 \qquad \qquad \text{Sin}$	ce	199	75 4
	From given condition at $t = 0$,			Tangential acceleration
	$\omega = 27 \text{ rad/sec}$ $27 = -0^3 + c_1$			$a_{\rm T} = r \alpha = 2 \times 12 = 24 {\rm m/s}^2$
	$\Rightarrow c_1 = 27$			Normal acceleration, $a_N = r \omega^2$
	$\therefore \omega = -t^3 + 27$			$= 2 \times 4^2 = 32 \text{ m/s}^2$
	Wheel stops at $\omega = 0$,			The resultant acceleration
	$\Rightarrow 0 = -t^3 + 27$			$a = \sqrt{a_{T}^{2} + a_{N}^{2}}$
	\Rightarrow t = 3sec			$=\sqrt{24^2+32^2}=40$ m/s ²
				• • • • •

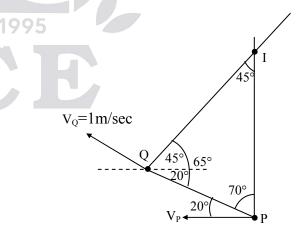
09. Ans: (a)

Sol: Instantaneous centre will have zero velocity because the instantaneous centre is the point of contact between the object and the floor.

 $V_a = 1 m/s$

28

 $V_a = along vertical$


 V_b = along horizontal

So instantaneous center of V_a and V_b will be perpendicular to A and B respectively

$$IA = OB = l \times \cos \theta = 1 \times \cos 60^{\circ} = \frac{1}{2}m$$
$$IB = OA = l \times \sin \theta = 1 \times \sin 60^{\circ} = \frac{\sqrt{3}}{2}m$$
$$V_{a} = \omega \times IA$$
$$\Rightarrow \omega = \frac{V_{a}}{IA} = 2 \text{ rad/sec}$$

11. Ans: (d)

Sol: Refer the figure shown below, by knowing the velocity directions instantaneous centre can be located as shown. By knowing velocity (magnitude) of Q we can get the angular velocity of the link, from this we can get the velocity of 'P using sine rule.

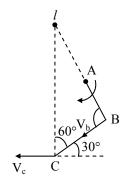
'I' is the instantaneous centre.

Engineering Mechanics

From sine rule

$$\frac{PQ}{\sin 45} = \frac{IQ}{\sin 70} = \frac{IP}{\sin 65}$$
$$\frac{IP}{IQ} = \frac{\sin 65^{\circ}}{\sin 70^{\circ}}$$
$$V_{Q} = IQ \times \omega = 1$$
$$\Rightarrow \omega = \frac{V_{Q}}{IQ}$$
$$V_{P} = IP \times \omega = \frac{IP}{IQ} \times V_{Q} = \frac{\sin 65^{\circ}}{\sin 70^{\circ}} \times 1$$
$$= 0.9645$$

Conventional Practice Solutions


01.

Sol: Velocity of end B,

 $V_b = \omega r = 2.5 \times 1.5 = 3.75$ m/s The direction of V_b is normal to AB and as BC is perpendicular to AB, it lies along BC.

The velocity V_c of end C, at any instant, must be horizontal.

The instantaneous centre I of rod BC is the point of intersection of perpendiculars to V_b and V_c through B and C respectively.

 $IC = \frac{BC}{\cos 60^{\circ}} = \frac{3}{0.5} = 6 \text{ m}$

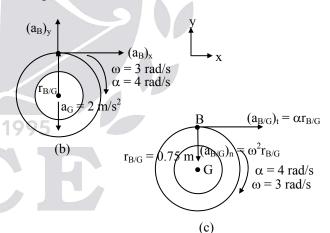
 $IB = IC \sin 60^\circ = 6 \times 0.866 = 5.196 m$

Angular velocity of rod BC,

$$\omega = \frac{V_{b}}{IB} = \frac{V_{c}}{IC}$$
$$\omega = \frac{3.75}{5.196} = 0.722 \text{ rad/s (clockwise)}$$

 $V_C = \omega \times IC = 0.722 \times 6 = 4.33$ m/s

02.


29

Sol: Solution I (VECTOR ANALYSIS) :

The spool "appears" to be rolling downward without slipping at point A.

$$a_{\rm G} = \alpha r = 4 \text{ rad/s}^2(0.5 \text{ m}) = 2 \text{ m/s}^2$$

We will apply the acceleration equation at points G and B.

Kinematic Diagram.

Point B moves along a curved path having an unknown radius of curvature. Its acceleration will be represented by its unknown x and y components as shown in figure.

ACE Engineering Publications

ESE - Text Book Solutions

Acceleration Equation.

 $a_{\rm B} = a_{\rm G} + \alpha \times r_{\rm B/G} - \omega^2 r_{\rm B/C}$ (a_{\rm B})_xi+(a_{\rm B})_yj=-2j+(-4k)\times(0.75j)-(3)^2(0.75j)

Equating the i and j terms, the component equations are

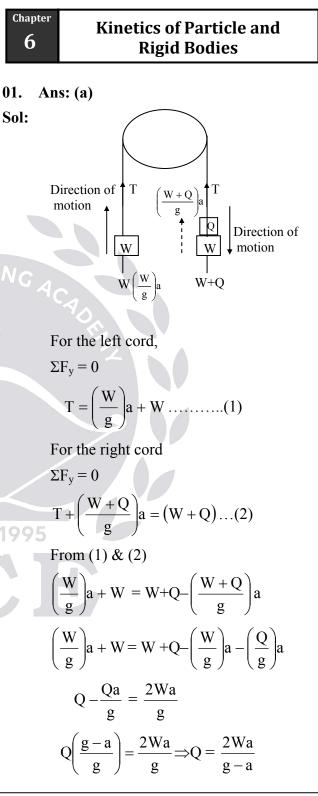
$$(a_B)_x = 4(0.75) = 3 \text{ m/s}^2 \dots (1)$$

 $(a_B)_y = -2 - 6.75 = -8.75 \text{ m/s}^2$
 $= 8.75 \text{ m/s}^2 \downarrow \dots (2)$

The magnitude and direction of a_B are therefore

$$a_{\rm B} = \sqrt{(3)^2 + (8.75)^2} = 9.25 \text{ m/s}^2$$

 $\theta = \tan^{-1} \frac{8.75}{3} = 71.1^\circ$


Solution II (SCALAR ANALYSIS)

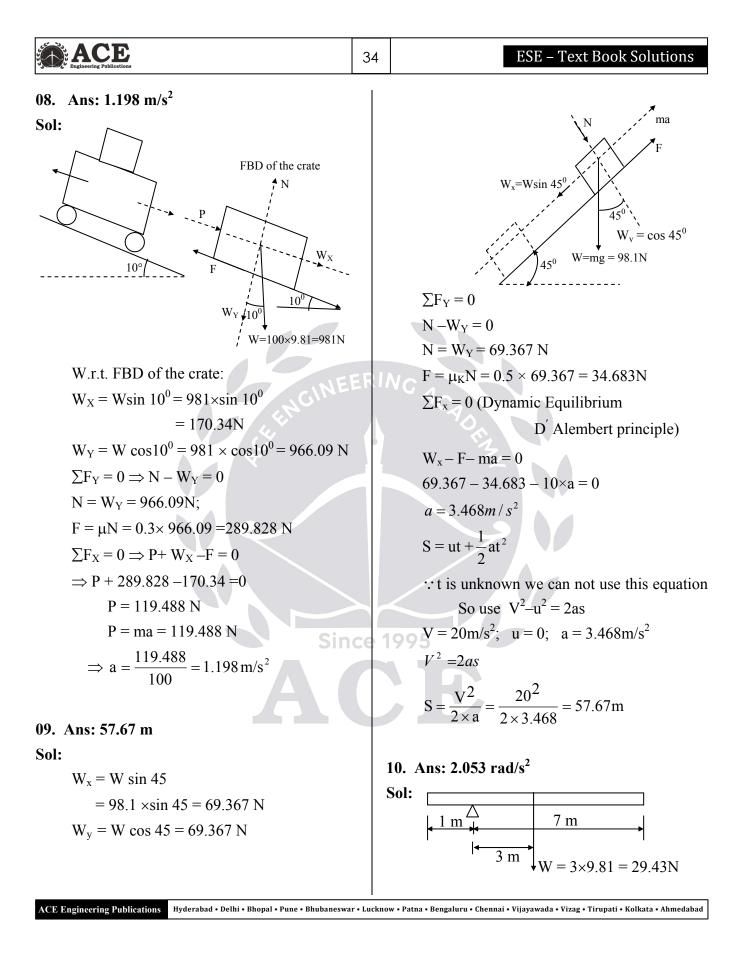
This problem may be solved by writing the scalar component equations directly. The kinematic diagram in figure shown the relative-acceleration components $(a_{B/G})_t$ and $(a_{B/G})_n$. Thus,

$$a_{B} = a_{G} + (a_{B/G})_{t} + (a_{B/G})_{n}$$

$$\begin{bmatrix} \left(a_{B}\right)_{x} \\ \rightarrow \end{bmatrix} + \begin{bmatrix} \left(a_{B}\right)_{y} \end{bmatrix} & \text{Since} \\ \begin{bmatrix} 2m/s^{2} \\ \downarrow \end{bmatrix} + \begin{bmatrix} 4rad/s^{2}(0.75m) \\ \rightarrow \end{bmatrix} + \begin{bmatrix} 3^{2}rad/s^{2}(0.75m) \\ \downarrow \end{bmatrix}$$

The x and y components yield equations 1 and 2 above.

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad


Engineering Mechanics

02. Ans: (b) $P_x - F = \left(\frac{W}{g}\right)a$ **Sol:** u = 0, v = 1.828 m/sec, S = 1.825 m, $v^2 - u^2 = 2as$ $P\cos 36.86 - F = \left(\frac{W}{g}\right)a$ $1.828^2 - 0 = 2a \times 1.828$ $a = \frac{1.828}{2}$ $0.8P - F = \left(\frac{2224}{g}\right)(0.2g)$ $a = 0.914 \text{ m/sec}^2$ 0.8P - F = 444.80.8P - F = 444.8 + FТ Direction P = 556 + 1.25F(1) Direction of , motion Inertial force W $\Sigma F_v = 0$ $\left(\frac{W}{g}\right)a^{\checkmark}$ $N+P_v-W=0$ W $N = W - P_y$ (since $\mu = \frac{F}{N}$) For equilibrium, $\Sigma F_v = 0$ $F = \mu N$ $T = W + \left(\frac{W}{g}\right)a$ $F = \mu (W - P_v)$ $= 0.2(2224 - P \sin 36.86)$ $=4448+\frac{4448}{9.81}\times0.194$ $F = 444.8 - 0.12P \dots(2)$ From (1) & (2) T = 4862.42 N P = 556 + 1.25(444.8 - 0.12P)1.15P = 111203. Ans: (a) P = 966.95Sol: W Since P = 967 N199 04. Ans: (d) Sol: F u = 9.126 m/s→V=0 Ν $\tan\theta = \frac{3}{4}$ ma $\theta = \tan^{-1}(3/4) = 36.86$ ►F S $(F_{net})_x = ma$ Ν

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	32	ESE – Text Book Solutions
From static equilibrium condition		$\Sigma F_y = 0$ (static equilibrium)
$\Sigma F_y = 0$		$N - W\cos\theta = 0$
N-W = 0		$N = W\cos\theta = mg\cos\theta$
N = W = 44.48N		Since $F = \mu N = \mu \operatorname{mgcos}\theta \dots (1)$
From dynamic equilibrium condition		$\Sigma F_x = 0$ (Dynamic equilibrium)
$\Sigma F_{\rm x} = 0$		$F+ma - Wsin\theta = 0$
F = ma		$F = -ma + mgsin\theta$
		$F = mgsin\theta - ma(2)$
$\mu N = \frac{W}{g}a$		From (1) & (2)
a		μ mg cos θ = mgsin θ – ma
$\mu = \frac{a}{g}$		$\Rightarrow a = gsin\theta - \mu gcos\theta$
$a = \mu g \dots (1)$	EKI	$V G \Rightarrow a = gcos\theta(tan\theta - \mu)$
Since $v^2 - u^2 = 2as$		Given $PQ = s$
$0 - (9.126)^2 = 2(-a) \times 13.689$		$s = ut + \frac{1}{2}at^2$
$a = 3.042 \dots (2)$		
From (1) & (2)		$s = 0(t) + \frac{1}{2}at^2 \implies t = \sqrt{\frac{2s}{a}}$
$3.042 = \mu(9.81)$		2 V a
$\Rightarrow \mu = 0.31$		$= \sqrt{\frac{2s}{g\cos\theta(\tan\theta - \mu)}}$
05. Ans: (a)		
Sol:	-10	06. Ans: (a)
F X SIM	ice	Sol:
Wcose Wsine		
		T_{B} B $\overline{50N}$ a
		$m_{B}a_{B}$ $m_{B}g$
mg.sinθ		T_{A}
		$A \downarrow 150N \downarrow m_A a_A$
$\operatorname{mg} \cos \theta W \theta$		m _A g
X	<u> </u>	w • Patna • Rengaluru • Chennai • Vijavawada • Vizag • Tirunati • Kolkata • Ahmedahad

Engineering Publications	35		Engineering Mechanics
$M = I\alpha$		12.	Ans: (d)
$M = 29.43 \times 3 = 88.29$ N-m	;	Sol:	$I = 5kg.m^2$
$I = I_0 + Ad^2 = \frac{m\ell^2}{12} + md^2 = \frac{3 \times 8^2}{12} + 3 \times 3^2$			R = 0.25m $F = 8 N$
= 16 + 27 = 43kg $-$ m ² M 88.29 2.052 1/2			Mass moment of inertia, $I_x = I_y = \frac{mr^2}{4}$
$\alpha = \frac{M}{I} = \frac{88.29}{43} = 2.053 \text{ rad/s}^2$			$I_z = \frac{mr^2}{2}$
11. Ans: (d)			$M = I\alpha$
Sol:			$8 \times 0.25 = 5 \times \alpha$
t ma			$\alpha = 0.4$
	ERI	NG	$\omega^2 - \omega_0^2 = 2\alpha\theta$
			$\omega^2 - 0^2 = 2(0.4) \times \pi$ (since for half
L/2			revolution $\theta = \pi$)
$\Sigma F_y = 0$			$\omega = 1.58 \text{ rad/sec}$
$V_A + ma = W$		13.	Ans: 4.6 seconds
$V_A = m(g-a)(1)$			M = 60 N - m
Where, $a = \frac{L}{2}\alpha$			$L = 2m, \qquad \omega_0 = 0,$
Since, $M = I\alpha$			$\omega = 200 \text{ rpm} = \frac{200 \times 2\pi}{60}$
			$\omega = 200 \text{ rpm} = -\frac{60}{60}$
$W \times \frac{L}{2} = \left(\frac{mL^2}{12} + m\left(\frac{L}{2}\right)^2\right) \alpha$ Sin	ce 1	199	$\omega = 20.94 \frac{\text{rad}}{\text{sec}}$
$mg \times \frac{L}{2} = \frac{4mL^2}{12} \times \frac{2a}{L}$			Moment, $M = I\alpha$
$a = \frac{3}{4}g(2)$			$60 = \frac{\mathrm{mL}^2}{12} \times \alpha$
from (1) & (2)			$\Rightarrow 60 = \frac{40 \times 2^2}{12} \times \alpha$
$V_A = m\left(g - \frac{3}{4}g\right) = \frac{mg}{4}$			$\alpha = 4.5 \text{rad/sec}^2$
			$\omega = \omega_0 + \alpha t$
$V_A = \frac{W}{4}$			20.94 = 4.5t
т Т			\Rightarrow t = 4.65 sec
ACE Engineering Publications Hyderahad - Delhi - Rhonal - Pune - Rhuhaneswa			

Engineering Publications	36	ESE – Text Book Solutions
14. Ans: (a) Sol: a = linear acceleration, k = radius of gyration For vertical translation motion $mg - T = ma - \dots (1)$ For rotational motion $T \times r = I\alpha$ $Tr = mk^2 \alpha = mk^2 \times \frac{a}{2}$	36 (a) (b)	Bearing torque T = I α = 3.125 × (-1.083) = -3.384 Nm The negative sign implies that the frictional torque of the bearing resists the rotates of the disc. From the kinematic relation $\omega_2^2 - \omega_1^2 = 2 \alpha \theta$ and noting that $\omega_2 = 0$, we have Total angular displacement $\theta = -\frac{\omega_1^2}{2\alpha} = \frac{-157^2}{2 \times (-1.083)}$
$Tr = mk^{2} \alpha = mk^{2} \times \frac{a}{r}$ $\Rightarrow T = \frac{mk^{2}}{r^{2}} \times a(2)$ $mg - \frac{mk^{2}}{r^{2}} \times a = ma \Rightarrow a = \frac{gr^{2}}{(k^{2} + r^{2})}$ Conventional Practice Solutions	O2. Sol:	= 11380 radians 1 revolution = 2π radians \therefore Number of revolutions turned by the disc $= \frac{11380}{2\pi} = 1812$ Work done = force × distance moved
01. Sol: $\omega_1 = \frac{2\pi \times 1500}{60} = 157 \text{ rad/s} \text{ and } \omega_2 = 0$ Since the bearing friction is independent of the speed of disc, the angular acceleration is constant and it is given by $\alpha = \frac{d\omega}{dt} = \frac{\omega_2 - \omega_1}{t} = \frac{0 - 157}{145}$	f	= $25 \times 6 = 150$ Nm Let the plank move with velocity V m/s towards right and the disc move clockwise with angular ω rad/s. Initially: The kinetic energy of the plank and discs is zero since initially the system is at rest. Finally: Kinetic energy of plank = $\frac{1}{2}$ mV ²
$= -1.083 \text{ rad/s}$ Mass moment of inertia I = $\frac{1}{2}$ mr ² $= \frac{1}{2} \times 25 \times 0.5^{2} = 3.125 \text{ kg m}^{2}$ ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar	• Lucknow • Pat	$= \frac{1}{2} \times 12 \times V^{2} = 6 V^{2} Nm$ Kinetic energy of two discs $= 2 \left[\frac{1}{2} m \times V_{G}^{2} + \frac{1}{2} I_{G} \omega^{2} \right]$ tha • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

$\omega = \frac{V}{0.2} = 5 \text{ V};$ $V_G = \omega r = 5 \text{ V} \times 0.1 = 0.5 \text{ V}$ $I = \frac{1}{2} \text{mr}^2 = \frac{1}{2} \times 5 \times 0.1^2 = 0.025 \text{ kgm}^2$ $\therefore \text{ KE of two discs}$ $= 2 \left[\frac{1}{2} \times 5 \times (0.5 \text{ V})^2 + \frac{1}{2} \times 0.025 \times (5 \text{ V})^2 \right]$

= [0.625 V² + 0.3125 V²]= 1.875 V²

Total kinetic energy of the system

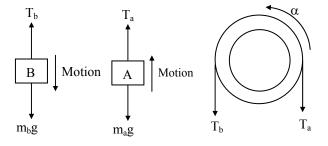
$$= 6 V^2 + 1.875 V^2 = 7.875 V^2$$

This also equals the change in kinetic energy of the system as initial kinetic energy of the system is zero.

Since work done equals the change in kinetic energy, we have

 $150 = 7.875 \text{ V}^2$

$$V = \sqrt{19.05} = 4.36 \text{ m/s}$$


Thus the plank moves with 4.36 m/s velocity towards right.

03.

ACE Engineering Publications

Since

Sol: Since block B is heavier than block A, the cylinder would rotate in the anti-clockwise direction and the block A would get lifted upwards

Then with reference to free body diagrams shown in figure.

For block A:

37

$$T_a - m_a g = m_a a_a;$$

 $T_a = m_a (a_a + g)$
 $\therefore T_a = 80 (1 \times \alpha + 9.81) = 80\alpha + 784.8$

For block B:

$$\begin{split} T_b - m_b g &= -m_b a_b; \\ T_b &= m_b (g - a_b) \\ \therefore \ T_b &= 100(9.81 - 0.5\alpha) = 981 - 50\alpha \end{split}$$

For cylinder: $I = mk^2 = 125 \times (0.55)^2 = 37.81 \text{ kgm}^2$ From Newton's second law; $T = I\alpha$ $T_bR_1 - T_aR_2 = I\alpha$ Substituting the appropriate values $(981-50\alpha) \times 0.5 - (80\alpha + 784.8) \times 1 = 37.81\alpha$ $(490.5 - 25\alpha) - (80\alpha + 784.8) = 37.81\alpha$

:. Angular acceleration of the cylinder $\alpha = -2.06 \text{ rad/s}^2$

Corresponding to 2.5 m upward movement of block A, the angular displacement is $2.5/R_2 = 2.5$ radian

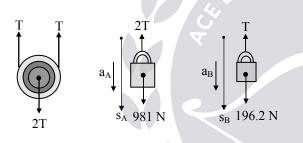
Then from the kinematic relation

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

$$\theta = \omega t + \frac{1}{2} \alpha t^{2}, \text{ we have}$$

$$2.5 = 0 \times t + \frac{1}{2} \times (2.06) \times t^{2} (\omega = 0)$$

$$. \text{ Time required } t = \sqrt{\frac{2.5 \times 2}{2.06}} = 1.56 \text{ sec}$$


Engineering Mechanics

ACE

04.

Sol: Free-Body Diagrams.

Since the mass of the pulleys is neglected, then for pulley C, ma = 0 and we can apply $\Sigma F_v = 0$ as shown in figure. The free body diagrams for blocks A and B are shown in figure. One can see that for A to remain static requires T = 490.5 N, whereas for B to remain static requires T = 196.2 N. Hence A will move down while B moves up. Here we will assume both blocks accelerated downward, in the direction of $+s_A$ and $+s_B$. The three unknowns are T, a_A , and a_B .

Equations of Motion :

Block A in figure:

 $+\downarrow \sum F_v = ma_v$ $981 - 2T = 100a_A \dots (1)$

Block B in figure:

 $+\downarrow \sum F_v = ma_v$

 $196.2 - T = 20a_B \dots (2)$

Kinematics :

The necessary third equation is obtained by relating a_A to a_B using a dependent motion analysis. The coordinates s_A and s_B measure the position of A and B from the fixed datum, figure.

$$2s_A + s_B = l$$

where l is constant and represents the total vertical length of cord. Differentiating this expression twice with respect to time yields

$$2a_{\rm A} = -a_{\rm B} \quad \dots \quad (3)$$

Notice that in writing equations 1 to 3, the positive direction was always assumed downward. The solution yields

$$T = 327.0 \text{ N}$$

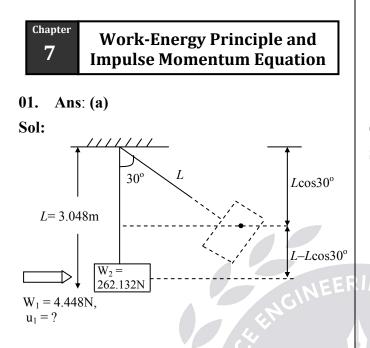
$$a_A = 3.27 \text{ m/s}^2 ,$$

$$a_B = -6.54 \text{ m/s}^2$$

Hence when block A accelerates downward, block B accelerates upward. Since a_B is constant, the velocity of block b in 2 s is thus

$$(+\downarrow)$$
 $\upsilon = \upsilon_0 + a_B t$
= 0 + (-6.54) (2)
= -13.1 m/s

The negative sign indicates that block B is moving upward.


ESE - Text Book Solutions

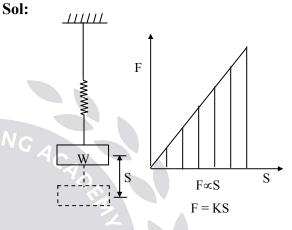
ACE Engincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

199

Engineering Mechanics

The loss of KE of shell converted to do the work in lifting the sand box and shell to a height of " $L - L\cos 30^{\circ}$ "


i.e.,
$$Wd = \frac{1}{2}mV^2$$

Where $d = L - L\cos 30^\circ$
 $= 3.048 - 3.048 \times \cos 30 = 0.41 \text{ m}$
 $266.58 \times 0.41 = \frac{1}{2} \left(\frac{266.58}{9.81}\right) \times V^2$
 $\Rightarrow V = 2.83 \text{ m/sec}$
Where V is the velocity of block & shell
By momentum equation

$$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$$

Where $v_1 = v_2 = V \& u_1 = ?, u_2 = 0$
$$\frac{4.448}{9.81} \times u_1 = \frac{4.448 + 262.132}{9.81} \times 2.83$$

 \Rightarrow u₁ = 169.6 m/sec

- $u_1 \& u_2 =$ Initial velocity of shell and block respectively
- $V_1 \& V_2 =$ Final velocity of block & shell

02. Ans: (b)

Strain energy in spring = Area under the force displacement curve.

$$= \frac{1}{2} F \times s = \frac{1}{2} (ks) \times s = \frac{1}{2} ks^{2}$$
$$\frac{1}{2} ks^{2} = \text{Gain of KE}$$
$$\frac{1}{2} ks^{2} = \frac{1}{2} mv^{2}$$
$$\Rightarrow v^{2} = \frac{ks^{2}}{m} = \frac{ks^{2}}{w}g$$
$$v = \sqrt{\frac{kg}{w}} \cdot s \qquad \left(\because m = \frac{w}{g}\right)$$

ACE Engineering Publications Hy

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE 40 03. Ans: (a) **Sol:** Given, m = 2 kg

Position at any time is given as

$$\mathbf{x} = \mathbf{t} + 5\mathbf{t}^2 + 2\mathbf{t}^3$$

At t = 0, x = 0, At $t = 3 \sec \theta$

At t = 3sec,

$$x = 3 + 5(3^2) + 2(3^3) = 102m$$

Velocity, $V = \frac{dx}{dt} = 1 + 10t + 6t^2$

Initial velocity i.e., t = 0, is $v_i = 1$ m/s Final velocity i.e., at $t = 3 \sec$, is $v_f = 1 + 10(3) + 6(3)^2 = 85 \text{m/s}$ Work done = change in KE

$$= \frac{1}{2} m v_{f}^{2} - \frac{1}{2} m v_{i}^{2}$$
$$= \frac{1}{2} \times 2(85^{2} - 1^{2}) = 7224 \text{ J}$$

04. Ans: (a)

Sol: Given force $F = e^{it}$

Work done =
$$\int_{x_1}^{x_2} F dx$$

= $\int_{0.2}^{1.5} e^{-2x} dx = \left[\frac{e^{-2x}}{-2}\right]_{0.2}^{1.5} = 0.31J$

05. Ans: (b)

Sol:
$$F = 4x - 3x^2$$

Potential Energy at x = 1.7 = work required to move object from 0 to 1.7m

$$PE = \int_{0}^{1.7} Fdx$$

199

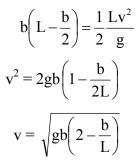
$$= \int_{0}^{1.7} (4x - 3x^{2}) dx$$
$$= \left[4 \left(\frac{x^{2}}{2} \right) - 3 \left(\frac{x^{3}}{3} \right) \right]_{0}^{1.7}$$

$$= \left[2x^{2} - x^{3}\right]_{0}^{1.7}$$
$$= 2(1.7)^{2} - (1.7)^{3} = 0.867 \text{ J}$$

06. Ans: (c)

Where w = weight per unit meterdw = a small work done in moving small elemental "dx" of chain through a d/s "x" Work done = change in KE

$$\left(\int_{0}^{b} dw \times x\right) + \left(w(L-b) \times b\right) = \frac{1}{2} \left(\frac{wL}{g}\right) v^{2}$$


$$\int_{0}^{b} wdx.x + w(L-b)b = \frac{1}{2} \frac{wLv^{2}}{g}$$

$$\frac{wb^{2}}{2} + w(L-b)b = \frac{1}{2} \frac{wLv^{2}}{g}$$

$$\frac{wb^{2}}{2} + wLb - wb^{2} = \frac{1}{2} \frac{wLv^{2}}{g}$$

$$wLb - \frac{wb^{2}}{2} = \frac{1}{2} \frac{wLv^{2}}{g}$$

07. Ans: (d)

Sol:

$$V_1 = 40 \underline{m/s}$$
 $V_2 = 10 m/s$
 $V_2 = 10 m/s$
 $V_2 = 10 m/s$

 $m_1 = 1 \text{kg}$, $m_2 = 2 \text{kg}$, (since $g = 10 \text{m/sec}^2$) Velocities before impact $v_1 = 40 \text{ m/sec}, v_2 = -10 \text{m/s}$ Velocities after impact $u_1 = ? u_2 = ?$ Coefficient of restitution e = 0.6From momentum equation $m_1v_1+m_2v_2 = m_1u_1+m_2u_2$ $\Rightarrow 1(40) + 2(-10) = 1(u_1) + 2(u_2)$ Since $\Rightarrow u_1 + 2u_2 = 20....(1)$ $e = \frac{u_2 - u_1}{v_1 - v_2} = \frac{\text{relative velocity of Separation}}{\text{relative velocity of approach}}$ $0.6 = \frac{u_2 - u_1}{40 - (-10)}$ \Rightarrow u₂-u₁ = 30.....(2) From 1 & 2 $u_1 = -13.33 \text{ m/sec}$ $u_2 = 16.66 \text{ m/sec}$

Engineering Mechanics

Sol: Given, $m_1 = 3 \text{ kg}$, $m_2 = 6 \text{ kg}$ Velocities before impact $u_1 = 4 \text{ m/s}, u_2 = -1 \text{ m/s}$ Velocities after impact $v_1 = 0m/s$, $v_2 = ?$ From momentum equation $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$ $3(4) + 6(-1) = 3(0) + 6(v_2)$ $\Rightarrow 6 = 6v_2$ \Rightarrow v₂ = 1m/s

Coefficient of restitution, $e = \frac{v_2 - v_1}{u_1 - u_2}$

$$=\frac{1-0}{4-(-1)}=\frac{1}{5}$$

09. Ans: (c) Sol

$$KE = \frac{1}{2}mV^2 + \frac{1}{2}I\omega^2$$
Where $\omega = \frac{V}{2}$

2R

$$I = \frac{1}{2}m((2R)^{2} + R^{2}) = \frac{5}{2}mR^{2}$$

. KE = $\frac{1}{2}mV^{2} + \frac{1}{2}(\frac{5}{2}mR^{2})(\frac{V}{2R})^{2}$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

$$KE = \frac{1}{2}mV^{2} + \frac{1}{2}\left(\frac{5}{2}mR^{2}\right)\left(\frac{V}{2R}\right)^{2}$$
$$= \frac{1}{2}mV^{2} + \frac{5}{4}mR^{2} \times \frac{V^{2}}{4R^{2}}$$
$$= \frac{1}{2}mV^{2} + \frac{5}{16}mV^{2}$$
$$KE = \frac{13mV^{2}}{16}$$

10. Ans: (a)

Sol:

20 kg 1 kg 1 kg1 m

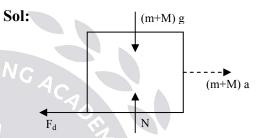
Method I :

By conservation of linear momentum ,we get $1 \times 10 = (20 + 1) \times V_{cm}$ (where, V_{cm} = velocity of centre of mass)

$$\Rightarrow V_{cm} = \frac{10}{21} \text{m/s}$$

Applying angular momentum conservation about an axis passing through the contact point (A) and perpendicular to the plane of paper, we get

$$1 \times 10 \times 1 = I_{cm}\omega + 21 \times \frac{10}{21} \times 1$$


[Angular momentum about any axis passing through A can be written as, $\vec{L}_A = \vec{L}_{cm} + m(\vec{r} \times \vec{V}_{cm})$] $\Rightarrow \omega = 0 \text{ rad/sec}$

Method II :

42

Applying angular momentum conservation about an axis passing through centre of wheel and perpendicular to the plane of paper.

 $\therefore \quad 0 = I_{cm} \omega$ $\Rightarrow \omega = 0 \text{ rad/sec}$

 $\begin{array}{l} m_1 = m \rightarrow mass \ of \ bullet \\ m_2 = M \rightarrow mass \ of \ block \\ u_1 = V \rightarrow bullet \ initial \ velocity \\ u_2 = 0 \rightarrow block \ initial \ velocity \\ v_1 = v_2 = v \rightarrow velocity \ of \ bullet \ and \ block \\ after \ impact. \\ F_d = \mu N \end{array}$

$$(M+m)a = \mu(M+m)g$$

$$\Rightarrow a = \mu g$$

From momentum equation

$$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$$

$$mV + m(0) = (m + M)V$$

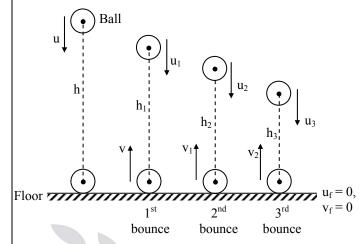
$$v = \frac{mV}{m + M}$$

Now from $v^2 - u^2 = 2as$

$$0 - \left(\frac{mV}{m+M}\right)^2 = 2\mu gs$$
$$V = \frac{m+M}{m}\sqrt{2\mu gs}$$

12. Ans: (a)

ACE


Sol:

K = 10.6kN/m A= 222.4N U_A = 0, U_B = 0 From momentum equation m_Au_A+m_Bu_B = m_Av_A+m_Bv_B 0 = 222.4V_A+133.44V_B.....(1) $\frac{1}{2}$ ks² = $\frac{1}{2}$ m_Av_A² + $\frac{1}{2}$ m_Bv_B² 10.6×10³×0.15² = $\frac{222.4}{9.81}$ v_A² + $\frac{133.44}{9.81}$ v_B(2) From 1 & 2 v_A = -1.98 m/s , v_B = 3.3 m/s

Conventional Practice Solutions

01.

Sol: Let u and v be the velocity of ball at first impact (Strike and bounce) with the floor. Then $u = \sqrt{2gh}$ (\downarrow) and $v = \sqrt{2gh_1}$ (\uparrow)

The velocity of floor is zero before and after every impact, i.e., $u_f = 0$ and $v_f = 0$ From the relation for coefficient of restitution,

$$e = \frac{\mathbf{v}_{f} - \mathbf{v}}{\mathbf{u} - \mathbf{u}_{f}} = \frac{-\mathbf{v}}{\mathbf{u}} \qquad (:: \mathbf{u}_{f} = \mathbf{v}_{f} = \mathbf{0})$$

since u and v are in opposite direction

$$e = \frac{v}{u} = \frac{\sqrt{2gh_1}}{\sqrt{2gh}} = \left(\frac{h_1}{h}\right)^{1/2}$$

or $h_1 = e^2h$

Like wise: $h_2 = e^2 h_1 = e^2 \times e^2 h = e^4 h$ $h_3 = e^2 h_2 = e^2 \times e^4 h = e^6 h$

substituting the given data:

 $h_3 = 10 \text{ m}$ and $e = (0.5)^{1/3}$

$$h = \frac{h_3}{e^6} = \frac{10}{(0.5)^2} = 40 \text{ m}$$

Thus the ball must be dropped from a height of 40 m

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

02.

Sol: Let u_1 and v_1 = velocity of ball A before and after the impact.

 u_2 and v_2 = velocity of ball B before and after the impact.

From the given data: $u_1 = \sqrt{2gh}$

$$=4.43\sqrt{h}$$
; u₂ = 0

The ball B, after the impact, should attain velocity v_2 just sufficient to rise to a height of 30 cm and leave the container.

$$v_2 = \sqrt{2 g \times 0.3} = 2.43 \text{ m/s}$$

From the principle of conservation of momentum

 $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$ or $0.1 \times 4.43 \sqrt{h} + 0.025 \times 0$ $= 0.1 v_1 + 0.025 \times 2.43$

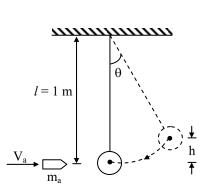
or $0.443\sqrt{h} = 0.1v_1 + 0.0607....$ (i) From the expression for the coefficient for restitution,

$$e = \frac{v_2 - v_1}{u_1 - u_2} \implies 0.8 = \frac{2.43 - v_1}{4.43\sqrt{h}}$$

 $3.544\,\sqrt{h}\,=2.43-v_1$

Multiplying both sides by 0.1, we get

$$0.3544\sqrt{h} = 0.243 - 0.1 v_1 \dots$$
 (ii)


Adding expression (i) and (ii)

$$(0.443 + 0.3544)\sqrt{h} = 0.243 + 0.0607$$
$$0.7974\sqrt{h} = 0.3037$$

or

$$\sqrt{h} = \frac{0.3037}{0.7974} = 0.3809$$

: $h = (0.3809)^2 = 0.1451 \text{ m} = 14.51 \text{ cm}$

44

Above figure which shows the given system with the various parameters inserted.

Applying the principle of conservation of momentum, momentum before impact = momentum after impact

$$m_a V_a + m_b V_b = (m_a + m_b) V$$

where V is the common velocity with which the body and the bullet together after impact.

$$\frac{30}{1000} \times 450 + 10 \times 0 = \left(\frac{30}{1000} + 10\right) V$$

or $13.5 = 10.03 V$

V = 1.346 m/s

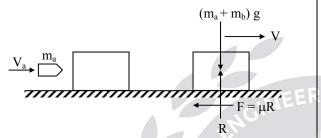
Applying the principle of conservation of energy, we have loss of kinetic energy = gain of potential energy

$$\frac{1}{2}(m_{a} + m_{b})V^{2} = (m_{a} + m_{b})gh$$

Where h is the height to which the body rises

$$h = \frac{V^2}{2g} = \frac{1.346^2}{2 \times 9.81} = 0.0923 \text{ m}$$

45


Engineering Mechanics

From the geometry of figure,

$$\cos \theta = \frac{\ell - h}{\ell} = \frac{1 - 0.0923}{1} = 0.9077$$

 $\theta = 24.81^{\circ}$

04.

Sol: Below figure which shows the block with various parameters inserted.

Applying the principle of conservation of momentum,

Momentum before impact = momentum after impact

$$m_{a}V_{a} + m_{b}V_{b} = (m_{a} + m_{b}) V$$

$$\frac{0.25}{9.81} \times 750 + \frac{40}{9.81} \times 0 = \frac{0.25 + 40}{9.81} \times V$$

$$19.11 = 4.103 V$$

$$V = 4.65 m/s$$

Normal reaction $R = (m_a + m_b)g$

$$=\frac{0.25+40}{g}$$
 × g = 40.25 N

Force of friction $F = \mu R = 0.35 \times 40.25$ = 14.087 N

Applying the work – energy correlation, Work done to overcome = kinetic energy lost by the block the frictional force with bullet embedded

$$F \times s = \frac{1}{2} (m_{a} + m_{b}) V^{2}$$

$$14.087 \times s = \frac{1}{2} \left(\frac{0.25 + 40}{9.81} \right) \times 4.657^{2}$$

$$= 43.632$$

: Displacement of block

$$s = \frac{43.632}{14.087} = 3.097 \text{ m}$$

05.

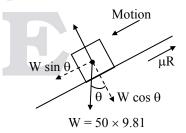
1995

Sol: The figure for the various forces acting on the block.

Normal reaction $R = W \cos \theta$

 $= (50 \times 9.81) \cos 30^\circ = 424.78 \text{ N}$

Force of friction $F = \mu R = 0.2 \times 424.78$


= 84.96 N

This frictional force acts in a direction opposite to that of motion

Then the net force on the block when it starts moving downwards the plane is

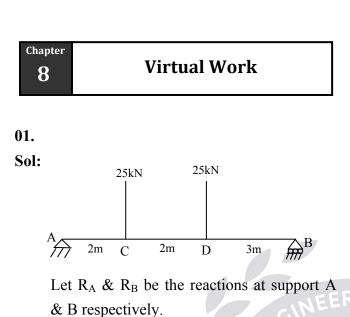
$$=$$
 W sin θ -F = 50×9.81×sin 30°-84.96

= 160.29 N

If x is the deformation (compression) of the spring, then distance moved by the block

=(1.5 + x)

	ACE Engineering Publications	46	ESE – Text Book Solutions
	Work done by the block = $160.29 \times (1.5+x)$ Work done by the spring = $-\frac{1}{2}kx^2$ $= -\frac{1}{2} \times (25 \times 10^3)x^2$ $= -12.5 \times 10^3x^2$ \therefore Total work done by the system $= 160.29 \times (1.5 + x) - 12.5 \times 10^3x$ Accordingly from the work-energy principle, work done = change in kinetic energy		block along the plane and the frictional force act in the same direction. Therefore force on the block = W sin θ + frictional force = 50 × 9.81 sin 30° + 84.96 = 330.21 N If s is the distance moved up the block, then work done by forces acting on the block = 330.21 × s The work done equals the energy stored in the spring.
	$160.29 \times (1.5 + x) - 12.5 \times 10^{3}x^{2} = 0$ or $12.5x^{2} - 0.16x - 0.24 = 0$ $x = \frac{-(-0.16) \pm \sqrt{(-0.16)^{2} - 4(12.5)(-0.24)}}{2 \times 12.5}$ $= \frac{0.16 \pm 3.47}{25} = 0.145 \text{ m or } -0.132 \text{ m}$ The value x = 0.145 m is positive and hence acceptable.		Accordingly $\frac{1}{2}kx^2 = 330.21 \times s$ $\frac{1}{2} \times (25 \times 10^3) \times (0.145)^2 = 330.21 \times s$ $\Rightarrow s = 0.796 \text{ m}$ Thus the distance of rebound of block on the plane is 0.796 m. 06.
(b) (c)	According to Newton's second law F = ma $160.29 = 50 \times a$ $a = 3.21 \text{ m/s}^2$ From the kinematic relation $v^2 - u^2 = 2as$ we have $v^2 = 2 \times 3.21 \times 1.5$ (:: $u = 0$) \therefore Maximum velocity of block v $= \sqrt{2 \times 3.21 \times 1.5} = 3.10 \text{ m/s}$ When the block moves up the plane due to	ce 1	Sol: The problem involves oblique impact. In order to seek a solution, we have established the x and y axes along the line of impact and the plane of contact, respectively, figure. Resolving each of the initial velocities into x and y components, we have $(\upsilon_{Ax})_1 = 3 \cos 30^\circ = 2.60 \text{ m/s}$ $(\upsilon_{Ay})_1 = 3 \sin 30^\circ = 1.50 \text{ m/s}$ $(\upsilon_{Bx})_1 = -1 \cos 45^\circ = -0.707 \text{ m/s}$


 $(v_{By})_1 = -1 \sin 45^\circ = -0.707 \text{ m/s}$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

rebound, both the component of weight of

ESE – Text Book Solutions

ACE Engineering Publications	47	Engineering Mechanics
Conservation of "x" Momentum:		Conservation of "y" Momentum:
In reference to the momentum diagrams, we	e	The momentum of each disk is conserved in
have		the y direction (plane of contact), since the
$\begin{pmatrix} + \\ \rightarrow \end{pmatrix} m_A(\upsilon_{Ax})_1 + m_B(\upsilon_{Bx})_1 = m_A(\upsilon_{Ax})_2 + m_B(\upsilon_{Bx})_2$	2	disks are smooth and therefore no external impulse acts in this direction.
1 kg (2.60 m/s) + 2 kg(-0.707 m/s) = 1 kg	g	
$(\upsilon_{Ax})_2 + 2kg(\upsilon_{Bx})_2$		From figure (c)
$(\upsilon_{Ax})_2 + 2(\upsilon_{Bx})_2 = 1.18 \dots (1)$		$(+\uparrow) m_A (\upsilon_{Ay})_1 = m_A(\upsilon_{Ay})_2;$
		$(v_{Ay})_2 = 1.50 \text{ m/s}$
$\stackrel{\mathrm{mA}(\mathbf{v}_{\mathrm{Ax}})_{1}}{\longrightarrow} (\mathbf{A}) + (\mathbf{A}) \stackrel{-\mathrm{J} \mathrm{F} \mathrm{dt}}{\longleftarrow} = (\mathbf{A}) \stackrel{\mathrm{mA}(\mathbf{v}_{\mathrm{Ax}})_{2}}{\longleftarrow}$		$(+\uparrow) m_{\rm B}(\upsilon_{\rm By})_1 = m_{\rm B}(\upsilon_{\rm By})_2;$
$\uparrow \qquad \uparrow$		$(v_{By})_2 = 0.707 \text{ m/s} = 0.707 \text{ m/s} \downarrow$
$\mathbf{mA}(\mathbf{v}_{AX})_{1} \qquad \mathbf{mA}(\mathbf{v}_{AX})_{2}$ $\mathbf{mB}(\mathbf{v}_{BX})_{1} \qquad \mathbf{mB}(\mathbf{v}_{BX})_{1} \qquad \mathbf{mB}(\mathbf{v}_{BX})_{2} \qquad \mathbf{mB}(\mathbf{v}_{BX})_{2}$	r	$(v_{A})_{2} = 1.96 \text{ m/s}$ $\theta_{2} = 50.0^{\circ}$ A $(v_{B})_{2} = 30.1^{\circ}$ $(v_{B})_{2} = 1.41 \text{ m/s}$

Let δ_y displacement be given to the beam at B without giving displacement at 'A'

$$\begin{array}{c|c} & & & \\ & & & \\ A & & & B \end{array} \\ \end{array} \\ \begin{array}{c} \delta_y \\ \delta_y \\ B \end{array}$$

The corresponding displacement at C & D

are
$$\frac{2}{7}\delta_{y}$$
 and $\frac{4}{7}\delta_{y}$
By virtual work principle,
 $R_{A} \times 0 - 25 \times \frac{2}{7}\delta_{y} - 25 \times \frac{4}{7}\delta_{y} + R_{B} \times \delta_{y} = 0$
 $\Rightarrow \left(\frac{-150}{7} + R_{B}\right)\delta_{y} = 0$
Since $\delta_{y} \neq 0$, $R_{B} - \frac{150}{7} = 0$
 $R_{B} = \frac{150}{7} kN$

Now let us give virtual displacement at A as $\delta_{y'}$,

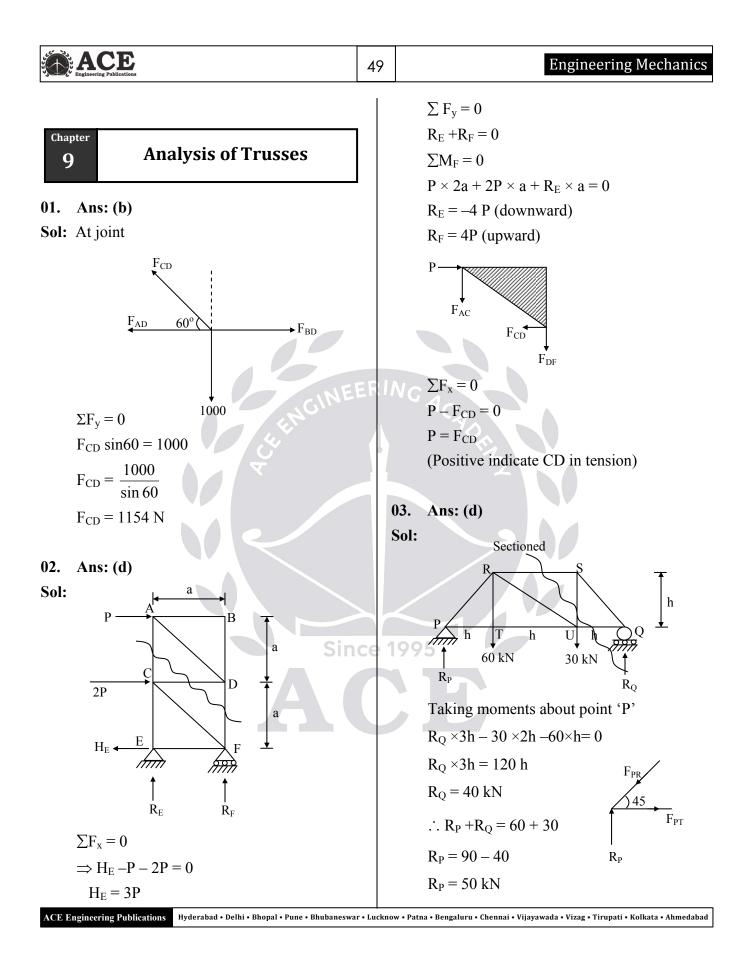
ESE – Text Book Solutions

Therefore corresponding displacement at C

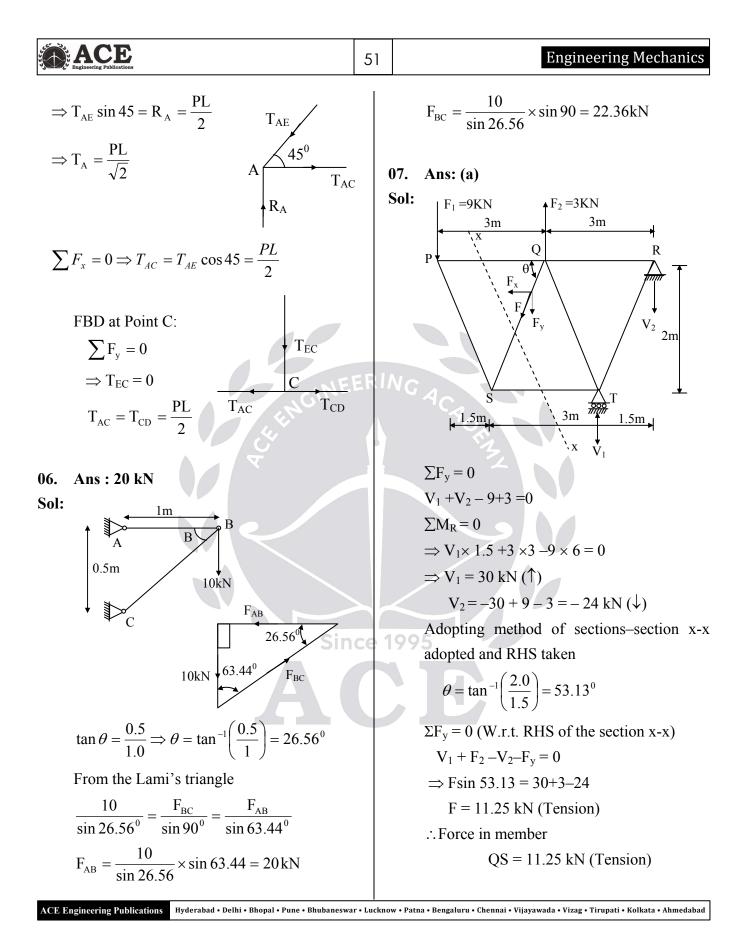
& D are
$$\frac{5}{7}\delta'_{y} & \frac{3}{7}\delta'_{y}$$

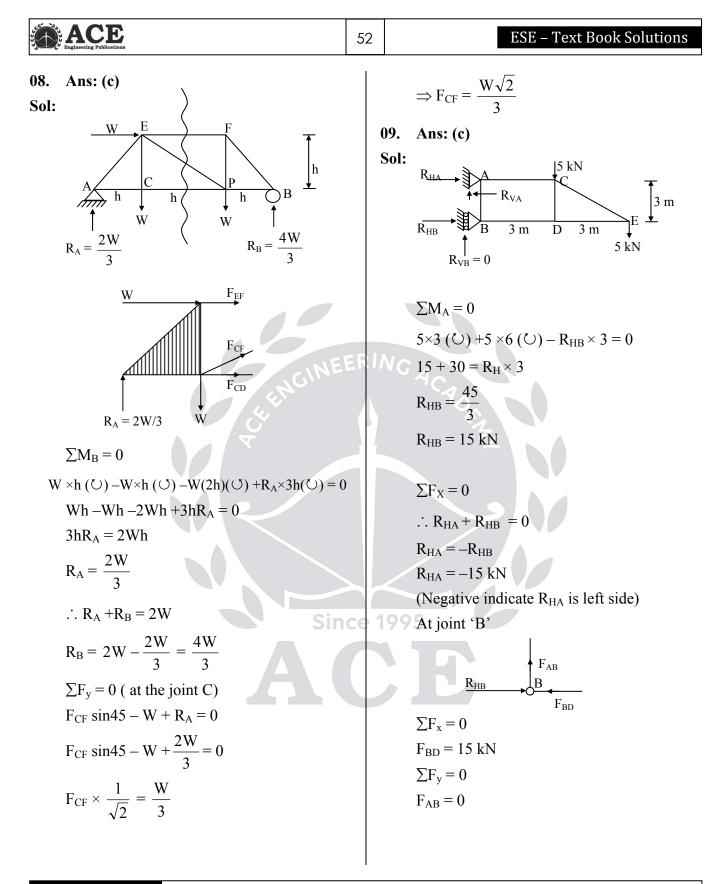
A
A
A
A
A
A
A
C
2m
C
2m
D
3m
B
R_B

. By virtual work principle,


$$R_{A} \times \delta'_{y} - 25 \times \frac{5}{7} \delta'_{y} - 25 \times \frac{3}{7} \delta'_{y} + R_{B} \times 0 = 0$$

$$\left(R_{A} - \frac{125}{7} - \frac{75}{7}\right)\delta'_{y} = 0$$
$$\delta_{y}' \neq 0,$$
$$R_{A} - \frac{200}{7} = 0$$
$$R_{A} = \frac{200}{7} kN$$


02. Ans: 750 N


Ans: For equilibrium total virtual work = 0 Let us displace point A by 'dx' the displacement of point B is '3dx' Work by force P = -PdxWork by force 250 N = 250 × 3 dx $250 \times 3dx - Pdx = 0$ $\Rightarrow P = 750 \text{ N}$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	50 ESE – Text Book Solutions
At joint 'P'	04. Ans: (b)
$\Sigma F_y = 0$	Sol: F ₁
$R_p = F_{PR} \sin 45^\circ$	
$F_{PR} = \frac{R_p}{\sin 45}$ 50	PQsin45 PQsin45 PRsin30 PQsin45 PQsin45 PRsin30 Prsin
$=\frac{50}{1/\sqrt{2}}$	$\begin{array}{c} PQ & 200 \\ PQ & 200 \\ PQ & 200 \\ PQ & 200 \\ PR \\ $
$F_{PR} = 50\sqrt{2}$ (compression)	
	Force in member PQ considering joint P
$\Sigma F_x = 0$	$PQ \cos 45 = PR \cos 30$
$F_{PT} = F_{PR} \cos 45$	PQ = 1.224 PR
$E = 50 \sqrt{2} \times \frac{1}{2}$	ET IN $PQ \sin 45 + PR \sin 30 = F$
$F_{\rm PT} = 50\sqrt{2} \times \frac{1}{\sqrt{2}}$	$1.224PR \times 0.707 + 0.5PR = F$
$F_{PT} = 50 \text{ kN}$ (Tension)	PR = 0.732 F
$ \begin{array}{c} R \\ F_{RS} \\ \hline H \\ R_{P} \\ \hline H \\ \hline$	Now, considering joint R PR cos30 PR PR cos30 $QR = PR cos30 = 0.732F \times cos30$
$\Sigma M_u = 0$ Sin	= 0.63F (Tensile)
$F_{RS} \times h(\bigcirc) + 60 \times h(\bigcirc) - R_P \times 2h(\bigcirc) = 0$	05. Ans: (a)
$F_{RS} \times h + 60 h - 100 h = 0$	Sol: $\sum F_y = 0 \Rightarrow R_A + R_B = P \times L$
$F_{RS} h = 40 h$	
$F_{RS} = 40 \text{ kN}$ (Compression)	$\sum M_{\rm B} = 0 \Longrightarrow R_{\rm A} \times 3L = PL \times \frac{3L}{2}$
$\sum F_y = 0$	_
$F_{SU} + R_P - 60 = 0$	\Rightarrow R _A = $\frac{PL}{2}$, R _B = $\frac{PL}{2}$
$F_{SU} + 50 - 60 - 30 = 0$	FBD at Point A:
$F_{SU} = 40 \text{ kN}$ (Tension)	$\sum F_y = 0$
	'

