

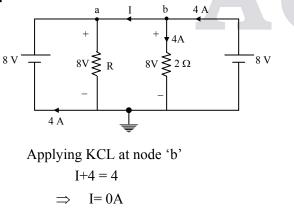
ESE | GATE | PSUs

ELECTRICAL ENGINEERING ELECTRIC CIRCUITS

Text Book : Theory with worked out Examples and Practice Questions

Electric Circuits

(Solutions for Text Book Practice Questions)


1. Basic Concepts

Solutions for Objective Practice Questions

- 01. Ans: (c)
- Sol: We know that;

 $i(t) = \frac{dq(t)}{dt}$ dq(t) = i(t).dt i(t), Amps $\int_{0}^{5} \int_{0}^{4} \int$

02. Ans: (a) Sol:

And
$$\frac{8}{R} = 4$$

 $\Rightarrow R = 2\Omega$

03. Ans: (a)

Sol: The energy stored by the inductor $(1\Omega, 2H)$ upto first 6 sec:

$$E_{\text{stored upto 6sec}} = \int P_{L} dt$$

$$= \int \left(L \frac{di(t)}{dt} i(t) \right) dt$$

$$= \int_{0}^{2} \left(2 \left[\frac{d}{dt} (3t) \right] \times 3t \right) dt + \int_{2}^{4} \left(2 \left[\frac{d}{dt} (6) \right] \times 6 \right) dt$$

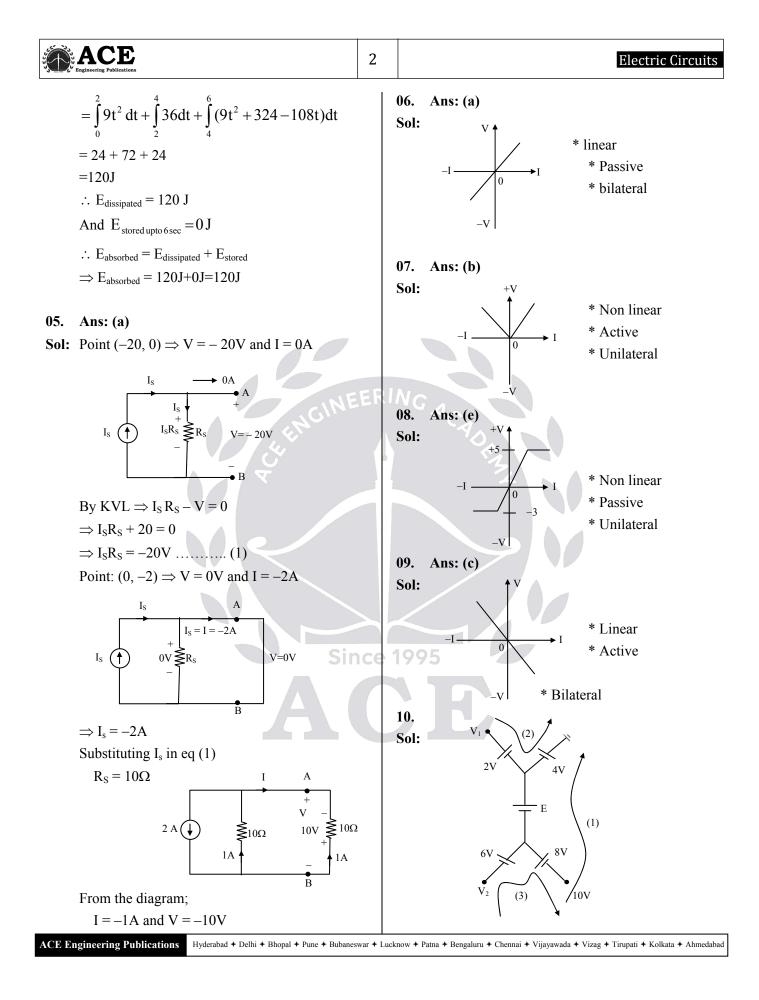
$$+ \int_{4}^{6} \left(2 \left[\frac{d}{dt} (-3t+18) \right] \times (-3t+18) \right) dt$$

$$= \int_{0}^{2} 18t \, dt + \int_{2}^{4} 0 \, dt + \int_{4}^{6} (-6[-3t+18]) \, dt$$

$$= 36 + 0 - 36 = 0 \text{ J}$$
(or)
$$E_{\text{ stored upto 6sec}} = E_{L} |_{t=6} \text{ sec}$$

$$= \frac{1}{2} L \left(i(t) |_{t=6} \right)^{2}$$

$$= \frac{1}{2} \times 2 \times 0^{2} = 0 \text{ J}$$
04. Ans: (d)
Sol: The energy absorbed by the inductor (1\Omega, 2H) upto first 6sec:

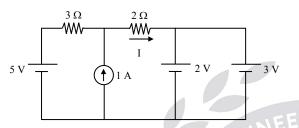

$$E_{\text{absorbed}} = E_{\text{dissipated}} + E_{\text{stored}}$$
Energy is dissipated in the resistor

$$E_{\text{dissipated}} = \int P_{R} dt = \int (i(t))^{2} R \, dt$$

$$= \int_{0}^{2} (3t)^{2} \times 1 \, dt + \int_{2}^{4} (6)^{2} \times 1 \, dt + \int_{4}^{6} (-3t+18)^{2} \times 1 \, dt$$

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Sir



ICE

(1) By KVL
$$\Rightarrow$$
 + 10 + 8 + E + 4 = 0
E = -22V
(2) By KVL \Rightarrow + V₁ - 2 + 4 = 0
V₁ = -2V
(3) By KVL \Rightarrow + V₂ + 6 - 8 - 10 = 0
V₂ = 12V

Ans: (d) 11.

Sol:

Here the 2V voltage source and 3V voltage source are in parallel which violates the KVL. Hence such circuit does not exist. (But practical voltage sources will have some internal resistance so that when two unequal voltage sources are connected in parallel current can flow and such a circuit may exist).

12. Ans: (d) Sol:

$$I_{in} \underbrace{ \begin{array}{c} 12 \ \Omega \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} I_{in} - \frac{V_{1}}{5} \\ WW \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} I_{in} - \frac{16 \ V_{1}}{5} \\ WW \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{0ut} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} \underbrace{ \begin{array}{c} V_{1} \\ - \\ V_{1} \\ - \end{array} \underbrace{ \begin{array}{c} V_{1} \\ + \\ V_{1} \\ - \end{array} \underbrace{ \begin{array}{c} V_{1} \\ - \\ V_{1} \\ - \end{array} \underbrace{ \begin{array}{c} V_{1} \\ - \\ \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ - \\ V_{1} \\ - \end{array} \underbrace{ \begin{array}{c} V_{1} \\ - \\ \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ - \\ V_{1} \\ - \end{array} \underbrace{ \begin{array}{c} V_{1} \\ - \\ V_{1} \\ - \end{array} \underbrace{ \begin{array}{c} V_{1} \\ - \\ \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ - \\ V_{1} \\ - \end{array} \underbrace{ \begin{array}{c} V_{1} \\ - \\ \end{array} } \underbrace{ \begin{array}{c} V_{1} \\ - \\ V_{1} \\ - \end{array} \underbrace{ \begin{array}{c} V_{1} \\ - \\ V_{$$

Applying KVL,

$$-V_{1} + 12\left(I_{in} - \frac{V_{1}}{5}\right) + 2\left(I_{in} - \frac{16V_{1}}{5}\right) = 0$$
$$-V_{1} + 12I_{in} - \frac{12V_{1}}{5} + 2I_{in} - \frac{32V_{1}}{5} = 0$$
$$14I_{in} = \frac{49}{5}V_{1}$$

Postal Coaching Solutions

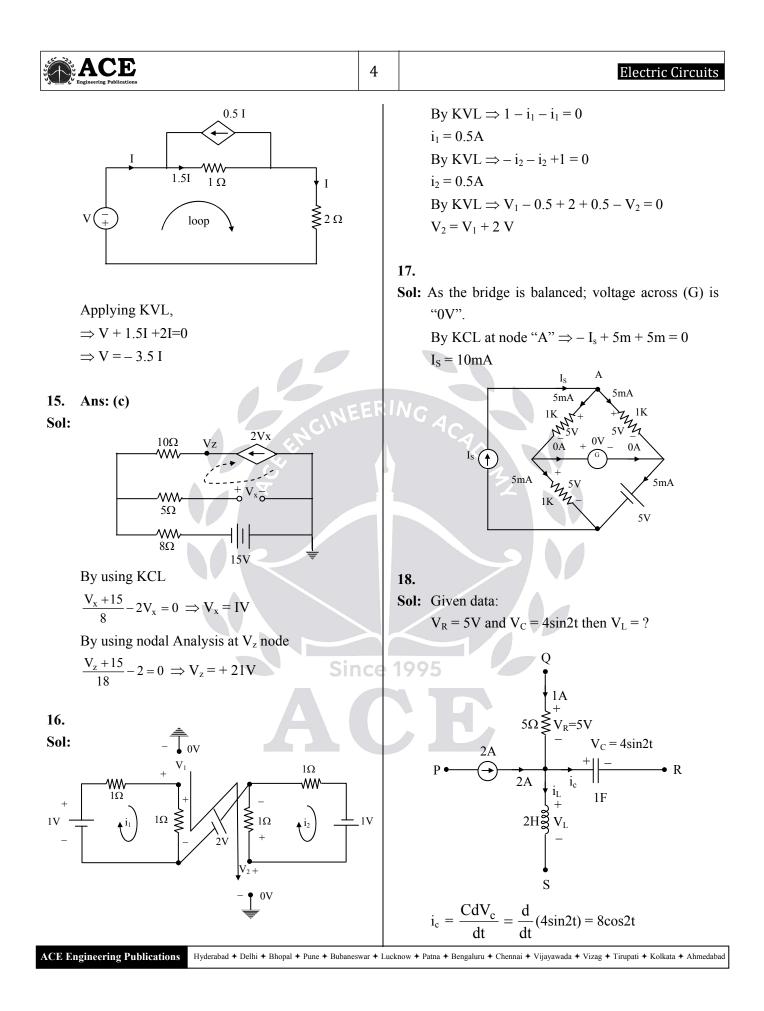
:
$$V_{out} = 2 \left(I_{in} - \frac{16V_1}{5} \right)$$
(2)

Substitute equation (1) in equation (2)

$$V_{out} = 2\left(I_{in} - \frac{16}{5} \times \frac{70}{49}I_{in}\right)$$
$$= 2\left(\frac{-25}{7}\right)I_{in}$$
$$= \frac{-50}{7}I_{in}$$
$$\therefore V_{out} = -7.143 I_{in}$$

3

V


nc

3. Ans: (c)
Sol:

$$10$$
 V=12V 4A
 $12A$ $12A$ $12V$ $(V_1) = 4A$
 $V = 20V$ $(V_1) = 0$
By nodal \Rightarrow
 $V - 20 + V - 4 = 0$
 $V = 12volts$
Power delivered by the dependent source is
 $P_{del} = (12 \times 4) = 48$ watts

14. Ans: (d)
Sol:
$$V \xrightarrow{+} 2\Omega$$

 $V \xrightarrow{+} 2\Omega$
 \mathbb{Z}

ACE Engineering Publications

Postal Coaching Solutions

By KCL; $-1 - 2 + i_L + i_c = 0$ $i_L = 3 - 8\cos 2t$ We know that; $V_L = L \frac{di_L}{dt} = 2 \frac{d}{dt} (3 - 8\cos 2t)$

 $= 2(-8)(-2)\sin 2t$ V_L = 32sin2t volt

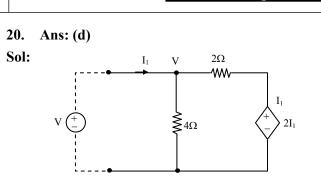
 1Ω

19.

Sol: V = ? If power dissipated in 6Ω resistor is zero.

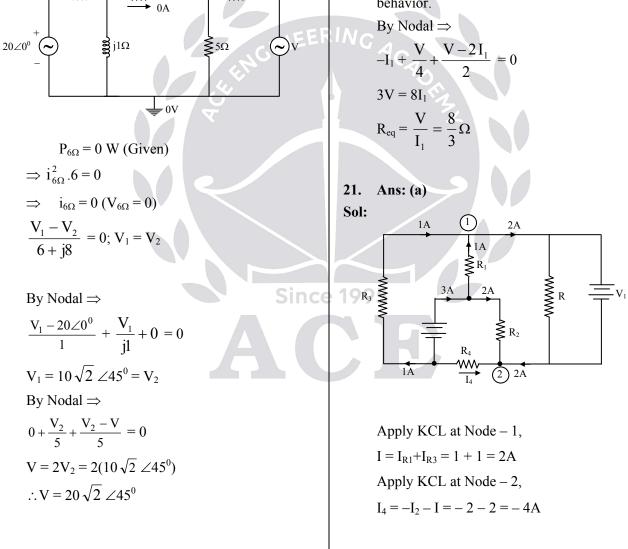
6Ω

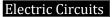
 V_1


j8Ω

ന്ന

5Ω


ww


V2

Note: Since no independent source in the network, the network is said to be unenergised, so called a DEAD network".

The behavior of this network is a load resistor behavior.

 $\begin{cases} \frac{8}{3} \Omega \end{cases}$

4Ω

 $N_{4\Omega}^{\mu}$

2Ω

2Ω

2Ω

2Ω

3Ω **Δ**

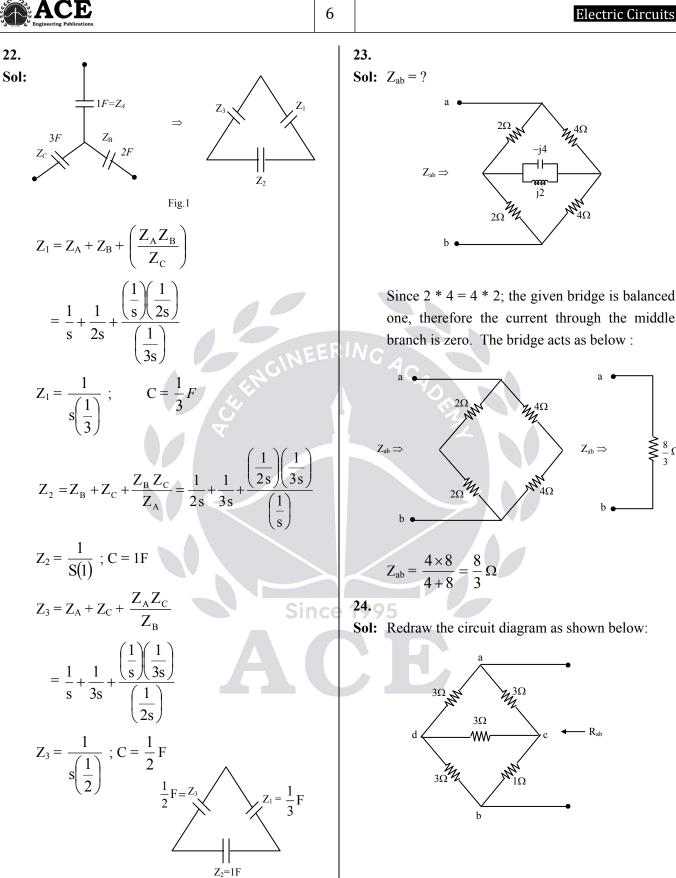
3Ω

3Ω

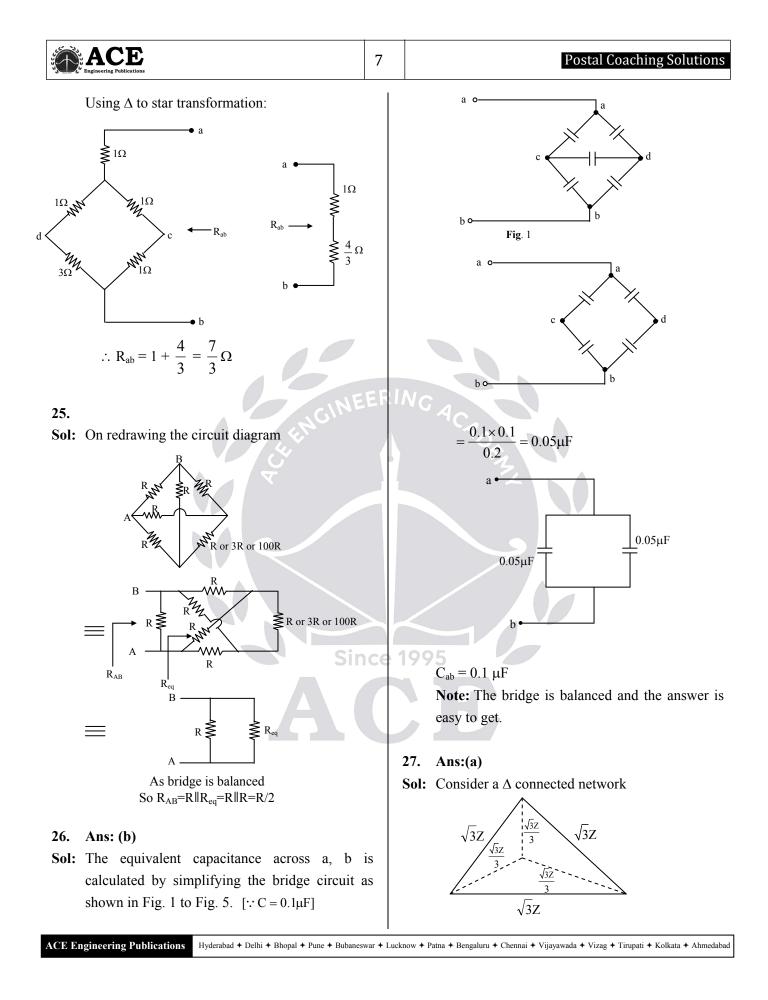
ww

h

i2

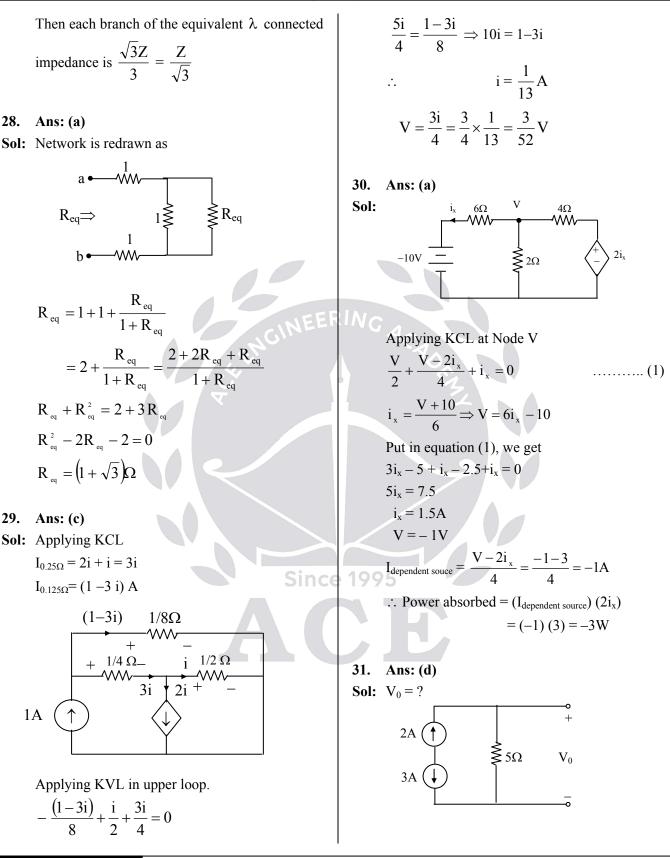

40

 $\mathcal{W}^{3\Omega}$


ÌΩ

 $Z_{ab} \Rightarrow$

R_{ab}

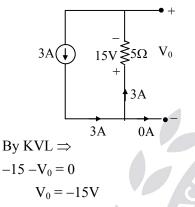


Engineering Publications

8

Electric Circuits

Engineering Publications


By KCL \Rightarrow +2 + 3 = 0

 $+5 \neq 0$

Since the violation of KCL in the circuit; physical connection is not possible and the circuit does not exist.

32. Ans: (b)

Sol: Redraw the given circuit as shown below:

33. Ans: (d)

Sol: Redraw the circuit diagram as shown below: Across any element two different voltages at a time is impossible and hence the circuit does not exist.

Another method:

By KVL
$$\Rightarrow$$

5 + 10 = 0

$$5V \pm + 10V \neq 5\Omega$$

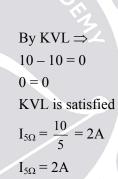
Since the violation of KVL in the circuit, the physical connection is not possible.

34. Ans: (d)

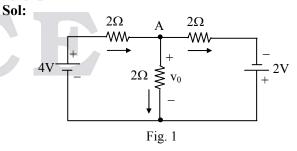
Sol: Redraw the given circuit as shown below:

By KVL \Rightarrow -10 -10 = 0

Since the violation of KVL in the circuit, the physical connection is not possible.

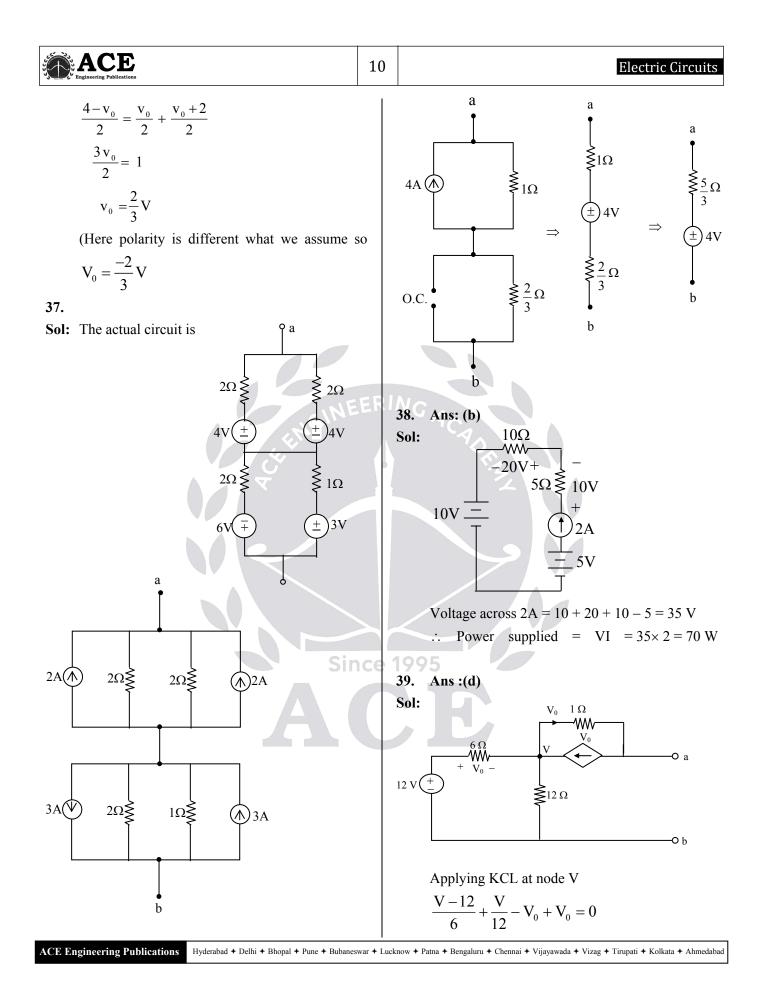

 $10V(\pm)$

 $10 V(\pm)$


35. Ans: (b)

 $-20 \neq 0$

Sol: Redraw the given circuit as shown below:



The diode is forward biased. Assuming that the diode is ideal, the Network is redrawn with node A marked as in Fig. 1. Apply KCL at node A

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

10V**≷**5Ω

Engineering Publications	1	Postal Coaching Solutions
$\Rightarrow \frac{V}{6} + \frac{V}{12} = 2 \Rightarrow V = 8V$ $\therefore V_0 = 4V$ Applying KVL in outer loop $\Rightarrow -V + 1(V_0) + V_{ab} = 0$ $\Rightarrow V_{ab} = V - V_0 = 8 - 4 = 4V$	$P_{6V} = (6 \times 6) = 3$ $P_{6V} = (6 \times 6) = 3$ $P_{2\Omega} = (12 \times 6) = 3$	36 watts – absorbed 36 watts – absorbed 36 watts – delivered 72 watts – absorbed Tellegen's theorem is satisfied.
40. Sol: By KVL $\Rightarrow V_i - 6 - 10 = 0$ $V_i = 16V$ $P_{4\Omega} = (8 * 2) = 16watts - absorbed$ $P_{2A} = (24 * 2) = 48$ watts delivered	42. Sol: $3\Omega \begin{cases} + & 16V \\ V_3 & - & - \end{cases}$	$\frac{V}{+} \frac{2\Omega}{+} \frac{I}{2I} - \frac{I}{+} 4V_3 = \left(\frac{16}{3}\right) \text{ Volt}$
$P_{3\Omega} = (6*2) = 12 \text{ watts} - \text{absorbed}$ $P_{10V} = (10*2) = 20 \text{ watts} - \text{absorbed}$ $+ \underbrace{\bullet 0A}_{+} \underbrace{- \frac{4\Omega}{8V}}_{8V} + \underbrace{- \frac{4\Omega}{8V}}_{24V} \underbrace{\bullet 24V}_{-} \underbrace{\bullet 24V}$	By Nodal \Rightarrow $\frac{V}{3} - 4 + \frac{V}{2} + \frac{4}{2}$ $\frac{5V}{6} = 4 - 2V_3$ By KVL \Rightarrow $V_3 - 2I + 4V_3 =$ $5V_3 - 2I = 0$ By KVL \Rightarrow	(1)
Since; $P_{del} = P_{abs} = 48$ watts. Tellegen's Theorem is satisfied.	$V = V_3$ Substitute (3) in	(1), we get (3)
41. Sol: By KVL in first mesh $\Rightarrow V_x - 6 + 6 - 12 = 0$ $V_x = 12V$ $P_{12v} = (12 \times 9) = 108 \text{ watts delivered}$ $e^{0V} + e^{-1} + e^$	199 $V_3 = \frac{24}{17}$ $V_3 = \frac{24}{17}$ Volt a $P_{3\Omega} = 0.663$ W al $P_{4\Omega} = 64$ W abso $P_{4A} = 69.64$ W de $P_{2\Omega} = 24.91$ W al $P_{4V3} = 19.92$ W d Since $P_{del} = P_{abs}$ is satisfied.	bsorbed rbed elivered bsorbed

ACE Engineering Publications

43.

Ans: (c)

Sol:
$$V_c = V_0 + \frac{1}{c} \int_0^t i_c(t) dt$$

 $0 < t < 1:$
 $i_c(t) = 2t$ and
 $V_0 = 0V$
 $\therefore V_c = 0 + \frac{1}{1/2} \int_0^1 2t dt$
 $= 2t^2 \Big|_0^1$
 $\therefore V_c = 0V$ at t=0
 $= 2V$ at t= 1

And V_C varies as parabolic Continue to do like this with initial condition.

44. Ans: (c)

Sol: KCL as well as KVL are applicable to any lumped electric circuit at any time 't'. Statement I is True.

The sum of the rms currents at any junction of the circuit is not zero in general. It depends upon the nature of the elements connected at the junction.

Statement II is false.

45. Ans: (d)

Sol: Δ -Y transformations are true for any arbitrary frequency, ω . Statement I is False. Impedances in Δ -Y vary with frequency. Statement II is True.

46. Ans: (a)

Sol:
$$q = \int_{0}^{0_{+}} i(t) dt = \int_{0}^{0_{+}} \delta(t) dt = 1$$
 Coulomb

Across capacitor, $v = \frac{q}{C} = \frac{1}{C}$

Energy inserted instantly from

 $t = 0^{-}$ to $t = 0^{+}$

$$= \frac{1}{2} C v^{2} = \frac{1}{2} C \frac{1}{C^{2}} = \frac{1}{2C} J$$

Statement I is True, Statement II is also True and is the correct explanation.

47. Ans: (b)

Sol: If there are (n + 1) nodes in a NW, by selecting a datum or reference node.

The node pair voltages of all the other n-nodes wrt this datum node are identified.

By knowing $\vec{V} - \vec{I}$ relation of the branch KCL is used at each of the n-nodes to obtain a set of n-simultaneous independent equations in nvoltage variables, which when solved will provide information concerning the magnitudes and phase angles of the voltages across each branch.

The ideal generator maintains a constant voltage amplitude and wave-shape regardless of the amount of current it supplies to the circuit.

...Both Statement I and Statement II are true and statement II is not the correct explanation of Statement I.

48. 9 Ans: (a)

Sol: All networks made up of passive, linear time invariant elements are reciprocal. Not only passivity and time-invariance but also linearity of elements is necessary to guarantee the reciprocity of the NW.

 \therefore Statement I is true. Statement II is also true and correctly explains.

49. Ans: (b)

Sol: Duals:

A. Mesh \rightarrow Node (4)

B. Outside mesh \rightarrow Reference node (3)

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

12

Engineering Publications	13	Postal Coaching Solutions
 C. Mesh current → Node voltage (2) D. Number of meshes→Number of nodes (1) 50. Ans: (b) Sol: In Duality resistance equivalent to conductance Inductance equivalent to capacitance Loop current equivalent to node pair voltages Number of loops equivalent to number of node pairs. 		02. Sol: The currents in all the branches are marked as shown in Fig. $I_1 \qquad I_y = 2 I_1 + I_2 + \frac{I_1}{2} \qquad I_2 \qquad I_2 \qquad I_2 \qquad I_2 \qquad I_2 \qquad I_3 \qquad I_4 \qquad I_2 \qquad I_4 \qquad I_5 \qquad I_6 \qquad I_6 \qquad I_7 \qquad $
51. Ans: (a) Sol: (A) $\frac{R}{L} = \frac{1}{\tau} \rightarrow (\text{Second})^{-1}(4)$ (B) $\frac{1}{LC} = \omega^2 \rightarrow (\text{Radian/second})^2(3)$ (C) CR = $\tau \rightarrow \text{Second}(1)$ (D) $\sqrt{\frac{L}{C}} = R \rightarrow \text{Ohm}(2)$	ERU	$\begin{split} I_{y} &= \frac{I_{1}}{2} + I_{2} + I_{a}, \\ I_{x} &= \frac{3I_{1}}{2} + I_{2} + I_{a} \\ \text{Inner Mesh equation:} \\ I_{a} \times 1 + 2 I_{1} + I_{x} \times 1 = 0 \\ I_{a} + 2I_{1} + \frac{3I_{1}}{2} + I_{2} + I_{a} = 0 \\ \frac{7I_{1}}{2} + I_{2} + 2I_{a} = 0 \dots \dots \dots (1) \end{split}$
Solutions for Conventional Practice Questions 01. Sol: $C = 30 \text{ mF}$ For $0 \le t \le 2$, $\frac{dv(t)}{dt} = 5 \text{ V/ms}$ $i(t) = C \frac{dv(t)}{dt}$ $\therefore i (0.5 \text{ ms}) = 30 \times 10^{-3} \times 5 \times 10^{3}$		2 Right side mesh equation $I_2 + 2I_2 + I_1 - I_a = 0$ $\Rightarrow I_a = 3I_2 + I_1$ (2) Substitute (2) in (1) $\Rightarrow \frac{7I_1}{2} + I_2 + 6I_2 + 2I_1 = 0$ $\Rightarrow 11\frac{I_1}{2} + 7I_2 = 0$
$= 150 \text{ A}$ $\frac{d v(t)}{d t} \bigg _{t=2.5 \text{ ms}} = 0$		$\Rightarrow \frac{I_2}{I_1} = \frac{-11}{14}$

03.

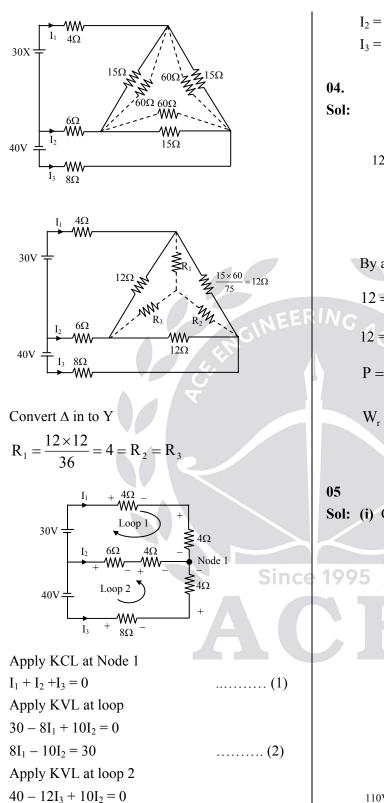
Sol: Convert Y in to Δ as shown in below figure.

$$x_1 = 20 + 20 + \frac{20 \times 20}{20} = 60\Omega = x_2 = x_3$$

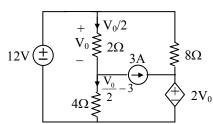
ACE Engineering Publications H

 \therefore i (2.5 ms) = 0

 $=\frac{1}{2}$ C V² (7 ms)


 $= \frac{1}{2} \times 30 \times 10^{-3} \times (5)^2 = 0.375 \text{ J}$

E = Energy delivered by the source till 7 ms


 $12I_3 - 10I_2 = 40$

 $I_1 = 0.878 \text{ A}$

 $I_2 = -2.29$ $I_3 = 1.418$

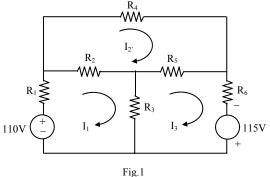
14

By applying KVL for V₀

$$12 = V_0 + \left(\frac{V_0}{2} - 3\right) 4$$

$$12 = 3V_0 - 12 \Rightarrow V_0 = 8V$$

$$P = \frac{V_0^2}{2} = \frac{8^2}{2} = \frac{64}{2} = 32 \text{ Watts}$$


$$W_r = \int_5^{10} 32 dt = 32(10 - 5)$$

$$= 160J$$

Sol: (i) Given the mesh equations:

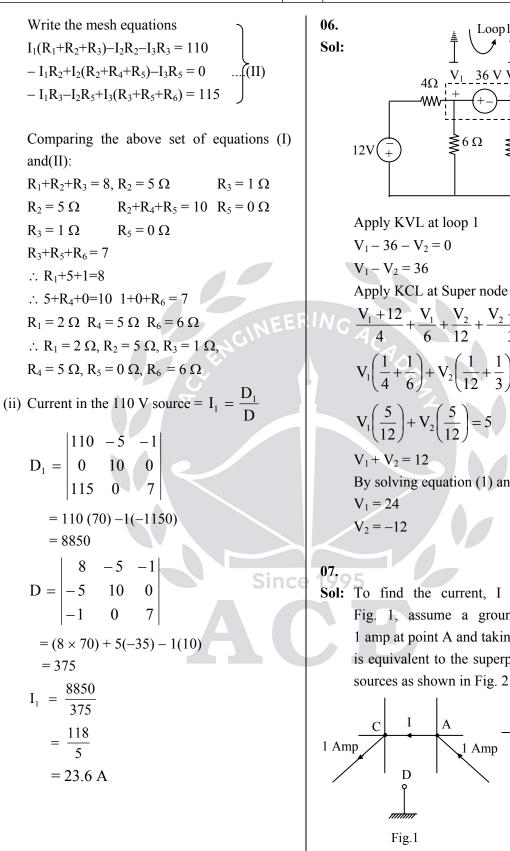
$$8 I_1 - 5 I_2 - I_3 = 110$$

-5 I_1 + 10 I_2 + 0 = 0
-I_1 + 0 + 7 I_3 = 115

The NW must have 3 meshes with two sources and all possible resistances in general as shown in Fig.1

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

.....(3)

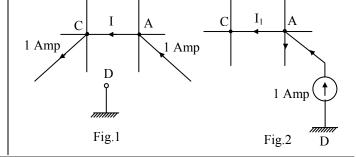

Super node

24V

.....(1)

3Ω

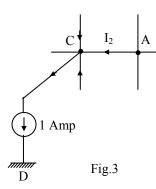
≸ 12 Ω


 $\frac{V_1 + 12}{4} + \frac{V_1}{6} + \frac{V_2}{12} + \frac{V_2 - 24}{3} = 0$ $V_1\left(\frac{1}{4}+\frac{1}{6}\right)+V_2\left(\frac{1}{12}+\frac{1}{3}\right)+3-8=0$ $V_1\left(\frac{5}{12}\right) + V_2\left(\frac{5}{12}\right) = 5$(2) By solving equation (1) and (2)

Loop1

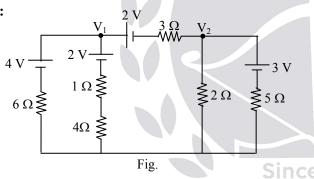
36 V V

6Ω


Sol: To find the current, I in the wire AC, of Fig. 1, assume a ground point D. Feeding 1 amp at point A and taking 1 Amp from point C is equivalent to the superposition of two current sources as shown in Fig. 2 and Fig.3

ACE Engineering Publications

ACE Engineering Publications


Electric Circuits

From Fig.2, 1 Amp is divides equally through the four wires because of the infinite nature of the mesh : $I_1 = 0.25$ Amp. Similarly from Fig.3, $I_2 = 0.25$ Amp

 $\therefore \text{ Current in the wire, AC} = I = I_1 + I_2$ = 0.5 Amp

08. Sol:

Nodal equations:

Node 1: $\frac{V_1 - 4}{6} + \frac{V_1 - 2}{5} + \frac{V_1 - V_2 - 2}{3} = 0 \dots (1)$ $5(V_1 - 4) + 6 (V_1 - 2) + 10 (V_1 - V_2 - 2) = 0$ $21 V_1 - 10 V_2 - 20 - 12 - 20 = 0$ $21 V_1 - 10 V_2 = 52 \dots (2)$ Node 2:

$$\frac{V_2 - V_1 + 2}{3} + \frac{V_2}{2} + \frac{V_2 - 3}{5} = 0 \dots (3)$$
10 (V₂ - V₁ + 2) + 15 V₂ + 6 (V₂ - 3) = 0
- 10 V₁ + 31 V₂ + 20 - 18 = 0
- 10 V₁ + 31 V₂ = -2 \dots (4)
21 V₁ = 52 + 10 V₂
= 52 + 10 $\frac{(10 V_1 - 2)}{31}$
V₁ $\left(21 - \frac{100}{31}\right) = 52 - \frac{20}{31}$
V₁ = 2.889V
10 V₂ = 21 V₁ - 52
= (21 × 2.483) - 52
V₂ = 0.8675V
Ammeter reading = $\frac{V_2}{2} = 0.434$ A
Voltmeter reading = $2 + \frac{V_1 - 2}{5} = 2.1178$ V

09. Sol

bl: By applying KCL at V₁

$$2 = \frac{V_1 - 20}{10} + \frac{V_1 - 0.5V_1 - V_2}{5}$$

$$V_1 - V_2 = 20 \dots (1)$$
By applying KCL at V₂

$$\frac{V_2 - 30}{10} + \frac{V_2}{2} + \frac{V_2 + \frac{V_1}{2} - V_2}{5} = 5$$

$$-V_1 + 8V_2 = 80 \dots (2)$$
From (1) & (2) - V_1 + 8(V_1 - 20) = 80

$$7V_1 = 240$$

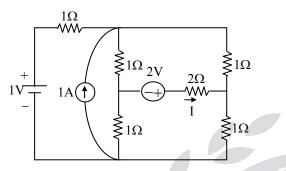
$$V_1 = \frac{240}{7} = 34.28V$$


$$V_2 = V_1 - 20 = 34.28V - 20$$

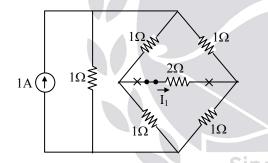
$$= 14.3V$$

ACE Engineering Publications

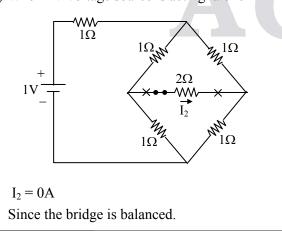
ACE Engineering Publications

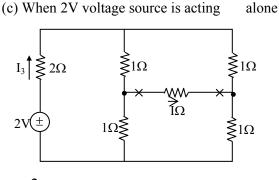

17

Solutions for Objective Practice Questions


01.

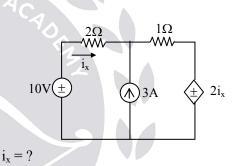
Sol: The current "I" = ?




By superposition theorem, treating one independent source at a time.

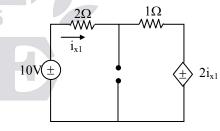
(a) When 1A current source is acting alone.

Since the bridge is balanced; I₁ = 0A (b) When 1V voltage source is acting alone



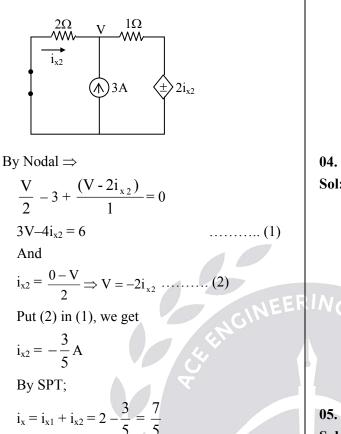
$$I_3 = \frac{2}{3} = 0.66A$$

By superposition theorem; $I = I_1 + I_2 + I_3$ I = 0 + 0 + 0.66AI = 0.66A

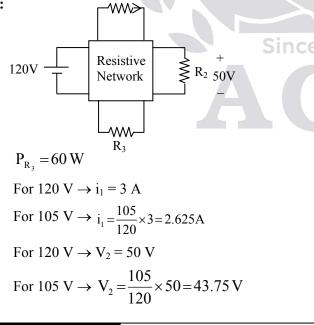

02.

Sol:

By super position theorem; treating only one independent source at a time


(a) When 10V voltage source is acting alone

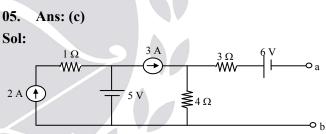
By KVL \Rightarrow 10 -2ix₁ -i_{x1} -2i_{x1} = 0 $i_{x1} = 2A$


(b) When 3A current source is acting alone

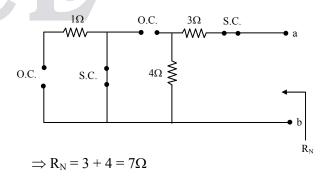
Electric Circuits

$$\therefore i_x = 1.4A$$

03 Sol:



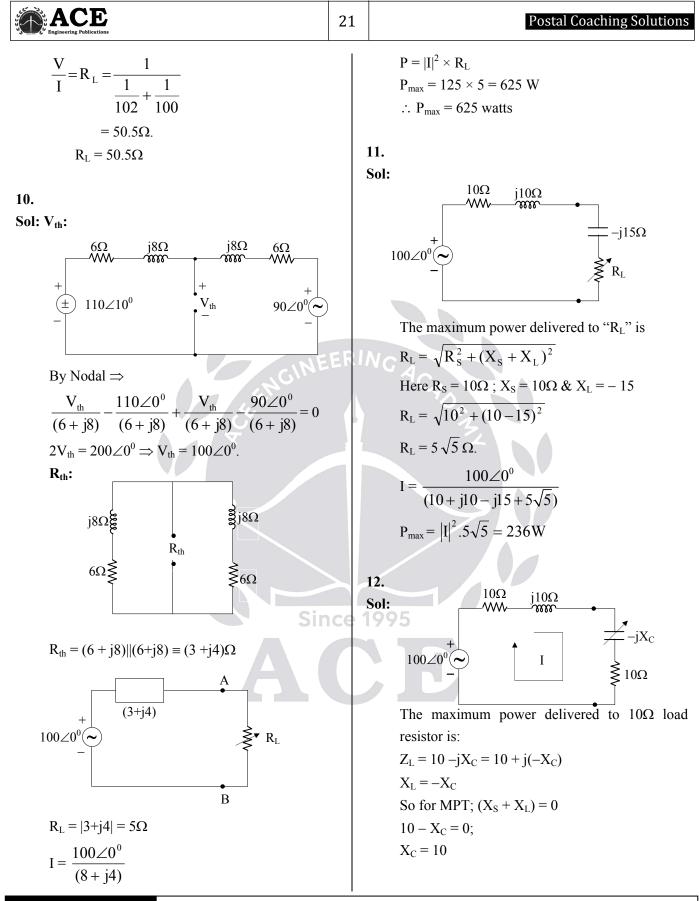
 $R_1 i = 3A$


$$V_2 = 120 \text{ V} \Rightarrow I^2 \text{R}_3 = 60 \text{ W} \Rightarrow I = \sqrt{\frac{60}{\text{R}_3}}$$

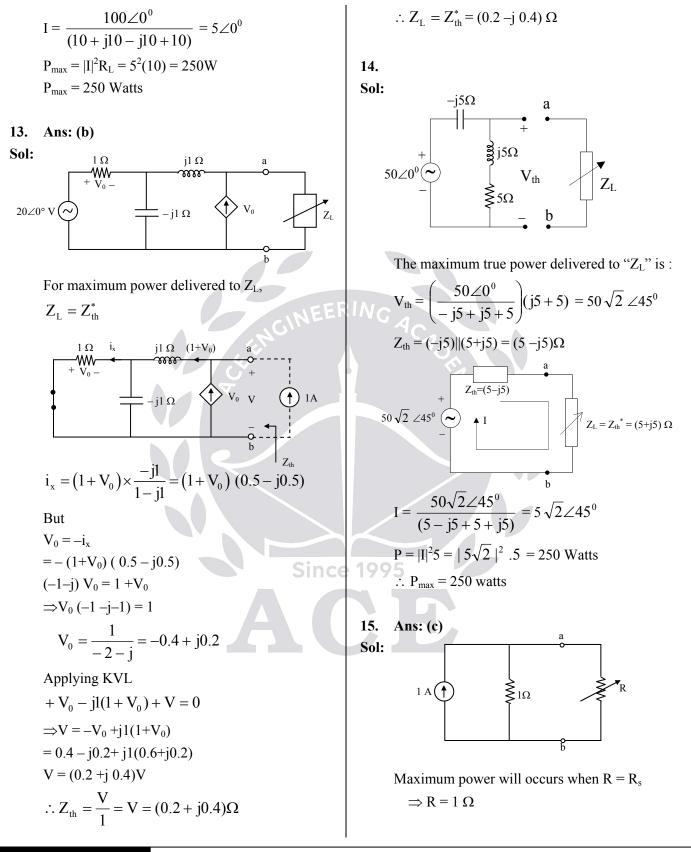
For $V_s = 105 \text{ V}$
 $P_3 = \left(\frac{105}{120}\sqrt{\frac{60}{\text{R}_3}}\right)^2 \times \text{R}_3 = 45.9 \text{ W}$

)4. Ans: (b)

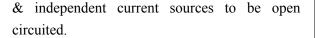
Sol: It is a liner network ∴ V_x can be assumed as function of i_{s1} and i_{s2} V_x = Ai_{s1} + Bi_{s2} 80 = 8A+12 B(1) 0 = -8A+4B(2) From equation 1 & 2 A = 2.5: B = 5 Now, V_x = (2.5)(20)+(5)(20) V_x = 150V


For finding Norton's equivalent resistance independent voltage sources to be short circuited and independent current sources to be open circuited, then the above circuit becomes

ACE Engineering Publications


Engineering Publications	20	Electric Circuits
08. Sol: The venin's and Norton's equivalents across a, $ \begin{array}{c} 3\Omega & V & 5\Omega \\ V_{th} & a \\ 2\Omega & V_{th} & a \\ 2\Omega & V_{th} & a \\ V_{th} & V_{th} & a \\ V_{th} & V$	ER1/	$I_{SC} = \left(\frac{10}{4} + 5\right) = \frac{15}{2}A$ $I_{SC} = \frac{15}{2}A$ $R_{th} = \frac{V_{th}}{I_{SC}} = \frac{150}{15} = 20\Omega$ 20Ω $V \pm a = \frac{15}{2}A$ $I_{SOV} \pm a = \frac{15}{2}A$
$\frac{V_{th}}{5} = \left(\frac{V}{10} + \frac{V}{5}\right)$ $V_x = \left(\frac{2V}{5}\right)$ $V_{th} = 150V, V = 100 V$		$i_a \downarrow$ $100\Omega \gtrsim$ $0.2i_b$ 80Ω \pm V b Super nodal equation
$2\Omega \begin{cases} 3\Omega & V & 5\Omega & 0V \\ W & W & W & 0V \\ - & 10A & (\frac{V_x}{4}) & 0V \\ - & 0V & 0V \\ $		$\Rightarrow i_{a}-0.2i_{b} + i_{b} - I = 0$ $I = i_{a} + 0.8i_{b}$ $V = 80i_{b}; i_{b} = \frac{V}{80}$ - Inside the supernode, always the KVL is written. By KVL \Rightarrow
$\frac{2V}{5} = 10$ $V = 25V$ $V_{x} = \frac{2V}{5} = \frac{2 \times 25}{5}$ $V_{x} = 10V$		$100i_{a} + 2i_{a} - 80i_{b} = 0$ $I = \frac{V}{102} + \frac{0.8 \times V}{80}$ 50.50

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad


Electric Circuits

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bub

Engineering Publications	23 Postal Coaching Solutions
1 A	If E = 100 V and I is replaced by R = 2 Ω , then determine V. E $\stackrel{\frown}{+}$ N $\stackrel{\frown}{\vee}$ I
$\therefore P_{\text{max}} = \left(\frac{1}{2}\right)^2 \times 1 = \frac{1}{4} W$ 25% of $P_{\text{max}} = \frac{1}{4} \times \frac{1}{4} = \frac{1}{16} W$ a	Sol: For, $E = 10 \text{ V}$, $I = 0\text{ A}$ then $V = 3V$ $E = 10V \stackrel{+}{+} \qquad N \qquad \stackrel{\circ}{+} V = 3V$ $Fig.(b)$
1 A $1 A$ 1	$V_{oc} = 3V$ (with respect to terminals a and b) For, $E = 0V$, $I = 2A$ then $V = 2V$
$I = 1 \times \frac{1}{1+R} = \frac{1}{1+R}$ $\therefore P = I^2 R = \left(\frac{1}{1+R}\right)^2 R = \frac{1}{16}$	Fig.(c) Now when $E = 100 \text{ V}$, and I is replaced by R $= 2\Omega$ then $V = ?$
$\Rightarrow (R + 1)^{2} = 16R$ $\Rightarrow R^{2} + 2R + 1 = 16R$ $\Rightarrow R^{2} - 14R + 1 = 0$ $R = 13.9282\Omega \text{ or } 0.072\Omega$ From the given options $72m\Omega$ is correct	$E=100V \stackrel{+}{=} N \qquad V \qquad R=2\Omega$ When E = 100V,
16. The network 'N' shown in figure contain only resistances.	
E = 10 V and 0V I = 0A and 2A V = 3V and 2V respectively.	$E=100V \stackrel{+}{=} N \qquad V_{oc}= 30V$ For finding Thevenin's resistance across ab independent voltage sources to be short circuited
ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaness	war + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabac

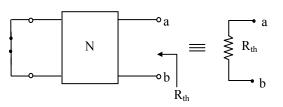
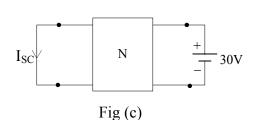
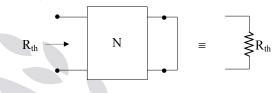
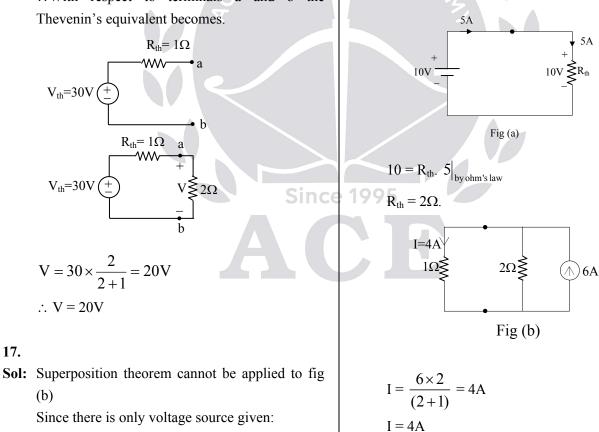



Fig.(d)

Fig.(c) is the energized version of Fig. (d)

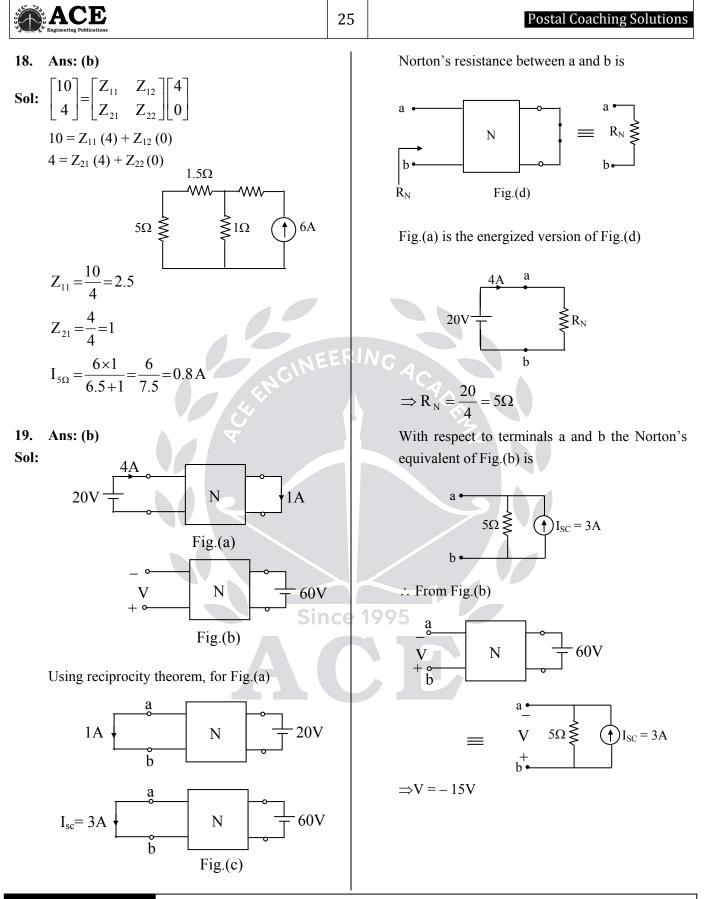
$$R_{th} \underbrace{\underbrace{}_{+}}_{-} V=2V \quad (\uparrow) I=2A$$
$$\xrightarrow{-}$$

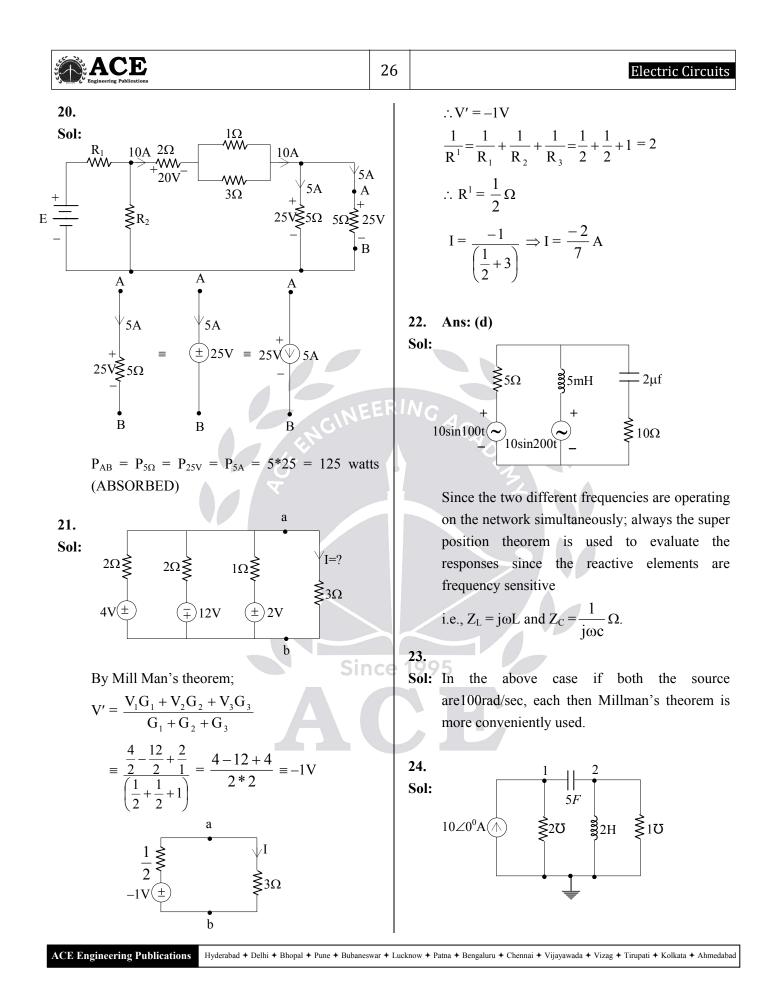

:With respect to terminals a and b the Thevenin's equivalent becomes.


By homogeneity and Reciprocity principles to fig (a);

 $I_{SC} = 6A$

For R_{th}:




Statement: Fig (a) is the energized version of figure (d)

ACE Engineering Publications

17.

Engineering Publications	27	Postal Coaching Solutions
25. Sol: $2\Omega 4\Omega$ 4Ω $10V^{\pm}$ i_{x} 3Ω i_{2} i_{z} $5i_{x}$ Nodel equations		$= \frac{2}{R} (3+5+7)^2 .R$ = 450 W Minimum power consumed $P = \frac{2}{R} (3+5-7)^2 R = 2 W$
Nodal equations i = GV $i_x = i_1$ $10 = 2i_1 + 3(i_1 - i_2)$ (1) $0 = 4i_2 + 2i_x + 3(i_2 - i_1)$ (2) $V_x = V_1$ $10 = 2V_1 - 3(V_1 - V_2)$ (3) $0 = 4V_2 + 2V_x + 3(V_2 - V_1)$ (4) $V_1 \qquad 3U \qquad V_2$ $10A \qquad V_1 \qquad 3U \qquad V_2$ $V_2 \qquad V_1 \qquad$	5 ER// 2	27. Ans: (c) Sol: $I_L = \frac{100}{R_g + 4 + 10}$, $P_L = I_L^2 R_L$ P_L is maximum, when I_L is maximum. I_L is maximum, when R_g is minimum $= 3\Omega$ Statement (I) is True. During maximum power transfer, (i.e., when R_g $= 3\Omega$), $ Z_g = \sqrt{R_g^2 + 4^2} = 5 \Omega$. $\therefore R_L \neq Z_g $ Statement (II) is false. 28. Ans: (b) R_S $V_1 = I_1(R_S + R_L)$ Thevenin and Norton equivalents are derivable for linear NW's only.
$P = I_{total}^{2} R$ $= \left(3\sqrt{\frac{2}{R}} + 5\sqrt{\frac{2}{R}} + 7\sqrt{\frac{2}{R}}\right)^{2} R$		 29. Ans: (b) Sol: Conversion to equivalent T – NW and application of Thevenin's Theorem have no relation.

ACE Engineering Publications

ACE Engineering Publications

30. Ans: (d)

Sol: Z_L should be equal to Z_S^* and $\eta=50$ %

 \therefore Statement (I) is false but Statement (II) is true.

31. Ans: (a)

Sol: Diode is a nonlinear and unilateral device. Hence, Thevenin's theorem cannot be applied. Both Statement (I) and Statement (II) are true and Statement (II) is the correct explanation of Statement (I).

32. Ans: (c)

- Sol: A. Load impedance $(10 + j 20)^*$ = 10 - j 20
 - = 10 j 20 (5) B. Total impedance $Z_i + Z_L = 20$ (4)
 - C. Current $\frac{50}{20} = 2.5$ (3)
 - D. Maximum power $(2.5)^2 \times 10 = 62.5$
- 33. Ans: (b)

34. Ans: (b)

- Sol: A. Superposition theorem is applicable for linear networks only (1)
 - B. Tellegen's theorem utilizes the structure of the NW irrespective (3) of the nature of the elements

(1)

- C. The equivalent circuit of a NW at two terminals can be obtained by using Norton's theorem. (2)
- D. Reciprocity theorem is applicable to Bilateral networks (4)

35. Ans: (c)

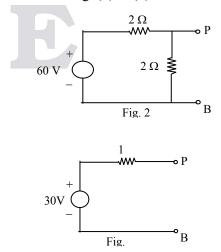
Sol: A. Reciprocity

- Bilateral (2)
- B. Tellegen's
 - $-\sum_{k=0}^{b} v_{jk}(t_1) i_{jk}(t_2) = 0 \quad (3)$
- C. Superposition

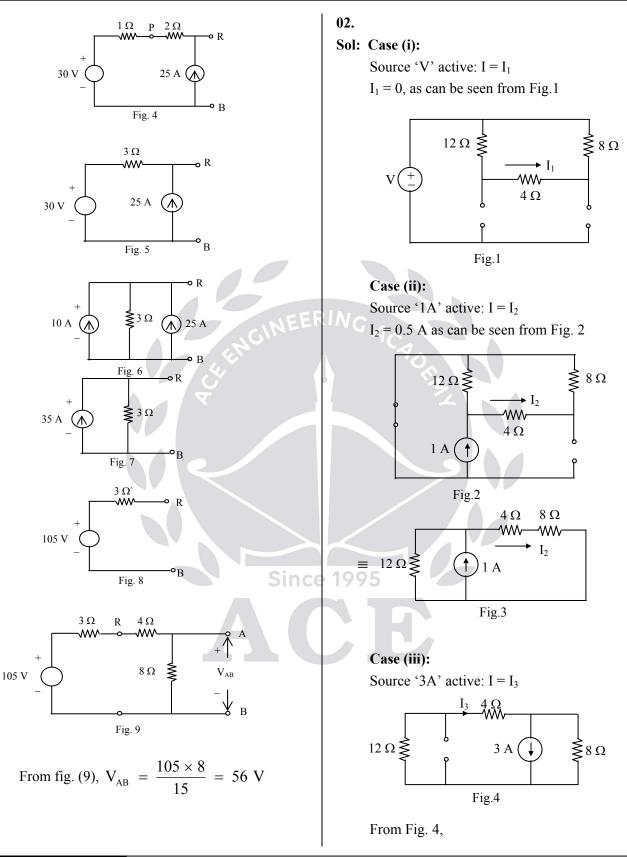
– Linear (4)

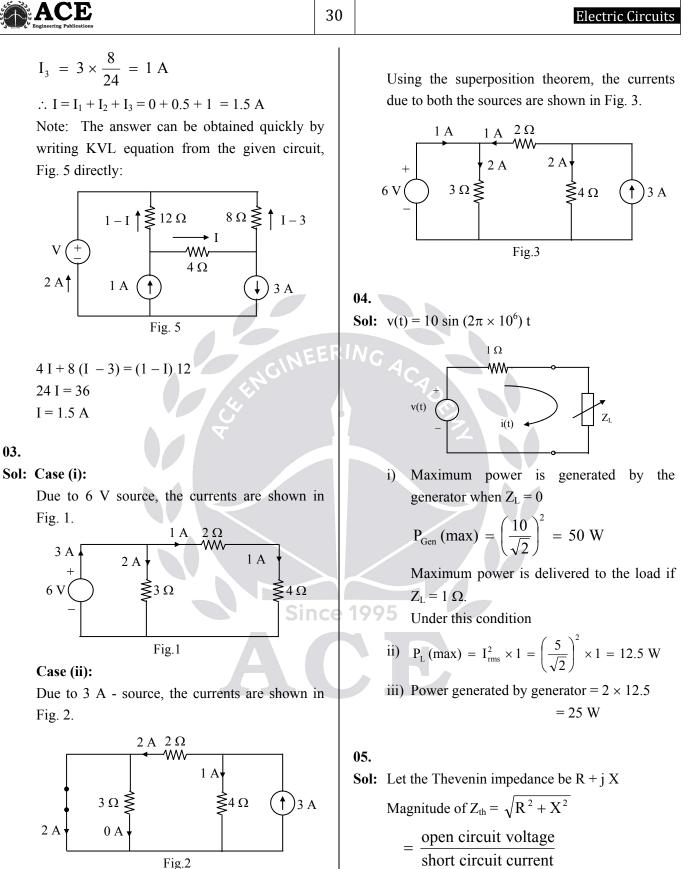
D. Maximum power Transfer

- Impedance matching (1)

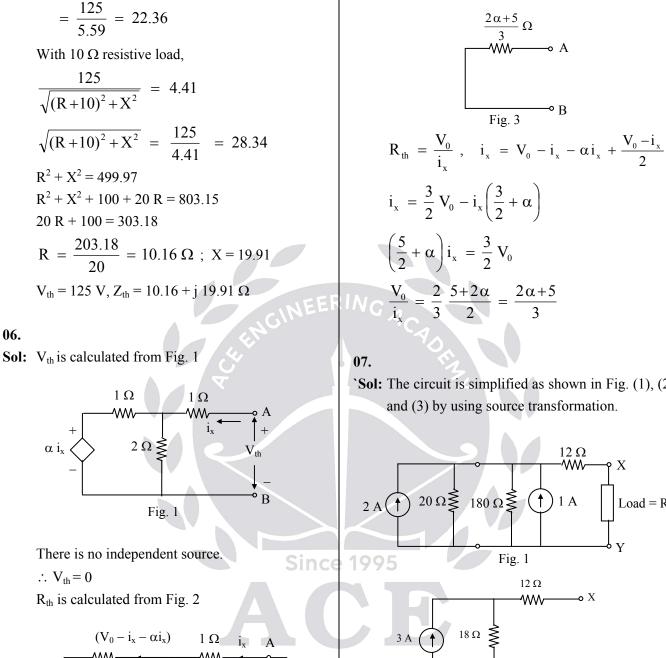

36. Ans: (d)

Solutions for Conventional Practice Questions

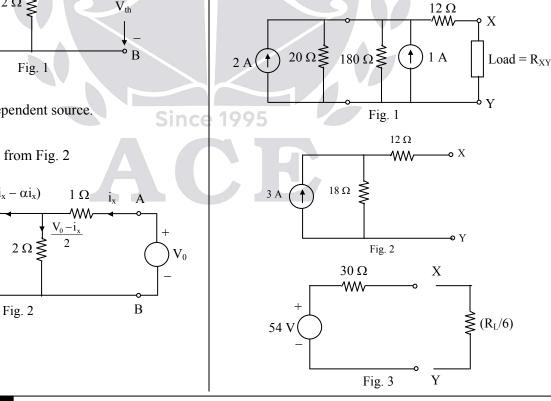

01.


Sol: The given circuit is shown in Fig 1 with terminals marked.

Source transformation is used successively as shown in Fig. (2) to (9)



ACE
Engineering Publications



ACE Engineering Publications

Sol: The circuit is simplified as shown in Fig. (1), (2) and (3) by using source transformation.

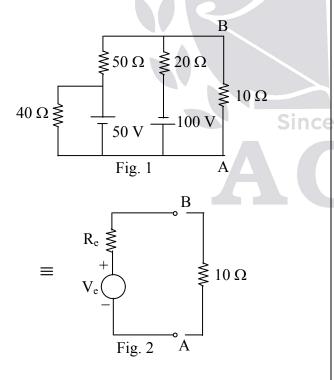
ACE Engineering Publications

 αi_x

 1Ω

Load:

$$Y_{XY} = \frac{1}{R_{L}} + \frac{2}{R_{L}} + \frac{3}{R_{L}} = \frac{6}{R_{L}}$$
$$Z_{XY} = \frac{R_{L}}{6}$$


For maximum power transfer to the three resistor load, $Z_{\rm XY}$

$$\frac{R_{L}}{6} = 30 , \qquad R_{L} = 180 \Omega$$
$$\therefore V_{XY} = 27 V$$

Power delivered to $R_L = \frac{(27)^2}{180} = 4.05 \text{ W}$ Power delivered to $\frac{R_L}{2} = \frac{(27)^2}{90} = 8.1 \text{ W}$ Power delivered to $\frac{R_L}{3} = \frac{(27)^2}{60} = 12.15 \text{ W}$

08.

Sol: The given circuit is shown in Fig. 1, where 40Ω across 50 V can be deleted.

 V_{BA} is found by reducing the given circuit to the left of BA into a single voltage source, V_e and a series resistance, R_e by using Milliman's theorem.

The equivalent circuit is shown in Fig. 2

$$V_{e} = \frac{V_{1}G_{1} + V_{2}G_{2}}{G_{1} + G_{2}}$$

$$= \frac{\frac{50}{50} - \frac{100}{20}}{\frac{1}{50} + \frac{1}{20}}$$

$$= \frac{-4 \times 100}{7} = -\frac{400}{7} V$$

$$R_{e} = \frac{1}{G_{1} + G_{2}} = \frac{1}{\frac{1}{50} + \frac{1}{20}} = \frac{100}{7} \Omega$$

$$V_{BA} = -\frac{400}{7} \times \frac{10}{\frac{100}{7} + 10}$$

$$= -\frac{400}{7} \times 10 \times \frac{7}{170} = -\frac{400}{17} V$$

09.

19

Sol: Maximum Power transfer theorem:

This is used to find the value of the load impedance Z_L (optimum) that absorbs maximum power from a given network shown in Fig. 1.

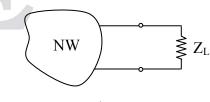
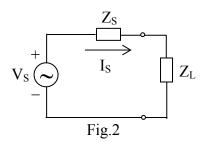



Fig.1

The NW is replaced by its Thevenin's equivalent circuit as shown in Fig. 2.

ACE Engineering Publications Hyderab

 $Z_L = R_L + j X_L$ is complex load V_s is Thevenin's voltage phasor (RMS Value) Z_s is Thevenin's equivalent impedance

 $= R_{S} + j X_{S}$

 V_s and Z_s can be understood as the source voltage and source impedance wrt the load impedance, Z_L .

$$I_{s} = \frac{V_{s}}{Z_{s} + Z_{L}} = \frac{V_{s}}{(R_{s} + R_{L}) + j(X_{L} + X_{s})}$$
.....(1)

P = Power delivered to

$$Z_{\rm L} = |I_{\rm S}|^2 R_{\rm L} = \frac{V_{\rm S}^2 R_{\rm L}}{(R_{\rm S} + R_{\rm L})^2 + (X_{\rm L} + X_{\rm S})^2}$$
.....(2)

For maximum power transfer to Z_L :

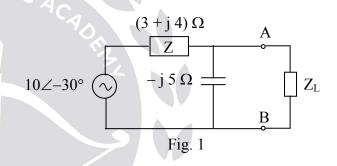
Case 1:

When only X_L is variable in the load, $\frac{\partial P}{\partial X_L} = 0, 2(X_L + X_S) = 0 \text{ or } X_L = -X_S \dots (3)$

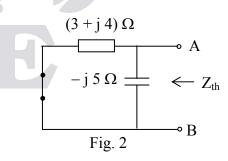
Then maximum power transferred to Z_L =

Case 2: When only R_L is variable, $\frac{\partial F}{\partial R_L} = 0$ $(R_s + R_I)^2 + (X_I + X_S)^2 - R_I(R_L + R_S)^2 = 0$

Then maximum power delivered to


$$Z_{L} = \frac{V_{S}^{2} R_{L}}{(R_{S} + R_{L})^{2} + R_{L}^{2} - R_{S}^{2}}$$
$$= \frac{V_{S}^{2}}{2(R_{L} + R_{S})} \qquad (6)$$

Case 3 :

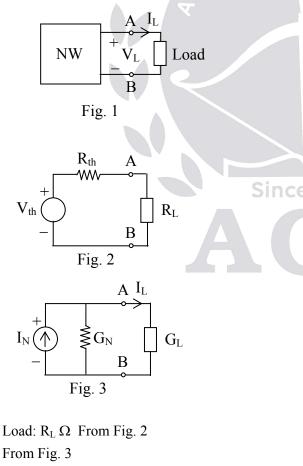

When X_L as well as R_L are variable, then from (3) and (5) $X_L = -X_S$, $R_L = R_S$ Z_L (optimum) = $R_S - j X_S$ (7)

= complex conjugate of Z_s

Then maximum power transferred to $Z_L = \frac{V_s^2}{4R_L}$

Let Z_L = Impedance of Loudspeaker across the terminals A, B for maximum power dissipation in it as shown in Fig. 1.

Then Z_L = Thevenin's impedance across terminals A, B into the network = Z_{th} Z_{th} is found from Fig. (2)


Electric Circuits

$$Z_{th} = \frac{(3+j4) (-j5)}{(3-j4)-j5}$$

= $\frac{20-j15}{3-j1} = \frac{5(4-j3) (3+j1)}{9+1}$
= $\frac{1}{2} (12+3-j9+j4)$
= $\frac{1}{2} (15-j5) = 7.5-j 2.5$
 $\therefore Z_{L} = Z_{th}^{*}$
 $\Rightarrow Z_{L} = (7.5-j 2.5) \Omega$

10.

Sol: Duality of Thevenin's and Norton's theorems: The NW in Fig. 1 can be represented by the equivalent circuit shown in Fig. 2 by Thevenin's theorem and in Fig. 3 by Norton's theorem.

or
$$G_{L} = \frac{1}{R_{L}} \mho ..(1)$$

 $V_{AB} = V_{L} = V_{th} \frac{R_{L}}{R_{th} + R_{L}}$ (2)

$$I_{AB} = I_{L} = I_{N} \frac{G_{L}}{G_{N} + G_{L}}$$
(3)

Where,
$$G_N = \frac{1}{R_N} = \frac{1}{R_{th}}$$

Equations (2) and (3) are dual equations where the duality is indicated by the dual quantities given below:

Voltage across load, $V_L \rightarrow Current$ through load, I_L

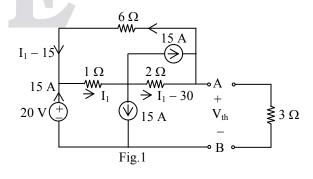
Open circuit voltage across \rightarrow Short circuit current from A to $B = I_N$

A, B =
$$V_{th}$$

Load Resistance, $R_L \rightarrow$ Load Conductance,

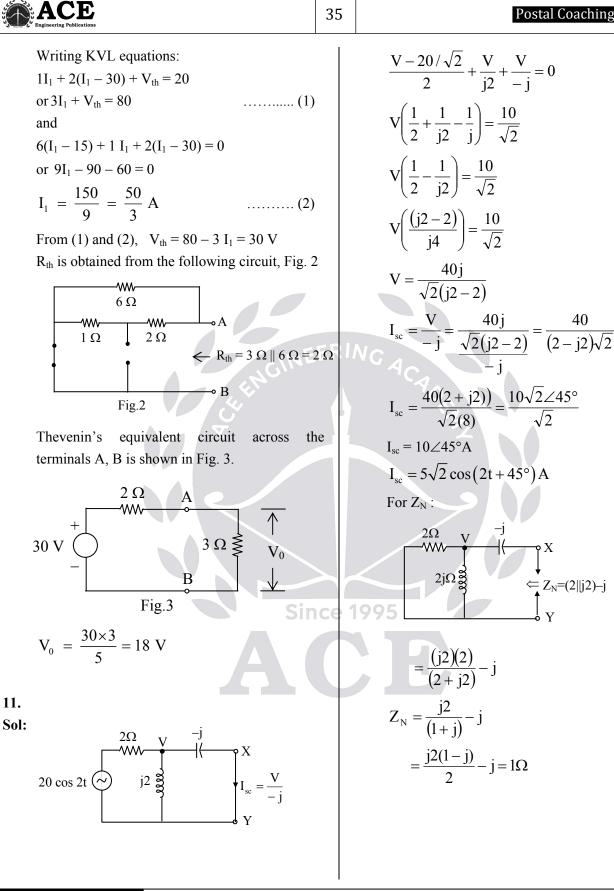
$$G_L = \frac{1}{R_L}$$

 \rightarrow


19

The venin Resistance, $R_{th} \rightarrow Norton's$

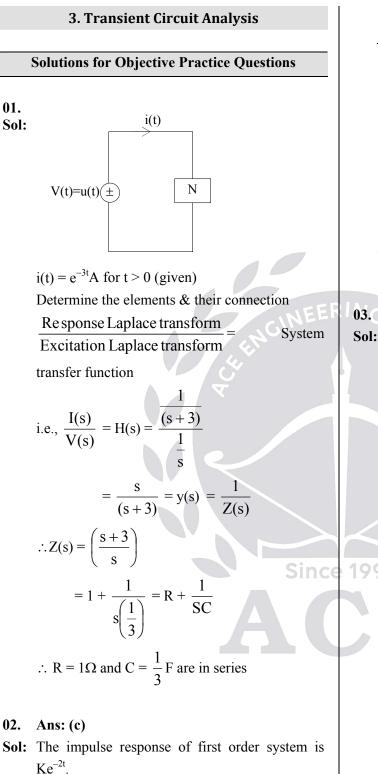
Conductance,
$$G_N = \frac{1}{R_N} = \frac{1}{R_{th}}$$


The given circuit is shown in Fig.1 with 3 Ω across the terminals A, B.

The current through each element is marked by assuming I as the current through 1 Ω .

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

34

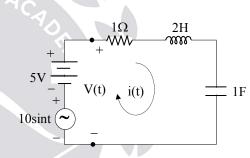


ACE Engineering Publications

ACE

36

Electric Circuits



$$\frac{\sin 2t}{G(s) = \frac{K}{s+2}} = \frac{\frac{K}{s+2}}{\frac{K}{\sqrt{\omega^2 + 2^2}}} = \frac{K}{2\sqrt{2}}$$

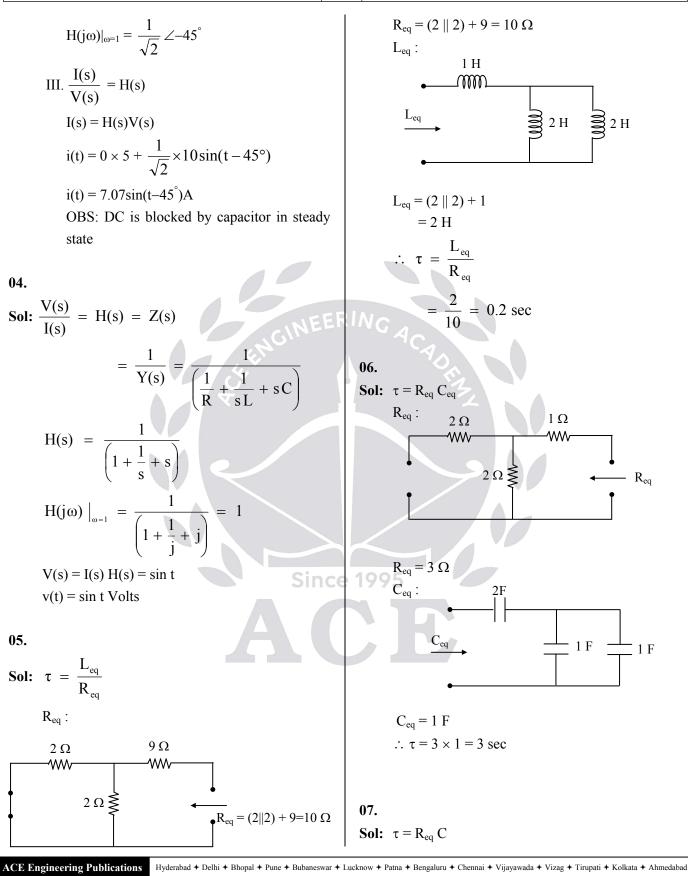
$$\angle G(j\omega) = -\tan^{-1}\frac{\omega}{2} = -\tan^{-1}1 = -\frac{\pi}{4}$$
So steady state response will be

$$y(t) = \frac{K}{2\sqrt{2}} \sin\left(2t - \frac{\pi}{4}\right)$$

03.

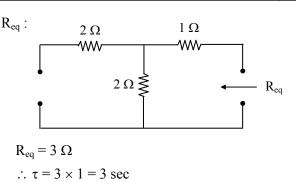
By KVL \Rightarrow v(t) = (5 + 10sint)volt Evaluating the system transfer function H(s).

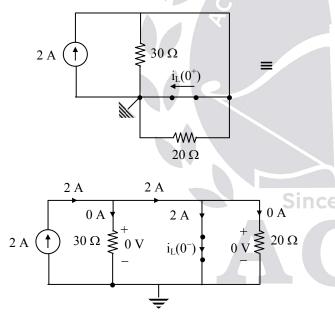
 $\frac{\text{Desired response L.T}}{\text{Excitation response L.T}} = \text{System transfer function}$

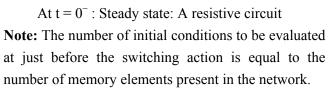

$$\frac{I(s)}{V(s)} = H(s) = Y(s) = \frac{1}{Z(s)} = \frac{1}{\left(R + SL + \frac{1}{SC}\right)}$$
$$H(s) = \frac{S}{\left(2s^2 + s + 1\right)}$$
$$H(j\omega) = \frac{1}{\left(1 + \frac{1}{j\omega} + 2j\omega\right)}$$

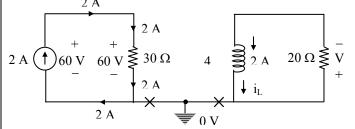
II. Evaluating at corresponding ω_s of the input $H(j\omega)|_{\omega=0} = 0$

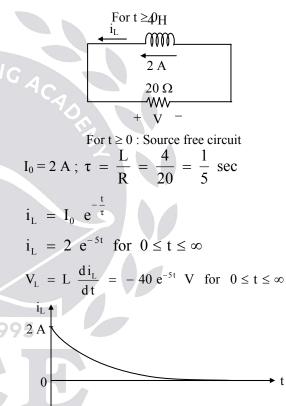
ACE Engineering Publications

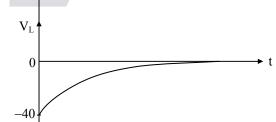

So T/F = L(I.R) = $\frac{K}{s+2}$



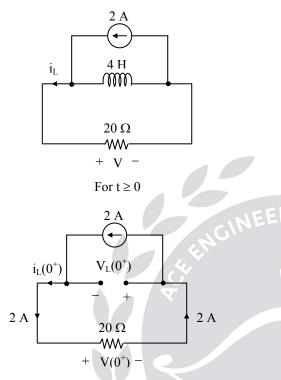

Electric Circuits


08.


Sol: Let us assume that switch is closed at $t = -\infty$, now we are at $t = 0^-$ instant, still the switch is closed i.e., an infinite amount of time, the independent dc source is connected to the network and hence it is said to be in steady state. In steady state, the inductor acts as short circuit and nature of the circuit is resistive.



(i) $t = 0^{-1}$ $i_{L}(0^{-1}) = 2 = i_{L}(0^{+1})$ $E_{L}(0^{-}) = \frac{1}{2} L i_{L}^{2}(0^{-})$ $= \frac{1}{2} \times 4 \times 2^{2} = 8J = E_{L}(0^{+})$



 $I_{L}(0^{-}) = 2 = I_{L}(0^{-})$

t =	5	τ	=	5 ×	$\frac{1}{5}$	=	1 sec	for	steady	state	

practically i.e., with in 1 sec the total 8 J stored in the inductor will be delivered to the resistor.

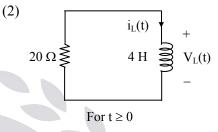
At $t = 0^+$: Resistive circuit : Network is in transient state

By KCL;

 $-2 + i_{\rm L}(0^+) = 0$ Since $i_{\rm L}(0^+) = 2 {\rm A}$ $V(0^+) = R i_L(0^+) |_{By Ohm's law}$ $V(0^+) = 20(2) = 40$ V By KVL; $V_{\rm L}(0^+) + V(0^+) = 0$ $V_{L}(0^{+}) = -V(0^{+}) = -40 V = V_{L}(t)|_{t=0^{+}}$

Observations:

 $t = 0^{+}$ $t = 0^{-}$ $i_{\rm L}(0^+) = 2 {\rm A}$ $i_{\rm L}(0^{-}) = 2 {\rm A}$ $i_{20\Omega}(0^{-}) = 0 A$ $i_{20\Omega}(0^+) = 2 A$ $V_{20\Omega}(0^{-}) = 0 V$ $V_{20\Omega}(0^+) = 40 \text{ V}$


$$V_{L}(0^{-}) = 0$$

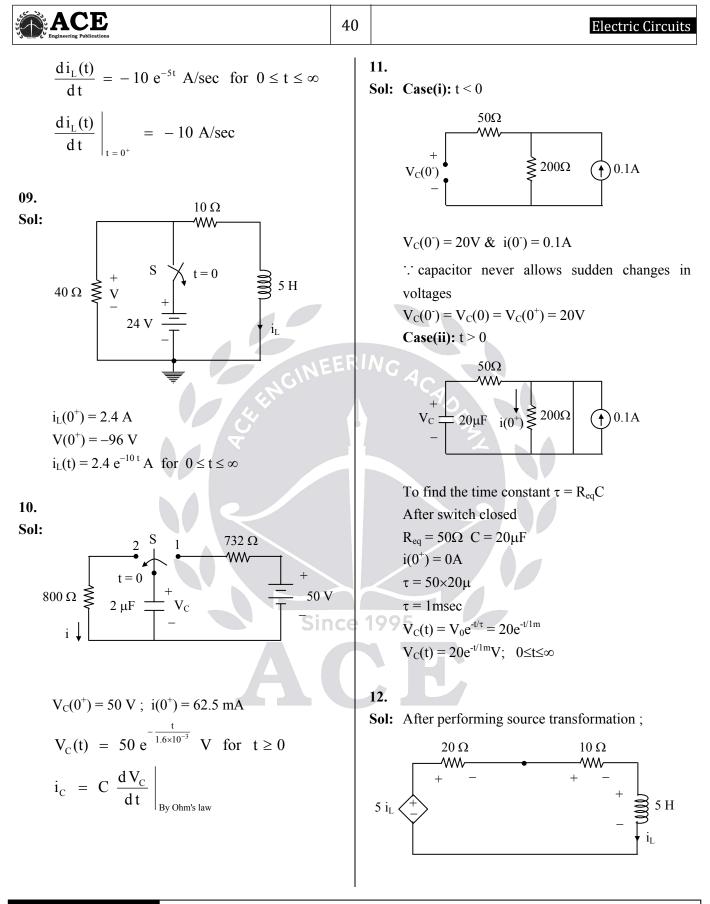
Conclusion:

$$V_{\rm L}(0^+) = -40 \ {\rm V}$$

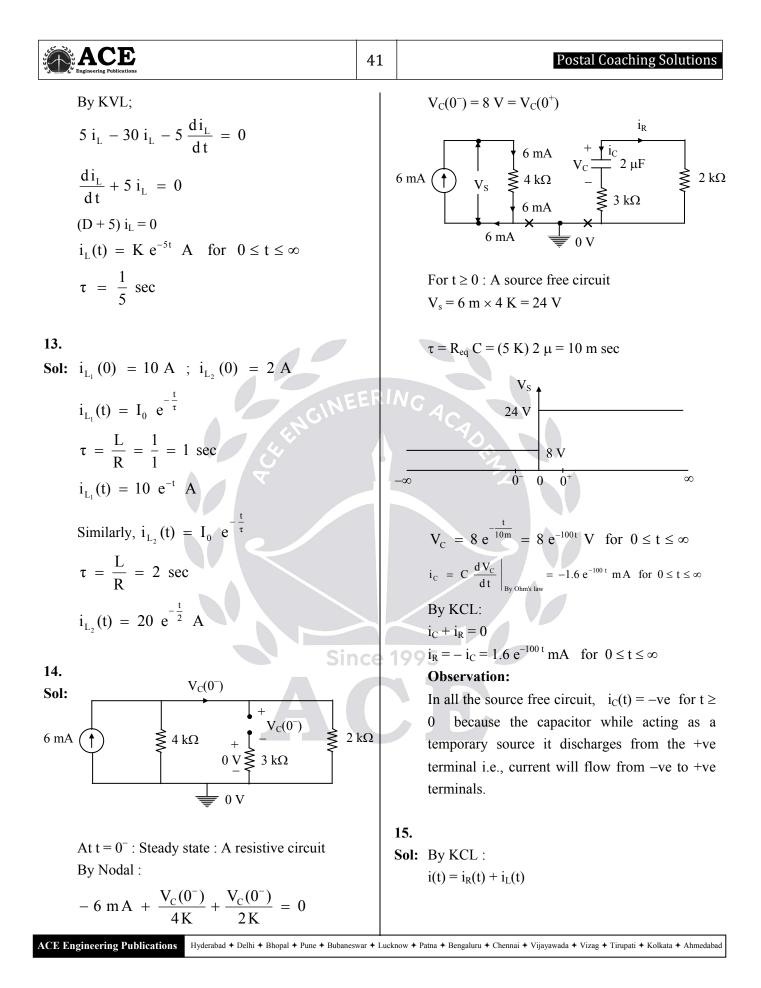
V

To keep the same energy as $t = 0^{-}$ and to protect the KCL and KVL in the circuit (i.e., to ensure the stability of the network), the inductor voltage, the resistor current and its voltage can change instantaneously i.e., within zero time at $t = 0^+$.

$$\begin{split} i_L(t) &= 2 \ e^{-5t} \ A \ \text{ for } \ 0 \leq t \leq \infty \\ V_L(t) &= -40 \ e^{-5t} \ V \ \text{for } \ 0 \leq t \leq \infty \end{split}$$


Conclusion:

For all the source free circuits, $V_L(t) = -ve$ for t \geq 0, since the inductor while acting as a temporary source (upto 5τ), it discharges from positive terminal i.e., the current will flow from negative to positive terminals. (This is the must condition required for delivery, by Tellegan's ⁹ theorem)

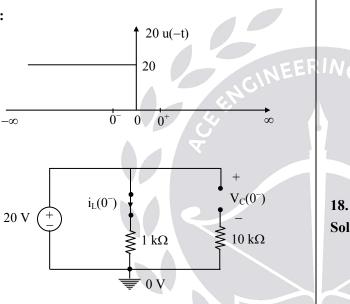

(3)
$$V_{L}(0^{+}) = -40 V$$

 $V_{L}(t) \Big|_{t=0^{+}} = -40 V$
 $L \frac{d i_{L}(t)}{d t} \Big|_{t=0^{+}} = -40$
 $\frac{d i_{L}(t)}{d t} \Big|_{t=0^{+}} = -\frac{40}{L} = -\frac{40}{4} = -10 \text{ A/sec}$
Check :
 $i_{L}(t) = 2 e^{-5t} A \text{ for } 0 \le t \le \infty$

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

19

ACE Engineering Publications



Ű.	ACE
Loss Hotel	ngineering Publications

$$= \frac{V_{R}(t)}{R} + \frac{1}{L} \int_{-\infty}^{t} V_{L}(t) dt$$

$$= \frac{V_{S}(t)}{10} + i_{L}(0) + \frac{1}{L} \int_{0}^{t} V_{S}(t) dt$$

$$i(t) = 4 t + 5 + 4 t^{2}$$

$$i(t) |_{t=2 \text{ sec}} = 8 + 16 + 5 = 29 \text{ A} = 29000 \text{ mA}$$

16. Ans: (c)

17. Sol:

At $t = 0^-$: steady state: A resistive circuit. Since (i) $t = 0^{-}$

$$V_{c}(0^{-}) = 20 V = V_{c}(0^{+})$$

 $i_{L}(0^{-}) = \frac{20}{1K} = 20 m A = i_{L}(0^{+})$

For $t \ge 0$: A source free RL & RC circuit

 \therefore i₁ (0⁺) = -8A

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

$$\tau = \frac{0.1}{1 \text{ K}} = 100 \ \mu \text{ sec}$$

 $\tau_{\text{C}} = 200 \times 10^{-9} \times 10 \times 10^{3} = 2 \text{ m sec}$

$$\frac{\tau_{\rm C}}{\tau_{\rm L}} = 20 \quad ; \quad \tau_{\rm C} = 20 \ \tau_{\rm L}$$

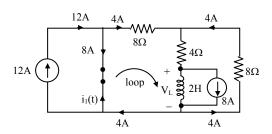
Observation:

 $\tau_L < \tau_C$; therefore the inductive part of the circuit will achieve steady state quickly i.e., 20 times faster.

$$V_{C} = 20 e^{-\frac{t}{\tau_{C}}} V \text{ for } 0 \le t \le \infty$$

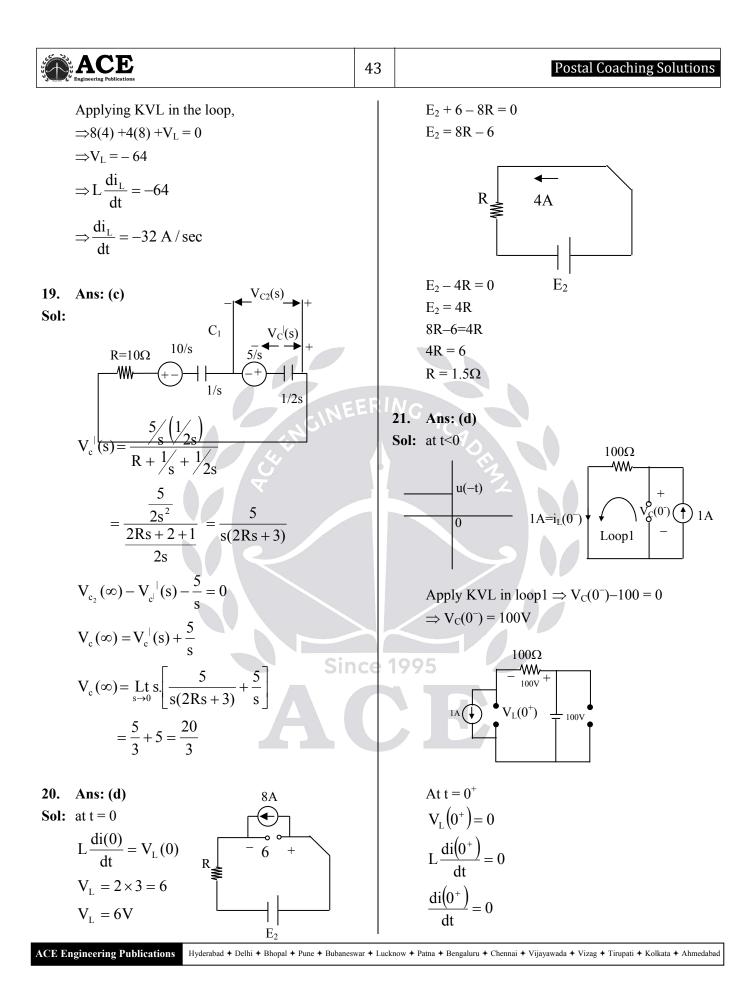
$$i_{L} = 20 e^{-\frac{t}{\tau_{L}}} \text{ mA for } 0 \le t \le \infty$$

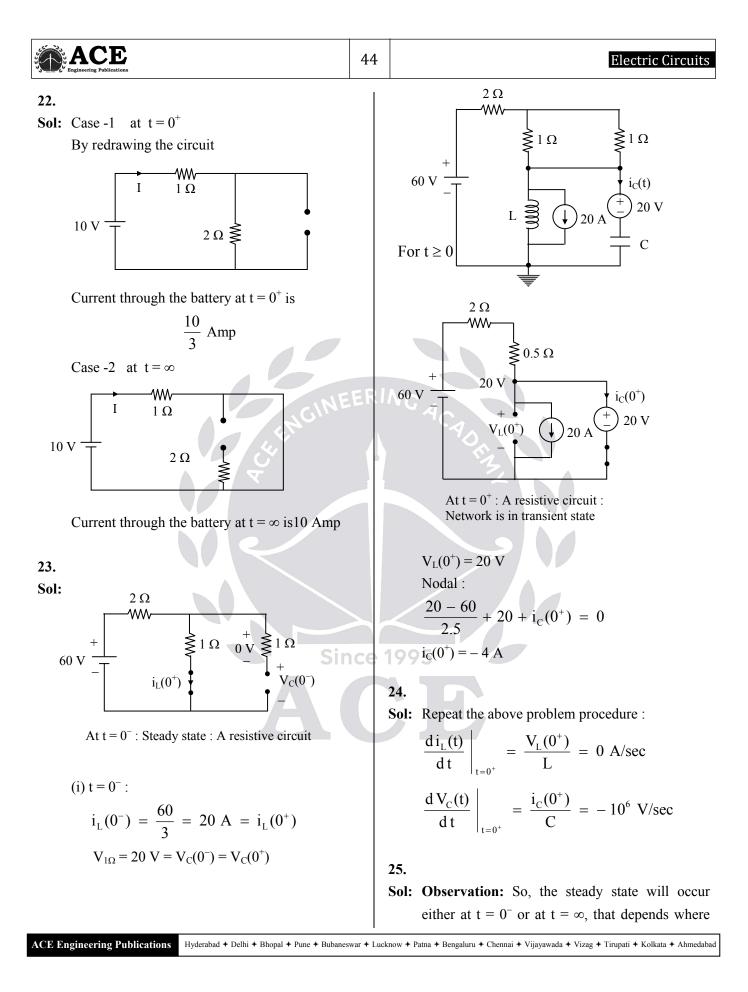
$$V_{L} = L \frac{di_{L}}{dt} \Big|_{By \text{ Ohm's law}}$$


$$i_{C} = C \frac{dV_{C}}{dt} \Big|_{By \text{ Ohm's law}}$$

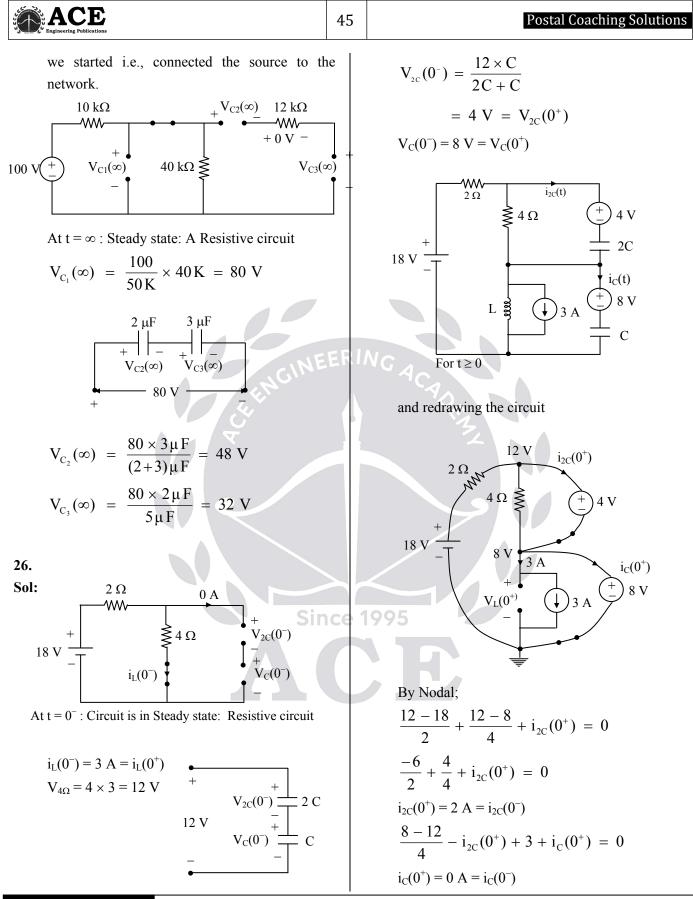
Sol: At $t = 0^{-1}$

19


$$12A + i_{L}(0^{-}) = 8\Omega$$

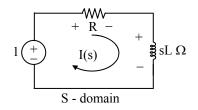

$$\Rightarrow i_{L}(0^{-}) = \frac{12 \times 8}{8+4} = 8A$$

At t = 0⁺

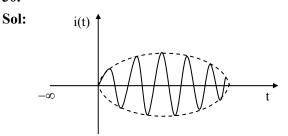


 $\leq \infty$

42


Engineering Publications	46	Electric Circuits
$\frac{d V_{L}(0^{+})}{d t} = 1098 \text{ V/sec}$ $V_{R}(0^{-}) = -150 \text{ V}$ $V_{R}(0^{+}) = -30 \text{ V}$ $\frac{d V_{R}(0^{+})}{d t} = -1200 \text{ V/sec}$ $V_{C}(0^{-}) = 150 \text{ V}$ $V_{L}(0^{+}) = 150 \text{ V}$ $\frac{d V_{C}(0^{+})}{d t} = 108 \text{ V/sec}$		$-4 + i_{L}(0^{+}) + i_{R}(0^{+}) = 0$ $i_{R}(0^{+}) = -i_{L}(0^{+}) + 4$ $i_{R}(0^{+}) = -5 + 4$ $= -1 A$ $V_{R}(t) = R i_{R}(t) _{By Ohm's law}$ $V_{R}(0^{+}) = R i_{R}(0^{-})$ $V_{R}(0^{+}) = -30 V$ $By KVL \Rightarrow V_{L}(t) - V_{R}(t) - V_{C}(t) = 0$ $V_{L}(0^{+}) = V_{R}(0^{+}) + V_{C}(0^{+})$ $= 150 - 30$ $= 120 V$ $By KCL at 2^{nd} node;$ $= 5 + i_{C}(t) - i_{R}(t) = 0$ $i_{C}(0^{+}) = 4 A$ (iii). $t = 0^{+}$ $By KCL at 1^{st} node \Rightarrow$ $-4 + i_{L}(t) + i_{R}(t) = 0$ $V_{R}(t) = R i_{R}(t) _{By Ohm's law}$ $\frac{d}{dt} V_{R}(t) = R \frac{d}{dt} i_{R}(t)$ $By KVL \Rightarrow$ $V_{L}(t) - V_{R}(t) - V_{C}(t) = 0$ $\frac{d}{V_{L}(t)} - \frac{dV_{R}(t)}{dt} - \frac{dV_{C}(t)}{dt} = 0$ $By KCL at node 2:$ $-5 + i_{C}(t) - i_{R}(t) = 0$ $0 + \frac{d}{dt} i_{C}(t) - \frac{d}{dt} i_{R}(t) = 0$ $= 40 \text{ A/sec}$

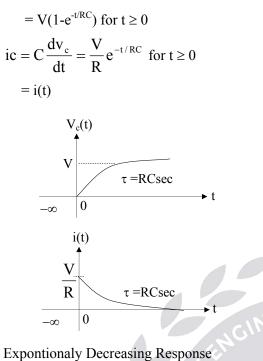
ACE Engineering Publications


47	
1	• •

28.

Sol: Transform the network into Laplace domain

30.



That is the response is oscillatory in nature

V(s) = Z(s) I(s)31. By KVL in S-domain \Rightarrow **Sol:** $i(0^{-}) = 0 A = i(0^{+})$ 1 - R I(s) - s L I(s) = 0 $i(\infty) = \frac{V}{R} A$ $I(s) = \frac{1}{L} \frac{1}{\left(s + \frac{R}{T}\right)}$ $NG \tau = \frac{L}{R} \sec \theta$ $i(t) = \frac{1}{L} e^{-\frac{R}{L}t} A \text{ for } t \ge 0$ $i(t) = \frac{V}{R} + \left(0 - \frac{V}{R}\right) e^{-t/\tau} = \frac{V}{R} (1 - e^{-t/\tau})$ $V_{L} = \frac{Ldi(t)}{dt} = V e^{-Rt/L} \text{ for } t \ge 0$ 29. **Sol:** By Time domain approach ; $V_{\rm C}(0^-) = 5 \times 2 = 10 \text{ V} = V_{\rm C}(0^+)$ i(t) 12Ω $10\Omega V(s)$ V w R ► t 5Ω≩ \pm 2A 0 25V(1995 At t =∞: Steady state: A resistive circuit $\tau = \frac{L}{R} \sec \theta$ V Nodal $\Rightarrow \frac{V_{c}(\infty) - 25}{10} + \frac{V_{c}(\infty)}{5} - 2$ = 0► t 0 $-\infty$ $V_{\rm C}(\infty) = 15 \text{ V}$ $\tau = R_{eq} C = (5 \parallel 10) . 1 = (10/3) \text{ sec}$ Expontionaly Increasing Response $V_{\rm C} = 15 + (10 - 15) e^{-\frac{1}{(10/3)}}$ 32. $V_{\rm C} = 15 - 5 \ e^{-3t/10} \ V$ for $t \ge 0$ **Sol:** $V_C(0^-) = 0 = V_C(0^+)$ $V_{C}(\infty) = V$ $i_{c} = C \frac{dV_{c}}{dt} = 1.5 e^{-3t/10} A \text{ for } t \ge 0$ $\tau = RC$ $V_{\rm C} = V + (0 - V) e^{-t/\tau}$

Electric Circuits

$$-2i_{1}+i_{L} + \frac{1}{200} \frac{di_{L}}{dt} = 0$$

Substitute i_{1} ;
$$\frac{di_{L}}{dt} + 40i_{L} = 800u(t)$$

SI_L(s) $- i_{L}(0+) + 40I_{L}(s) = \frac{800}{s}$
 $i_{L}(0^{-}) = 0A = i_{L}(0^{+})$
 $I_{L}(s) = \frac{800}{s(s+40)} = \frac{20}{s} - \frac{20}{s+40}$
 $I_{L}t) = 20u(t) - 20e^{-40t}u(t)$
 $I_{L}(t) = 20(1-e^{-40t})u(t)$
 $i_{I} = 10u(t) - \frac{1}{100} d\frac{i_{L}}{dt}$
 $i_{I} = (10-8e^{-40t})u(t)$

35.

Sol: It's an RL circuit with $L = 0 \Rightarrow \tau = 0$ sec

$$i(t) = \frac{V}{R}$$
, $\forall t \ge 0$ So, $5\tau = 0$ sec

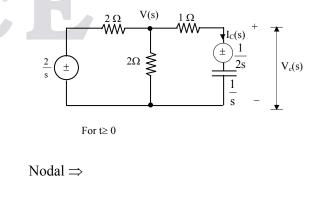
i.e. the response is constant

34.

33.

Sol:
$$i_1 = \frac{100u(t) - V_L}{10}$$

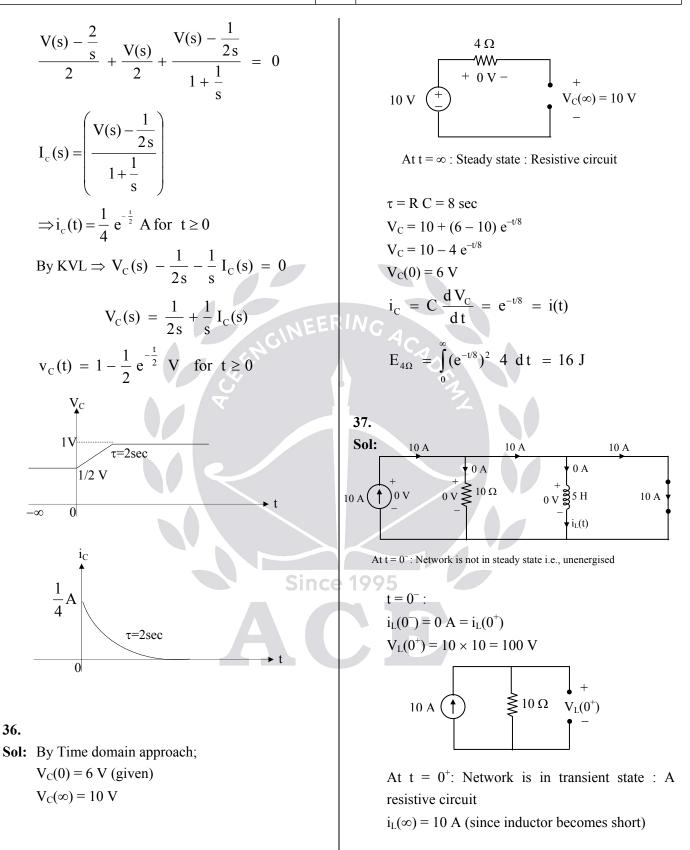
 $i_1 = \left(10u(t) - \frac{1}{100}\frac{di_L}{dt}\right)A$


Nodal \Rightarrow

$$-i_1 + i_L + \frac{V_L - 20i_1}{20} = 0$$

Sol: By Laplace transform approach:

$$2V \pm 2\Omega \underbrace{\begin{array}{c}2 \\ 2V \\ \pm \end{array}}_{For t \ge 0} V(t) \underbrace{\begin{array}{c}1 \\ 1 \\ 2V \\ \pm \end{array}}_{V(\pm)} IF \\ - \underbrace{\begin{array}{c}2 \\ V_{c}(t) \\ - \underbrace{V_{c}(t)}_{V_{c}(t)} \\ - \underbrace{V_{c}(t)}_{V_{c}(t)$$

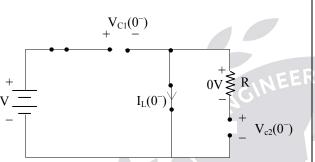

Transform the above network into the Laplace domain

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

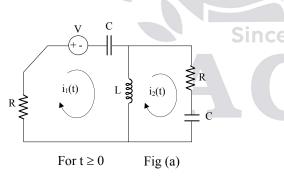
Since

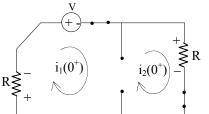
	ACE
Ser E	ngineering Publications

$$\tau = \frac{L}{R} = \frac{5}{10} = 0.5 \text{ sec}$$


$$i_{L}(t) = 10 + (0 - 10) e^{-t/\tau}$$

$$= 10 (1 - e^{-t/0.5}) \text{ A for } 0 \le t \le \infty$$


$$V_{L}(t) = L \frac{d}{dt} i_{L}(t) = 100 e^{-2t} \text{ V for } 0 \le t \le \infty$$

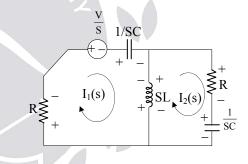

$$E_{L} \Big|_{t=5\tau \text{ or } t=\infty} = \frac{1}{2} Li^{2} = \frac{1}{2} \times 5 \times 10^{2} = 250 \text{ J}$$

38. Ans: (b) Sol:

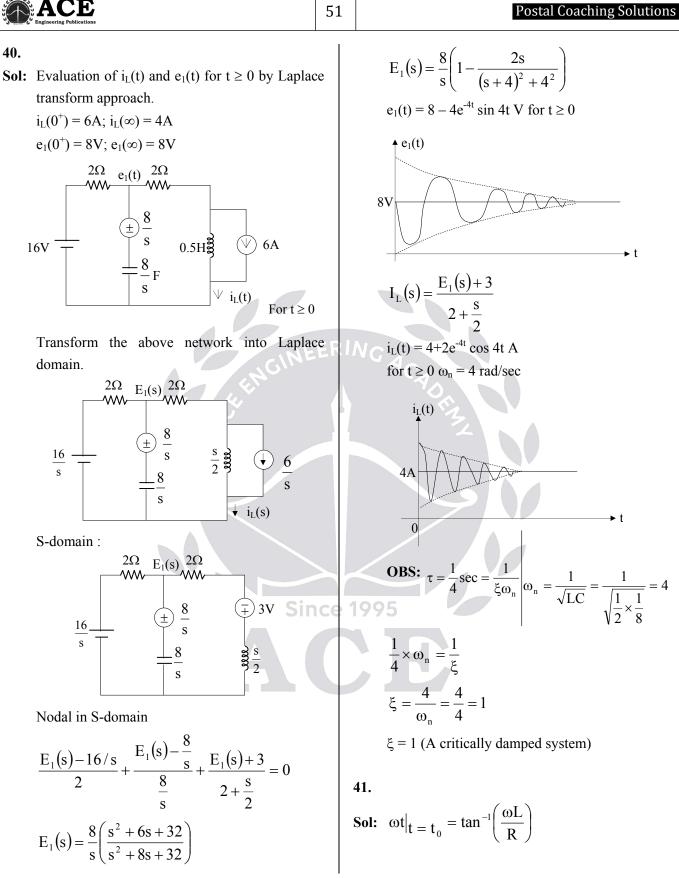
At $t = 0^-$: Steady state: A resistive circuit By KVL \Rightarrow $V - V_{c1} (0^-) = 0$ $V_{C1}(0^-) = V = V_{C1} (0^+)$ $V_{C2}(0^-) = 0V = V_{C2}(0^+)$ $i_L(0^-) = 0A = i_L(0^+)$

At $t = 0^+$: A resistive circuit: Network is in transient state.

Electric Circuits


$$\begin{split} i_{l}(0^{+}) &= i_{2}(0^{+}) \\ By \ KVL \Rightarrow \\ -Ri_{1}(0^{+})-V-Ri_{1}(0^{+}) &= 0 \\ i_{1}(0^{+}) &= \frac{-V}{2R} = i_{2}(0^{+}) \\ OBS: \ i_{L}(t) &= i_{1}(t) \sim i_{2}(t) \\ At \ t &= 0^{+} \Rightarrow \\ i_{L}(0^{+}) &= i_{1}(0^{+}) \sim i_{2}(0^{+}) \end{split}$$

= 0A \Rightarrow Inductor: open circuit


39.

19

Sol: (b) Transform the network given in fig. (a) into the S-domain.

$$V(s) = Z(s) \cdot I(s)$$

By KVL in S-domain \Rightarrow
$$-RI_1(s) - \frac{V}{s} - \frac{I_1(s)}{SC} - SL(I_1(s) - I_2(s)) = 0$$

Similarly:
$$-RI_2(s) - \frac{I_2(s)}{SC} - SL(I_2(s) - I_1(s)) = 0$$

$$\begin{bmatrix} R + SL + \frac{1}{SC} & -SL \\ -SL & R + SL + \frac{1}{SC} \end{bmatrix} \begin{bmatrix} I_1(s) \\ I_2(s) \end{bmatrix} = \begin{bmatrix} -V/S \\ 0 \end{bmatrix}$$

Engineering Publications

52

Electric Circuits

$$\omega t_{o} = \tan^{-1} \left(\frac{\omega L}{R} \right)$$

$$2\pi (50) t_{o} = \tan^{-1} \left(\frac{2\pi (50) (0.01)}{5} \right)$$

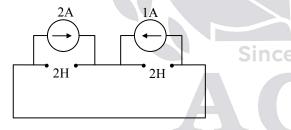
$$t_{o} = 32.14 \times \frac{\pi}{180^{\circ}}$$

$$t_{o} = 1.78 \text{ msec.}$$

So, by switching exactly at 1.78msec from the instant voltage becomes zero, the current is free from Transient.

42.

Sol: $\omega t_o + \phi = \tan^{-1}(\omega CR) + \frac{\pi}{2}$


$$2t_{o} + \frac{\pi}{4} = \tan^{-1}(\omega CR) + \frac{\pi}{2}$$

$$2t_{o} + \frac{\pi}{4} = \tan^{-1}\left(2\left(\frac{1}{2}\right)(1)\right) + \frac{\pi}{2} = \frac{\pi}{4} + \frac{\pi}{2}$$

$$2t_{o} = \frac{\pi}{2} \Longrightarrow t_{o} = 0.785 \text{ sec}$$

43. Ans: (a)

Sol. At $t=0^+$ the circuit is

Inductor never allows sudden change in current but if we allow the current to suddenly change then impulse voltage will establish redistributing flux and then current become equal in them.

Now solving using Laplace transform.

$$\underbrace{ \begin{array}{c} 4V \\ 1+ \end{array} }_{I(s)} \underbrace{ \begin{array}{c} 2s \\ +1 \end{array} }_{I(s)} \underbrace{ \begin{array}{c} 2v \\ +1 \end{array} \\}_{I(s)} \underbrace{ \begin{array}{$$

$$I(s) [4s] = 4 - 2$$

= 2
$$\Rightarrow I(s) = \frac{1}{2s}$$

$$i(t) = L^{-1}[I(s)] = \frac{1}{2}A$$

44. Ans: (b)

Sol: For an LTI network:

y(t) = h(t) * x(t) , Y(s) = H(s) X(s)Statement (I) is True. $\delta(t) \xrightarrow{LT} 1$

Statement (II) is True and is not the correct explanation of Statement (I).

45. Ans: (a)

Sol: Statement (I): True Statement (II): True & correct explanation

46. Ans: (b)

Sol: A - 1 : Linearity property

- B-6 : Shift property
- C-4: Time differentiation property
- D-3 : Integration property

$$\int_{-\infty}^{t} f(t) dt \rightarrow \frac{F(s)}{s} + \frac{1}{s} \int_{-\infty}^{0} f(x) dx$$

and
$$\int_{0}^{t} f(t) dt \rightarrow \frac{F(s)}{s}$$

Engineering Publications	53				Postal Coa	ching Solution
47. Ans: (a) Sol:			(C)	R < R _C (Under damping)	$ \begin{array}{c} p_1 = \alpha + j \beta \\ p_2 = \alpha - j\beta \\ \alpha < 0 \end{array} $	(2) Sinusoid Decaying
v(t) 1F			(D)	R = 0 (No damping)	$p_1 = j\beta$ $p_2 = -j\beta$	(1)Sustained(constantamplitude)
$I(s) = \frac{V(s)}{1 + \frac{1}{s}} = \frac{s V(s)}{s + 1}$ (A) v(t) = u(t) ,		49. Sola	Ans: : A. TI	(d) ne internal	impedance	oscillations of an ide
$V(s) = \frac{1}{s}$, $I(s) = \frac{1}{s+1}$ (2) (B) $v(t) = r(t)$,	2) EER <i>I</i>	No	N ir	 current source is infinity (7). Note that for ideal voltage source, to internal impedance is zero. Attenuated natural oscillations, the poles 		
$V(s) = \frac{1}{s^2} , I(s) = \frac{1}{s(s+1)} $ (C) $v(t) = \delta(t) , V(s) = 1,$	4)		th ha	transfer fur and part of th	inction must	lie on the le requency plan
$I(s) = \frac{s}{(s+1)} \qquad \dots $)			faximum $\frac{E}{2} \Big ^2 \times \mathbf{R} =$		ansferred

(D)
$$v(t) = e^{-t} u(t)$$
, $V(s) = \frac{1}{s+1}$,
 $I(s) = \frac{s}{s+1}$,(3)

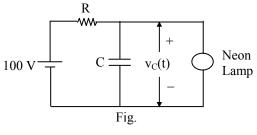
$$(s) = \frac{s}{(s+1)^2}$$

48. Ans: (d)

Sol: Value of Location i(t), Fig R of poles $R > > R_C$ (A) $\mathbf{p}_1 = -\boldsymbol{\sigma}_1 ,$ (4)(Over $p_2 = -\sigma_2$ damping) (B) $R = R_C$ (3) $p_1 = p_2$ = (Critical -σ damping)

⊦jβ (2) Sinusoid -jβ Decaying ß (1) Sustained -jβ (constant amplitude) oscillations

$$\left(\frac{E}{2R}\right)^2 \times R = \frac{E^2}{4R} \quad (3)$$


D. The roots of the characteristic equation give natural response of the circuit. (2)

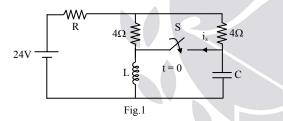
So the answer is (d) 199

01.

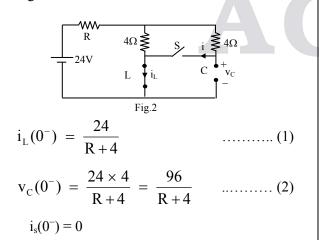
Sol: The relevant circuit is shown in Fig. for t>0.

 $C = 1 \mu F$

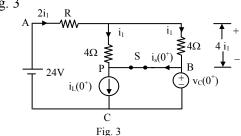
ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad


Since

Electric Circuits


Expresenting Publications Neon lamp ionizes at 20 sec and glows when v_C-(20) = 75 V For t > 0, v_C(t) = $100 \left(1 - e^{-\frac{20}{\tau}}\right)$, $\tau = RC$ $75 = 100 \left(1 - e^{-\frac{20}{\tau}}\right)$, $\left(1 - e^{-\frac{20}{\tau}}\right) = \frac{3}{4}$, $e^{-\frac{20}{\tau}} = \frac{1}{4}$ $e^{\frac{20}{\tau}} = 4$, $\frac{20}{\tau} = \log_e 4$ $\tau = RC = \frac{20}{\log_e 4} = 14.42$ $R = \frac{14.42}{10^{-6}} = 14.42 M\Omega$

02.


Sol: The given circuit is shown in Fig. 1

The behaviour of the circuit at $t = 0^-$ is shown in Fig. 2

The behaviour of the circuit at $t = 0^+$ is shown in Fig. 3

Given $i_s(0^+) = 1.2 \text{ A}$ $i_L(0^+) = i_L(0^-)$, $v_C(0^+) = v_C(0^-)$ (3) Let the current through 4 Ω be i_1 . Apply KCL at P.

 $i_1 = i_L(0^+) - i_s(0^+)$ (4) Apply KVL around the mesh APBCA $24 - 2 i_1 R - 4 i_1 = v_C(0^+)$ $24 - i_1(2R + 4) = v_C(0^+)$

$$24 - (2R + 4) \left[\frac{24}{R+4} - 1.2 \right] = \frac{96}{R+4}$$

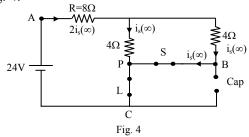
$$24 - (2R + 4) \left[\frac{24 - 1.2R - 4.8}{R+4} \right] = \frac{96}{R+4}$$

$$24 (R + 4) - (2R + 4) (-1.2R + 19.2) = 96$$

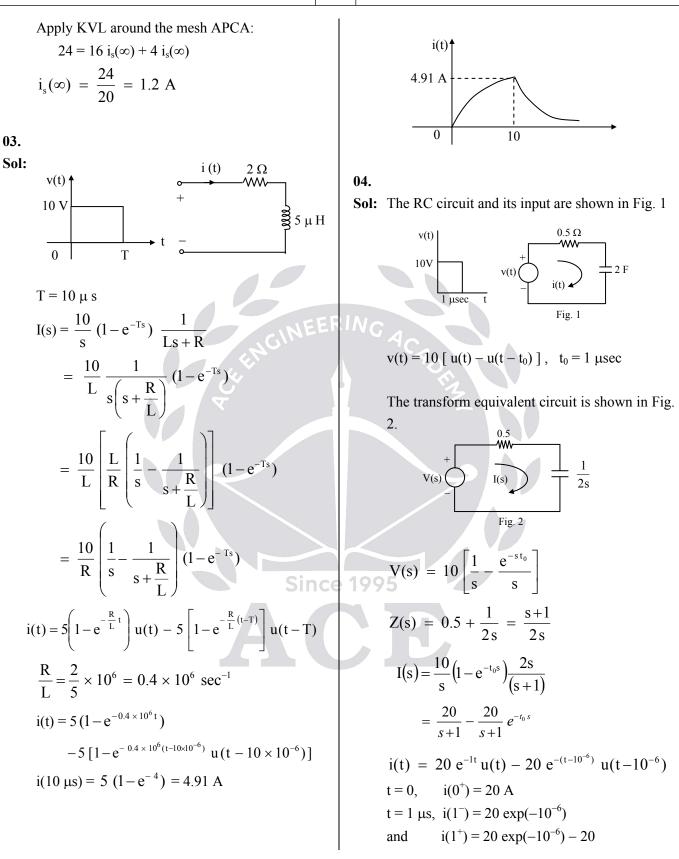
$$24 R - (-2.4 R^2 + 38.4 R - 4.8 R + 76.8) = 0$$

$$R^2 - 4 R - 32 = 0$$

$$(R - 8) (R + 4) = 0$$

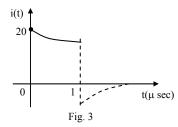

$$R = 8 \Omega, -4 \Omega$$

The negative resistance is not valid.


$$\therefore R = 8 \Omega$$

19

At $t = \infty$, the behaviour of the circuit is shown in Fig. 4.


	ACE
E CONTRACTOR	ngineering Publications

ACE Engineering Publications

Electric Circuits

The variation of i(t) in shown in Fig. 3.

05.

Sol: Given v(t) can be expressed as follows

$$V(t) = \frac{1}{2} [r(t) - r(t - t_0)]$$

= $\frac{1}{2} [r(t) - r(t - 2)]$
$$V(s) = \frac{1}{2s^2} (1 - e^{-2s})$$

Converting everything into Laplace domain

$$V(t) = \frac{10}{10} = 0.2F = V(s) = \frac{10}{1(s)} = \frac{5}{s}$$
(i)

$$I(s) = \frac{V(s)}{1 + \frac{5}{s}} = \frac{V(s)s}{s + 5}$$
(ii)

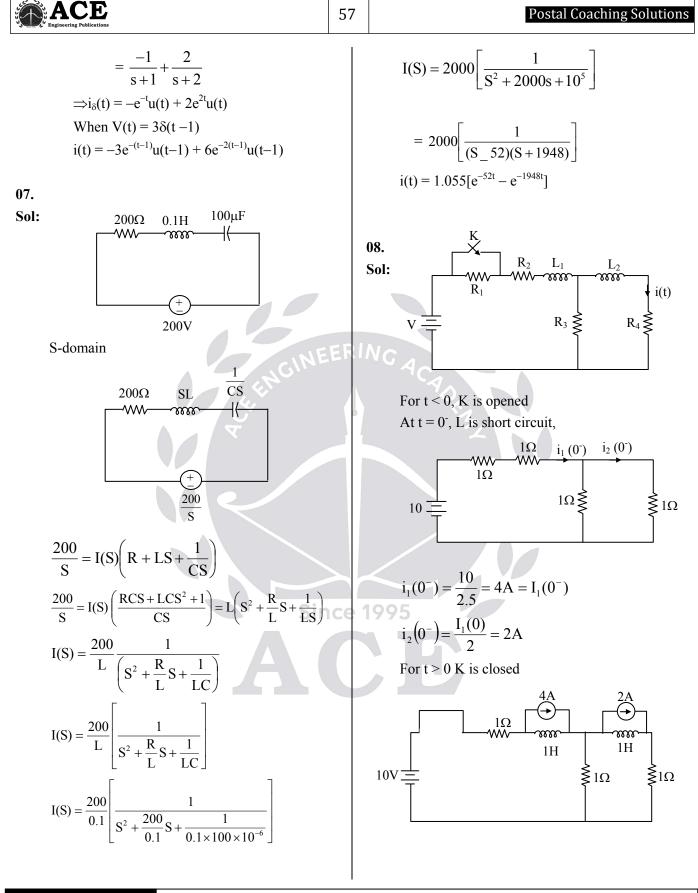
$$I(s) = \frac{1 - e^{-2s}}{2s(s + 5)} = \frac{1}{2} \left[\frac{1}{s(s + 5)} - \frac{e^{-2s}}{s(s + 5)} \right]$$
(ii)

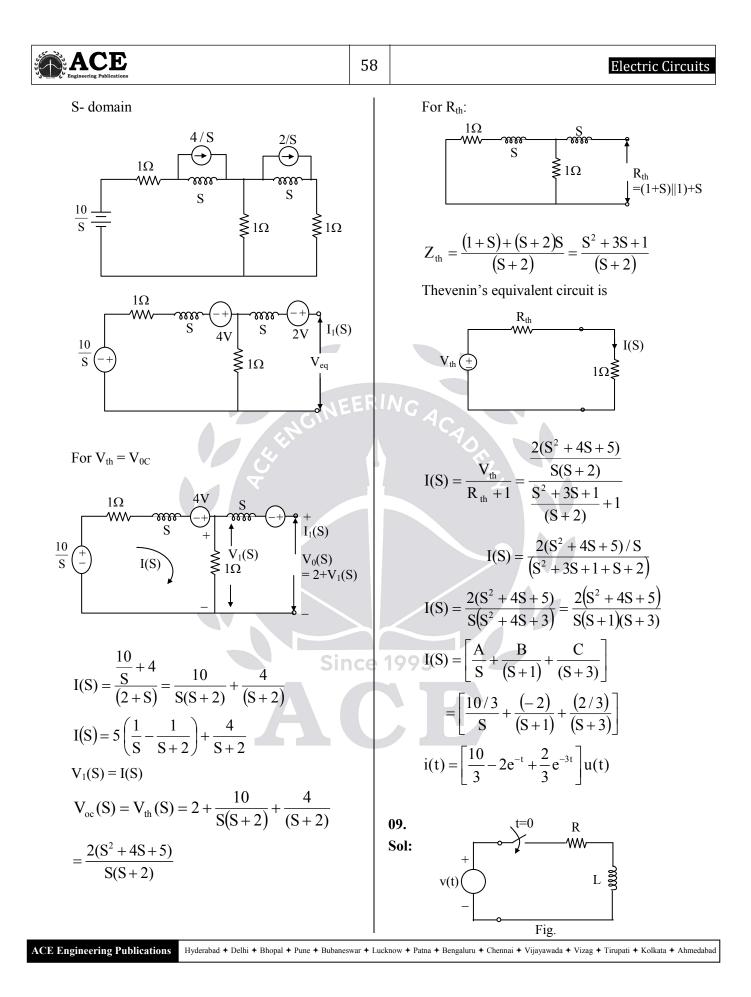
$$I(s) = \frac{1}{10} \left[\frac{1}{s} - \frac{1}{(s + 5)} \right] - \frac{1}{10} \left[\frac{1}{s} - \frac{1}{s + 5} \right] e^{-2s}$$

Taking inverse Laplace transform

$$i(t) = \frac{1}{10} \left[u(t) - e^{-5t}u(t) \right] -$$
(iii)

$$\frac{1}{10} \left[u(t - 2) - e^{-5t}u(t - 2) \right]$$


So,


$$i(t) = \frac{1}{10} \{u(t) - u(t-2) + e^{-5t} [u(t-2) - u(t)]\}$$

06

Sol: The RLC series circuit is shown in Fig. 1.

$$\begin{array}{c} \underset{V(s)}{\overset{P}{\longrightarrow}} \underset{V(s)}{\overset{P}{\longrightarrow}} \underset{C}{\overset{P}{\longrightarrow}} \underset{Fig.1}{\overset{P}{\longrightarrow}} \underset{Fig.1}{\overset{$$

10.

Sol:

59

$$\begin{aligned} \mathsf{v}(t) &= L \; \frac{\mathrm{di}(t)}{\mathrm{dt}} + R \; i(t) \\ L \; \frac{\mathrm{di}}{\mathrm{dt}} + R \; i(t) = E \sin\left(\omega t + \phi\right) \\ \text{Phasor voltage, } \vec{V} = E \; e^{j\phi} \\ \text{Phasor current, } \vec{I} &= \frac{\vec{V}}{Z} = \frac{E \; e^{j\phi}}{R + j\omega L} \\ &= \frac{E}{\sqrt{R^2 + \omega^2 L^2}} \; e^{j\left(\phi - \tan^{-1}\left(\frac{\omega L}{R}\right)\right)} \\ i_{ss}(t) &= \frac{E}{\sqrt{R^2 + \omega^2 L^2}} \sin\left[\omega t + \phi - \tan^{-1}\left(\frac{\omega L}{R}\right)\right] \\ \text{The transient part of current is obtained from the homogeneous equation:} \\ &\frac{\mathrm{di}(t)}{\mathrm{dt}} + \frac{R}{L}i(t) = 0, \quad i_{tr}(t) = K \; e^{-\frac{R}{L}t} \\ &i_{tot}(t) = K \; e^{-\frac{R}{L}t} + i_{ss}, \quad i_{tot}(0) = 0 \\ &K = -\frac{E}{\sqrt{R^2 + \omega^2 L^2}} \sin\left[\phi - \tan^{-1}\left(\frac{\omega L}{R}\right)\right] \\ &\text{There is no transient in the current if } \\ &i_{tr}(t) = 0 \; \text{or } K = 0 \; \text{or } \phi = \tan^{-1}\left(\frac{\omega L}{R}\right) \\ &\frac{1 \; \mathrm{di}_1}{\mathrm{dt}} + 1i_1(t) - \frac{2 \; \mathrm{di}_2}{\mathrm{dt}} = 5 \\ &-2 \; \frac{\mathrm{di}_i}{\mathrm{dt}} + 4 \; \frac{\mathrm{di}_2}{\mathrm{dt}} + 1i_2(t) = 0 \\ &i_1(t) \to I_1(s), \; i_2(t) \to I_2(s) \\ &(s+1) I_1 - 2s I_2 = \frac{5}{s} \end{aligned}$$

$$I_{1}(s) = \frac{\Delta_{1}}{\Delta},$$

$$\Delta_{1} = \begin{vmatrix} \frac{5}{s} & -2s \\ 0 & 4s + 1 \end{vmatrix} = \frac{5(4s+1)}{s}$$

$$= \frac{20(s+0.25)}{s}$$

$$\Delta = \begin{vmatrix} s+1 & -2s \\ -2s & 4s+1 \end{vmatrix} = 5s+1 = 5(s+0.2)$$

$$I_{1}(s) = \frac{4(s+0.25)}{s(s+0.2)} = \frac{5}{s} - \frac{1}{s+0.25}$$

$$i_{1}(t) = (5 - e^{-0.2t})u(t)$$

4. AC Circuit Analysis

Solutions for Objective Practice Questions

01.

if

Sol:
$$I_{avg} = I_{dc} = \frac{1}{T} \int_{0}^{T} i(t) dt$$

= 3 + 0 + 0 = 3A
 $I_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) dt}$
= $\sqrt{3^{2} + \left(\frac{4\sqrt{2}}{\sqrt{2}}\right)^{2} + \left(\frac{5\sqrt{2}}{\sqrt{2}}\right)^{2} + 0 + 0 + 0}$
= 5 $\sqrt{2}A$

02.

Sol:
$$V_{dc} = V_{avg} = \frac{1}{T} \int_0^T V(t) dt = 2V$$

Here the frequencies are same, by doing simplification

$$v(t) = 2 - 3\sqrt{2} \left(\cos 10t \times \frac{1}{\sqrt{2}} - \sin 10t \times \frac{1}{\sqrt{2}} \right) + 3\cos 10t$$

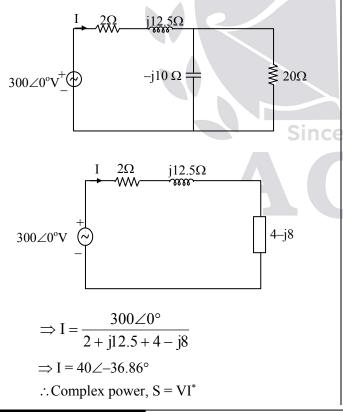
ACE Engineering Publications

 $-2 \text{ s } \text{I}_1 + (4 \text{ s} + 1)\text{I}_2 = 0$

= 2 + 3sin10t V
So V_{rms} =
$$\sqrt{(2)^2 + (\frac{3}{\sqrt{2}})^2}$$

= $\sqrt{8.5}$ V

03.


Sol:
$$X_{avg} = X_{dc} = \frac{1}{T} \int_0^T x(t) dt = 0$$

 $X_{rms} = \sqrt{\frac{1}{T} \int_0^T x^2(t) dt} = \frac{A}{\sqrt{3}}$

04. Ans: (a)

Sol: For a symmetrical wave (i.e., area of positive half cycle = area of negative half cycle.) The RMS value of full cycle is same as the RMS value of half cycle.

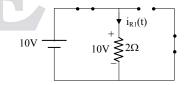
05.

Sol: Complex power, $S = VI^*$

Electric Circuits = $300 \angle 0^{\circ} \times 40 \angle 36.86^{\circ}$

= 9600 +j7200 ∴ Reactive power delivered by the source Q = 72000 VAR

= 7.2 KVAR


06.

Sol:
$$Z = j1 + (1-j1)||(1+j2) = 1.4 + j 0.8$$

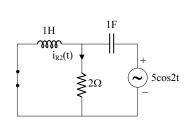
 $I = \frac{E_1}{Z}|_{By \text{ ohm's law}} = \frac{10\angle 20}{1.4 + j8}$
 $= 6.2017\angle -9.744^\circ \text{ A}$
 $I_1 = \frac{I(1+j2)}{1-j1+1+j2}$
 $= 6.2017\angle 27.125^\circ \text{ A}$
 $I_2 = \frac{I(1-j1)}{1-j1+1+j2}$
 $= 3.922\angle -81.31^\circ \text{ A}$
 $E_2 = (1-j1)I_1 = 8.7705\angle -17.875^\circ \text{ V}$
 $E_0 = 0.5I_2 = 1.961\angle -81.31^\circ \text{ V}$

07.

Sol: Since two different frequencies are operating on the network simultaneously always the super position theorem is used to evaluate the response.

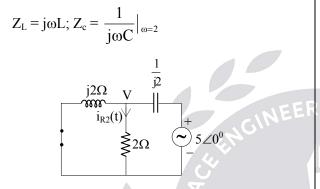
By SPT: (i)

Network is in steady state, therefore the network


is resistive.
$$I_{R1}(t) = \frac{10}{2} = 5A$$

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

60


(ii)

ACE

Network is in steady state

As impedances of L and C are present because of $\omega = 2$. They are physically present.

Network is in phasor domain

Nodal \Rightarrow

$$\frac{V}{j2} + \frac{V}{2} + \frac{V - 5 \angle 0^{0}}{-j0.5} = 0$$

$$V = 6.32 \angle 18.44^{0}$$

$$I_{R2} = \frac{V}{2} = 3.16 \angle 18.44^{0} = 3.16 e^{j18.14^{0}}$$

$$i_{R2}(t) = R.P[I_{R2}e^{j2t}]A$$

$$= 3.16 cos (2t + 18.44^{0})$$

By super position theorem,

$$i_{R}(t) = i_{R1}(t) + i_{R2}(t)$$

$$= 5 + 3.16 cos (2t + 18.44^{0})A$$

Ans: (c)

Sol:
$$\frac{1}{s^2 + 1} - I(s)\left(2 + 2s + \frac{1}{s}\right) = 0$$

08.

$$I(s)\left(\frac{2s+2s^{2}+1}{s}\right) = \frac{1}{s^{2}+1}$$
$$I(s) + 2s^{2}I(s) + 2sI(s) = \frac{s}{s^{2}+1}$$
$$i(t) + \frac{2d^{2}i}{dt^{2}} + 2\frac{di}{dt} = \cos t$$
$$2\frac{d^{2}i}{dt^{2}} + 2\frac{di}{dt} + i(t) = \cos t$$

09.

Sol:
$$V = \sqrt{V_R^2 + (V_L - V_C)^2}$$

 $V = V_R = I.R$
 $100 = I.20; I = 5A$
Power factor $= \cos\phi = \frac{V_R}{V} = \frac{V_R}{V_R} = 1$

So, unity power factor.

10.

Sinc

Sol: By KCL in phasor – domain

$$\Rightarrow -I_1 - I_2 - I_3 = 0$$

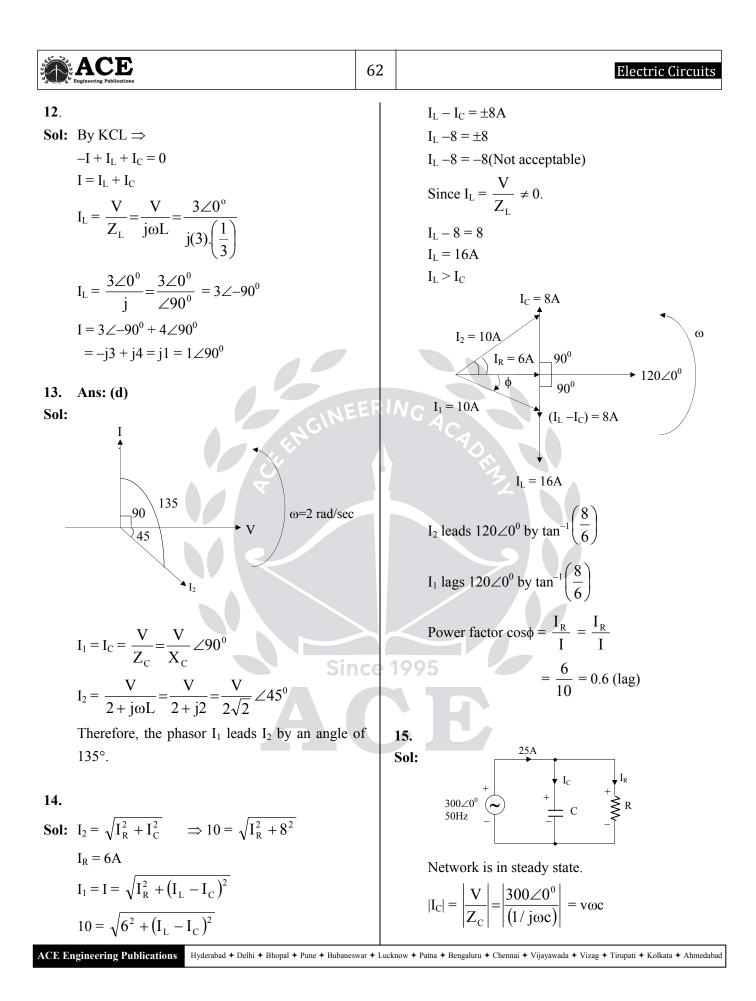
$$I_3 = -(I_1 + I_2)$$

$$i_1(t) = \cos(\omega t + 90^0)$$

$$I_1 = 1 \angle 90^0 = j1$$

$$I_2 = 1 \angle 0^0 = (1 + j0)$$

$$I_3 = \sqrt{2} \angle \pi + 45^0 = \sqrt{2} e^{j(\pi + 45)}$$


$$i_3(t) = \text{Real part}[I_3.e^{j\omega t}]\text{mA}$$

$$= -\sqrt{2} \cos(\omega t + 45^0 + \pi)\text{mA}$$

$$i_3(t) = -\sqrt{2} \cos(\omega t + 45^0)\text{mA}$$

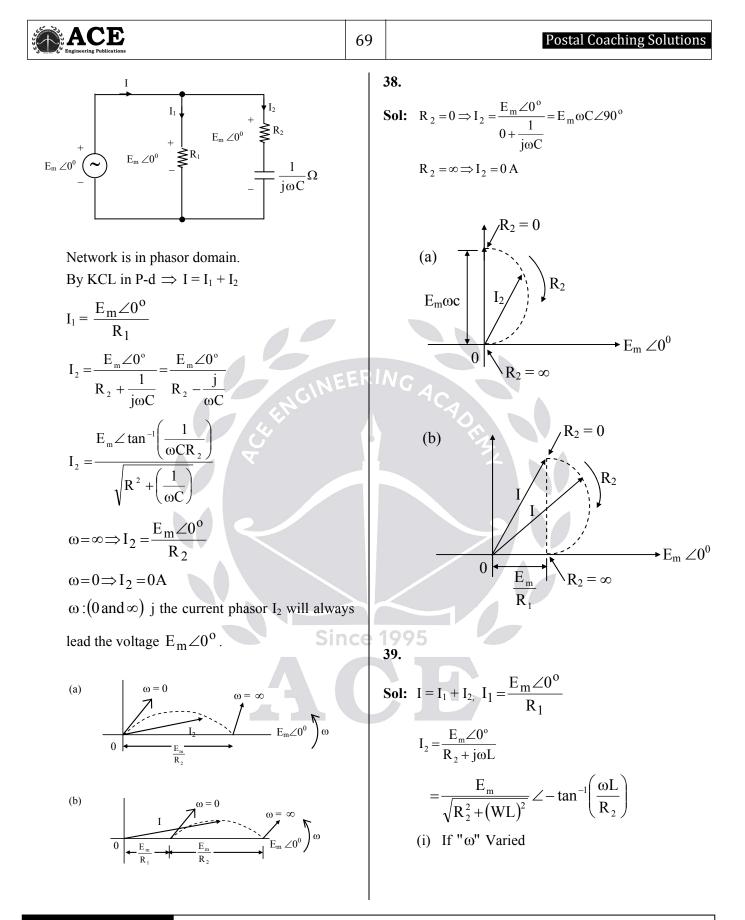
11.

Sol:
$$I = \frac{V}{R} + \frac{V}{Z_L} + \frac{V}{Z_C} = 8 - j12 + j18$$

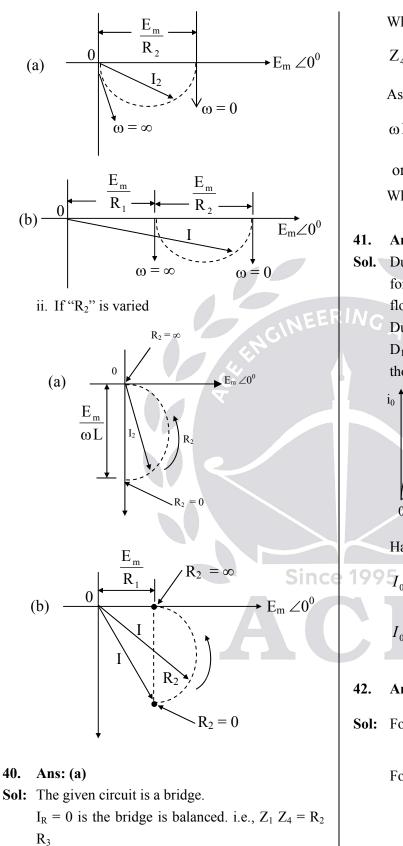
 $I = 8 + 6j$
 $|I| = \sqrt{100} = 10A$

ACE Engineering Publications	63	Postal Coaching Solutions
$= 300 \times 2\pi \times 50 \times 159.23 \times 10^{-6}$ $I_{C} = 15A$ $I = \sqrt{I_{R}^{2} + I_{C}^{2}}$		$\frac{50}{\sqrt{2}} \times \sqrt{2} \cos\phi = 2 \times 15$ $\cos\phi = 0.6 \text{ (lag)}$
$25 = \sqrt{I_R^2 + 15^2}$ $I_R = 20A$ 360×0^0		17. Ans: (d) Sol: $V_L = 14V$
Solliz $V_{R} = RI_{R} By \text{ ohm's law}$ $300 = R.20$ $R = 15\Omega$ Network is in steady state $I_{R} = \frac{360}{15} = 24A$ So the required $I_{C} = \sqrt{25^{2} - 24^{2}}$ $v\omega c = 7$ $360 \times 2\pi \times f \times 159.23 \times 10^{-6} = 7$ $f = 19.4 \text{Hz}$ OBS: $I_{C} = \frac{V}{Z_{C}}$ $Z_{C} = \frac{1}{j\omega c} \Omega$		$V_{c} = 10V$ $V_{c} = 10V$ $V = \sqrt{V_{R}^{2} + (V_{L} - V_{c})^{2}}$ $= \sqrt{(3)^{2} + (14 - 10)^{2}}$ $V = 5 V$ 18. Sol: $Y = Y_{1} + Y_{c} = \frac{1}{Z_{L}} + \frac{1}{Z_{c}}$ $= \frac{1}{30 \angle 40^{0}} + \frac{1}{(\frac{1}{j\omega c})}$ $= j\omega c + \frac{1}{30} \angle -40^{0}$ $= j\omega c + \frac{1}{30} (\cos 40^{0} - j\sin 40^{0})$ Unit power factor $\Rightarrow j$ -term = 0 $\omega c = \frac{\sin 40^{0}}{30}$
Power delivered = Power observed (By Tellegen's Theorem) $P_T = I_{rms}^2 (5 + 10)$ $V_{rms} I_{rms} cos\phi = (\sqrt{2})^2 (15)$		$C = \frac{\sin 40^{\circ}}{2\pi \times 50 \times 30} = 68.1 \mu F$ $C = 68.1 \mu F$

ACE Engineering Publications


	ACE Engineering Publications	64		Electric Circuits
19. Sol:	Ans: (b) To increase power factor shunt capacitor is to b placed.			P = $10\sqrt{3}$ W, Q = 10 VAR S = $10(\sqrt{3} + j1)$ VA
	VAR supplied by capacitor = P (tan ϕ_1 -tan ϕ_2) = 2×10 ³ [tan(cos ⁻¹ 0.65) - tan(cos ⁻¹ 0.95)] = 1680 VAR VAR supplied = $\frac{V^2}{X_c} = V^2 \omega C = 1680$		22. Sol:	Ans: (a) $S = VI^*$ $= (10 \angle 15^\circ) (2 \angle 45^\circ)$ = 10 + j17.32 S = P + jQ P = 10 W Q = 17.32 VAR
• •	$\therefore C = \frac{1680}{(115)^2 \times 2\pi \times 60} = 337 \mu F$			Ans: (c) $P_{R} = (I_{rms})^{2} \times R$ $I_{rms} = \frac{10}{\sqrt{2}}$
20. Sol:	$Z = \frac{V}{I} = \frac{160 \angle 10^{\circ} - 90^{\circ}}{5 \angle -20^{\circ} - 90^{\circ}} = 32 \angle 30^{\circ}$	ERI	$\mathbf{M}\mathbf{C}$	$P_{\rm R} = \left(\frac{10}{\sqrt{2}}\right)^2 \times 100$
	$\phi = 30^{\circ} \text{ (Inductive)}$ $V_{\text{rms}} = \frac{160}{\sqrt{2}} \text{ Vj, I}_{\text{rms}} = \frac{5}{\sqrt{2}}$ Real power (P) = $\frac{160}{\sqrt{2}} \times \frac{5}{\sqrt{2}} \times \cos 30^{\circ}$		24. Sol:	P _{avg} = $\frac{V_{rms}^2}{R} = \frac{\left(\frac{240}{\sqrt{2}}\right)^2}{60} = 480$ watts V = 240∠0 ⁰
	$= 200 \sqrt{3} W$ Reactive power (Q) $= \frac{160}{\sqrt{2}} \times \frac{5}{\sqrt{2}} \times \frac{1}{2}$ = 200 VAR Complex power $= P+jQ = 200(\sqrt{3}+j1) VA$	ice '		$I_{R} = \frac{V}{R} = \frac{240}{60} = 4A$ $I_{L} = \frac{V}{Z_{L}} = \frac{V}{X_{L}} = \frac{240}{40} = 6A$ $I_{C} = \frac{V}{Z_{C}} = \frac{V}{X_{C}} = \frac{240}{80} = 3A$
21. Sol:	V = $4 \ge 10^{\circ}$ and I = $2 \le -20^{\circ}$ Note: When directly phasors are given the magnitudes are taken as rms values since the are measured using rms meters. V _{rms} = 4 V and I _{rms} = 2 A $Z = \frac{V}{I} = 2 \ge 30^{\circ}$; $\phi = 30^{\circ}$ (Inductive)			$I_{\rm C} - \frac{Z_{\rm C}}{Z_{\rm C}} = \frac{1}{R_{\rm C}} = \frac{1}{80} = 3R$ $I_{\rm L} > I_{\rm C} : \text{Inductive nature of the circuit.}$ $I = \sqrt{I_{\rm R}^2 + (I_{\rm L} - I_{\rm C})^2} = \sqrt{4^2 + 3^2} = 5R$ Power factor = $\frac{I_{\rm R}}{I} = \frac{4}{5} = 0.8$ (lagging)

Expineering Publications	65	Postal Coaching Solutions
25. Ans: (a) Sol: $\begin{array}{c} + I_1 + I_2 \\ 3\Omega \\ 100 \angle 0^0 \\ - \\ 100 \angle 0^0 \\ - \\ - \\ 3\Omega \\ 100 \angle 0^0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $		$5 \sin(5000t) \xrightarrow{50\Omega} j5\Omega \xrightarrow{j5\Omega} j5\Omega$ $-jX_c$ $3 j5\Omega \xrightarrow{-j}X_c$ When I = 0, \Rightarrow impedance seen by the source should be infinite
NW is in Steady state. $V = 100 \angle 0^0 \Rightarrow V_{rms} = 100V$ $100 \angle 0^0$	- 5 1	$\Rightarrow Z = \infty$ $\therefore Z = (50+j5) + (j5) \parallel j(5 - X_c)$ $i5 \times i(5 - X_c)$
$I_{1} = \frac{100 \angle 0^{0}}{(3 + j4)\Omega} \implies I_{1} = 20 = I_{1rms}$ $I_{2} = \frac{100 \angle 0^{0}}{(1 - i1)\Omega} \implies I_{2} = \frac{100}{\sqrt{2}} A = I_{2rms}$	EKI	$= 50 + j5 + \frac{j5 \times j(5 - X_c)}{j5 + j(5 - X_c)} = \infty$ $\Rightarrow j (10 - X_c) = 0$
$P = P_1 + P_2$ = $(I_{1rms})^2 \cdot 3 + (I_{2rms})^2 \cdot 1$		$\Rightarrow j (10 - X_c) = 0$ $\Rightarrow X_c = 10 \Rightarrow \frac{1}{\omega c} = 10$
$= (1_{1 \text{ rms}}) \cdot 3 + (1_{2 \text{ rms}}) \cdot 1$ $= 20^2 \cdot 3 + \left(\frac{100}{\sqrt{2}}\right)^2 \cdot 1$		$\Rightarrow C = \frac{1}{5000 \times 10} = 20 \ \mu F$
P = 6200 W $Q = Q_1 + Q_2$ $= (I_{1rms})^2 . 4 + (I_{2rms})^2 . (1)$		27. Ans: (c) Sol: $I_{rms} = \sqrt{3^2 + \left(\frac{4}{\sqrt{2}}\right)^2 + \left(\frac{4}{\sqrt{2}}\right)^2}$
= 3400 VAR So, S = P+jQ = (6200+j3400) VA	ice 1	$=\sqrt{25} = 5 \text{ A}$ Power dissipation = $I_{\text{rms}}^2 \text{ R}$
26. Sol: $50\Omega 1mH 1mH$	Y	$= 5^2 \times 10$ $= 250 \text{ W}$
$5\sin(5000t)$ \sim $31mH$ C		28. Sol: $X_C = X_L$ $\Rightarrow \omega = \omega_0$, the circuit is at resonance $V_C = QV_S \angle -90^0$ $Q = \frac{\omega_0 L}{R} = \frac{X_L}{R} = 2$
ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubanes	war + Luck	now + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad


Engineering Publications	6	lectric Circuits
$= \frac{1}{\omega_0 cR} = \frac{X_c}{R} = 2$ $\Rightarrow V_c = 200 \angle -90^0$ $= -j200V$	$R = \frac{1}{\omega c} \omega_{L}$	
29.	0	• 00
Sol: Series RLC circuit	ω_0	
$f = f_{L}$, PF = cos ϕ = 0.707(lead)	32.	
$f = f_{H_{,}} PF = \cos \phi = 0.707(lag)$	Sol: $Y = \frac{1}{1} + \frac{1}{1}$	
$f = f_{o}$, $PF = \cos \phi = 1$	Sol: $Y = \frac{1}{R_L + j\omega L} + \frac{1}{R_C - \frac{j}{\omega C}}$	
 30. Ans: (b) Sol: Network is in steady state (since no switch given) 1×10⁻³∠0⁰A R 	$= \frac{R_{L} - j\omega L}{R_{L}^{2} + (\omega L)^{2}} + \frac{R_{C} + j/\omega}{R_{C}^{2} + (1/\omega C)^{2}}$ $j - \text{term} \Rightarrow 0$ $\omega_{0} = \frac{1}{\sqrt{LC}} \sqrt{\frac{R_{L}^{2} - \frac{L}{C}}{R_{C}^{2} - \frac{L}{C}}} \text{ rad/set}$,
Let I = 1mA $\omega = \omega_0$ (Given) $\Rightarrow I_R = I$	$\begin{array}{c} \textbf{33.} \\ \textbf{Sol:} \\ \underline{10\Omega} \\ \underline{10\Omega} \\ \underline{10\Pi} \\ 10$	
$I_{\rm L} = QI \angle -90^0 = -jQI$		
$I_C = QI \angle 90^0 = jQI$		
$I_L + I_C = 0$ Sin	1995A Fig. E	
$\begin{split} I_R + I_L &= I - jQI \\ &= I \sqrt{1 + Q^2} > I \\ I_R + I_C &= I + jQI \end{split}$	The given circuit is shown in Fig $Z_{AB} = 10 + Z_1$	
$=I\sqrt{1+Q^2} > I$	where, $Z_1 = \left(\frac{-j}{\omega}\right) \ \left(j4\omega - \frac{j}{\omega}\right)$	
31. Ans: (c) Sol: Since; "I" leads voltage, therefore capacitive effect and hence the operating frequence $(f < f_0)$	$= \frac{\left(\frac{-j}{\omega}\right)\left(j4\omega - \frac{j}{\omega}\right)}{\frac{-j}{\omega} + j4\omega - \frac{j}{\omega}}$)

ACE Engineering Publications	67	Postal Coaching Solutions
$=\frac{4-\frac{1}{\omega^2}}{j4\omega-\frac{j2}{\omega}}$		$=\left(\frac{5/\sqrt{2}}{\sqrt{2}}\right)^2 \cdot 2 + \left(\frac{5/\sqrt{2}}{\sqrt{2}}\right)^2 \cdot 2$
For circuit to be resonant i.e., $\omega^2 = \frac{1}{4}$ $\omega = \frac{1}{2} = 0.5 \text{ rad/sec}$		= 25 watts (ii) $\frac{L}{C} \neq R^2$ circuit will resonate at only one frequency.
$\therefore \omega_{\text{resonance}} = 0.5 \text{ rad/sec}$		i.e., at $\omega_0 = \frac{1}{\sqrt{\text{LC}}} = \frac{1}{4} \text{ rad/sec}$
34. Sol: (i) $\frac{L}{C} = R^2 \Rightarrow \text{circuit}$ will resonate for all the frequencies, out of infinite number of frequencies we are selecting one frequency. i.e., $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{2} \text{ rad/sec}$ then $Z = R = 2\Omega$. $I = \frac{V}{Z} = \frac{10 \angle 0^0}{2} = 5 \angle 0^0$ $i(t) = 5 \cos \frac{t}{2} A$ $Z_L = j\omega_0 L = j2\Omega$; $Z_C = \frac{1}{j\omega_0 c} = -j2\Omega$. $I_L = \frac{I(2-j2)}{2+j2+2-j2} = \frac{1}{\sqrt{2}} \angle -45^0$ $i_L = \frac{5}{\sqrt{2}} \cos(\frac{t}{2}-45^0) A$ $i_c = \frac{I(2+j2)}{2+j2+2-j2} = \frac{I}{\sqrt{2}} \angle 45^0$ $i_c = \frac{5}{\sqrt{2}} \cos(\frac{t}{2}+45^\circ) A$ $P_{avg} = I_{L(rms)}^2 \cdot R + I_{c(rms)}^2 \cdot R$	of F	Then Y = $\frac{2R}{R^2 + \frac{L}{C}}$ mho Y = $\frac{2(2)}{2^2 + \frac{4}{4}} = \frac{4}{5}$ mho Z = $\frac{5}{4}\Omega$. I = $\frac{V}{Z} = \frac{10 \ge 0^0}{5/4} = 8 \ge 0^0$ i(t) = $8\cos\frac{t}{4}A$ Z _L = $j\omega_0L = j1\Omega$ Z _c = $\frac{1}{j\omega_0C} = -j1\Omega$ I _L = $\frac{I(2-jI)}{2+jI+2-jI} = \frac{\sqrt{5}}{4}I.\angle \tan^{-1}(\frac{1}{2})$ i _L = $\frac{8\sqrt{5}}{4}\cos(\frac{t}{4} - \tan^{-1}(\frac{1}{2}))$ I _c = $\frac{I(2+jI)}{2+jI+2-jI} = \frac{\sqrt{5}}{4}I\angle \tan^{-1}(\frac{1}{2})$ i _c = $\frac{8\sqrt{5}}{4}\cos(\frac{t}{4} + \tan^{-1}(\frac{1}{2}))$
		$P_{avg} = I_{Lrms}^2 \cdot R + I_{Crms}^2 R$

Engineering Publications	68	Electric Circuits	
$= \left(\frac{2\sqrt{5}}{\sqrt{2}}\right)^2 \cdot 2 + \left(\frac{2\sqrt{5}}{\sqrt{2}}\right)^2 \cdot 2$ $= 40 \text{ watts}$ 35.		$i_{L} = \frac{V_{m}}{2} sin\left(\frac{t}{4} - 90^{0}\right) A$ OBS: Here $i_{L} + i_{C} = 0$ ⇒ LC Combination is like an open circuit.	
Sol: (i) $Z_{ab} = 2 + (Z_L Z_C 2)$ = $2 + jX_L - jX_C 2$ = $\frac{2 + 2X_L X_C (X_L X_C - j2(X_L - X_C))}{(X_L X_C)^2 + 4(X_L - X_C)^2}$ j-term = 0	36. Sol	D	
$\Rightarrow -2(X_L - X_C) = 0$ $X_L = X_C$ $\omega_0 L = \frac{1}{\omega_0 C}$ $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{4.4}} = \frac{1}{4} \text{ rad/sec}$	ERIN	$Q = \frac{2\omega L}{R} = 2 \times \text{orginal} \rightarrow Q - \text{doubled}$ S = V.I $= V \cdot \frac{V}{R + j\omega L} \times \frac{R - j\omega L}{R - j\omega L}$ $S = \frac{V^2}{R^2 + (\omega L)^2} - \frac{V^2 \cdot j\omega L}{R^2 + (\omega L)^2}$	
At resonance entire current flows throug 2Ω only. (ii) $Z_{ab} _{\omega=\omega_0} = 2 + 2 = 4\Omega$ $X_L = X_C$ (iii) $V_i(t) = V_m \sin\left(\frac{t}{4}\right)V$ $Z = 4\Omega$ Sin		S = P + jQ Active power (P) = $\frac{V^2}{R^2 + (\omega L)^2}$ $P = \frac{V^2}{R^2(1 + Q^2)}$	
$i(t) = \frac{V_i(t)}{Z} = \frac{V_m}{4} \sin\left(\frac{t}{4}\right) = \dot{i}_R$ $V = 2i_R = \frac{V_m}{2} \sin\left(\frac{t}{4}\right) V = V_C = V_L$	37.	P ≈ $\frac{V^2}{R^2 Q^2}$ As Q is doubled, P decreases by four times. • $Z_{0} = \frac{1}{R^2 Q^2}$	
$i_{C} = C \frac{dV_{C}}{dt} = \frac{V_{m}}{2} \cos\left(\frac{t}{4}\right)$ $i_{c} = \frac{V_{m}}{2} \sin\left(\frac{t}{4} + 90^{0}\right) A$ $i_{L} = \frac{1}{L} \int V_{L} dt = \frac{-V_{m}}{2} \cos\left(\frac{t}{4}\right)$	501	: $Z_{\rm C} = \frac{1}{j\omega {\rm C}}$ $\omega = 0; Z_{\rm C} = \infty \Rightarrow {\rm C}$: open circuit $\Rightarrow i_2 = 0$ $\omega = \infty; Z_{\rm C} = 0 \Rightarrow {\rm C}$: Short Circuit $\Rightarrow i_2 = \frac{{\rm E}_{\rm m}}{{\rm R}_2} \angle 0^{\circ}$ Transform the given network into phasor domain.	
ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad			

Where $Z_1 = R_1 + j\omega L_1$,

$$\mathbf{Z}_4 = \mathbf{R}_4 - \frac{\mathbf{j}}{\mathbf{\omega}\mathbf{C}_4}$$

As $R_2 R_3$ is real, imaginary part of $Z_1 Z_4 = 0$

$$\omega L_1 R_4 - \frac{R_1}{\omega C_4} = 0$$
 or $\frac{\omega L_1}{R_1} = \frac{1}{\omega C_4 R_4}$

or $Q_1 = Q_4$

Where Q is the Quality factor.

Ans: (d)

Sol. During positive half cycle of supply D_1 is forward biased, D₂ is reverse biased so current flows through the ammeter.

> During negative half cycle D₂ is forward biased, D₁ is reverse biased so current does not flow though ammeter.

$$\int_{0}^{0} \pi 2\pi 3\pi$$

Half wave rectifier waveform

$$I_{0 avg} = \frac{I_m}{\pi} = \frac{V_m}{R\pi} = \frac{4}{10k \times \pi}$$
$$I_{0 avg} = \frac{0.4}{\pi} mA$$

Ans: (d)

Sol: For-V₀ sin $\omega_0 t \rightarrow I_1 = \frac{V_0}{\omega_0 L} = I_0$ $2\mathbf{V}$

For
$$2V_0 \sin \omega_0 t \rightarrow I_2 = \frac{2 v_0}{2 \omega_0 L} = I_0$$

Engineering Publications	71	Postal Coaching Solutions
For $3V_0 \sin \omega_0 t \rightarrow I_3 = \frac{3V_0}{3\omega_0 L} = I_0$ For $4V_0 \sin \omega_0 t \rightarrow I_4 = \frac{4V_0}{4\omega_0 L} = I_0$ RMS value $= \sqrt{4I_0^2} = 2I_0$		Reactive power = $Im[\overline{V}\overline{I}^*] = 250 W$ So Statement (I) is True, Statement (II) is also True, but Statement (II) is not the correct explanation.
43. Ans: (b) Sol: $V_{L} = 6$ $V_{R} = 0$ $V_{R} = V_{R}^{2} + V_{L}^{2}$	46. Sol	Ans: (d) : In series RLC circuit, i(t) is maximum at resonance frequency, $\omega_0 = \frac{1}{\sqrt{LC}},$ $I_{max} = \frac{V_s}{R}$ $V_c = \frac{V_s}{\omega C \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$
$\Rightarrow 100 = V_R^2 + 36 \Rightarrow V_R = 8V$ $I_R = \frac{V_R}{R} = \frac{8}{2} = 4A$ 44. Ans: (b) Sol: Full wave rectifier Here each half of secondary winding wi received 2sin ω t $V_{RMS} = \frac{V_m}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$ $P_{avg} = \frac{V_{RMS}^2}{R} = \frac{(\sqrt{2})^2}{10} = 0.2W$	ce 19 47.	 = V_s for ω = 0 = Q V_s for ω = ω₀ = 0 for ω → ∞ V_c is maximum at ω = 0 (i.e., ω < ω₀) provided Q < 1 Statement (I) is false, but statement (II) is true if Q < 1 Ans: (a) When the input impedance is purely resistive, the voltage and current are in phase. Note that at resonance, power factor is also unity.
45. Ans: (b) Sol: Complex power,	48. 49.	Ans: (c) Ans: (c)
$S = \overline{V}\overline{I}^* = (100 - j50) (3 + j4)$	Sol	: At resonance, the power factor of circuit is

unity.

Hence statement (II) is false.

 $S = \overline{V}\overline{I}^{*} = (100 - j50) (3 + j4)$ = 300 + 200 + j250 = 500 + j 250 True power = Re[$\overline{V}\overline{I}^{*}$] = 500 W

ЭЕ

72

if

Electric Circuits

50. Ans: (c)

Sol:
$$\omega_{res} = \omega_0 \sqrt{\frac{L - R_1^2 C}{L - R_2^2 C}}$$
, $\omega_0 = \frac{1}{\sqrt{LC}}$
Resonance occurs at all frequencies,

$$R_1^2 = R_2^2 = \frac{L}{C}$$

and the resonant impedance

$$=\mathbf{R}_{1}=\mathbf{R}_{2}=\sqrt{\frac{\mathbf{L}}{\mathbf{C}}}$$

: Statement (I) is True, Statement (II) is False

51. Ans: (a)

Sol:
$$G(j\omega) = \frac{V_0(j\omega)}{V_i(j\omega)}$$

$$=\frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} = \frac{1}{1 + j\omega R C}$$
$$= 1 \angle 0 , \quad \omega = 0$$
$$= 0.707 e^{-j45^{\circ}} , \quad \omega = \frac{1}{R C}$$
$$= 0 \angle -90^{\circ} , \quad \omega \to \infty$$

52. Ans: (c)

Sinc **Sol:** Curve $AA \rightarrow$ Current waveform, having maximum value at(1) $\omega = \omega_{res}$(2) Curve BB \rightarrow | Z | $Z = R + j \left(\omega L - \frac{1}{\omega C} \right) = -j \infty, \ \omega = 0$ $Z=R, \omega = \omega_0$ $Z = j \infty, \omega = \infty$ $CC \rightarrow X_{C} = -\frac{j}{\omega C}$, Capacitive Curve reactance (3)

Curve DD \rightarrow Net reactance,

$$X = j \left(\omega L - \frac{1}{\omega C} \right) \qquad \dots \dots \dots (4)$$
$$= -j\infty, \ \omega = 0$$
$$= 0, \qquad \omega = \omega_{0}$$
$$= j\infty, \qquad \omega = \infty$$

Solutions for Conventional Practice Questions

01.

Sol:
$$V_1 = V_2 = 120 V$$
,
 $R_1 = 15 \Omega$, $R_2 = 7 \Omega$, $P = 550 W$
 $P = I^2 (R_1 + R_2)$, $I^2 = \frac{550}{22} = 25$, $I = 5 A$
Let X_1 and X_2 be the reactances of the coils.
 $5 \sqrt{R_1^2 + X_1^2} = 120$, $\sqrt{15^2 + X_1^2} = 24$
 $X_1^2 = 24^2 - 15^2$, $X_1 = \sqrt{24^2 - 15^2} = 18.7 \Omega$
 $5 \sqrt{7^2 + X_2^2} = 120$, $X_2 = \sqrt{24^2 - 7^2} = 22.96 \Omega$

02.

Sol: The instantaneous power is given by

$$P = vi = 1200cos (377t + 45^{\circ}) cos (377t - 10^{\circ})$$

 $P = 600 [cos (754t + 35^{\circ}) + cos 55^{\circ}]$
 $cosAcosB = \frac{1}{2} [cos(A + B) + cos(A - B)]$
 $P (t) = 344.2 + 600 cos (754t + 35^{\circ}) W$
The average power is
 $P = \frac{1}{2} V_m I_m cos(\theta_u - \theta_i)$
 $= \frac{1}{2} (120) (10) cos[45^{\circ} - (-10^{\circ})]$
 $= 600 cos 55^{\circ} = 344.2 W$

03.

Sol: The apparent power is

$$S = V_{rms}I_{rms} = \frac{120}{\sqrt{2}} \times \frac{4}{\sqrt{2}} = 240 VA$$

The power factor is

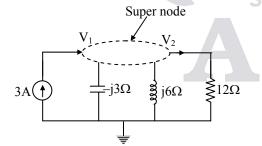
 $Pf = \cos (\theta_v - \theta_i) = \cos (-20^\circ - 10^\circ)$ = 0.866 (leading)

The pf is leading because the current leads the voltage.

The pf may also be obtained from the load impedance.

$$Z = \frac{V}{I} = \frac{120\angle -20^{\circ}}{4\angle 10^{\circ}} = 30\angle -30^{\circ}$$

= 25.98 - j15Ω


 $Pf \cos (-30^{\circ}) = 0.866$ (leading).

The load impedance Z can be modelled by a 25.98Ω resistor in series with a capacitor with

$$X_{\rm C} = -15 = -\frac{1}{\omega \rm C}$$
$$C = \frac{1}{15\omega} = \frac{1}{15 \times 100\pi} = 212.2\,\mu\rm{F}$$

04.

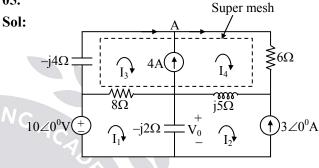
Sol: Nodes 1 and 2 forms a super node as shown in below figure

Applying KCL at the super node gives

$$3 = \frac{V_1}{-j3} + \frac{V_2}{j6} + \frac{V_2}{12}$$

36 = j4V_1 + (1-j2)V_2(1)
and

 $V_1 = V_2 + 10 \angle 45^\circ$


Substituting equation V_1 in equation (1) results in $36-40\angle 135^\circ = (1+j2) V_2$

 $\Rightarrow V_2 = 31.41 \angle -87.18^{\circ} V$

From equation

$$V_1 = V_2 + 10 \angle 45^\circ = 25.78 \angle -70.48^\circ V$$

05.

Meshes 3 and 4 form a super mesh due to the current source between the meshes.

For mesh 1, KVL gives

$$-10+(8-j2)I_1 - (-j2)I_2 - 8I_3 = 0$$

 $(8-2j)I_1 + j2I_2 - 8I_3 = 10$ -----(1)
For mesh 2
 $I_2=-3$ ----- (2)
For the super mesh
 $(8-j4)I_3 - 8I_1 + (6+j5)I_4 - j5I_2 = 0$ ----- (3)
Due to the current source between meshes 3 and
4, at node A
 $I_4 = I_3 + 4$ ----- (4)
Instead of solving the above four equations, we
reduce to two by elimination
Combines equation (1) & (2)
 $(8-j2)I_1 - 8I_3 = 10+j6$ ------(5)
Combines (3) and (4)
 $-8I_1 + (14+j)I_3 = -24-j35$ ------(6)
From equations (5) and (6) we obtain the matrix
equation

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

73

Engineering Publications	74 Electric Circuits
$\begin{bmatrix} 8 - j2 & -8 \\ -8 & 14 + j \end{bmatrix} \begin{bmatrix} I_1 \\ I_3 \end{bmatrix} = \begin{bmatrix} 10 + j6 \\ -24 - j35 \end{bmatrix}$ We obtain the following determinants $\Delta = \begin{vmatrix} 8 - j2 & -8 \\ -8 & 14 + j \end{vmatrix}$ $= 112 + j8 - j28 + 2 - 64 = 50 - j20$ $\Delta_1 = \begin{vmatrix} 10 + j6 & -8 \\ -24 - j35 & 14 + j \end{vmatrix}$ $= 140 + j10 + j84 - 6 - 192 - j280$ $= -58 - j186$ current I ₁ is obtained as $I_1 = \frac{\Delta_1}{\Delta} = \frac{-58 - j186}{50 - j20} = 3.618 \angle 274.5^0 A$ The required voltage V ₀ is V ₁ = -j2(I_1 I_1) = -j2(3.618 \angle 274.5^0 + 3)	$I = 9.615 - j \ 1.923 \dots (1)$ Apply KCL at node 'V' $\frac{V - 100 \angle 0^{\circ}}{8} + \frac{V}{j4} + \frac{V}{4} = 0$ $\frac{V}{8} - \frac{jV}{4} + \frac{V}{4} - \frac{100 \angle 0^{\circ}}{8} = 0$ $V\left[\frac{1}{8} - \frac{j}{4} + \frac{1}{4}\right] = \frac{100 \angle 0^{\circ}}{8}$ $V\left[\frac{1 - 2j + 2}{8}\right] = \frac{100 \angle 0^{\circ}}{8}$ $V \angle \theta = \frac{100}{3 - 2j}$ The given circuit is shown in figure 2. and
$z = 8 + (j4 \parallel 4)$	Assume $V \angle \theta = 27.745 \angle 33.69^{\circ}V$ $I_{1} = \frac{8\Omega}{\sqrt{10}} + \frac{100}{\sqrt{27.735}} + \frac{8\Omega}{\sqrt{27.735}} + \frac{100}{\sqrt{27.735}} + 10$
$= 8 + \frac{4 \cdot j4}{4 + j4}$ $= 8 + \frac{j4}{1 + j}$ $z = \frac{8 + 12j}{1 + j}$ $I = \frac{100 \angle 0^{\circ}}{\left(\frac{8 + 12j}{1 + j}\right)}$	07. Sol: The given circuit is shown in Fig.1 $10\sin 2\pi t \sim \frac{i_C}{-1\mu F} \neq 4 k\Omega$ Fig.1

ACE Engineering Publications Hy

	ACE
Sec Prese	ngineering Publications

between 0 and

The energy stored in the capacitor varies with time, the stored energy dissipated by the resistor over this interval. These are actually two completely different questions.

The only source of energy in the circuit is the independent voltage source, which has a value of $10\sin 2\pi t$ V. In the time interval of 0 < t < 0.5s.

The power dissipated by the resistor in terms of the current i_R .

$$i_{R} = \frac{V}{R} = \frac{10\sin 2\pi t}{1000}$$
$$i_{R} = 0.01\sin 2\pi t A$$

and so

$$P_{\rm R} = i_{\rm R}^2 R = (0.01)^2 \times (1000) \sin^2 2\pi t$$

 $= 0.1 \sin^2 2\pi t$

So that the energy dissipated in the resistor between 0 and 0.5s is

$$\begin{split} \omega_{\rm R} &= \int_{0}^{0.5} P_{\rm R} dt \\ &= \int_{0}^{0.5} 0.1 \sin^2 2\pi t dt \\ &= 0.1 \int_{0}^{0.5} \left[\frac{1 - \cos 4\pi t}{2} \right] dt \\ &= \frac{1}{20} \left[t - \frac{\sin 4\pi t}{4\pi} \right]_{0}^{0.5} \\ &= \frac{1}{20} \left[(0.5 - 0) - (0 - 0) \right] \\ \omega_{\rm R} \frac{1}{40} J \\ V_{\rm c}(t) &= 10 \sin 2\pi t \\ i_{\rm c}(t) &= V_{\rm c}(t) \times \frac{R}{R + \frac{1}{j\omega_{\rm c}}} \end{split}$$

or

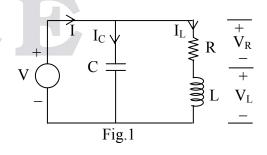
$$i_{c}(t) = c \frac{dV_{c}(t)}{dt}$$

= c.10 cos 2\pi t.2\pi
$$i_{c}(t) = 20\pi \times 10^{-6} \cos 2\pi t$$

The energy stored in capacitor
0.5s is

$$\omega_{\rm c} = \int_{0}^{10} \text{C.V} \frac{\mathrm{dv}}{\mathrm{dt}} \,\mathrm{dt}$$
$$= 10^{-6} \int_{0}^{0.5} 10 \sin 2\pi t. 20\pi \times 10^{-6} \cos 2\pi t \,\mathrm{dt}$$

$$=\frac{200\pi\times10^{-12}}{2}\int_{0}^{0.5}2\sin 2\pi t\cos 2\pi t dt$$


$$= 100\pi \times 10^{-12} \int_{0}^{0.5} \sin 4\pi t dt$$
$$= 100\pi \times 10^{-12} \left[\frac{-\cos 4\pi t}{4\pi} \right]_{0}^{0.5}$$

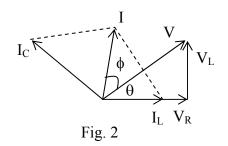
$$=\frac{100\pi\times10^{-12}}{4\pi}\left[\cos(0)-\cos 4\pi(0.5)\right]$$

 $\omega_{c}=0$ J

08.

Since

Sol: The given parallel circuit is shown in Fig. 1


The phasor diagram is shown in Fig. 2

ACE Engineering Publications

Electric Circuits

76

$$\theta = \tan^{-1}\left(\frac{\omega L}{R}\right)$$

For unity P.F, $\phi = 0$.

$$\frac{I}{V} = Y = j\omega C + \frac{1}{R + j\omega L}$$
$$= j\omega C + \frac{R - j\omega L}{R^2 + \omega^2 L^2}$$
$$= \frac{R}{R^2 + \omega^2 L^2} + j\omega \left(C - \frac{L}{R^2 + \omega^2 L^2}\right)$$

For unity P.F, I and V should be in phase Im Y = 0

 $\therefore C = \frac{L}{R^2 + \omega^2 L^2}$

09.

Sol: At resonance frequency, $\omega = \omega_0$

$$\omega_0 L = \frac{1}{\omega_0 C}$$
Since
$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{1 \times 10^{-6}}} = 10^3 \text{ rad/sec}$$

$$I = \frac{100}{10} = 10 \text{ A}$$

Power consumed = $I^2 R = 100 \times 10$ = 1000 W

$$Z = 10 + j \left(\omega - \frac{10^6}{\omega} \right)$$

$$|Z| = \sqrt{100 + \left(\omega - \frac{10^6}{\omega}\right)^2}$$

$$I = \frac{V}{|Z|} = \frac{100}{|Z|}$$

Power consumed = I² R = $\frac{100^2}{|Z|^2}$ R

$$0.1 \times 1000 = \frac{10^5}{|Z|^2}, \quad |Z|^2 = \frac{10^5}{100} = 10^3$$

$$100 + \left(\omega - \frac{10^6}{\omega}\right)^2 = 10^3$$

$$\omega - \frac{10^6}{\omega} = \pm \sqrt{900} = \pm 30$$

$$\omega^2 \pm 30 \,\omega - 10^6 = 0$$

$$\omega = \frac{\pm 30 \pm \sqrt{900 + 4 \times 10^6}}{2} = \pm 15 \pm 10^3$$

= 1000 + 15 and 1000 - 15
= 1015 rad/sec and 985 rad/sec

10.

Sol:
$$Z(j\omega) = \frac{R \ j\omega L}{R + j\omega L} - \frac{j}{\omega C}$$

 $R = 1 \ \Omega, L = 1 \ H, C = 2 \ F$
 $Z(j\omega) = \frac{j\omega}{1 + j\omega} - \frac{j}{2\omega}$
 $= \frac{j2\omega^2 - j + \omega}{2\omega(1 + j\omega)} = \frac{\omega + j(2\omega^2 - 1)}{2\omega(1 + j\omega)}$
 $= \frac{[\omega + j(2\omega^2 - 1)](1 - j\omega)}{2\omega(1 + \omega^2)}$
 $= \frac{\omega + \omega(2\omega^2 - 1)}{2\omega(1 + \omega^2)} + j\frac{(2\omega^2 - 1 - \omega^2)}{2\omega(1 + \omega^2)}$
 $= \frac{\omega}{1 + \omega^2} + j\frac{(\omega^2 - 1)}{2\omega(1 + \omega^2)}$

ACE Engineering Publications

For resonance, Im $Z(j\omega) = 0$, $\omega^2 = 1, \omega = 1$ r/s

 \therefore Resonance frequency, $\omega_0 = 1$ r/s

$$\operatorname{Re} Z(j\omega) = \frac{1}{2}\Omega$$

If the positions of L and C are interchanged,

$$Z(j\omega) = \frac{-\frac{j}{2\omega} \times 1}{1 - \frac{j}{2\omega}} + j\omega = \frac{-j}{2\omega - j} + j\omega$$
$$= \frac{-j + j2\omega^2 + \omega}{2\omega - j} = \frac{\omega + j(2\omega^2 - 1)}{(2\omega - j)}$$
$$= \frac{[\omega + j(2\omega^2 - 1)](2\omega + j)}{(4\omega^2 + 1)}$$
Im $Z(j\omega) = 0$, gives $2\omega (2\omega^2 - 1) + \omega = 0$

Im Z(j
$$\omega$$
) = 0, gives 2 ω (2 ω^2 - 1) + ω = 0
2 (2 ω^2 - 1) + 1 = 0

$$4 \omega^2 = 1, \ \omega = \frac{1}{2} r/s$$

4 ω² = 1, ω = $\frac{1}{2}$ r/s ∴ Resonance frequency, ω₀ = $\frac{1}{2}$ r/s and Re Z(j ω_0) = $\frac{1}{4\omega_0^2 + 1} = \frac{1}{2}\Omega$

 ω_0 changes from 1 r/s to $\frac{1}{2}$ r/s and resonant impedance is resistive and remains the same as $\frac{1}{2}\Omega$

$$\overline{2}$$

11.

Sol: The input admittance is

$$Y = j\omega(0.1) + \frac{1}{10} + \frac{1}{2 + j\omega^2}$$
$$= 0.1 + j\omega(0.1) + \frac{2 - j\omega^2}{4 + 4\omega^2}$$
At resonance Im(Y) =0and

$$\omega_0(0.1) - \frac{2\omega_0}{4 + 4\omega_0^2} = 0$$
$$\frac{2\omega_0}{4 + 4\omega_0^2} = \omega_0(0.1)$$
$$1 = 0.2 + 0.2 \ \omega_0^2$$
$$\omega_0^2 = 4$$
$$\omega_0 = 2 \operatorname{rad}/s$$

12.

Sol: The given bridge circuit is shown in Fig.1

$$\begin{aligned} & \begin{array}{c} & \begin{array}{c} & & \\$$

ACE Engineering Publications

Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

77

$\frac{10}{R_{L}^{2} + 100} = \frac{5}{41}$ $R_{L}^{2} = 82 - 100$ $R_{L} = \sqrt{-18}$

$$R_{\rm L} = j\sqrt{18}$$

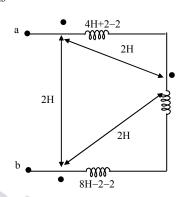
The resistance which is having displacement angle will not exist. So, the resonant frequency for above network there can be no value of R_L .

5. Magnetic Circuits

Solutions for Objective Practice Questions

01.

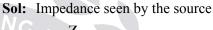
Sol: $X_C = 12$ (Given)


 $X_{eq} = 12 \text{ (must for series resonance)}$ So the dot in the second coil at point "Q" $L_{eq} = L_1 + L_2 - 2M$ $L_{eq} = L_1 + L_2 - 2K\sqrt{L_1L_2}$ $\omega L_{eq} = \omega L_1 + \omega L_2 - 2K\sqrt{L_1L_2\omega}$ $12 = 8 + 8 - 2K\sqrt{8.8}$ $\Rightarrow K = 0.25$

02.

Sol: $X_C = 14$ (Given) $X_{Leq} = 14$ (must for series resonance) So the dot in the 2nd coil at "P" $L_{eq} = L_1 + L_2 + 2M$ $L_{eq} = L_1 + L_2 + K \sqrt{L_1 L_2}$ $\omega L_{eq} = \omega L_1 + \omega L_2 + 2K \sqrt{\omega L_1 L_2 \omega}$ $14 = 2 + 8 + 2K \sqrt{2(8)}$ $\Rightarrow K = 0.5$

03.


Sol:
$$L_{ab} = 4H+2-2+6H+2-2+8H-2-2$$

 $L_{ab} = 14H$

6H+2-2

≹ n².5

04. Ans: (c) Sol: Impedance seen by the s

$$= \frac{\Sigma_{\rm L}}{16} + (4 - j2)$$
$$= \frac{10 \angle 30^{\circ}}{16} + (4 - j2)$$
$$= 4.54 - j1.69$$

45Ω

05. Sol:

Since

 Z_s

$$Z_{in} = \left(\frac{N_1}{N_2}\right)^2 Z_1$$
$$R'_{in} = n^2 .5$$

For maximum power transfer; $R_L = R_s$ $n^2 5 = 45 \implies n = 3$

06. Ans: (b) Sol: $6V \xrightarrow{1} 30mH$ 30mH 30mH 10mH 10

ACE Engineering Publications

ACE

07.

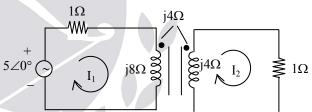
Sol

Apply KVL at input loop

$$-6-30 \times 10^{3} \frac{di}{dt} + 5 \times 10^{3} \frac{di}{dt} - 50i = 0 \dots (1)$$
Take Laplace transform

$$-\frac{6}{s} + [-30 \times 10^{-3} (s) - 50]I_{1}(s) + 5 \times 10^{-3} sI_{1}(s) = 0 \dots (2)$$
Apply KVL at output loop

$$V_{2}(s) - 30 \times 10^{-3} \frac{di_{2}}{dt} + 5 \times 10^{-3} \frac{di_{1}}{dt} = 0$$
Take Laplace transform


$$V_{2}(s) - 30 \times 10^{-3} sI_{2}(s) + 5 \times 10^{-3} sI_{1}(s) = 0$$
Substitute I₂(s) = 0 in above equation

$$V_{2} + 5 \times 10^{-3} sI_{1}(s) = 0 \dots (4)$$
Substitute eqn (4) in eqn (3)

$$V_{2}(s) = \frac{-5 \times 10^{-3} (s) (-6)}{s (30 \times 10^{-3} (s) + 50)}$$
Apply Initial value theorem
Lt s $s \frac{-5 \times 10^{-3} (s) (-6)}{30 \times 10^{-3} (s) + 50)}$
Apply Initial value theorem
Lt s $s \frac{-5 \times 10^{-3} (s) (-6)}{30 \times 10^{-3} (s) + 50)}$
Apply Initial value theorem
Lt s $s \frac{-5 \times 10^{-3} (s) (-6)}{30 \times 10^{-3} (s) + 50)}$
Apply Initial value theorem
Lt $s = \frac{-5 \times 10^{-3} (s) (-6)}{30 \times 10^{-3} (s) + 50)}$
Apply Initial value theorem
Lt $s = \frac{-5 \times 10^{-3} (s) (-6)}{30 \times 10^{-3} (s) + 50)}$
Apply Initial value theorem
Lt $s = \frac{-5 \times 10^{-3} (s) (-6)}{30 \times 10^{-3} (s) + 50)}$
Apply Initial value theorem
Lt $s = \frac{-5 \times 10^{-3} (s) (-6)}{30 \times 10^{-3} (s) + 50)}$
Apply Initial value theorem
Lt $s = \frac{-5 \times 10^{-3} (s) (-6)}{30 \times 10^{-3} (s) + 50)}$
Apply Initial value theorem
Lt $s = \frac{-5 \times 10^{-3} (s) (-6)}{30 \times 10^{-3} (s) + 50)}$
Apply Initial value theorem
Lt $s = \frac{-5 \times 10^{-3} (s) (-6)}{30 \times 10^{-3} (s) + 50)}$
Apply Initial value theorem
Lt $s = \frac{-5 \times 10^{-3} (s) (-6)}{30 \times 10^{-3} (s) + 50)}$
Apply Initial value theorem
Lt $s = \frac{-5 \times 10^{-3} (s) (-6)}{30 \times 10^{-3} (s) + 50)}$
Apply Initial value theorem
Lt $s = \frac{-5 \times 10^{-3} (-6)}{30 \times 10^{-3} (s) + 50)}$
Apply Initial value theorem
Lt $s = \frac{-5 \times 10^{-3} (-6)}{30 \times 10^{-3} (s) + 50}$
Apply Initial value theorem
Lt $s = \frac{-5 \times 10^{-3} (-6)}{30 \times 10^{-3} (s) + 50}$
Apply Initial value theorem
Lt $s = \frac{-5 \times 10^{-3} (-6)}{30 \times 10^{-3} (s) + 50}$
Apply Initial value theorem
Lt $s = \frac{-5 \times 10^{-3} (-6)}{10 \times 10^{-3} (s) + 50}$
Apply Initial value theorem

$$\frac{I_1}{I_2} = n = 2 \implies I_2 = 1 \angle 20^{\circ} A$$

- the definition of KVL in phasor domain $-\mathbf{V}_0 - \mathbf{V}_2 = \mathbf{0}$ $= \mathbf{V}_{\mathrm{S}} - \mathbf{V}_{\mathrm{2}} = \mathbf{V}_{\mathrm{S}} \left(1 - \frac{\mathbf{V}_{\mathrm{2}}}{\mathbf{V}_{\mathrm{S}}} \right)$ ΖI KVL $= j\omega L_1 I_1 + j\omega M(0)$ $= j\omega L_2(0) + j\omega MI_1$
- nsform the above network into phasor nain

Network is in Phasor -domain

V = Z.I
By KVL in p-d
$$\Rightarrow$$

 $5 \angle 0^\circ = I_1 + j8.I_1 - j4.I_2$
 $0 = I_2 + j4I_2 - j4I_1$
 $I_1 = \frac{\Delta_1}{\Delta}; i_1(t) = \text{Re al part} [I_1 e^{j2t}] A$
 $I_2 = \frac{\Delta_2}{\Delta}; i_2(t) = \text{Re alpart} [I_2 \cdot e^{j2t}] A$
 $I_1(t) = 1.072 \cos(2t + 114.61^0) A$

$$I_2(t) = 1.416\cos(2t+128.65^0)A$$

	ACE
N N	Engineering Publications

Electric Circuits

10.

Sol: Evaluation of Initial conditions:

$$i_1(0^-) = 0A = i_1(0^+)$$

 $i_2(0^-) = 0A = i_2(0^+)$

Evaluation of final conditions:

$$i_1(\infty) = 5A$$
; $i_Z(\infty) = 0A$
By KVL \Rightarrow
 $5 = i_1(t) + \frac{4di_1(t)}{dt} - 2\frac{di_2(t)}{dt}$

dt

By Laplace transform to the above equations.

dt

$$\frac{5}{s} = I_{1}(s) + 4 \left[sI_{1}(s) - i_{1}(0^{+}) \right] - 2 \left(sI_{2}(s) - i_{2}(0^{+}) \right)$$

By KVL \Rightarrow
$$0 = 1.i_{2}(t) + 2 \frac{di_{2}(t)}{dt} - 2 \frac{di_{1}(t)}{dt}$$

$$0 = 1.I_{2}(s) + 2 \left[sI_{2}(s) - i_{2}(0^{+}) \right] - \left[sI_{1}(s) - i_{1}(0^{+}) \right]$$

On solving, we can obtain $i_{1}(t)$ and $i_{2}(t)$
 $i_{1}(t) = 5 - e^{-\frac{3t}{4}} \left[5 \cosh \left(\frac{\sqrt{5}}{4} t \right) - \sqrt{5} \sinh \left(\frac{\sqrt{5}}{4} t \right) \right] A$

Sol:
$$L_1 = \frac{N_1 \phi_1}{i_1} \Longrightarrow \phi_1 = \frac{L_1 i_1}{N_1}$$

 $\phi_1 = \frac{1}{2} \frac{5 \sin 400t}{N_1}$
But $\frac{N_1}{N_2} = \sqrt{\frac{L_1}{L_2}} \Longrightarrow N_1 = N_2 \sqrt{\frac{L_1}{L_2}}$
 $N_1 = 1000 \sqrt{\frac{0.5}{0.2}} = 1581.13$
 $\phi_1 = \frac{2.5 \sin 400t}{1581.13}$

$$\phi_1 = 1.58m \sin 400t$$
$$\phi_1 = \phi_{max} \sin \omega t$$

So,
$$\phi_{max} = 1.58 \text{mWb}$$

12. Ans: (a)

Sol:
$$M = \frac{k \phi_1 N_2}{i_1} = \frac{k \phi_2 N_1}{i_2}$$

Given, $i_1 = 1A; \phi_1 = 0.1 \text{mWb}$
 $N_1 = 1000; N_2 = 2000$
 $k = 0.6$
 $M = \frac{(0.6)(0.1 \text{m})(2000)}{1} = 0.12 \text{ H}$

Solutions for Conventional Practice Questions

01.

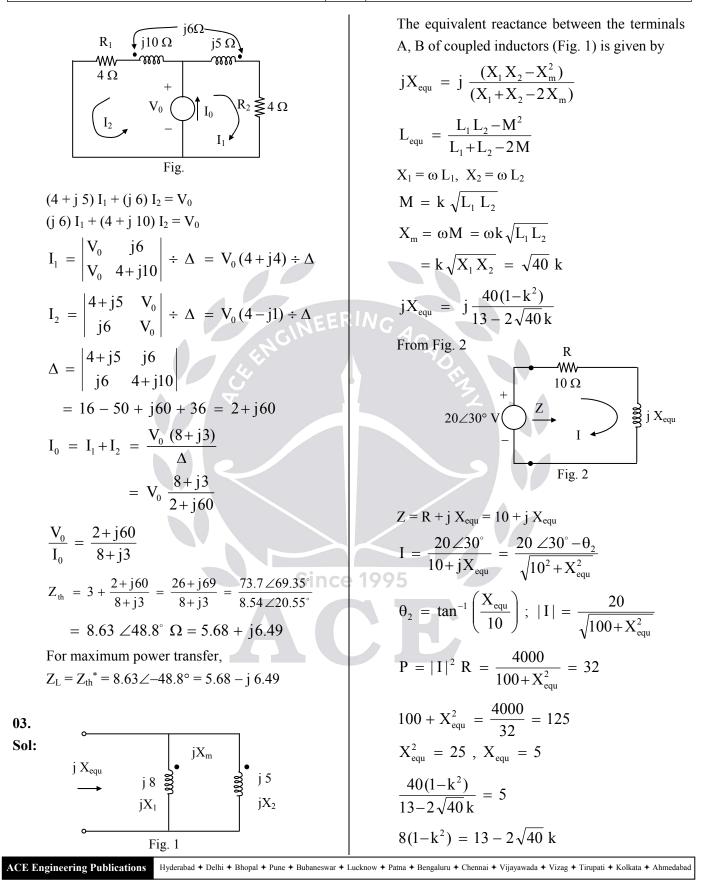
Since

Sol: KVL in mesh (1)

$$R_4 i_1(t) + (L_1 + L_2) \frac{di_1}{dt} - L_2 \frac{di_2}{dt} + M_{12} \frac{d}{dt} (i_1 - i_2)$$

 $+ M_{12} \frac{d}{dt} i_1(t) + M_{13} \frac{d}{dt} i_2(t) + M_{23} \frac{d}{dt} i_2(t) = v_1(t) \dots (l)$
KVL in mesh (2)

$$R_{5}i_{2}(t) + (L_{2} + L_{3})\frac{di_{2}}{dt} - L_{2}\frac{di_{1}}{dt} + M_{23}\frac{d}{dt}(i_{2} - i_{1})$$
$$+ M_{23}\frac{di_{2}}{dt} + M_{13}\frac{di_{1}}{dt} + M_{12}\frac{di_{1}}{dt} = v_{2}(t).....(2)$$


02.
Sol:
$$I = \frac{20 \angle 20^{\circ}}{Z_{in}}$$

 $Z_{in} = 8 + j \ 10 + j \ 5 - j \ 12$
 $= 8 + j \ 3 = 8.54 \angle 20.56$
 $I = \frac{20 \angle 20^{\circ}}{8.54 \angle 20.56} = 2.34 \angle -0.56$ A
 $V_{th} = (4 + j \ 5 - j \ 6)$ $I = (4 - j)$ I
 $= 4.123 \angle -14.03 \times 2.34 \angle -0.56$

= 9.65∠-14.59 Volts

Z_{th} is calculated from the circuit shown in Fig.

ACE Engineering Publications

$8k^2 - 2\sqrt{40}k + 5 = 0$

$$k = \frac{2\sqrt{40} \pm \sqrt{160 - 160}}{16} = 0.79$$

If the terminals of one of the coils are interchanged,

jX_{equ} =
$$j \frac{40(1-k^2)}{13+2\sqrt{40}k}$$

X_{equ} = $\frac{15.07}{22.99}$ = 0.65, I = $\frac{20∠30^{\circ}}{10+j0.65}$
P = $|I|^2$ R = $\frac{4000}{100+(0.65)^2}$ = 39.83 W

04.

Sol: Refer to Fig. 1, where I_1 and I_2 are mesh currents.

Mesh equations:

+ j 11ω I₁ + (- j 6ω - j 2ω - j 3ω) I₂ = V₁ or + j 11ω I₁ - j 11ω I₂ = V₁(1) Since and (- j 6ω - j 2ω) I₁ + j 3ω(I₂ - I₁) + j 3ω I₂ + j 23 ω I₂ = 0 or - j 11ω I₁ + j 29ω I₂ = 0(2) $I_{1} = \frac{\begin{vmatrix} V_{1} & -j11ω \\ 0 & j29ω \end{vmatrix}}{\begin{vmatrix} j11ω & -j11ω \\ -j11ω & j29ω \end{vmatrix}} = \frac{j29ω V_{1}}{-198ω^{2}}$ $\frac{V_{1}}{I_{1}} = \frac{-198\omega^{2}}{j29\omega} = j 6.83 ω$ \therefore Effective inductance = 6.83 H.

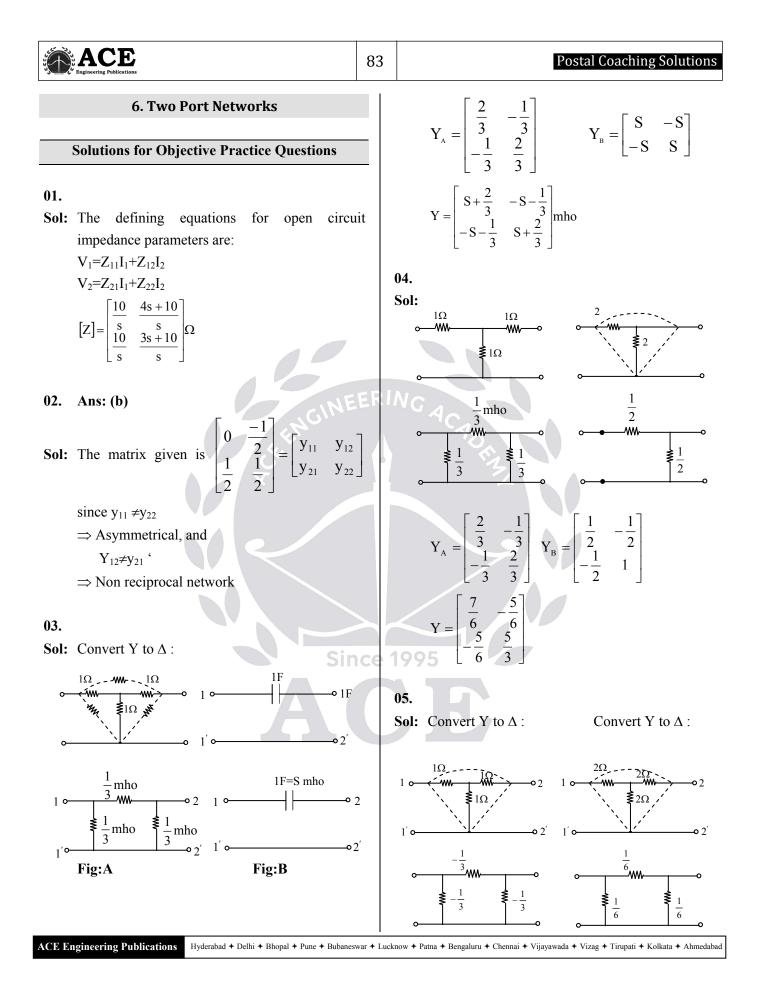
05.

82

Sol: The given circuit is shown in fig.1 assume input voltage 'V'

 $\begin{array}{ll} L_1 = 8 \mbox{ mH} & X_{L2} = WL_1 \Rightarrow 1000 \times 8 \times 10^{-3} \Rightarrow 8 \ \Omega \\ L_2 = 6 \mbox{ mH} & X_{L2} = WL_2 \Rightarrow 1000 \times 6 \times 10^{-3} \Rightarrow 6 \ \Omega \\ M = 5 \mbox{ mH} & X_m = \omega m \Rightarrow 1000 \times 5 \times 10^{-3} \Rightarrow 5 \Omega \end{array}$

Electric Circuits


$$\Rightarrow X_{\rm c} = \frac{1}{1000 \times \frac{1}{6} \times 10^{-6}} = 6000 \,\Omega$$

 $C_1 = \frac{1}{\mu}F$ $X_c = \frac{1}{\mu}F$

$$V \xrightarrow{j8\Omega} \xrightarrow{-j6000\Omega} 3\Omega$$

Apply KVL in the above network loop - 1 - V + j8i₁+j5(i₁-i₂)-j6000i₁+j6(i₁-i₂)+j5i₁=0 -V+j8i₁+j5i₁- j5i₂-j6000i₁+j6i₁- j6i₂+j5i₁=0 j(-5966)i₁-j11i₂=V-----(1) In loop - 2 j6(i₂-i₁)-j5i₁+3i₂=0 j6i₂- j6i₁-j5i₁+3i₂=0 i₂ = $\left[\frac{j11}{3+j6}\right]i_1$ Put 'i₂' in equation (V) - j5966i₁ - j11 $\left[\frac{j_{11}}{3+j6}\right]i_1 = V$ (8.066-j5982.13)i₁ = V $Z = \frac{V}{i_1} = (8.066 - j5982.13)\Omega$

ACE Engineering Publications

$Y_{A} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix} \text{mho} Y_{B} = \begin{bmatrix} \frac{2}{6} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{2}{6} \end{bmatrix} \text{mho}$ $\begin{bmatrix} \frac{6}{2} & -\frac{3}{2} \end{bmatrix} \begin{bmatrix} 1 & -\frac{1}{2} \end{bmatrix}$	08. Ans: (a) Sol: For $I_2 = 0$ (O/P open), the Network is shown in Fig.1 $+ \circ \underbrace{I_1 \qquad 2 \Omega \qquad I_2 = 0}_{WW \qquad 3 I_1 \qquad \swarrow} + \circ \underbrace{I_2 = 0}_{3 I_1 \qquad \boxtimes} + \odot \underbrace{I_2 = 0}_{3 I_1 \qquad \boxtimes} + $
$\begin{bmatrix} 6 & -3 \end{bmatrix} \begin{bmatrix} 1 & -1 \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$Y = \begin{bmatrix} \frac{6}{6} & -\frac{3}{6} \\ -\frac{3}{6} & \frac{6}{6} \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{bmatrix}$	V_1 $I \Omega$ V_2 I_1 V_2
06.	- o Fig. 1
Sol: $T_1 = T_2 = \begin{vmatrix} 1 + \frac{1}{-j1} & 1 \\ \frac{1}{-j1} & 1 \end{vmatrix}$	$V_{1} = -2 I_{1} \qquad \dots $
$= \begin{bmatrix} 1+j & 1\\ j & 1 \end{bmatrix}$ $T_3 \Rightarrow Z_1=1\Omega; Z_2 = \infty$	$V_{2} = -6 I_{1} + V_{1} \qquad(2)$ From (1) and (2) $V_{2} = -6 I_{1} - 2 I_{1}$ or $V_{2} = -8 I_{1}$
$T_{3} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $T = (T_{1})(T_{2})(T_{3})$ $T = \begin{bmatrix} j3 & 2+j4 \\ -1+j2 & j3 \end{bmatrix}$	$Z_{21} = \frac{V_2}{I_1} = -8$ For I ₁ = 0 (I/P open), the network is shown in Fig.2
$\begin{array}{c} 07. \\ 51 7 7 7 51 \\ 51 7 7 7 7 \\ 51 7 7 7 7 \\ 51 7 7 7 7 \\ 7 $	$\begin{array}{c c} I_1 = 0 \\ + \circ & & I_2 \\ \hline 1995 & 1 \circ & \\ \hline 1995 $
Sol: $T_1: Z = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ $T_1 = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$	$\begin{array}{c c} 1 & \Omega & \downarrow & I_2 \\ \hline V_1 & \downarrow & V_2 \\ \hline - & & & Fig. 2 \end{array} $
$T_2 : Z_1 = 0 ; Z_2 = 2 \Omega$ $T_2 = \begin{bmatrix} 1 & 0\\ \frac{1}{2} & 1 \end{bmatrix}$ $T = [T_1] [T_2]$	Note: that the dependent current source with current 3 I ₁ is open circuited. $V_1 = 1 I_2$, $Z_{12} = \frac{V_1}{I_2} = 1$
$T = \begin{bmatrix} 3.5 & 3 \\ 2 & 2 \end{bmatrix}$	$V_2 = 3 I_2, \ Z_{22} = \frac{V_2}{I_2} = 3$

	i	
Engineering Publications	85	Postal Coaching Solutions
$\begin{bmatrix} Z \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ -8 & 3 \end{bmatrix}$	12 S	2. Ans: (c) ol: $Y_{11} = \frac{I_1}{V_1}\Big _{V_2=0}$
09.		5Ω 5Ω
Sol: By Nodal $-I_{1} + V_{1} - 3V_{2} + V_{1} + 2V_{1} - V_{2} = 0$ $-I_{2} + V_{2} + V_{2} - 2V_{1} = 0$ $Y = \begin{bmatrix} 4 & -4 \\ -3 & 2 \end{bmatrix} \mathbf{U}$ $[Z] = Y^{-1}$ We can also obtain [g], [h], [T] and [T]^{-1} by rewriting the equations.		$1 \rightarrow 10\Omega$
10.	ERIA	$Y_{11} = \frac{Y_1}{0} = \infty$
Sol: The defining equations for open-circumingedance parameters are: $V_1=Z_{11}I_1+Z_{12}I_2$ $V_2 = Z_{21}I_1+Z_{22}I_2$ In this case, the individual Z-parameter matrices get added. $(Z) = (Z_a) + (Z_b)$ $[Z] = \begin{bmatrix} 10 & 2\\ 2 & 7 \end{bmatrix} \Omega$ 11. Sol: For this case the individual y-parameter matrices get added to give the y-parameter matrix of the overall network. $Y = Y_a + Y_b$ The individual y-parameters also get added		ol: (i). $[T_a] = \begin{bmatrix} 1 + \frac{Z_1}{Z_2} & Z_1 \\ \frac{1}{Z_2} & 1 \end{bmatrix}$ (ii). $[T_a] = \begin{bmatrix} 1 & Z_1 \\ \frac{1}{Z_2} & 1 + \frac{Z_1}{Z_2} \end{bmatrix}$ $[T_a]$ and $[T_b]$ are obtained by defining equations for transmission parameters.
$Y_{11} = Y_{11a} + Y_{11b} \text{ etc} [Y] = \begin{bmatrix} 1.4 & -0.4 \\ -0.4 & 1.4 \end{bmatrix} \text{mho}$		$(T) = (T_1)(T_{N1}) = \begin{pmatrix} 1+s/4 & s/2 \\ 1/2 & 1 \end{pmatrix} \begin{pmatrix} 8 & 4 \\ 2 & 5 \end{pmatrix}$ $= \begin{pmatrix} 3s+8 & 3.5s+4 \\ 6 & 7 \end{pmatrix}$

$$Y_{11} = Y_{11a} + Y_{11b} \text{ etc}$$
$$[Y] = \begin{bmatrix} 1.4 & -0.4 \\ -0.4 & 1.4 \end{bmatrix} \text{mh}$$

Engineering Publications	86	Electric Circuits
15. Sol: $Z_{in} = R_{in} = \frac{V_1}{I_1} = \frac{AV_2 - BI_2}{CV_2 - DI_2} = \frac{V_2 - 2I_2}{V_2 - 3I_2},$ $V_2 = 10(-I_2)$		$T^{1} = T^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$ Now h parameters $2I_{2} = -I_{1} + V_{2}$
$Z_{in} = R_{in} = \frac{12}{13}\Omega$ 16. Sol: $\frac{V_1}{I_1}\Big _{I_2=0} = Z_{11}$ $\Rightarrow V_1 = (4 4)I_1 _{I_{2=0}}$ \downarrow^{I_1} \downarrow^{I_1} \downarrow^{I_2} \downarrow^{I_2		$I_{2} = \frac{-I_{1}}{I_{2}} + \frac{V_{2}}{2} \qquad \dots \dots (5)$ Substitute (5) in (1) $V_{1} = 2I_{1} - \frac{I_{1}}{2} + \frac{V_{2}}{2}$ $V_{1} = \frac{3}{2}I_{1} + \frac{1}{2}V_{2} \qquad \dots \dots (6)$ $h = \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$
$\Rightarrow Z_{22} = 2\Omega$ By KVL \Rightarrow $\frac{3I_1}{2} - V_2 - \frac{I_1}{2} = 0$ $V_2 = I_1$ $\Rightarrow Z_{21} = 1\Omega = Z_{12}$ $Z = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \Omega$	1	$\begin{bmatrix} 2 & 2 \end{bmatrix}$ $g = [h]^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{3}{2} \end{bmatrix}$ 17. Ans: (a) Sol: $Y_{22} = \frac{I_2}{V_2} \Big _{V_1 = 0}$
$\begin{bmatrix} 2 & -1 \end{bmatrix}$	ce 1	0.5A
$v_{2} - I_{1} + 2I_{2} \dots (2)$ ⇒ I ₁ = V ₂ -2I ₂ (3) Substituting (3) in (1): $V_{1} = 2(V_{2} - 2I_{2}) + I_{2} = 2V_{2} - 3I_{2} \dots (4)$ $T = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$		Now use Homogeneity 2.5A $+$ 5V

ACE Engineering Publications

Engineering Publications	87 Postal Coaching Solution	ons
So, $Y_{22} = \frac{I_2}{V_2} \Big _{V_1=0} = \frac{5}{5} = 1$ mho This has noting to do with fig (b) since fig (b also valid for some specific resistance of 2 Ω a port-1, but Y_{22} , $V_1=0$. So S.C port-1	t $\frac{V_1}{V_2} = \frac{1}{n} = \frac{I_2}{I_1}$	
18. Sol: $\frac{V_2}{V_1} = \frac{N_2}{N_1} = n = \frac{-I_1}{I_2}$ $\frac{V_2}{V_1} = n$	$V_{1} = \frac{1}{n}V_{2}$ $V_{1} = \frac{1}{n}V_{2}$ $V_{1} = \frac{1}{n}V_{2}$ $V_{1} = \frac{1}{n}V_{2}$ $V_{1} = \frac{1}{1}V_{2}$ $V_{2} = \frac{1}{1}V_{2}$ $V_{1} = \frac{1}{1}V_{2}$ $V_{2} = \frac{1}{1}V_{2}$ $V_{2} = \frac{1}{1}V_{2}$ $V_{1} = \frac{1}{1}V_{2}$ $V_{2} = \frac{1}{1}V_{2}$	
$\Rightarrow T = \begin{bmatrix} \frac{1}{n} & 0\\ 0 & n \end{bmatrix}$	$\frac{1}{n} = \frac{I_2}{I_1} = \frac{I_2^1 - I_1}{I_1} = \frac{I_2^1}{I_1} - 1$ $\frac{I_2^1}{I_1} = \frac{1}{n} + 1 = \frac{1+n}{n}$ $I_2^1 = \left(\frac{1+n}{n}\right)I_1$	
$T^{1} = T^{-1} = \begin{bmatrix} n & 0\\ 0 & \frac{1}{n} \end{bmatrix}$ $T^{1} = T^{-1} = \begin{bmatrix} n & 0\\ 0 & \frac{1}{n} \end{bmatrix}$ Now h-parameters	$I_{2}^{1} = \left(\frac{1+n}{n}\right) \left(\frac{V_{2} - V_{1}}{R}\right)$ $I_{2}^{1} = \left(\frac{1+n}{n}\right) \left(\frac{V_{2} - \frac{1}{n}V_{2}}{R}\right)$	
$\Gamma_2 = \frac{1}{n} + (0)V_2$	$\frac{I_2^1}{V_2} = \left(\frac{1+n}{n}\right) \left(\frac{n-1}{nR}\right)$ $\frac{V_2}{I_2^1} = \frac{n^2 R}{n^2 - 1}$	
$g = \begin{bmatrix} 0 & \frac{1}{n} \\ \frac{-1}{n} & 0 \end{bmatrix}$ $h = \begin{bmatrix} 0 & -n \\ n & 0 \end{bmatrix}$ Note: In an ideal transformer, it is impossible to express V ₁ and V ₂ interms of I ₂ and I ₂ , hence the 'Z		

parameters do not exist. Similarly, the y-parameters.

1	24. Ans: (d) Sol: Convert the middle - π of 1 Ω into a T – network as shown in Fig. $(1/3)\Omega (1/3)\Omega (1/3)\Omega$
Sol: $[Z] = \begin{bmatrix} 11 & 12 \\ 11 & 12 \end{bmatrix}, [Y] = \begin{bmatrix} 11 & 12 \\ 12 & 12 \end{bmatrix}$	Fig. $z_{11} = \frac{2}{3} + \frac{1}{3} = 1 = z_{22} \qquad \dots \dots (4)$ $z_{12} = z_{21} = \frac{1}{3} \Omega \qquad \dots \dots (1)$ $z = \begin{bmatrix} 1 & (1/3) \\ (1/3) & 1 \end{bmatrix} y = z^{-1} = \frac{9}{8} \begin{bmatrix} 1 & -(1/3) \\ -(1/3) & 1 \end{bmatrix}$ $y_{12} = y_{21} = -\frac{9}{8} \times \frac{1}{3} = -\frac{3}{8} \text{ mho } (3)$ $y_{11} = y_{22} = \frac{9}{8} \text{ mho} \qquad \dots \dots (2)$ 25. Ans: (d) Sol: $\frac{\frac{Ls}{2}}{\frac{Ls}{2}} + \frac{1}{Cs} = -\frac{Ls}{LCs^2 + 2}$ $Z_{1s}(s) = \frac{Ls}{2} + \frac{Ls}{LCs^2 + 2}$ $z_{1s}(s) = \frac{Ls}{2} + \frac{Ls}{LCs^2 + 2}$ $Z_{1s}(j\omega) = \frac{j\omega L(4 - \omega^2 LC)}{2L(2 - \omega^2)} = 0$ At $\omega = 0$ and $\frac{2}{\sqrt{LC}} = \infty$, at $\omega = \infty$

ACE Engineering Publications

Engineering Publications
Engineering Publications

26. Ans: (c)

According to the definitions above, h₁₁ is in ohms (Ω)

 $h_{12}\ and\ h_{21}$ are dimensionless and $h_{22}\ is\ in$ Siemens.

27. Ans: (b)

Sol: $A \rightarrow 4$, $I_N = \frac{V_{th}}{R_{th}}$, $R_N = R_{th}$ $B \rightarrow 2, \qquad h_{22} = \frac{I_2}{V_2} \bigg|_{I_1 = 0}$ $C \rightarrow 1$, $Y_{12} = Y_{21}$, $Z_{21} = Z_{12}$ etc $D \rightarrow 3$, $\begin{bmatrix} V_1 \\ I_1 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} -V_2 \\ I_2 \end{bmatrix}$

28. Ans: (d)

Sol:
$$h_{11} = \frac{V_1}{I_1} \rightarrow \text{Impedance (1)}$$

 $h_{12} = \frac{V_1}{V_2} \rightarrow \text{voltage ratio (4)}$
 $h_{22} = \frac{I_2}{V_2} \rightarrow \text{Admittance (2)}$
 $h_{21} = \frac{I_2}{I_1} \rightarrow \text{Current ratio (3)}$

29. Ans: (c)

Sol:
$$V_b = h_{11} I_1 + h_{12} V_c$$

 $I_2 = h_{21} I_1 + h_{22} V_c$
 $V_b = r_e I_1 + r_b(I_1 + I_2)$ (1)
 $V_c = (I_2 + \alpha I_1) r_c + (I_1 + I_2) r_b$ (2)
or $V_c = (\alpha r_c + r_b) I_1 + (r_c + r_b) I_2$

or
$$I_2 = \frac{V_c - (\alpha r_c + r_b) I_1}{r_c + r_b}$$
(3)

Substitute I_2 in equation (1)

$$V_{b} = r_{e} I_{1} + r_{b} I_{1} + r_{b} \left[\frac{V_{e} - (\alpha r_{e} + r_{b}) I_{1}}{r_{e} + r_{b}} \right]$$

$$= r_{e} I_{1} + r_{b} I_{1} + \frac{r_{b} V_{c} - \alpha (r_{b} r_{c}) I_{1} - r_{b}^{2} I_{1}}{r_{b} + r_{c}}$$

$$= I_{1} \left(r_{e} + r_{b} - \frac{\alpha r_{b} r_{e} - r_{b}^{2}}{r_{b} + r_{c}} \right) + \frac{r_{b} V_{c}}{r_{b} + r_{c}}$$

$$= I_{1} \left(\frac{r_{e} r_{b} + r_{e} r_{c} + r_{b}^{2} + r_{b} r_{c} - \alpha r_{b} r_{c} - r_{b}^{2}}{r_{b} + r_{c}} \right)$$

$$= I_{1} \left[r_{e} + \frac{r_{b} (r_{c} - \alpha r_{c})}{r_{b} + r_{c}} \right]$$

$$V_{b} = \left[r_{e} + r_{b} - \frac{r_{b}}{r_{e} + r_{b}} \left(\alpha r_{c} + r_{b} \right) \right] I_{1}$$

$$+ \left[\frac{r_{b}}{r_{e} + r_{b}} \right] V_{c} \qquad \dots \dots (5)$$
From equation (3)
$$I_{2} = \frac{-(\alpha r_{c} + r_{b}) I_{1}}{r_{b} + r_{c}} + \frac{1}{r_{b} + r_{c}} V_{c} \qquad \dots (4)$$
Comparing (5) & (4) with (1) & (2) the matching in A $\rightarrow 1$, B $\rightarrow 4$, C $\rightarrow 2$, D $\rightarrow 3$.

30. Ans: (d)
Sol: A $\rightarrow 2$, B $\rightarrow 4$

 $C \rightarrow 1, D \rightarrow 3$

Solutions for Conventional Practice Questions

01.

19

30.

Sol: A two-port circuit can be declared as a reciprocal circuit, if the 2-port parameters satisfy the following relations:

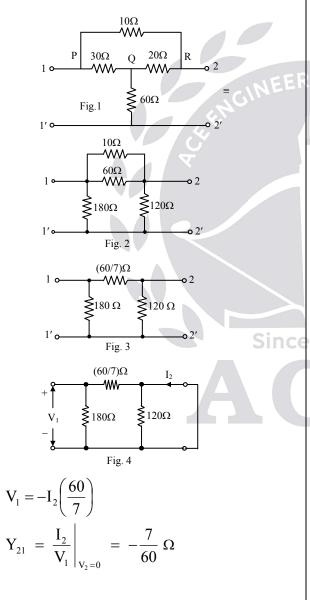
(i)
$$Z_{12} = Z_{21}$$

ACE Engineering Publications

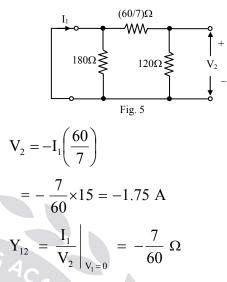
Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Since

(ii) $Y_{12} = Y_{21}$


(iii) AD - BC = 1

(iv) $h_{12} = -h_{21}$

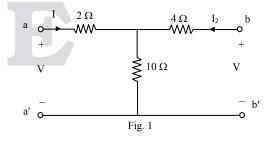

The two-port circuit shown in Fig.1 is reciprocal.

This is justified by taking 15 V voltage source and showing $Y_{12} = Y_{21}$ as shown below.

First, convert the (30 Ω , 20 Ω and 60 Ω) T network into a Π network and next get the overall Π network (Fig. 3)

Short circuit current response at port 2 with excitation, $V_1 = 15$ V at port 1

When the excitation and response are interchanged, Short circuit current at port 1 with excitation, $V_2 = 15$ V at port


$$-\frac{7}{60}$$
 ×15 = -1.75 A

The ratio of response to excitation remains constant for reciprocal network when the response and excitation are interchanged.

02.

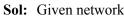
_

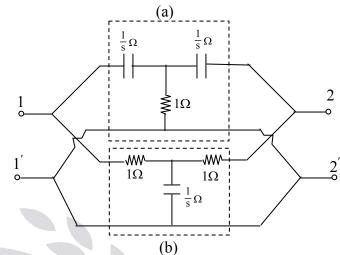
Sol: The given circuit is shown in Fig. 1

 $V_1 = A V_2 - B I_2$ $I_1 = C V_2 - D I_2$ Keep $I_2 = 0$ (Fig. 2)

ACE Engineering Publications

Engineering Publications	91	Postal Coaching Solutions
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		03. Sol: $1 I_1$ $1 I_2 2$ $1 I_2 2$ $V_2 = 0$ 1' Fig.1
$V_{2} = V_{1} \frac{10}{12} = \frac{5}{6} V_{1}$ $A = \frac{V_{1}}{V_{2}} = \frac{6}{5} = 1.2$ $V_{2} = 10 I_{1}$ $C = \frac{I_{1}}{V_{2}} = 0.1 \Omega$ Keep V ₂ = 0 (Fig. 3) $V_{1} = \frac{100}{V_{1} + I_{2}} V_{1} = \frac{100}{V_{2} = 0}$ $Fig. 3$ $B = -\frac{V_{1}}{I_{1}}, D = -\frac{I_{1}}{I_{2}}$		Fig.1 $I_{1}(s) = Y_{11} V_{1}(s) + Y_{12} V_{2}(s)$ $I_{2}(s) = Y_{21} V_{1}(s) + Y_{22} V_{2}(s)$ For $v_{2}(t) = 0$, $V_{2}(s) = 0$, as shown in Fig. 1, $i_{1}(t) = 1$ u(t) , $I_{1}(s) = \frac{1}{s}$ $v_{1}(t) = (1 - e^{-4t})$ u(t) $V_{1}(s) = \frac{1}{s} - \frac{1}{s+4} = \frac{4}{s(s+4)}$ $i_{2}(t) = -e^{-3t}$ u(t) $I_{2}(s) = -\frac{1}{s+3}$ $Y_{11} = \frac{I_{2}}{V_{1}} = -\frac{s(s+4)}{4(s+3)}$ For $R_{L} = 1 \Omega$ as in Fig. 2 $I_{1} = \frac{I_{2}}{V_{1}} = \frac{I_{2}}{V_{1}} = \frac{I_{2}}{V_{2}} = \frac{1}{2} \Omega_{1}$ $i_{1}(t) = u(t)$, $I_{1}(s) = \frac{1}{s}$, $V_{2}(s) = -I_{2}(s)$ $v_{1}(t) = (1 - e^{-4t} + te^{-4t})$ u(t) $V_{1}(s) = \frac{1}{s} - \frac{1}{s+4} + \frac{1}{(s+4)^{2}}$

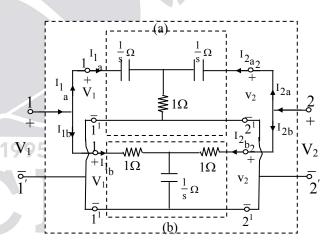

ACE Engineering Publications



$= \frac{(s+4)^2 - s(s+4) + s}{s(s+4)^2} = \frac{5s+16}{s(s+4)^2}$ $i_2(t) = -e^{-7t}u(t)$ $I_2(s) = -\frac{1}{(s+7)} \Rightarrow V_2(s) = \frac{1}{s+7}$ $I_1(s) = Y_{11}V_1(s) + Y_{12}V_2(s)$ $\frac{1}{s} = \left(\frac{4+s}{4}\right) \frac{5s+16}{s(s+4)^2} + Y_{12}\left(\frac{1}{s+7}\right)$ $\Rightarrow \frac{1}{s} = \frac{5s+16}{4s(s+4)} + Y_{12}\left(\frac{1}{s+7}\right)$ $\Rightarrow Y_{12}\left(\frac{1}{s+7}\right) = \frac{1}{s} - \frac{5s+16}{4s(s+4)}$ $=\frac{4(s+4)-5s-16}{4s(s+4)}$ $=\frac{4s+16-5s-16}{4s(s+4)}$ $=\frac{-s}{4s(s+4)}=\frac{-1}{4(s+4)}$ $\Rightarrow Y_{12} = \frac{-(s+7)}{4(s+4)}$ $I_2(s) = Y_{21}V_1(s) + Y_{22}V_2(s)$ $\frac{-1}{s+7} = \frac{-s(s+4)}{4(s+3)} \frac{(5s+16)}{s(s+4)^2} + Y_{22} \left(\frac{1}{s+7}\right)$ ince $\Rightarrow Y_{22}\left(\frac{1}{s+7}\right) = \frac{-1}{s+7} + \frac{5s+16}{4(s+3)(s+4)}$ \Rightarrow Y₂₂ = $\frac{s^2 + 23s + 64}{4(s+3)(s+4)}$ And $Z_{in}(s) = \frac{V_1(s)}{I_1(s)} = \frac{5s+16}{s(s+4)^2}$

04.

92



Electric Circuits

(Data given is $C_1 = C_2 = C_a = 1 \ \Omega$. This can not correct. Assume $C_1 = C_2 = C_a = 1 \ F$. Use Operational impedance, $\frac{1}{2}$)

The network is redrawn as follows:

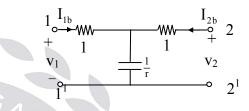
In this form, it is easy to see that two passive linear 2 - port a and b have been put in parallel to form one large two point.

For the 2 – port labeled 'a'; we have

$$I_{1_a} = Y_{11_a} V_1 + Y_{12_a} + V_2$$
 and

$$\mathbf{I}_{2a} = \mathbf{y}_{21_a \mathbf{V}_1} + \mathbf{y}_{22_a} \mathbf{V}_2 - \dots - (1)$$

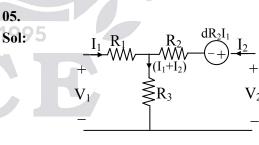
For the 2-port labeled 'b', we have $I_{1_{b}} = y_{11_{b}}V_{1} + y_{12_{b}}V_{2}$ and $I_{2_{1}} = y_{2_{1}}V_{1} + y_{2_{2}}V_{2} - \dots - (2)$ The overall 2–port has voltage V_1 and current $(I_{1a} + I_{1b})$ at port1 and voltage V₂ and current (I_{2a}) $+ I_{2b}$) at port2 But from (1) and (2), $I_{1_a} + I_{1_b} = (y_{11_a} + y_{11_b})V_1 + (y_{12_a} + y_{12_b})V_2$ $I_{2a} + I_{2b} = (y_{21a} + y_{21b})V_1 + (y_{22a} + y_{22b})V_2$ Thus, the overall admittance parameter are, $y_{12} = (y_{12} + y_{12});$ $y_{11} = (y_{11} + y_{11});$ $y_{21} = (y_{21_a} + y_{21_b}); \text{ and } y_{22} = (y_{22_a} + y_{22_b})$ It now remains to determine the parameters & 'b'- parameters. Addition will give the overall y-parameters. y - parameters of the 2-port 'a': y₁₁: short-circuit port-2 05. $I_{1_{a}} = \frac{V_{1}}{\frac{1}{s} + \frac{(1/s)}{\left(1 + \frac{1}{s}\right)}} = \frac{V_{1}(s+1)s}{(2s+1)}$ $y_{11_a} = \frac{I_{1_a}}{V_1} = \frac{s(s+1)}{(2s+1)}$ y₁₂: short-circuit port-1 With a little algebraic work; we get $y_{12_a} = \frac{I_{1_a}}{V_2} = \frac{-s^2}{2s+1}$


 y_{21_a} : Because the network is reciprocal, we get

$$y_{21_a} = y_{12_a} = \frac{-s^2}{2s+1}$$

 y_{22_a} : From the symmetry of the network, we get

$$y_{22_a} = y_{11_a} = \frac{s(s+1)}{2s+1}$$


y - parameters of the 2-part 'b':

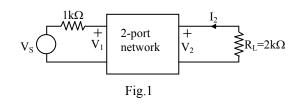
By a procedure similar to the above, we get

$$y_{11_{b}} = y_{22_{b}} = \left(\frac{1+s}{2+s}\right)$$
 and
 $y_{12_{b}} = y_{21_{b}} = -\frac{1}{s+2}$

Now the overall 2-part parameters and be found. (The network given is called a twin-T network and it is parallel connection of two T-networks)

$$V_{1} = I_{1}(R_{1}+R_{3}) + I_{2} R_{3}$$

$$V_{2} = I_{1} (R_{3} + dR_{2}) + I_{2} (R_{2} + R_{3})$$

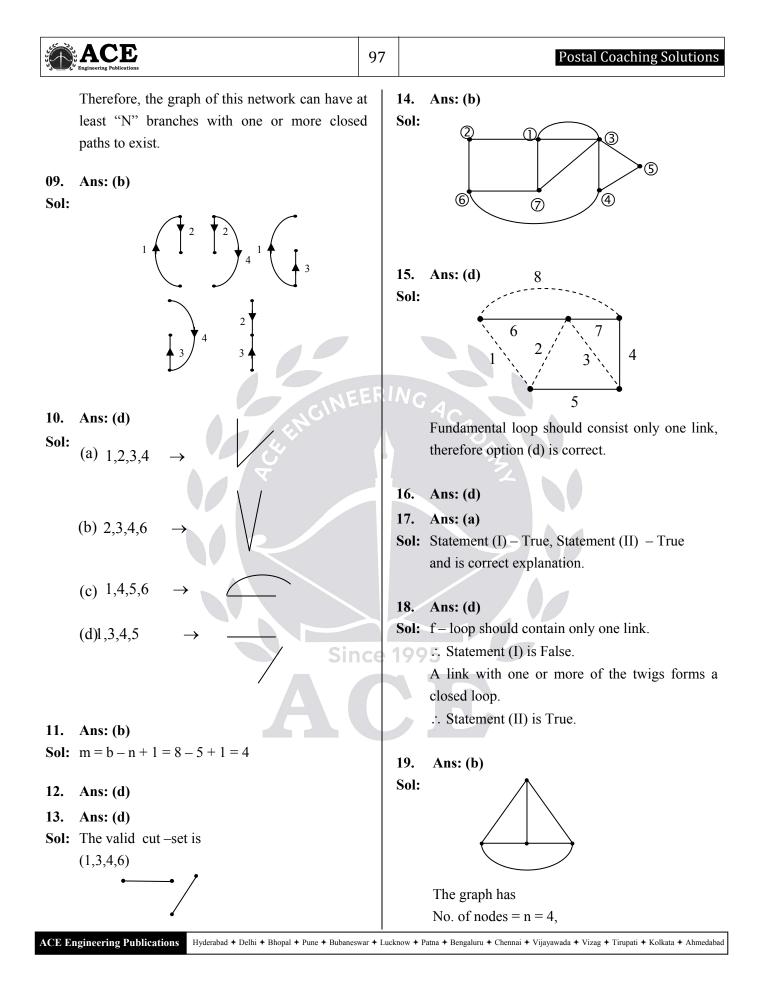

$$\begin{pmatrix} V_{1} \\ V_{2} \end{pmatrix} = \begin{pmatrix} R_{1} + R_{3} & R_{3} \\ R_{3} + dR_{2} & R_{2} + R_{3} \end{pmatrix} \begin{pmatrix} I_{1} \\ I_{2} \end{pmatrix}$$

$$Z_{12} \neq Z_{21}$$

ACE Engineering Publications

Engineering Publications	94	Electric Circuits
The given two port network is not reciprocal network	a	$Z_{12} = \frac{V_1}{I_2} \bigg _{I_1 = 0} \implies V_1 = 5 \ I_2 \Longrightarrow Z_{12} = 5 \ \Omega$
06. Sol: Z- parameters of network:		$[Z] = \begin{bmatrix} 20 & 5\\ 20 & 15 \end{bmatrix} \Omega$
$V_1 = Z_{11}I_1 + Z_{12}I_2$ $V_2 = Z_{21}I_1 + Z_{22}I_2$		07. Sol: 100 0.2 V ₂ 0.6 L
$Z_{11} = \frac{V_1}{I_1} \bigg _{I_2=0}$	ERI	Sol: $I_{1} \xrightarrow{10\Omega} 0.2 V_{2} \xrightarrow{0.6 I_{2}} I_{2}$ $V_{1} \xrightarrow{20\Omega} \xrightarrow{4} 0.4 I_{2}$ $V_{1} = 10 I_{1} + 0.2 V_{2} + (I_{1} + 0.6 I_{2}) 20$ $V_{1} = 10I_{1} + 0.2 V_{2} + 20 I_{1} + 12 I_{2}$
KVL 44NC		$V_1 = 30I_1 + 0.2 V_2 + 20 I_1 + 12 I_2$ $V_1 = 30I_1 + 12I_2 + 0.2 V_2$ $V_2 = 20 (I_1 + 0.6 I_2) = 20 I_1 + 12 I_2$
$V_1 = 10I_1 + 10I_1$ $V_1 = 20I_1 \Rightarrow Z_{11} = 20\Omega$		$V_1 = 30I_1 + 12 I_2 + 0.2(20I_1 + 12 I_2)$ $V_1 = 34I_1 + 14.4 I_2$
$Z_{21} = \frac{V_2}{I_1} \bigg _{I_2 = 0}$		$\mathbf{V}_2 = 20 \mathbf{I}_1 + 12\mathbf{I}_2$ $\begin{bmatrix} \mathbf{V}_1 \\ \mathbf{V}_2 \end{bmatrix} = \begin{bmatrix} 34 & 14.4 \\ 20 & 12 \end{bmatrix} \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{I}_2 \end{bmatrix}$
KVL , in above circuit, $-10I_1 - 10I_1 + V_2 = 0$		V = Z I
$V_{2} = 20I_{1}$ $Z_{21} = \frac{V_{2}}{I_{1}}\Big _{I_{2}=0} = 20\Omega$ Sin	ice	$[Y] = [Z]^{-1} = \frac{1}{(34)(12) - (20)(14.4)} \begin{bmatrix} 12 & -14.4 \\ -20 & 34 \end{bmatrix}$ $= \frac{1}{120} \begin{bmatrix} 12 & -14.4 \\ 20 & 27 \end{bmatrix}$
$\begin{array}{c} I_1=0 \\ + \\ I_2 \\ I_2 \end{array} \begin{array}{c} I_1 \cap \Omega \\ I_2 \\ I_2 \\ I_2 \end{array} \begin{array}{c} I_2 \\ I_2 \\ I_2 \end{array} \begin{array}{c} I_2 \\ I_2 \\ I_2 \\ I_2 \end{array} $	Q	$ \begin{array}{cccc} 120 \begin{bmatrix} -20 & 37 \end{bmatrix} \\ = \begin{bmatrix} 0.1 & -0.112 \\ -0.167 & 0.283 \end{bmatrix} $
$5\Omega $ V_1 V_2 $ -$		08. $3/2\Omega$ Sol: I_1 I_2 I_2
$Z_{22} = \frac{V_2}{I_2} \bigg _{I_1 = 0}$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
KVL , $V_2 = 15I_2 \Rightarrow Z_{22} = 15 \Omega$ ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubanes		čknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedab

Engineering Publications	95	Postal Coaching Solutions
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Apply KVL in above circuit $V_2 = -I_2R_L$ $V_2=-2000I_2$ $\Rightarrow I_2= -\frac{V_2}{2000}$ (1) h-parameters: consider the 2-port NW shown in Fig.2
$Y_{12} = \frac{I_1}{V_2} _{V_1} = 0$		$+ \circ - \circ +$
$I_{1}(s) + I_{2}(s) = \frac{V_{2}(s)}{\frac{1}{2s}} + \frac{V_{2}(s)}{\frac{1}{6}}$ $= V_{2}(s)(2S+6)$		$+ \begin{array}{c} 1 \\ + \\ 0 \\ - \\ - \\ 1' \\ Fig.2 \end{array}$
	ER <i>II</i>	h-parameters relate the input and output port
$V_{2}(s) = I_{1}(s) \left(\left[\frac{3/2 \times \frac{3}{2S}}{\frac{3}{2} + \frac{3}{2S}} \right] + 1 \right) / \frac{1}{2S} / \frac{1}{6}$		currents, I_1 and I_2 as a linear combination of the input and output port voltage, V_1 and V_2 . $V_1=h_{11}I_1+h_{12}V_2$ $I_2=h_{21}I_1+h_{22}V_2$
$V_2(s) = -I_1(s) \left[\left[\frac{9/4S}{\frac{3}{2} \left(1 + \frac{1}{S} \right)} \right] + 1 \right]$		$V_1=100I_1+0.0025V_2(2)$ $I_2=20I_1+10^{-3}V_2(3)$ Put equation (1) in equation (3) $V_2 = 20I_1 + 10^{-3} V_2$
$\frac{V_2(s)}{I_{(s)}} = \left[\frac{3}{2}\frac{1}{(s+1)} + 1\right]$		$-\frac{V_2}{2000} = 20I_1 + 10^{-3} V_2$ $I_1 = -\frac{3V_2 \times 10^{-3}}{40} - \dots - (4)$
$=\frac{3+2S+2}{2(s+1)}+1=\frac{-(2S+5)}{2(s+1)}$ Sin	ce 1	99 Put equation (4) in equation (2)
$Y_{12} = \frac{I_1(S)}{V_2(s)} = \frac{-2(s+1)}{(2s+5)} \nabla$		$V_1 = 100 \left[-\frac{3V_2}{40 \times 10^3} \right] + 0.0025 V_2$
09.		$V_1 = V_2 \left[\frac{-300 + 100}{40 \times 10^3} \right]$
Sol: The given circuit is shown in Fig.1		$\frac{V_2}{V_1} = -\frac{40 \times 10^3}{200}$
$V_{S} \bigvee_{V_{1}} \overset{Ik\Omega}{\underset{network}{}} \overset{I_{2}}{\underset{network}{}} \overset{I_{2}}{\underset{V_{2}}{}} \overset{I_{2}}{\underset{V_{2}}{}} R_{L} = 2k\Omega$		$\frac{V_2}{V_1} = -200$



Engineering Publications	96	Electric Circuits
7. Graph Theory Solutions for Objective Practice Questions		f-loops = (b-n+1)=55 f-loop = f-cutset matrices = $n^{(n-2)}$ = $12^{12-2} = 12^{10}$
01. Ans: (c) Sol: $n > \frac{b}{2} + 1$ Note: Mesh analysis simple when the nodes are morthan the meshes.		 8. Ans: (a) ol: Let N=1 Nodes=1, Branches = 0 ; f-loops = 0 Let N=2
02. Ans: (c) Sol: Loops = $b - (n-1) \Rightarrow loops = 5$ $n = 7$ $\therefore b = 11$		Nodes = 2; Branches = 1; f-loop= 0 Let N=3
03. Ans: (a) 04. Sol: Nodal equations required = f-cut sets = (n-1)=(10-1) = 9 Mesh equations required = f-loops = b-n+1=17-10+1=8 So, the number of equations required = Minimum (Nodal, mesh)=Min(9,8)=8 05. Ans: (c)	ERIA	Nodes = 3; Branches = 3; f-loop = 1 \Rightarrow Links = 1 Let N = 4 Nodes=4; Branches = 4; f-loops=Links=1 Still N = 4
Sol: not a tree (Because trees are not in closed path)		Branches = 6; f-loops = Links = 3 Let N = 5
06. Ans: (a) 07. Sol: For a complete graph ; $b = n_{C_2} \Rightarrow \frac{n(n-1)}{2} = 66$		Nodes = 5; Branches = 8; f –loops = Links = 4 etc

n = 12f-cut sets = (n-1)=11

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

etc

	A	C]	E
1	Engineer	ing Public	ations

No. of branches = b = 6 No. of twigs = No. of tree branches = n - 1 = 3No. of independent loops = No. of links = 1 = b - (n - 1) = 3Order of B matrix or Fundamental loop matrix $= 1 \times b = 3 \times 6$ Correct answer is A = 6, B = 3, C = 3 × 6, D = 3

20. Ans: (a)

Sol: If 1, 2, 3 and 8 are the co-tree branches or chords or links, and then 4, 5, 6 and 7 should be Tree branches or twigs.

f – cutset (1, 2, 3, 4) is defined by 4 and f – loop (6, 7, 8) is defined by 8.

21. Ans: (a)

Sol: The Tree (1, 2, 3, 4, 5) is shown with thick lines.

The dotted lines (6, 7, 8) are links or chords. f – circuit or f – loops are Edge set : L₁ (1, 2, 4, 6) defined by chord 6

Edge set : L_2 (2, 4, 5, 7) defined by chord 7

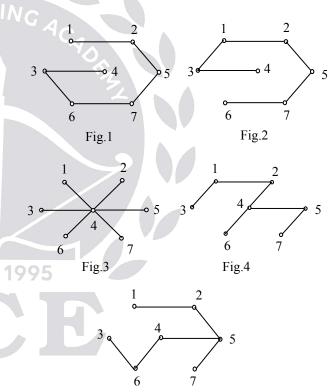
Edge set : L_3 (2, 3, 5, 8) defined by chord 8

Note that the twigs or tree branches can be drawn so that they do not cross each other

Solutions for Conventional Practice Questions

01.

Sol: A tree is a connected sub-graph of a connected graph containing all the nodes of the graph but containing no loops.

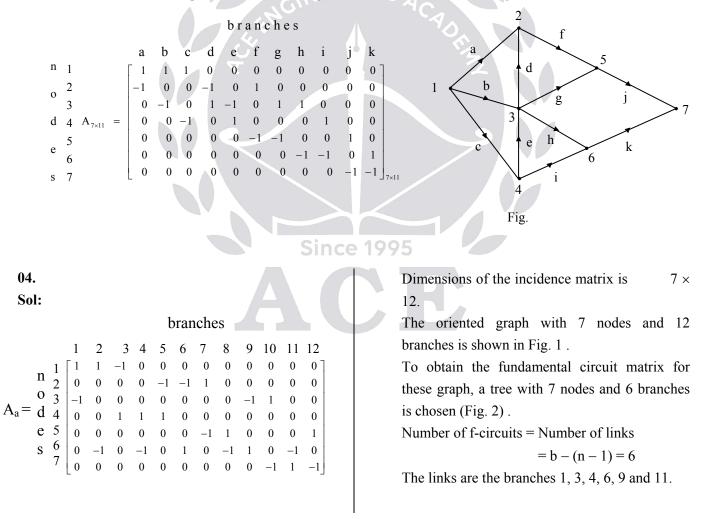

Properties of trees:

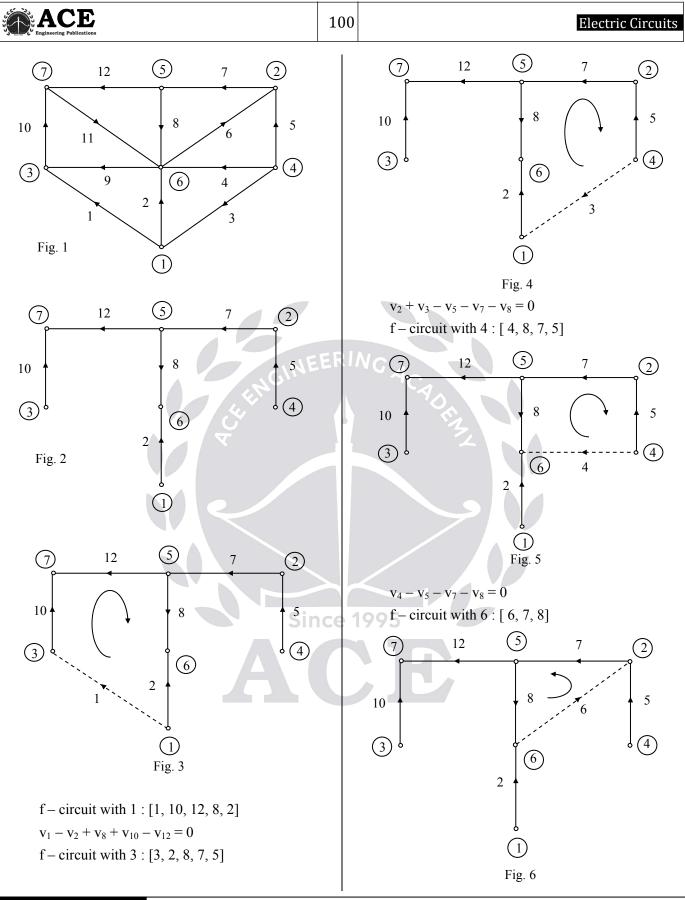
1. A connected sub-graph of a connected graph is a tree if there exists only one path between any pair of nodes in it.

- 2. Every connected graph has atleast one tree.
- 3. The number of terminal nodes of every tree are two.

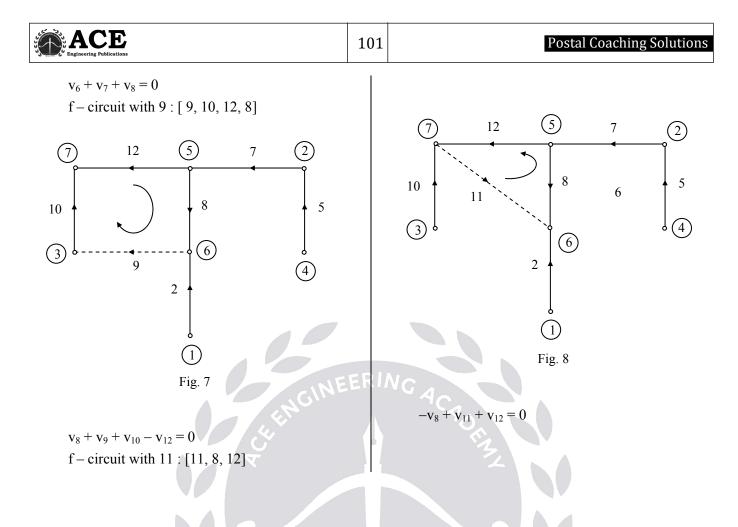
Electric Circuits

- 4. A connected sub-graph of a connected graph is a tree if there exists all the nodes of the graph.
- 5. Each tree has (n 1) branches, where n is the number of nodes of the tree.
- 6. The rank of a tree is (n 1). The given connected graph has 7 nodes and 12 branches. Five different Trees are shown below from Fig. 1 to Fig. 5.


02.


Sol: Let the fundamental loop matrix be B and the fundamental cut-set matrix be Q of the same oriented G, and let both matrices pertain to the same tree T ; then

Engineering Publications	99	Postal Coaching Solutions
B Q ^T = 0 and Q B ^T = 0(1) If we number the links from 1 to <i>l</i> and num the tree branches from $l + 1$ to b, then B = $[1_l \vdots F]$ and Q = $[-F^T \vdots l_n]$ (2)	ber	$= [l_{i} \vdots F]$ $Q = [-F^{T} \vdots l_{n}]$
$B_{f} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0$	0	$= \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 &$


03.

Sol: The eleven branches a, b, c,.., k are marked on the graph (Fig.). The incidence matrix is written with the usual convention: example: branch 'a' leaving node 1(taken as 1) and entering node 2 (taken as -1).

ACE Engineering Publications Hyderabac

According to the above f – circuit (tie-set) equations, the tie-set matrix, $B_{6\times 12}$ is constructed as shown in Table.

	f -circuit	Bra	anche	5									
		1	2	3	4	5	6	-7	8	9	10	11	12
	1	1	-1	0	S ⁰ n	ce ·	1909	50	1	0	1	0	-1
	3	0	1	-1	0	-1	0	-1	-1	0	0	0	0
$B_{6\times 12}=$	4	0	0	0	1	-1	0	-1	-1	0	0	0	0
	6	0	0	0	0	0	1	1	1	0	0	0	0
	9	0	0	0	0	0	0	0	1	1	1	0	-1
	11	0	0	0	0	0	0	0	-1	0	0	1	1

95. Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol: Sol:	Sol: $x\Omega = \begin{bmatrix} 2\Omega & 1 \\ 1\Omega & y\Omega \\ 1\Omega & y\Omega \\ 8V = \begin{bmatrix} 1 \\ 2\Omega \\ 1\Omega \\ 1\Omega \\ 8V \end{bmatrix} = \begin{bmatrix} 1 \\ 2\Omega \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}_{del} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}_{del} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}_{del} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}_{del} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}_{del} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}_{del} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
$\begin{bmatrix} 0 & 0 & 0 & 0 & \frac{1}{y} \end{bmatrix}_{6\times 6}$	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}_{6\times6} \end{bmatrix} $

RHS:

$$[Q] [I_{s}] = \begin{bmatrix} -1\\ -1\\ -1\\ \end{bmatrix}_{3\times 1} [Q] [Y_{b}] [V_{s}] = \begin{bmatrix} \frac{8}{x}\\ 0\\ 0 \end{bmatrix}_{3\times 1}$$
$$[Q] [I_{s}] - [Q] [Y_{b}] [V_{s}] = \begin{bmatrix} -\left(1 + \frac{8}{x}\right)\\ -1\\ -1 \end{bmatrix}_{3\times 1}$$

Final LHS = Final RHS Apply limits $(x \rightarrow 0 \& y \rightarrow \infty)$ on both sides.

$$\Rightarrow \begin{bmatrix} e_{1} \\ e_{1} \\ \frac{e_{1}}{2} + \frac{3}{2}e_{2} \\ \frac{e_{1}}{2} + \frac{3}{2}e_{3} \end{bmatrix}_{3\times 1} = \begin{bmatrix} -8 \\ -1 \\ -1 \end{bmatrix}_{3\times 1}$$

$$e_{1} = -8 \qquad -----(1)$$

$$\frac{e_{1}}{2} + \frac{3e_{2}}{2} = -1 \qquad -----(2)$$

$$\frac{e_{1}}{2} + \frac{3e_{3}}{2} = -1 \qquad -----(3)$$

By solving equations (1), (2) and (3) $e_1 = -8$, $e_2 = 2$ and $e_3 = 2$

Now branch voltages are

$$[\mathbf{Q}]^{\mathrm{T}}[\mathbf{e}_{\mathrm{twig}}] = [\mathbf{V}_{\mathrm{b}}]$$

Δ

1

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \\ -1 & 0 & -1 \\ -1 & -1 & -1 \end{bmatrix}_{6\times 3} \begin{bmatrix} -8 \\ 2 \\ 2 \end{bmatrix}_{3\times 1} = \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \\ V_5 \\ V_6 \end{bmatrix}_{6\times 1}$$

So $V_2 = 2$ volts

Γv

 $V_3 = 2$ volts

8. Passive Filters

Solutions for Objective Practice Questions

Sol:

$$\begin{array}{c} \omega = 0 \Longrightarrow V_0 = V_i \\ \omega = \infty \Longrightarrow V_0 = 0 \end{array} \right\} \Longrightarrow \text{Low pass filter}$$

02.

Sol:
$$\omega = 0 \Rightarrow V_0 = \frac{V_1 R_2}{R_1 + R_2}$$

"V_0" is attenuated $\Rightarrow V_0 = 0$
 $\omega = \infty \Rightarrow V_0 = V_i$
It represents a high page filter sh

It represents a high pass filter characteristics.

03.

Sol:
$$H(s) = \frac{V_i(s)}{I(s)} = \frac{S^2LC + SRC + 1}{SC}$$

Put $s = j\omega i = -\frac{\omega^2LC + j\omega RC + 1}{j\omega C}$
 $\omega = 0 \Rightarrow H(s) = 0$
 $\omega = \infty \Rightarrow H(s) = 0$
It represents band pass filter characteristics

04.

Since

Sol: $\omega = 0 \Rightarrow V_0 = 0$ $\omega = \infty \Longrightarrow V_0 = 0$ It represents Band pass filter characteristics

05.

Sol:
$$\omega = 0 \Rightarrow V_0 = 0$$

 $\omega = \infty \Rightarrow V_0 = V_i$
It represents High Pass filter characteristics.

ACE Engineering Publications

	104	ŀ
06		12

06.

Sol: $H(s) = \frac{1}{s^2 + s + 1}$ $\omega = 0$: S = 0 \Rightarrow H (s)= 1 $\omega = \infty$: S = $\infty \Longrightarrow$ H (s) = 0 It represents a Low pass filter characteristics

07.

Sol: $H(s) = \frac{s^2}{s^2 + s + 1}$ $\omega = 0$: S = 0 \Rightarrow H (s)= 0 $\omega = \infty$: S = $\infty \Rightarrow$ H (s) = 1 It represents a High pass filter characteristics

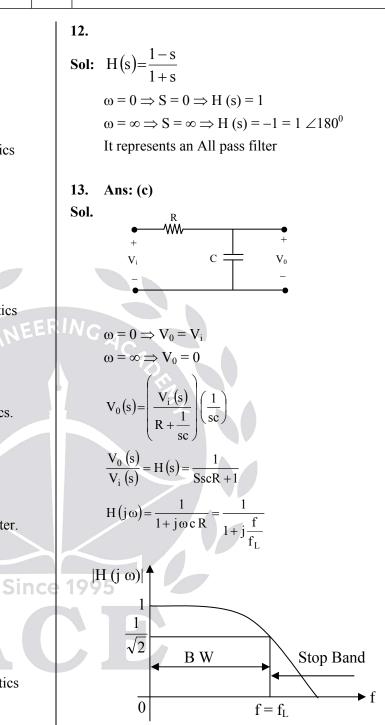
08.

- **Sol:** $\omega = 0; V_0 = V_i$
 - $\omega = \infty; V_0 = 0$

It represents a low pass filter characteristics.

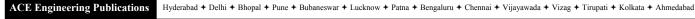
09.

Sol: $\omega = 0 \Rightarrow V_0 = V_{in}$ $\omega = \infty \Longrightarrow V_0 = V_{in}$ It represents a Band stop filter or notch filter.


10.

Sol: $H(s) = \frac{S}{s^2 + s + 1}$ $\omega = 0$: S = 0 \Rightarrow H (s) = 0 $\omega = \infty$: S = $\infty \Longrightarrow$ H (s) = 0

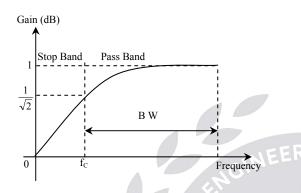
It represents a Band pass filter characteristics


11.

Sol:
$$H(s) = \frac{S^2 + 1}{s^2 + s + 1}$$

 $\omega = 0 \Rightarrow S = 0 \Rightarrow H(s) = 1$
 $\omega = \infty \Rightarrow S = \infty \Rightarrow H(s) = 1$
It represents a Band stop filter

Where
$$f_L = \frac{1}{2\pi RC}$$


$|H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{f}{f}\right)^2}}$

$\angle H(j\omega) = -\tan^{-1}\left(\frac{f}{f_L}\right)$ $f = 0 \Longrightarrow \phi = 0^0 = \phi_{min}$ $f = f_L \Longrightarrow \phi = -45^0 = \phi_{max}$

14. Ans: (b)

Sol:

First order high pass filter = $\frac{s}{1+sT}$

Phase shift = $90 - \tan \omega T$

Max. phase shift is at corner frequency

$$\omega = \frac{1}{\tau}$$

Max. phase shift = $90 - \tan^{-1}\omega T$

$$= 90 - ta$$

= 90 - 45
= 45°

 $\frac{1}{T} \times T$

15. Ans: (d)

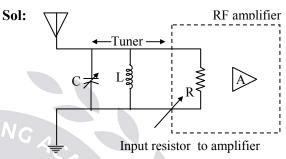
16. Ans: (a)

Sol: Half power of series RC circuit is at t = T (Time constant)

$$T = RC$$

Frequency = $\frac{1}{RC}$

17. Ans: (c)


Sol: Magnitude of voltage gain 0.707 is at half power frequency

$$\omega = \frac{1}{RC}$$

Solutions for Conventional Practice Questions

01.

105

The frequency range for AM broadcasting is 540 to 1600 kHz. We consider the low and high ends of the band. Since the resonant circuit in figure is a parallel type.

$$\omega_0 = 2\pi f_0 = \frac{1}{\sqrt{LC}}$$
 $C = \frac{1}{\omega_0^2 L}$

For Low end of the AM band $f_0 = 40$ kHz and the corresponding C is

$$C_1 = \frac{1}{4\pi^2 \times 540^2 \times 10^6 \times 10^{-6}} = 86.9 \text{nF}$$

For High end of the AM band $f_0 = 1600$ kHz corresponding C value is

$$C_2 = \frac{1}{4\pi^2 \times 1600^2 \times 10^6 \times 10^{-6}} = 9.9 \text{nF}$$

Thus C must be adjustable in the range (9.9 nF to 86.9 nF)

02.

199!

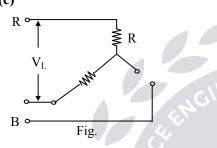
Sol: RLC circuit band pass filter with $R = 10\Omega$, L = 25mH, & C = 0.4μ F

Engineering Publications	106	Electric Circuits
$Q_0 = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{1}{10} \sqrt{\frac{25m}{0.4\mu}} = \frac{1}{10} \sqrt{\frac{25 \times 10^{-3}}{4 \times 10^{-7}}}$		$Z(S) = \left(\left(1 + \frac{1}{S} \right) \right\ \frac{1}{S} \right) + 1$
$Q_0 = \frac{500}{20} = 25$		$=\frac{\left(\frac{S+1}{S}\right)\frac{1}{S}}{\frac{1}{S}+1}+1$
$\omega_0 = \frac{1}{\sqrt{LC}}$		$=\frac{1}{\frac{1}{S}+\frac{1+S}{S}}+1$
$=\frac{1}{\sqrt{(25\times10^{-3})(0.4\times10^{-6})}}$		$=\frac{(S+1)}{S(S+2)}+1=\frac{(S+1)+S^2+2S}{S(S+2)}$
= 10krad / sec $\omega_2 = \omega_0 + \frac{1}{2}$ (band width)		$Z(S) = \frac{S^2 + 3S + 1}{S(S+2)}$
$\omega_1 = \omega_0 - \frac{1}{2}$ (band width)		$I = \frac{V(S)}{Z(S)}$
B.W = $\frac{\omega_0}{Q} = \frac{10}{25}$ k = $\frac{10000}{25}$ = 400 rad/sec $\omega_1 = 10 - 0.2 = 9.8$ krad/sec $f_1 = \frac{9.8}{2\pi} = 1.56$ kHz $\omega_2 = 10 + 0.2 = 10.2$ krad/sec $f_2 = \frac{10.2}{2\pi} = 1.62$ kHz	ER	$I_{1} = \frac{\left(\frac{V(S)}{Z(S)}\right)\left(\frac{1}{S}\right)}{\frac{1}{S} + \frac{1}{S} + 1}$ $I_{1} = \frac{(V(S))}{Z(S)(S+2)}$ $V_{0}(S) = I_{1}(S) = \frac{V(S)}{\frac{(S^{2} + 3S + 1)}{5(S+2)}(S+2)} = \frac{V(S)S}{(S^{2} + 3S + 1)}$ $H(S) = \frac{V_{0}}{V_{s}} = \frac{S}{(S^{2} + 3S + 1)}$
Frequency range is 1.56 kHz < f <1.62 kHz 3. Sol: 1Ω I(S) I ₁ (S) + $V(S) \pm 1\frac{1}{S}$ $1\Omega \ge V_0(S)$ -	Ce 1	$2\delta\omega_{0}=3$ $2\delta = 3 \implies \delta = \frac{3}{2}$ $\omega_{0}^{2} = 1 \implies \omega_{0} = 1 \text{ rad/sec}$ $Q = \frac{1}{2\delta} = \frac{1}{2\left(\frac{3}{2}\right)} \implies Q = \frac{1}{3}$ Bandwidth = $\frac{\omega_{0}}{Q} = \frac{1}{1/3} = 3 \text{ rad/sec}$
ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubanes	swar 🕇 Luckn	now + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

ACE Engineering Publications	107	Postal Coaching Solutions
04.Sol: The circuit parameters for series R-L-C ban stop filter are R = 2K, L = 0.1H, C = 40PF	ıd	$= \left(R_g + R_s + R_p = \frac{R_p}{\alpha} \right)$ $R_{eq} = R_p \parallel \left(R_s + R_g \right) = R_{eg} \dots \dots \dots (1)$
$V_s \sim C$		$\frac{R_{p}(R_{s} + R_{g})}{R_{p} + R_{s} + R_{g}} = R_{g}$ $R_{g}^{2} + R_{g}R_{p} + R_{g}R_{s} = R_{p}R_{s} + R_{p}R_{g}$
(a) $\omega_0 = \text{centre frequency}$		$R_{g}^{2} + R_{g}R_{s} - R_{p}R_{s} = 0$ $R_{g}(R_{g} + R_{s}) = R_{p}R_{s}$
$= \frac{1}{\sqrt{LC}} = 0.5 \text{Mrad/sec}$		From (1) $R_g + R_s = R_p \left(\frac{1}{\alpha} - 1\right)$
(b) bandwidth $= \frac{R}{L} = \frac{2 \times 10^3}{0.1} = 2 \times 10^4$ Quality factor $Q = \frac{\omega_0}{B} = 25$	ERIN	$R_{g}R_{p}\left(\frac{1-\alpha}{\alpha}\right) = R_{s}R_{p}$
As Q > 10,		$R_{g} = R_{s} \left(\frac{\alpha}{1\alpha} \right)$
$\omega_1 = \omega_0 - \frac{1}{2} \text{ B.W} = 5 \times 10^5 - \frac{1}{2} (2 \times 10^4)$ $= (50 - 1) \times 10^4 = 490 \text{ k rad/sec}$		$R_{s} = \frac{(1-\alpha)}{\alpha} R_{g} = \left(\frac{1-0.128}{0.128}\right) 100$
$\omega_2 = \omega_0 + \frac{1}{2} \text{B.W} = 510 \text{ rad/sec}$		$= 700\Omega$ From (1)
(c) $Q = 25$		$R_{g} + R_{s} + R_{p} = \frac{K_{p}}{\alpha}$ (1.0125)
05. Sol: $R_g R_s$ I_1 Sin	ice 19	$R_{p} = 114.29\Omega$ α α $R_{p} = 114.29\Omega$
V_g (\pm) R_p V_0 R_L	C	(b) $V_{th} = V_{oc} = V_0 = 0.125 V_g$ = (0.125×12) = 1.5V $R_{th} = 100\Omega$
R_{eq} Alternator $V_0 = \frac{V_g R_p}{(R_g + R_s + R_p)}$		V_{th} \pm 1.5V $R_L = 50\Omega$
$\Rightarrow \alpha = \frac{V_0}{V_g} = \frac{R_p}{R_g + R_s + R_p}$		$I = \frac{1.5}{100 + 50} = \frac{1.5}{150} = \frac{150 \times 10^{-2}}{150}$ $I = 10 \text{ Ma}$
ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaness	I war ✦ Lucknow ・	+ Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

14	Α	С	E	
XCD#		ring Publ	ications	

9. Three Phase Circuits


Solutions for Objective Practice Questions

01. Ans: (c)

Sol:
$$Z_p(\text{star}) = \frac{9 \angle 30^\circ \ 9 \angle 30^\circ}{27 \angle 30^\circ}$$

= $3 \angle 30^\circ \Omega$

02. Ans: (c)

Sol:

Let V_L be the line to line voltage

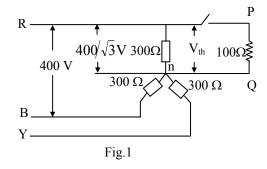
$$V_p = \frac{V_L}{\sqrt{3}}$$

Let the total power in star connected load with phase resistance as R be P_1

$$P_1 = 3 \frac{V_P^2}{R} = 3 \frac{V_L^2}{3R} = \frac{V_L^2}{R}$$

When one of the phase resistance is removed, the relevant star load is shown in Fig. Power in this star load

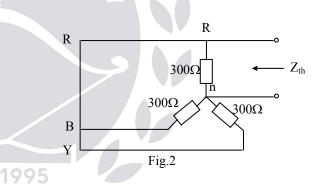
$$= P_2 = 2\left(\frac{V_L}{2}\right)^2 \frac{1}{R} = \frac{V_L^2}{2R}$$
$$\therefore \frac{P_2}{P_1} = 50\%$$


03. Ans: (d) Sol: $I_n = 15 \angle 0^\circ + 15 \angle -120^\circ + 15 \angle -240^\circ = 0$

05.

I

108


Sol: The circuit is redrawn with switch open as shown in Fig.1

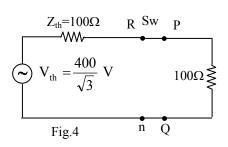
Open circuit voltage, when the switch is open = Thevenin voltage

Phase voltage,
$$V_{Rn} = \frac{400}{\sqrt{3}} V$$

To find Thevenin's equivalent impedance short circuit the voltage sources (Fig. 2 & 3)

$$= 300\Omega \qquad 300\Omega \qquad \leftarrow Z_{\rm th}$$

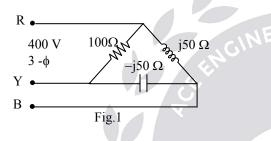
Fig.3


$$\therefore Z_{\rm th} = \frac{300}{3} = 100 \ \Omega$$

:. The venin's equivalent circuit across R, n is shown in Fig. 4 with the switch closed and 100 Ω load across P, Q

ACE Engineering Publications

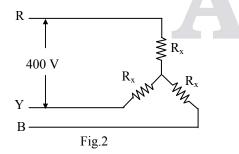
Postal Coaching Solutions



: RMS value of voltage across 100
$$\Omega$$
 resistor =

$$\frac{400}{2\sqrt{3}}$$
 V = 115.5 V

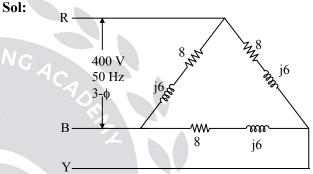
06.


Sol:

The unbalanced load is shown in Fig. 1. Power is consumed only in 100 Ω resistor. Power consumed in the delta connected unbalanced load shown in Fig.1 is given by

$$P_1 = \frac{V_{ph}^2}{R} = \frac{(400)^2}{100} = 1600 \text{ W}$$

The star connected load with ' R_x ' in each phase is shown in Fig.2.



Power consumed in balanced star connected load as in Fig.2 is

$$P_2 = 3 \times \left[\frac{\left(\frac{400}{\sqrt{3}}\right)^2}{R_x} \right] = \frac{400^2}{R_x}$$

But given $P_1 = P_2$
 $\therefore 1600 = \frac{400^2}{R_x}$
 $\therefore R_x = \frac{400 \times 400}{1600} = 100 \ \Omega$

199

0

Power factor angle of load (ϕ)

$$= \tan^{-1}\left(\frac{6}{8}\right) = 36.86^{\circ}$$

Active power consumed by the delta connected balanced load as in Fig. is

$$P = 3 \times V_{ph} \times I_{ph} \times \cos \phi$$

$$=3 \times 400 \times \frac{400}{\sqrt{8^2 + 6^2}} \times \cos 36.86 = 38400 \text{ W}$$

Reactive power consumed by the delta connected load is

$$= 3 \times V_{ph} \times I_{ph} \times \sin \phi$$
$$= 3 \times 400 \times \frac{400}{\sqrt{8^2 + 6^2}} \times \sin 36.86$$

= 28800 VAR

Active power consumption remains same even after capacitor bank is connected Reactive

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar

power consumed by the delta connected load at a power factor of 0.9

$$Q_2 = \frac{P}{0.9} \times \sin(\cos^{-1} 0.9)$$
$$= \frac{38400}{0.9} \times \sin 25.84$$
$$= 18597.96 \text{ VAR}$$

$$\therefore O_2 = 18597.96 \text{ VAR}$$

ACE

 \therefore Reactive power supplied by star connected

capacitor bank =
$$Q_1 - Q_2$$

$$= 28800 - 18597.96$$

= 10202.04
 $\cong 10.2 \text{ kVAR}$

08. Ans: (d)

Sol: The rating of star connected load is given as $12\sqrt{3}$ kVA, 0.8 p.f (lag)

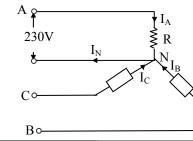
Active power consumed by the load,

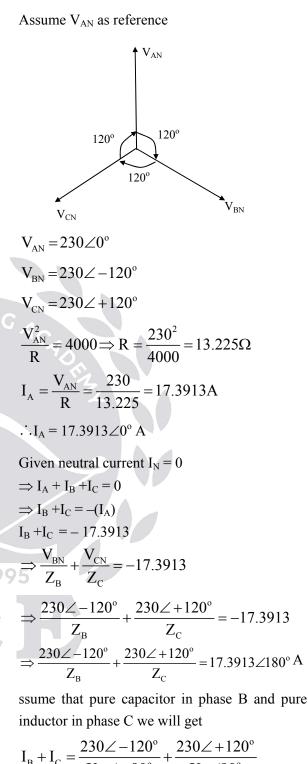
 $P = 12\sqrt{3} \times 0.8 \times 10^3 = 16.627 \text{ kW}$

Reactive power consumed by the load

 $= 12\sqrt{3} \times \sin(\cos^{-1} 0.8) \times 10^{3}$

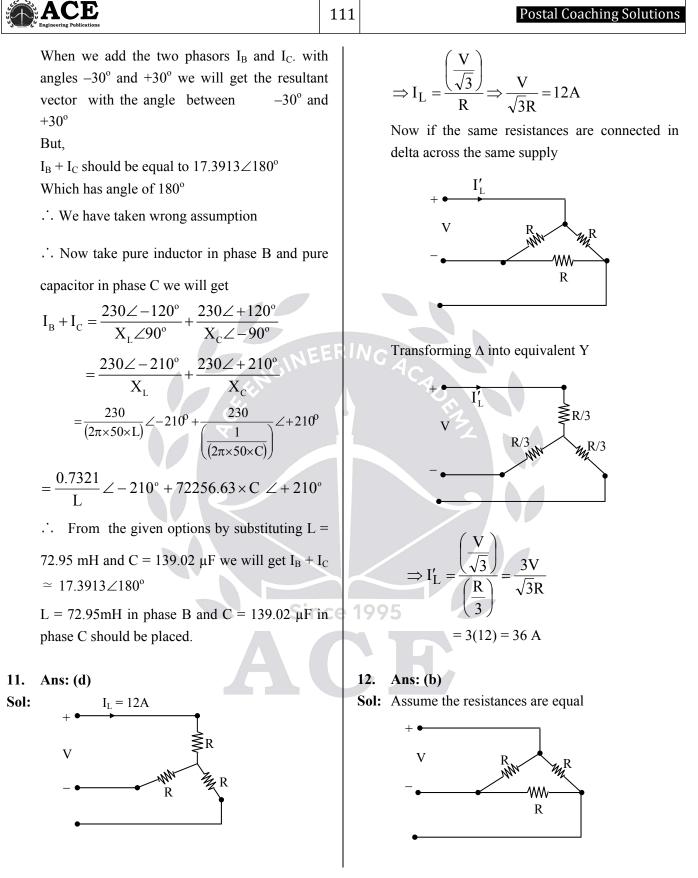
 $Q_1 = 12.47 \text{ kVAR}$


Reactive power consumed by the load at unity power factor is


$$Q_2 = \frac{P}{(1)} \times \sin(\cos^{-1} 1) = 0$$

... kVAR to be supplied by the delta connected capacitor bank = $Q_1 - Q_2$ $Q_C = 12.47$ kVAR

Sol:



$$\begin{array}{c} {}^{1}C \\ = \frac{X_{C} \angle -90^{\circ}}{X_{C}} + \frac{X_{L} \angle 90^{\circ}}{X_{L}} \\ \end{array}$$

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

110

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

111

Postal Coaching Solutions

Electric Circuits

$$\Rightarrow P_{absorbed \Delta} = 3 \frac{V^2}{R} = 60 \, kW \dots \dots (1)$$

Now, if the resistors are connected in star,

$$\Rightarrow P_{absorbed Y} = 3 \frac{\left(\frac{V}{\sqrt{3}}\right)^2}{R} = 3 \times \frac{V^2}{3R} = \frac{V^2}{R}$$

From equation(1),
$$\Rightarrow \frac{V^2}{R} = 20 \text{ kW}$$

$$\therefore P_{absorbed Y} = \frac{V^2}{R} = 20 \, kW$$

13. Ans: (b)

Sol: There are pulsations in power in a balanced 3 φ system.

The three- phase generators produce sinusoidal voltages and current.

Both are correct but Statement–II is not correct explanation for Statement–I

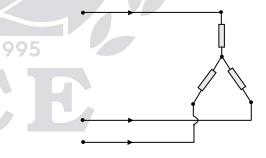
14. Ans: (b)

- Sol: In delta connected three-phase balanced circuit.
 - 1. line current = phase current $X\sqrt{3}$.
 - 2. line voltage = phase voltage.

For balanced 3-phase circuits the three voltages are equal in magnitude and displaced by 120°. Both are correct but Statement–II is not correct explanation for Statement–I **Solutions for Conventional Practice Questions**

01.

Sol: The voltage can be expressed in phasor form as $V_{an} = 200 \angle 10^{\circ} V$, $V_{bn} = 200 \angle -230^{\circ} V$, $V_{cn} = 200 \angle -110^{\circ} V$ We notice that V_{an} leads V_{cn} by 120° and V_{cn} in turn leads V_{bn} by 120° Hence, we have an acb sequence.


02.

Sol: The apparent power is $S = \sqrt{3}V_L I_L = \sqrt{3}(220)(18.2) = 6935.13 \text{ VA}$ Since the real power is $P=S \cos\theta = 5600 \text{ W}$ The power factor is

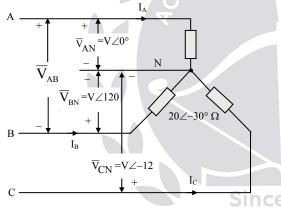
$$pf = \cos \theta = \frac{P}{S} = \frac{5600}{6935.13} = 0.8075$$

03.

Sol: The given 3 - phase circuit is shown in Fig. 1

$$\begin{split} V_L &= 400 \text{ V}, & Z_R &= (4+j8) \Omega, \\ Z_Y &= (3+j4) \Omega, & Z_B &= (15+j20) \Omega \\ V_{RY} &= 400 \angle 0^\circ, & V_{RN} &= \frac{400}{\sqrt{3}} \angle -30^0 \\ V_{YB} &= 400 \angle -120^\circ, & V_{YN} &= 231 \angle -150^0 \end{split}$$

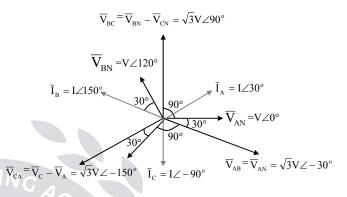
 $V_{BR} = 400 \angle 120^{\circ}$ $V_{BN} = 231 \angle 90^{\circ}$ Total power absorbed load is calculated as:


ACE Engineering Publications Hyderabad

$$\begin{split} I_{R} &= \frac{231 \angle -30}{(4+j8)} = 25.826 \angle -93.43 \\ I_{Y} &= \frac{V_{YN}}{Z_{Y}} = \frac{231 \angle -150}{3+j4} = 46.2 \angle 156.86 \\ I_{B} &= \frac{V_{BN}}{Z_{B}} = \frac{231 \angle 90}{15+j20} = 9.24 \angle 36.86 \\ P &= I_{R}^{2} R_{R} + I_{Y}^{2} R_{Y} + I_{B}^{2} R_{B} \\ &= (25.826)^{2} \times 4 + (46.2)^{2} \times 3 + (9.24^{2} \times 15) \\ P &= 10.349 \text{ kW} \\ (OR) \\ P_{3\cdot\phi} &= VI\cos\theta_{R} + V_{4}I_{4}\cos\theta_{4} + V_{3}I_{B}\cos\theta_{3} \\ P_{3\phi} &= 10.351 \text{ kW}. \end{split}$$

04.

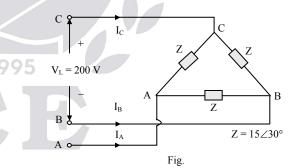
Sol: The 3-phase, 4-wire, CBA system is shown in Fig. 1


The phase sequence has been specified as CBA (which is the same as ACB). Phase angles of the line – to – neutral voltages have been marked accordingly. (\overline{V}_{BN} leads \overline{V}_{AN} and \overline{V}_{CN} , the angle of lead or lag being 120°).

The supply can be assumed to be balanced. Hence magnitude of each line voltage = $\sqrt{3}$ V; which is given as 169.7 V. Hence V = 98 V. Line current \bar{I}_A = current in phase A = $\frac{98}{(20\angle -30^\circ)} = 4.9\angle 30^\circ \text{ A. By symmetry}$

(load also is balanced);

 $\overline{I}_{B} = 4.9 \angle 150^{\circ} \text{ A and } \overline{I}_{C} = 4.9 \angle -90^{\circ} \text{ A.}$


Phasor diagrams are shown below.

Phasor diagram showing, all the line to neutral, line to line voltages and phase currents. V = 98 V, I = 4.9 A

05.

Sol: The 3-phase supply Δ - connected load is shown in Fig.

$$V_{CB} = V_L = 200 V$$

Phase Current,
$$I_{CB} = \frac{200}{Z}$$

$$= \frac{200}{15\angle 30^{\circ}} = \frac{40}{3}\angle -30^{\circ}$$

$$I_{BA} = \frac{V_{BA}}{Z} = \frac{200 \angle -120^{\circ}}{15 \angle 30^{\circ}} = \frac{40}{3} \angle -150^{\circ}$$

Engineering Publications	114	Electric Circuits
$I_{AC} = \frac{V_{AC}}{Z} = \frac{200 \angle 120^{\circ}}{15 \angle 30^{\circ}} = \frac{40}{3} \angle 90^{\circ}$		With phase sequence RYB and \vec{V}_{YB} as the reference phasor,
Line current, $I_{C} = I_{CB} - I_{CA}$		V _{RB}
$=\frac{40}{3} \angle -30^{\circ} -\frac{40}{3} \angle 90^{\circ}$		VR
$=\frac{40}{3}\left\lfloor\frac{\sqrt{3}}{2}-j\frac{1}{2}-j\right\rfloor$		V _B V _{YB}
$=\frac{40}{\sqrt{3}}\left(\frac{1}{2}-j\frac{\sqrt{3}}{2}\right)$		$\vec{V}_{YB} = V_L \angle 0^\circ;$
$=\frac{40}{\sqrt{3}} \angle -60^{\circ}$		$V_{RY} = V_L \angle 120^\circ$ $\vec{V}_{BR} = V_L \angle -120^\circ$
$I_{B} = I_{BA} - I_{BC}$	ERINC	where V_L is the magnitude of the line voltage.
$= \frac{40}{3} \angle -150^{\circ} - \frac{40}{3} \angle -30^{\circ}$		Apply KCL at 'N' : $\vec{I}_{R} + \vec{I}_{B} + \vec{I}_{Y} = 0$
$=\frac{40}{3}\left[-0.866 - j0.5 - (0.866 - j0.5)\right]$		$j\omega C\left(\vec{V}_{B} + \vec{V}_{YB} + \vec{V}_{RY}\right) + \frac{\vec{V}_{B}}{R} + \frac{\vec{V}_{B} + \vec{V}_{YB}}{R} = 0$
$= -\frac{40}{3} \times 2 \times 0.866 = \frac{40}{\sqrt{3}} \angle -180^{\circ}$		$\vec{V}_{B}\left(j\omega C + \frac{2}{R}\right) + j\omega C\left(\vec{V}_{L} + \vec{V}_{L} \angle 120^{\circ}\right) + \frac{1}{R}\vec{V}_{L} = 0$
$I_{A} = \frac{40}{\sqrt{3}} \angle -300^{\circ} = \frac{40}{\sqrt{3}} \angle 60^{\circ}$		$\vec{V}_{B} = \frac{-V_{L}}{\left(\frac{2}{R} + j\omega C\right)} \left(\frac{1}{R} + j\omega C + \omega C \angle 210^{\circ}\right)$
06.		$-V$ $\left(\frac{1}{2} + \omega C \cos(210^\circ)\right)$
Sol: Voltages and currents are marked in the st connected unbalanced load as shown in Fig.1.	arce 199	$\left(\frac{2}{R}+j\omega C\right)\left(\frac{1}{R}+j\omega C+j\omega C\sin(210^\circ)\right)$
$\begin{array}{c c} R & I_R \\ \hline + & & & \\ \hline \end{array} \begin{array}{c} R & & \\ \hline \end{array} \begin{array}{c} R & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \begin{array}{c} R & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \begin{array}{c} R & & \\ \hline & & \\ \hline & & \\ \hline \end{array} \begin{array}{c} R & & \\ \hline & & \\ \hline \end{array} \begin{array}{c} R & & \\ \hline \end{array} \end{array}$	Y	$\vec{\mathbf{V}}_{B} = \frac{-\mathbf{V}_{L}}{\left(\frac{2}{R} + j\omega C\right)} \left[\left(\frac{1}{R} - \frac{\sqrt{3}}{2}\omega C\right) + j\left(\frac{\omega C}{2}\right) \right]$
\vec{V}_{RY} \vec{V}_{BR} \vec{V}_{RY}		$\vec{V}_{Y} = \vec{V}_{B} + \vec{V}_{YB}$

کوو

 $V_{\rm Y}$

 $+ \vec{I}_B$

 $\vec{I}_{\rm Y}$

Fig.1

в

 \vec{V}_{YB}

$$= V_{L} \left[1 - \frac{\left(\frac{1}{R} - \frac{\sqrt{3}}{2}\omega C\right) + j\left(\frac{\omega C}{2}\right)}{\left(\frac{2}{R} + j\omega C\right)} \right]$$

ACE Engineering Publications

$$= \frac{V_{L}}{\left(\frac{2}{R} + j\omega C\right)} \left[\left(\frac{1}{R} + \frac{\sqrt{3}}{2}\omega C\right) + j\left(\frac{\omega C}{2}\right) \right]$$

$$V_{B}^{2} = \frac{V_{L}^{2}}{\left(\frac{4}{R^{2}} + \omega^{2} C^{2}\right)} \left[\left(\frac{1}{R} - \frac{\sqrt{3}}{2}\omega C\right)^{2} + \left(\frac{\omega C}{2}\right)^{2} \right]$$

$$V_{V}^{2} = \frac{V_{L}^{2}}{\left(\frac{4}{R^{2}} + \omega^{2} C^{2}\right)} \left[\left(\frac{1}{R} + \frac{\sqrt{3}}{2}\omega C\right)^{2} + \left(\frac{\omega C}{2}\right)^{2} \right]$$

$$V_{Y} > V_{B}, I_{B} = \frac{V_{B}}{R}, I_{Y} = \frac{V_{Y}}{R}$$

$$I_{Y} > I_{B}, \therefore L_{Y} \text{ glows brighter than } L_{B}.$$
(OR)
(Another method)
The given star connected load is reoriented as shown in Fig. 1, which is convenient for applying mesh analysis.
$$V_{L} \angle 120^{\circ} V_{L} = \frac{V_{L}}{I_{R}} = \frac{V_{L}}{I_{V}} = \frac{V_{L}}{I_{V}} = \frac{V_{L}}{I_{V}} = \frac{V_{L}}{I_{V}} = \frac{V_{L}}{I_{V}} = \frac{V_{L}}{I_{V}} = \frac{V_{L}}{I_{R}} = \frac{V_{L}}{I_{V}} = \frac{V_{L}}{I_{R}} = \frac{V_{L}}{I_{V}} = \frac{V_{L}}{I_{V}}$$

$$\begin{pmatrix} R & -\frac{j}{\omega C} \end{pmatrix} I_1 - R \ I_2 &= V_L \angle 120^\circ \dots (1) \\ - R \ I_1 + 2 \ R \ I_2 = V_L \angle 0^\circ \dots (2) \\ Multiply (1) \ by \ 2: \\ 2 \begin{pmatrix} R - \frac{j}{\omega C} \end{pmatrix} I_1 - 2R \ I_2 = 2 \ V_L \angle 120^\circ \dots (3) \\ Add \ (2) \ \& \ (3): \\ I_1 \begin{pmatrix} R - j \ \frac{2}{\omega C} \end{pmatrix} = V_L + 2 \ V_L \cos(120^\circ) + j2 \ V_L \sin(120^\circ) \\ \end{pmatrix}$$

$$= V_L + 2V_L \left(-\frac{1}{2}\right) + j 2V_L \left(\frac{\sqrt{3}}{2}\right)$$

$$I_{2} = \frac{V_{L} + R I_{1}}{2R}$$

$$= \frac{1}{2R} \left[V_{L} + j \frac{V_{L}R\sqrt{3}}{R - j\frac{2}{\omega C}} \right]$$

$$= \frac{V_{L}}{2R} \left[\frac{R - j\frac{2}{\omega C} + jR\sqrt{3}}{\left(R - j\frac{2}{\omega C}\right)} \right]$$

$$= \frac{V_{L}}{2R} \frac{R + j\left(\sqrt{3}R - \frac{2}{\omega C}\right)}{\left(R - j\frac{2}{\omega C}\right)}$$

$$I_{B} = -I_{2} = -\frac{V_{L}}{2R} \frac{R + j\left(\sqrt{3}R - \frac{2}{\omega C}\right)}{\left(R - j\frac{2}{\omega C}\right)}$$

$$I_{Y} = I_{2} - I_{1}$$

$$S = \frac{V_{L}}{2R} \left[\frac{R + j\left(\sqrt{3}R - \frac{2}{\omega C}\right)}{\left(R - j\frac{2}{\omega C}\right)} \right] - \frac{j\sqrt{3}V_{L}}{\left(R - j\frac{2}{\omega C}\right)}$$

$$= \frac{V_{L}}{2R} \left[\frac{R + j\left(-2R\sqrt{3} + \sqrt{3}R - \frac{2}{\omega C}\right)}{\left(R - j\frac{2}{\omega C}\right)} \right]$$

j V_{_L} \sqrt{3}

$$= \frac{V_L}{2R\left(R - j\frac{2}{\omega C}\right)} \left[R - j\left(\sqrt{3}R + \frac{2}{\omega C}\right)\right]$$

From the numerators of I_{B} and I_{Y} , it can be seen that $|I_Y| > |I_B|$.

 \therefore Lamp L_Y glows brighter than L_B.

10. Network Functions & Synthesis

Solutions for Objective Practice Questions

01. Ans: (c)

Sol: $F(s) = \frac{(s+2)}{(s+1)(s+3)}$

The given F(s) has pole-zero structure as P-Z-P-Z alternating on the negative real axis of the splane, with a pole nearest the origin at s = -1 and a zero at $s = \infty$. This F(s) corresponds to RC impedance or RL admittance.

02. Ans: (b)

- **Sol:** For RC and RL driving point functions, the poles and zeros should alternate on the negative real axis, where as for LC driving point functions the poles and zeros should alternate the imaginary axis.
- 03. Ans: (c)

04. Ans: (b)

Sol: Remember that parallel LC networks in cascade is Foster – I form and series LC networks in shunt is Foster – II form. Ladder NW with series elements as inductors and shunt elements as capacitors is Cauer-I form and the ladder NW with capacitors as series elements and inductors as shunt elements is Cauer – II form. The given circuit in this question is Foster-I form.

Sol: Given: $Z(s) = \frac{s(s^2 + 1)}{s^2 + 4}$

Location of Poles : $s = \pm j2$

Location of Zeros : $s = 0, \pm j1$

Poles and Zeros are simple and lie on the imaginary axis, but they do not alternate. Hence the given Z(s) is not realizable.

06. Ans: (b)

Sol: Poles and zeros of driving point function [Z(s) or Y(s)] of LC network are simple and alternate on the jω axis.

07. Ans: (c)

Sol: V= I Z(s)

$$V = I \sqrt{\frac{\omega^2 + \alpha^2}{\omega^2 + \beta^2}} \angle \tan^{-1} \left(\frac{\omega}{\alpha}\right) - \tan^{-1} \left(\frac{\omega}{\beta}\right)$$

voltage load the current

$$\tan^{-1}\left(\frac{\omega}{\beta}\right) < \tan^{-1}\left(\frac{\omega}{\alpha}\right) < \frac{\omega}{\alpha}(\alpha < \beta)(\beta > \alpha)$$

08. Ans: (d)

09. Ans: (b) Sol: $s = -1 \pm j$ (s + 1) ((s+1)+j) ((s+1)-j) $(s + 1)^{2} + (1)^{2} = s^{2} + 2s + 2$ $Z(s) = \frac{K(s+3)}{s^{2} + 2s + 2}$ $Z(0) = \frac{K(3)}{2} = 3 \implies K = 2$

$$\therefore Z(s) = \frac{2(s+3)}{s^2+2s+1}$$

2

10. Ans: (d) Sol:

Engineering Publications	117 Postal Coaching Solution
$s^{2} + 2s)s^{2} + 4s + 3(1 = \frac{1}{R})$ $\frac{s^{2} + 2s}{2s + 3}s^{2} + 2s(\frac{s}{2} = sL)$ $\frac{s^{2} + \frac{3s}{2}}{\frac{s}{2}}s + 3(4 = \frac{1}{R})$	 → Poles and zeros alternate on the negative real axis of s-plane. → The lowest critical frequency is a zero. → From the given Y(s), Y(0) = 1/3 and Y(∞) = 1, Y(0) < Y(∞), Y(σ) has +ve slope. It is an admittance of the RC network, as the above properties are true for RC admittance
$\frac{2s+}{2} = sL$	12. Ans: (b) 13. Ans: (a)
$\frac{s}{2}$	Sol: $j\omega$
1/2 1/6 300 31/4 Ω 4 4 4 4 4 4 4 4 4 4 4 4 4	ERING ACAO j_2 $\neq j_1$ $\neq \sigma$
$y(s) = \frac{s^2 + 4s + 3}{s^2 + 2s}$ No. of elements = 4	$F(s) = \frac{s(s^2 + 4)}{(s^2 + 1)(s^2 + 6)}$ represents an
1. Ans: (b) ol:	LC immittance function with pole-zero pattern as shown in Fig. Hence it is p. $F(s) = \frac{s(s^2 - 4)}{(s^2 + 1)(s^2 + 6)}$ is not p.r as it has
× × Sin	
-3 -2 -1 -0.5	$F(s) = \frac{s^3 + 3s^2 + 2s + 1}{4s}$ is not p.r as the difference in degrees of highest degre terms in N(s) and D(s) is more than 1. For this
Given Y(s) = $\frac{s^2 + 2.5s + 1}{s^2 + 4s + 3}$	F(s), difference is 2. F(s) = $\frac{s(s^4 + 3s^2 + 1)}{(s+1)(s+2)(s+3)(s+4)}$
$Y(s) = \frac{(s+0.5) (s+2)}{(s+1) (s+3)}$	14. Ans: (a)
Its pole-zero pattern is shown in Fig. From the pattern it can be observed that	Sol: Given Z(s) = $\frac{(s^2 + 4)(s^2 + 16)}{s(s^2 + 9)}$

Electric Circuits

ACE Engineering Publications

Out of the given figs., Foster – I form should be either (1) or (4) and Foster –II form should be either (2) or (3). Foster–I form can be confirmed as Fig. 1 by seeing the behavior of Z(s) at $s = \infty$ and s = 0.

Z(s) = 1 at s =
$$\infty$$
, L = 1 H
Z(s) = $\frac{64}{9s}$ at s = ∞ , C = $\frac{9}{64}$ F

Foster - II form can be confirmed as fig. (3) as

L =
$$\frac{12}{7} \parallel \frac{12}{5} = 1 \,\mathrm{H}$$
, at s = ∞
and C = $\frac{7}{192} + \frac{5}{48} = \frac{9}{64} \,\mathrm{F}$ at s = 0.

The exact realization can be done as shown below. Foster–I form is obtained by expanding the given Z(s) in partial fractions.

$$Z(s) = k_1 s + \frac{k_2}{s} + \frac{k_3 s}{s^2 + 9}$$

= 1s + $\frac{64}{9s} + \frac{35}{9} \frac{s}{s^2 + 9}$ (1)

$$k_{2} = s Z(s)|_{s=0} = \frac{64}{9}$$

$$k_{3} = \frac{(s^{2}+9)}{s} Z(s)|_{s^{2}=-9}$$

$$= \frac{(-9+4) (-9+16)}{-9} = \frac{35}{9}$$

It can be seen from equation (1), the first Foster form corresponds to Fig. I (not Fig. IV) Foster – II form is obtained by taking partial fractions of

$$Y(s) = \frac{s(s^{2}+9)}{(s^{2}+4)(s^{2}+16)}$$
$$= \frac{k_{1}s}{(s^{2}+4)} + \frac{k_{2}s}{(s^{2}+16)} = Y_{1}(s) + Y_{2}(s)$$

$$k_{1} = \frac{(s^{2}+4)}{s} Y(s) \Big|_{s^{2}=-4} = \frac{-4+9}{-4+16} = \frac{5}{12}$$

$$k_{2} = \frac{(s^{2}+16)}{s} Y(s) \Big|_{s^{2}=-16} = \frac{-16+9}{-16+4} = \frac{7}{12}$$

$$Y_{1}(s) = \frac{\frac{5}{12}s}{s^{2}+4}$$

$$= \frac{1}{\frac{12}{5}s + \frac{48}{5s}} = \frac{1}{Ls + \frac{1}{Cs}}$$

$$L = \frac{12}{5} H, \quad C = \frac{5}{48} F$$

:. It can be seen that Foster – II form corresponds to Fig. III (not Fig. II)It is instructive to find out the remaining elements in Fig. I and III.

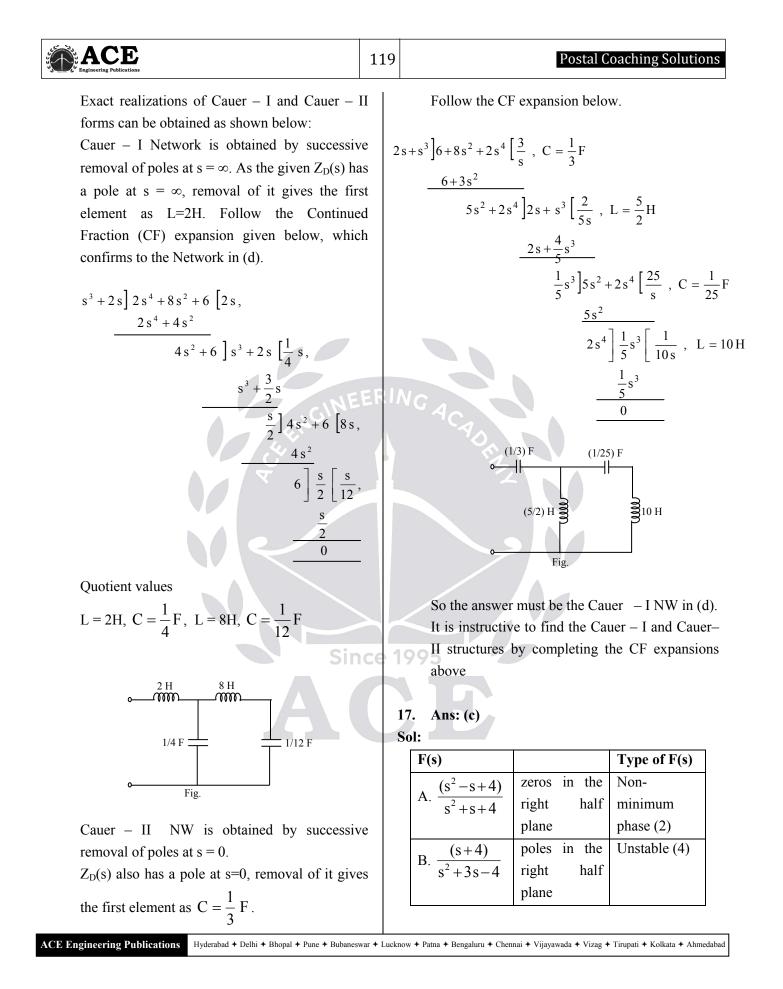
15. Ans: (a)
16. Ans: (d)
Sol: Given:

$$Z_{\rm D}(s) = \frac{2(s^2 + 1)(s)}{s(s^2 + 2)}$$

 $2s^4 + 8s^2 + 3s^2 + 3s^2$

Out of the figs. given (d) is in the form of Cauer-I network and (a) is in the form of Cauer-II. The Cauer network can be confirmed as (d) by seeing the behaviour of

Z(s) at s =
$$\infty$$
 and at s = 0
Z(s) = 2, at s = ∞ , giving L = 2 H
Z(s) = $\frac{3}{s}$, at s $\rightarrow \infty$, giving
C = $\frac{1}{3}$ F = $\left(\frac{1}{4} + \frac{1}{12}\right)$ F


 $s^{3} + 2s$

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Since

1995

118

$ \frac{C}{s+4} = \frac{S+4}{s^2+6s+5} = \frac{Poles and RC}{alternate on the negative real axis with first critical frequency near the origin as a pole. D. multiple poles on the imaginary axis and pole. \frac{s^3+3s}{s^4+2s^2+1} = \frac{s^4+2s^2+3}{s^3+4s} = \frac{s^4+2s^2+3}{s^3+4s} = \frac{s^4+2s^2+3}{s^3+4s} = \frac{s^4+2s^2+3}{s^3+4s} = \frac{s^4+2s^2+3}{s^3+4s} = \frac{s^4+4s^2}{s^2+3s^2} = -2s^2+3)s^3+4s(-\frac{s}{2} \Rightarrow -vequotients) = \frac{s^2+\frac{3s}{2}}{s^2+3s^2} = \frac{s^2+\frac{3s}{2}}{s^2} = \frac$	Engineering Publications	120 Electric Circuits
$3 + \frac{18s + 9}{6s + 1}$ $= \frac{\frac{3(18s + 9)}{6s + 1}}{\frac{18s + 3 + 18s + 9}{6s + 1}}$ $n = 1 \text{ with an inductance and capacitance in}$	$\frac{s+4}{s^2+6s+5}$ zeros alternate on the negative real axis with first critical frequency near the origin as a pole. D. $\frac{s^3+3s}{s^4+2s^2+1}$ multiple poles on the imaginary axis 18. Ans: (c) Sol: $Z \rightarrow \underbrace{\frac{5}{3}}_{5} + 3 = 3 + \frac{6}{6s+1} = \frac{6}{6s+1} + 3$ $= \frac{18s+3+6}{6s+1} = \frac{9+18s}{6s+1}$ $= \frac{3\left(\frac{18s+9}{6s+1}\right)}{3+\frac{18s+9}{6s+1}}$	$= \frac{3 \times 18\left(s + \frac{1}{2}\right)}{36\left(s + \frac{1}{3}\right)} = \frac{\left(s + \frac{1}{2}\right)}{s + \frac{1}{3}}$ 19. Ans: (b) Sol: $p(s) = s^4 + s^3 + 2s^2 + 4s + 3$ $y(s) = \frac{even part}{odd part} = \frac{s^4 + 2s^2 + 3}{s^3 + 4s}$ $s^3 + 4s)s^4 + 2s^2 + 3(s)$ $\frac{s^4 + 4s^2}{-2s^2 + 3)s^3 + 4s(-\frac{s}{2} \Rightarrow -vequotients)$ $\frac{s^3 + \frac{3s}{2}}{2}$ p(s) is not Hurwitz Q(s) $= s^5 + 3s^2 + s$ missing terms Q(s) is not Hurwitz 20. Ans: (a) 21. Ans: (d) 22. Ans: (b) Sol: Foster - 1 form consists of LC tank circuits in series to realize Z _{LC} (s). This form is obtained by taking partial fractions of Z(s). $Z(s) = 4\left[1s + \frac{A}{s} + \frac{Bs}{s^2 + 4}\right]$

23. Ans: (a)

Sol: Assertion given is the necessary condition for Y(s) to be positive real because the definition of positive real function includes the statement that Y(s) is real for real s.

24. Ans: (d)

Sol: The function $10 \frac{(s^2 + 1)(s^2 + 9)}{s(s^2 + 4)}$ is a valid

reactance function as poles and zeros alternate on the j ω -axis.

Statement (I) is false, statement (II) is true.

25. Ans: (c)

- Sol: The existence of two poles or two zeroes in successive on the real frequency axis of the splane requires that the slope be negative over part of the frequency range. So the slope of reactance curve may be negative.
 - : Statement (II) is false.

26. Ans: (a)

Sol: The poles and zeros of driving point function should be in the left half of the s-plane. A is True.

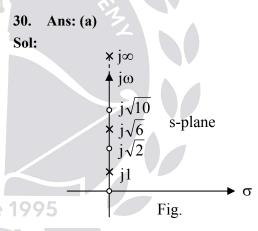
> Only PR function can be realized as the driving point function of a network and PR function has its poles and zeros in the left half of the s-plane. R is True and is the correct explanation of A

27. Ans: (c)

Sol: For a system to be stable, all coefficients of the characteristic polynomial must be positive. This is a necessary condition for stability, but not a sufficient condition.

A is true, R is false.

28. Ans: (a)


Sol:
$$Z(s) = \frac{k (s^2 + 1)(s^2 + 5)}{(s^2 + 2)(s^2 + 10)}$$

For Z(s) to be an LC function, the highest powers of numerator and denominator should differ by 1. For the given Z(s), the highest powers of numerator and denominator are not differing by one. They are same equal to 2.

29. Ans: (a)

Sol:
$$Q \propto \frac{1}{\xi}$$

For circuits with high Q, ξ is less. If damping is less, the real part of the poles are close to the j ω axis in the left-half plane.

Given: Z(s) =
$$\frac{Ks(s^2 + 2)(s^2 + 10)}{(s^2 + 1)(s^2 + 6)}$$

It represents an LC driving point impedance function because it satisfies the property: Poles and zeros interlace on the imaginary axis of the complex s – plane as shown in Fig.

31. Ans: (b)

ACE Engineering Publications

122

Solutions for Conventional Practice Questions

01.

Sol: The realizable function used for driving point synthesis is known as Positive Real (P.R) function.

PR function:

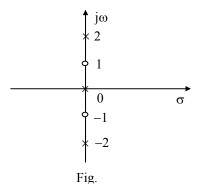
Positive real function, F(s) is defined as function satisfying the following two requirements:

$$\operatorname{Re} F(s) \ge 0 \quad \text{for } \operatorname{Re} s \ge 0$$

or $|\text{Arg } F(s)| \le |\text{Arg } s|$ for $|\text{Arg } s| \le (\pi/2)$

and F(s) is real when 's' is real.

It is easier to test the P-R character of a function,

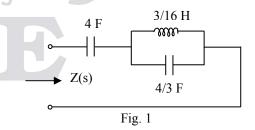

- F(s) by means of the following equivalent necessary and sufficient conditions:
- a) Y(s) must be real when s is real.
- b) If Y(s) = p(s)/q(s), then p(s) + q(s) must be Hurwitz.

This requires that:

- i) The continued fraction expansion of the Hurwitz test give only real and positive α 's, and
- ii) The continued fraction not end prematurely.
- c) In order that Re Y(j ω) ≥ 0 for all ω , it is necessary and sufficient that $A(\omega^2) = m_1 m_2 - n_1 n_2 |_{s=j\omega}$ have no real positive roots of odd multiplicity. This may be determined by factoring $A(\omega^2)$ or by the use of Sturm's theorem.

02.

Sol: i) The pole-zero plot of impedance is shown in Fig.


$$Z(s) = \frac{(s^2 + 1)}{s(s^2 + 4)} = \frac{(s^2 + 1)}{s^3 + 4s}$$

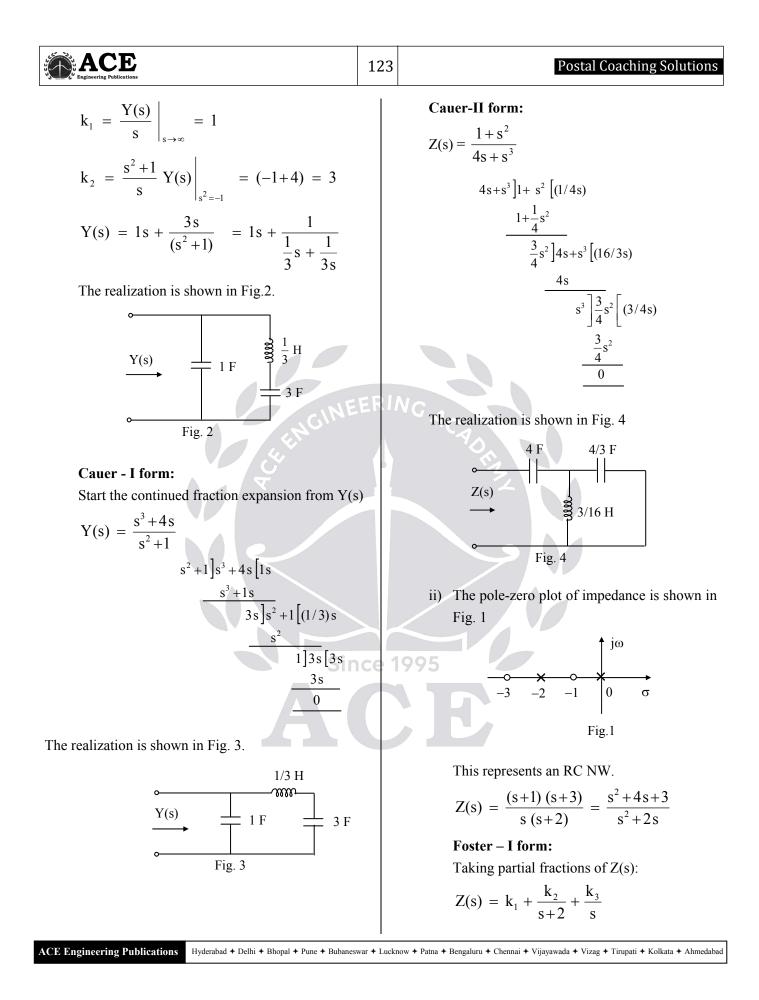
$$Z(s) = \frac{k_1}{s} + \frac{k_2 s}{s^2 + 4}$$

k_1 = s Z(s)

$$k_2 = \frac{s^2 + 4}{s} Z(s) \bigg|_{s^2 = -4} = \frac{-4 + 1}{-4} = \frac{3}{4}$$

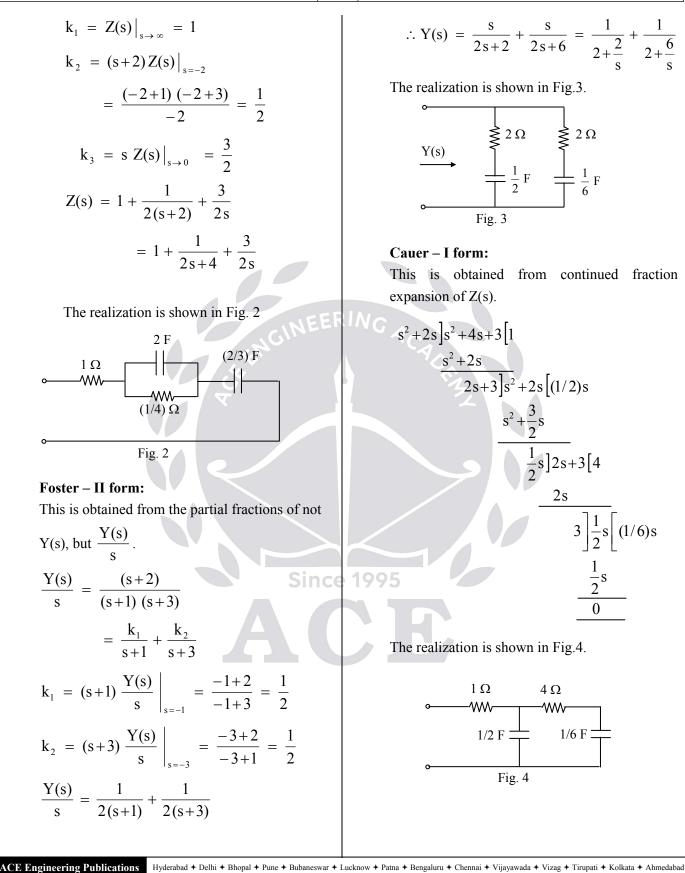
$$Z(s) = \frac{1}{4s} + \frac{3s}{4(s^2 + 4)} = \frac{1}{4s} + \frac{1}{\frac{4}{3}s + \frac{16}{3s}}$$

The realization is shown in Fig. 1.


Foster – II form:

$$Y(s) = \frac{s(s^2+4)}{(s^2+1)} = k_1 s + \frac{k_2 s}{s^2+1}$$

ACE Engineering Publications


ns Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

\

Electric Circuits

$$\frac{125}{2}$$

$$\frac{12}{2}$$

$$\frac{125}{2}$$

$$\frac{12}{2}$$

$$\frac{125}{2}$$

$$\frac{12}{2}$$

$$\frac{125}{2}$$

$$\frac{12}{2}$$

$$\frac{125}{2}$$

$$\frac{12}{2}$$

$$\frac{125}{2}$$

$$\frac{12}{2}$$

$$\frac{$$

ACE Engineering Publications

126

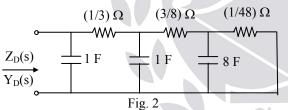
$$s^{2}+12s+35]s^{3}+15s^{2}+62s+48[1s]$$

$$\frac{s^{3}+12s^{2}+35s}{3s^{2}+27s+48]s^{2}+12s+35[(1/3)]$$

$$\frac{s^{2}+9s+16}{3s+19]3s^{2}+27s+48[1s]$$

$$\frac{3s^{2}+19s}{8s+48]3s+19[(3/8)]}$$

$$\frac{3s+18}{1]8s+48[8s]}$$


$$\frac{3s+18}{1]8s+48[8s]}$$

$$\frac{8s}{48]1[(1/48)]}$$

$$\frac{1}{0}$$

1995

Identifying the elements from the quotients, Cauer – I form is obtained as shown in Fig.2.

04.

Sol: PR Function:

Positive real function, F(s) is defined as function satisfying the following two requirements:

Re $F(s) \ge 0$ for Re $s \ge 0$

or $|\text{Arg } F(s)| \le |\text{Arg } s|$ for $|\text{Arg } s| \le (\pi/2)$

and F(s) is real when 's' is real.

It is easier to test the P-R character of a function, F(s) by means of the following equivalent necessary and sufficient conditions:

(a) Y(s) must be real when s is real.

(b) If Y(s) = p(s)/q(s), then p(s) + q(s) must be Hurwitz.

This requires that:

i) the continued fraction expansion of the Hurwitz test give only real and positive α 's, and

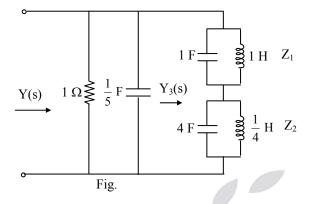
ii) the continued fraction not end prematurely.

(c) In order that Re Y(jω) ≥ 0 for all ω, it is necessary and sufficient that

 $A(\omega^2) = m_1 m_2 - n_1 n_2 |_{s=j\omega}$ have no real positive roots of odd multiplicity. This may be determined by factoring $A(\omega^2)$ or by the use of Sturm's theorem.

It can be shown that the function,

 $F(s) = \frac{s^2 + \frac{3}{4}s + \frac{3}{4}}{s^2 + s + 4}$ is not P-R as it does not


satisfy requirement (c) above.

AC	Έ
ngineering Put	lications

Postal Coaching Solutions

A(ω^2) = ($\omega^2 - 3$) ($\omega^2 - 1$) is negative for $1 < \omega$ < $\sqrt{3}$

The given circuit is shown in Fig.1

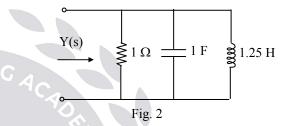
First, Y(s) is obtained:

then its pole-zero diagram can be drawn easily. Next, its Canonic realization (with minimum number of elements) can be obtained.

$$Y_{1}(s) = \frac{1}{Z_{1}(s)} = 1s + \frac{1}{s} = \frac{s^{2} + 1}{s}$$

$$Z_{1}(s) = \frac{s}{s^{2} + 1}$$

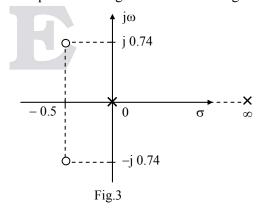
$$Y_{2}(s) = \frac{1}{Z_{2}(s)} = 4s + \frac{4}{s} = 4\frac{(s^{2} + 1)}{s}$$


$$Z_{2}(s) = \frac{s}{4(s^{2} + 1)}$$

$$Z_{3}(s) = Z_{1}(s) + Z_{2}(s) = \frac{5}{4}\frac{s}{s^{2} + 1}$$

$$Y_{3}(s) = \frac{4(s^{2} + 1)}{5s}$$

$$\therefore Y(s) = 1 + \frac{1}{5}s + \frac{4(s^{2} + 1)}{5s}$$


From eqn. (I), the Canonic realization is obtained as parallel RLC network shown in Fig. 2.

Considering eqn.(II), Zeros of Y(s) are obtained from $s^2 + s + 0.8 = 0$

$$S = \frac{-1 \pm \sqrt{1 - 3.2}}{2}$$
$$= \frac{-1 \pm j \sqrt{2.2}}{2}$$
$$= -0.5 \pm j0.74$$

Poles of Y(s) are at s = 0 and $s = \infty$. The pole-zero diagram is shown in Fig.3.

ACE Engineering Publications

ACE Engineering Publications

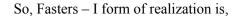
Electric Circuits

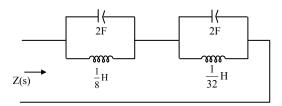
05.

Sol:
$$Z(s) = \frac{s(s^2 + 10)}{(s^2 + 4)(s^2 + 16)}$$

This is clearly a L-C driving point impedance function.

Fosters – **I:** (i.e,) series impedance form obtained by partial fraction expansion.


$$Z(s) = \frac{s(s^2 + 10)}{(s^2 + 4)(s^2 + 16)}$$


The standard form of representing a L-C driving point impedance in fosters-I form is,

$$Z(s) = \frac{k_0}{s} + \sum_{i=1}^{n} \frac{2k_i s}{s^2 + \sigma_i^2} + k_{\alpha} s$$

But in the given function, There is no pole at origin and there is no pole at infinity. So, doing partial fraction expansion

$$Z(s) = \frac{As + B}{s^2 + 4} + \frac{Cs + D}{s^2 + 16}$$

Comparing coefficients
 $4A + 4C = 4$ (1)
 $16A + 4C = 10$ (2)
By solving, $A = \frac{1}{2}$, $B = \frac{1}{2}$
 $B+D = 0$ (3)
 $16B + 4D = 0$ (4)
By solving, $B = 0$, $D = 0$
So, $\frac{\frac{S}{2}}{s^2 + 4} + \frac{\frac{S}{2}}{s^2 + 16}$
 $Z(s) = \frac{1}{\frac{s^2}{s/2} + \frac{4}{s/2}} + \frac{\frac{1}{s^2}}{\frac{s^2}{s/2} + \frac{16}{s/2}}$
 $Z(s) = \frac{1}{2s + \frac{8}{s}} + \frac{1}{2s + \frac{32}{s}}$
 $= \frac{1}{Y_1(s)} + \frac{1}{Y_2(s)}$

06.

Sol: Given
$$Z(s) = \frac{(s+1)(s+3)(s+5)}{s(s+2)(s+4)(s+6)}$$

This impedance corresponds to RC NW

Foster - I form is realized by taking the partial fractions of Z(s).

$$Z(s) = \frac{A}{s} + \frac{B}{s+2} + \frac{C}{s+4} + \frac{D}{s+6}$$

$$A = \frac{15}{48} = \frac{5}{16}$$

$$B = \frac{(-2+1)(-2+3)(-2+5)}{(-2)(-2+4)(-2+6)} = \frac{3}{16}$$

$$C = \frac{(-4+1)(-4+3)(-4+5)}{(-4)(-4+2)(-4+6)} = \frac{3}{16}$$

$$D = \frac{(-6+1)(-6+3)(-6+5)}{(-6)(-6+2)(-6+4)} = \frac{5}{16}$$

$$Z(s) = \frac{5}{16} \frac{1}{s} + \frac{3}{16} \frac{1}{(s+2)} + \frac{3}{16} \frac{1}{(s+4)} + \frac{5}{16} \frac{1}{(s+6)}$$

$$= \frac{1}{(16/5)s} + \frac{1}{(16/3)s+(32/3)}$$

$$+ \frac{1}{(16/3)s+(64/3)} + \frac{1}{(16/5)s+(96/5)}$$
The realization is shown in Fig. 1.
$$(\frac{(16/5)F}{(-6)(-6+2)} \frac{(3/32)\Omega}{(16/3)F} \frac{(3/64)\Omega}{(16/3)F} \frac{(5/96)\Omega}{(16/5)F}$$

Fig. 1