

ESE | GATE | PSUs

Feedback

Motor

ELECTRICAL ENGINEERING CONTROL SYSTEMS

Text Book : Theory with worked out Examples and Practice Questions

Control Systems

(Solutions for Text Book Practice Questions)

1. Basics of Control Systems	$c(t) = t.e^{-t}$ $T.F = L(I.R)$
Solutions for Objective Practice Questions	$=\frac{1}{1}$
01. Ans: (c) Sol: $2\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 4y(t) = r(t) + 2r(t-1)$ Apply LT on both sides $2s^2 Y(s) + 3sY(s) + 4Y(s) = R(s) + 2e^{-s}R(s)$ $Y(s)(2s^2 + 3s + 4) = R(s)(1 + 2e^{-s})$ $\frac{Y(s)}{R(s)} = \frac{1 + 2e^{-s}}{2s^2 + 3s + 4}$	$-\frac{1}{(s+1)^2}$ Open Loop T.F = $\frac{\text{Closed Loop T.F}}{1-\text{Closed Loop T.F}}$ $=\frac{\frac{1}{(s+1)^2}}{1-\frac{1}{(s+1)^2}}$ $=\frac{1}{s^2+2s}$ 04. Ans: (a) Sol: G changes by 10%
02. Ans: (b) Sol: I.R = 2.e ^{-2t} u(t) Output response $c(t) = (1-e^{-2t}) u(t)$ Input response $r(t) = ?$ T.F = $\frac{C(s)}{R(s)}$ T.F = L(I.R) = $\frac{2}{s+2}$ Since $R(s) = \frac{C(s)}{T.F} = \frac{\frac{1}{s} - \frac{1}{s+2}}{\frac{2}{s+2}} = \frac{1}{s}$	$\Rightarrow \frac{\Delta G}{G} \times 100 = 10\%$ $C_1 = 10\%$ [:: open loop] whose sensitivity is 100%] %G change = 10% $\frac{\% \text{ of change in } M}{\% \text{ of change in } G} = \frac{1}{1 + GH}$ % of change in $M = \frac{10\%}{1 + (10)1} = 1\%$ % change in C_2 by 1% 05. Sol: $M = C/R$ C = M = GK
 r(t) = u(t) 03. Ans: (b) Sol: Unit impulse response of unit-feedback control system is given ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + 1	$\overline{R} = IM = \frac{1}{1 + GH}$ $S_{K}^{M} = \frac{\partial M}{\partial K} \times \frac{K}{M} = 1$ [::K is not in the loop \Rightarrow sensitivity is 100%] Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

$$\begin{split} \mathbf{S}_{\mathrm{H}}^{\mathrm{M}} &= \frac{\partial \mathrm{M}}{\partial \mathrm{H}} \times \frac{\mathrm{H}}{\mathrm{M}} = \frac{\partial}{\partial \mathrm{H}} \left(\frac{\mathrm{G}\mathrm{K}}{1 + \mathrm{G}\mathrm{H}} \right) \frac{\mathrm{H}}{\mathrm{M}} \\ &= \left(\frac{\mathrm{G}\mathrm{K}(-\mathrm{G})}{\left(1 + \mathrm{G}\mathrm{H}\right)^2} \right) \left[\frac{\mathrm{H}}{\frac{\mathrm{G}\mathrm{K}}{1 + \mathrm{G}\mathrm{H}}} \right] \\ \mathbf{S}_{\mathrm{H}}^{\mathrm{M}} &= \frac{-\mathrm{G}\mathrm{H}}{\left(1 + \mathrm{G}\mathrm{H}\right)} \end{split}$$

06.

Sol: Given data

 $G = 2 \times 10^3$, $\partial G = 100$ % change in $G = \frac{\partial G}{G} \times 100 = 5\%$

% change in M = 0.5%

 $\frac{\% \text{ of change in } M}{\% \text{ of change in } G} = \frac{1}{1 + GH}$

$$\frac{0.5\%}{5\%} = \frac{1}{1 + 2 \times 10^{3} \text{ H}}$$
$$1 + 2 \times 10^{3} \text{ H} = 10$$
$$\text{H} = 4.5 \times 10^{-3}$$

07. Ans: (b)

Sol: $K = \frac{output}{input} = \frac{c(t)}{r(t)} = \frac{mm}{{}^{0}c}$

08. Ans: (d)

Sol: Introducing negative feedback in an amplifier results, increases bandwidth.

Solutions for Conventional Practice Questions

01.

Sol: Transfer function gives the mathematical representation of a system and it gives system characteristics by relating the input and output.

Control Systems

Properties of Transfer Function

- The transfer function is defined only for a linear time-invariant system.
- The transfer function between an input variable and an output variable of a system is defined as the Laplace transform of the impulse response. Alternatively, the transfer function between a pair of input and output variables is the ratio of the Laplace transform of the output to the Laplace transform of the input, with all initial conditions of the system set to zero.
- The transfer function is independent of the input of the system.
- The transfer function of a continuousdata system is expressed only as a function of the complex variable 's'. It is not a function of the real variable, time or any other variable that is used as the independent variable. For discretedata systems modeled by difference equations, the transfer function is a function of 'z' where the z-transform is used.

$$Z_1 = R_1 \| \frac{1}{C_1 s} = \frac{R_1 \cdot \frac{1}{C_1 s}}{R_1 + \frac{1}{C_1 s}}$$

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

$$= \frac{\frac{R_{1}}{C_{1}s}}{\frac{C_{1}R_{1}s+1}{C_{1}s}} = \frac{R_{1}}{C_{1}R_{1}s+1}$$

 $Z_2 = R_2 + \frac{1}{C_2 s} = \frac{2}{C_2 s}$

Transfer function of lag-lead compensator is

$$\frac{V_0(s)}{V_i(s)} = \frac{Z_2}{Z_1 + Z_2} = \frac{\frac{C_2R_2s + 1}{C_2s}}{\frac{R_1}{C_1R_1s + 1} + \frac{C_2R_2s + 1}{C_2s}}$$
$$= \frac{\frac{C_2R_2s + 1}{C_2s}}{\frac{R_1C_2s + (C_2R_2s + 1)(C_1R_1s + 1)}{(C_1R_1s + 1)(C_2s)}}$$
$$\frac{V_0(s)}{V_i(s)} = \frac{(C_2R_2s + 1)(1 + C_1R_1s)}{C_2R_1R_2s^2 + (C_1R_1 + C_2R_2)s + 1}$$
$$\frac{V_0(s)}{V_i(s)} = \frac{C_1C_2R_1R_2s^2 + (C_1R_1 + C_2R_2)s + 1}{C_1C_2R_1R_2s^2 + (C_1R_1 + C_2R_2)s + 1}$$

02.

Sol: Overall Transfer function

 $M = \frac{G}{1 + GH} \quad \dots \dots \dots (1)$

Effect of Feedback on overall Gain

• From Equation (1) feedback affects the gain G of non feedback system by the factor 1 + GH.

- The quantity GH may itself include minus sign, so the general effect of feedback is that it may increase or decrease the Gain G.
- In a practical control system G and H are functions of frequency, so the magnitude of 1+ GH may be greater than 1 in one frequency range but less than 1 in another range. Therefore feedback could increase the system gain in one frequency range but decrease it in another frequency range.

Effect of Feedback on Sensitivity:

- In general, a good control system should be insensitive to parameter variations due to disturbance/noise but sensitive to the input commands.
- Consider G to be a gain parameter that may vary. The sensitivity of the gain of the overall system, M to the variation in G is defined as,

$$b_G^M = \frac{\partial M / M}{\partial G / G} = \frac{\% \text{ change in } M}{\% \text{ change in } G}$$

Where ∂M denotes the incremental change in M due to the incremental change in G (i.e ∂ G).The sensitivity function is written as,

$$s_G^M = \frac{\partial M}{\partial G} \frac{G}{M} = \frac{1}{1 + GH}$$

• Above relation shows that if GH is a positive constant, the magnitude of the sensitivity function can be made arbitrarily small by increasing GH, provided that the system remains stable.

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Since

4

Control Systems

- For open loop system, $s_G^M = 1$
- GH is a function of frequency, the magnitude of 1 + GH may be less than unity over some frequency ranges, So that feedback could be harmful to the sensitivity to parameter variations in certain cases.
- Feedback can increase or decrease the sensitivity of a system.

Sol:
$$G(s) = \frac{25}{s(s+2)}$$
, $H(s) = \frac{1}{4}$
 $TF = \frac{G(s)}{1+G(s)H(s)}$
(i) $s_{G}^{T} = \frac{1}{1+GH} = \frac{1}{1+\frac{25}{s(s+2)} \times \frac{1}{4}}$
 $= \frac{4s(s+2)}{4s(s+2)+25}$
 $= \frac{4s^{2}+8s}{4s^{2}+8s+25}$
 $s_{G}^{T}/_{s=j\omega=j1} = \frac{8j\omega-4\omega^{2}}{25-4\omega^{2}+8j\omega}$
 $= \left|\frac{8j-4}{21+8j}\right| = 0.398$
(ii) $s_{H}^{T} = \frac{-GH}{1+GH} = \frac{\frac{-25}{s(s+2)} \times \frac{1}{4}}{1+\frac{25}{s(s+2)} \times \frac{1}{4}}$

 $\frac{-25}{4s(s+2)+1}$

$$= \frac{-25}{4s^2 + 8s + 25}$$
$$= \frac{-25}{-4 + 25 + 8j} = \left|\frac{-25}{21 + 8j}\right| = 1.11$$

04.

Sol: Given path transfer function $G(s) = \frac{K}{s(s+P)}$ **Case (i):** when feedback path H(s) = 1Transfer function $= \frac{G(s)}{1 + G(s).H(s)}$. $=\frac{G(s)}{1+G(s)}$ $M = \frac{1}{s^2 + Ps + K}$ Sensitivity with respect to K: $s_{K}^{M} = \frac{\% \text{ changes in } M}{\% \text{ changes in } K} = \frac{\left(\frac{\partial M}{M}\right) \times 100}{\left(\frac{\partial K}{K}\right) \times 100}$ ×100 $=\frac{\partial M}{\partial K} \times \frac{K}{M}$ $\frac{\left(s^{2} + Ps + K\right)I - K.1}{\left(s^{2} + Ps + K\right)^{2}} \boxed{\frac{K}{\frac{K}{2}}}$ $=\frac{s^2 + Ps}{s^2 + Ps + K} = \frac{s^2 + 3s}{s^2 + 3s + 12}$ Sensitivity with respect to P: $s_P^M = \frac{\partial M}{\partial P} \cdot \frac{P}{M}$ $=\frac{-Ks}{\left(s^{2}+Ps+K\right)^{2}}\cdot\frac{P}{\frac{K}{\left(s^{2}+Ps+K\right)}}$ $=\frac{-sP}{s^2+Ps+K}=\frac{-3s}{s^2+3s+12}$

ACE Engineering Publications

5

Case (ii): When $H(s) = 1 + \alpha s$ Closed loop transfer function

$$M = \frac{G(s)}{1+G(s).H(s)}$$

$$= \frac{K}{s(s+P)}$$

$$\frac{K}{1+\frac{K}{s(s+P)}(1+\alpha s)}$$

$$= \frac{K}{s^{2}+Ps+K+K\alpha s}$$

$$M = \frac{K}{s^{2}+s(P+K\alpha)+K}$$
Sensitivity with respect to K:

$$s_{K}^{M} = \frac{\partial M}{\partial K} \times \frac{K}{M}$$

$$= \frac{[s^{2}+s(P+K\alpha)+K]^{-K}(s\alpha+1)}{[s^{2}+s(P+K\alpha)+K]^{2}} \times \frac{K}{\frac{K}{s^{2}+s(P+K\alpha)+K}}$$

$$= \frac{s^{2}+sP}{s^{2}+s(P+K\alpha)+K}$$

$$= \frac{s^{2}+3s}{s^{2}+s(S+K\alpha)+K}$$
Sensitivity with respect to P:

$$s_{P}^{M} = \frac{\partial M}{\partial P} \cdot \frac{P}{M}$$

$$= \frac{-sK}{[s^{2}+s(P+K\alpha)+K]^{2}} \times \frac{P}{\frac{K}{s^{2}+s(P+K\alpha)+K}}$$

$$= \frac{-sP}{s^{2}+s(P+K\alpha)+K} = \frac{-3s}{s^{2}+4.68s+12}$$
Sensitivity with respect α :

$$s_{\alpha}^{M} = \frac{\partial M}{\partial \alpha} \cdot \frac{\alpha}{M}$$

$$\begin{split} &= \frac{-sK^2}{\left[s^2 + s(P+K\alpha) + K\right]^2} \cdot \frac{\alpha}{\frac{K}{s^2 + s(P+K\alpha) + K}} \\ &= \frac{-sK\alpha}{s^2 + s(P+K\alpha) + K} \\ &s_\alpha^M = \frac{-1.68s}{s^2 + 4.68s + 12} \end{split}$$

2. Signal Flow Graph and Block Diagram

01. Ans: (d)

19

Sol: No. of loops = 3 Loop1: $-G_1G_3G_4H_1H_2H_3$ Loop2: $-G_3G_4H_1H_2$ Loop3: $-G_4H_1$ No. of Forward paths = 3 Forward Path1: $G_1G_3G_4$ Forward Path 2: $G_2G_3G_4$ Forward Path 3: G_2G_4 $= \frac{G_1G_3G_4 + G_2G_3G_4 + G_2G_4}{1 + G_1G_3G_4H_1H_2H_3 + G_3G_4H_1H_2 + G_4H_1}$

02. Ans: (a)Sol: Number of forward paths = 2 Number of loops = 3

$$\frac{\frac{1}{s} \times \frac{1}{s} \times \frac{1}{s} [1-0] + \frac{1}{s}}{1 - \left[\frac{1}{s} \times (-1)\left(\frac{1}{s}\right)(-1) + \frac{1}{s} \times \frac{1}{s}(-1) + \left(\frac{1}{s} \times \frac{1}{s}(-1)\right)\right]}$$

$$= \frac{\frac{1}{s^3} + \frac{1}{s}}{1 - \left[\frac{1}{s^2} - \frac{1}{s^2} - \frac{1}{s^2}\right]}$$

$$= \frac{\frac{1+s^2}{s}}{1 + \frac{1}{s^2}} = \frac{\frac{1+s^2}{s^3}}{\frac{s^2+1}{s^2}}$$

$$= \frac{1+s^2}{s} \times \frac{1}{s^2+1} = \frac{1}{s}$$

ACE Engineering Publications

1/2 $V_0(s)$ 2S2 1 + 2S1/2 $V_0(s)$ 2s 2 1 + 2s2s + 12s $V_0(s)$ 4s +4s2s + 120 $\Rightarrow \frac{V_0(s)}{V_i(s)} = \frac{\overline{1+4s}}{1+\underline{2(2s+1)}} =$ $\frac{4s}{8s+3}$ 08. Sol: Apply Mason's Gain formula $M = \frac{Y_{out}}{Y_{.}} = \frac{\sum_{k=1}^{N} M_{k} \Delta_{k}}{\Lambda}$ Since No. of forward paths = 2First forward path gain = $G_1G_2G_3G_4$ Second forward path gain = $G_5G_6G_7G_8$

No. of loops = 4

First loop gain = $-G_2H_2$

Second loop gain = $-G_6H_6$

Third loop gain = $-G_3H_3$

Fourth loop gain = $-G_7H_7$

Non touching loops = 4

Loop gains $\rightarrow G_2H_2G_6H_6$ $\rightarrow G_2H_2G_7H_7$ $\rightarrow G_6H_6G_7H_7$ $\rightarrow G_2H_2G_3H_3$

Transfer function = $G_{1}G_{2}G_{3}G_{4}(1 + G_{6}H_{6} + G_{7}H_{7}) + G_{5}G_{6}G_{7}G_{8}$ $(1 + G_{2}H_{2} + G_{3}H_{3}) + G_{6}H_{6} + G_{7}H_{7} + G_{2}H_{2}G_{6}H_{6} + G_{2}H_{2}G_{7}H_{7} + G_{3}H_{3}G_{6}H_{6} + G_{3}H_{3}G_{7}H_{7}$

Solutions for Conventional Practice Questions

01.

Sol: Number of forward paths from R to C = 6 $\frac{C}{R} = \frac{M_1\Delta_1 + M_2\Delta_2 + M_3\Delta_3 + M_4\Delta_4 + M_5\Delta_5 + M_6\Delta_6}{\Delta}$ $M_1 = G_2 G_4 G_6$, $M_2 = G_1 G_3 G_5$ $M_3 = G_1 G_6 G_7$, $M_4 = G_2 G_5 G_8$ $M_5 = -G_2G_7H_1G_8G_6$ $M_6 = -G_5G_8H_2G_1G_7$ Number of individual loops = 3 $190L_1 = -G_3H_1$, $L_2 = -G_4H_2$. $L_3 = G_7 G_8 H_1 H_2$ Gain product of two non-touching loops is $L_1 L_2 = G_3 G_4 H_1 H_2$ $\Delta = 1 - (L_1 + L_2 + L_3) + (L_1 L_2)$ $\Delta = 1 - (-G_3H_1 - G_4H_{2+} G_7G_8H_1H_2) + G_3G_4H_1H_2$ $\Delta_1 = 1 + G_3 H_{1, \Delta_2} = 1 + G_4 H_{2, \Delta_3} = 1, \Delta_4 = 1$ $\Delta_5 = 1, \Delta_6 = 1$ $G_{2}G_{4}G_{6}(1+G_{3}H_{1})+G_{1}G_{3}G_{5}(1+G_{4}H_{2})+G_{1}G_{6}G_{7}+$ $\frac{C}{R} = \frac{G_2G_5G_8 - G_2G_8G_7G_6H_1 - G_1G_5G_7G_8H_2}{1 + G_3H_1 + G_4H_2 - G_7G_8H_1H_2 + G_3G_4H_1H_2}$

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Postal Coaching Solutions

Control Systems

Signal flow graph is а graphical representation of set of linear algebraic equation between input and output.

Mason's Gain Formula: The relationship between an input variable and an output variable of a signal flow graph is given by Transfer Function or Gain between $X_{\text{in}}\xspace$ and

$$X_{out} = \frac{1}{\Delta} \sum_{k=1}^{n} M_k \Delta_k = \frac{X_{out}}{X_{in}}$$

Where, n = total no. of forward paths M_K = path gain of the kth forward path

ACE Engineering Publications

 Δ_k = The value of Δ which is not touching the kth forward path.

 $\Delta = 1 - (\text{sum of loop gains of all individual loops}) + (\text{sum of gain product of all possible combinations of two non-touching loops})-(\text{sum of gain product of three non-touching loops}) +......$

- While drawing a signal flow graph from a given block diagram the adjacent summing points and take off points (but not a take off point preceding a summing point in the direction of signal flow) are represented by a node and the block transfer function is represented by a line joining the respective nodes. The direction of signal flow is indicated by an arrow on the line.
- However, in the direction of signal flow if, a take off point precedes a summing point then such points are represented by two separate nodes with a transmittance of unity between them.

Number of forward paths from R to C = 2

$$\frac{C}{R} = \frac{M_1 \Delta_1 + M_2 \Delta_2}{\Delta}$$

$$M_1 = G_1 G_2 G_3, M_2 = G_1 G_4$$
Number of individual loops = 5
$$L_1 = -G_1 G_2 G_3, L_2 = -G_2 G_3 H_2,$$

$$L_3 = -G_1 G_2 H_1, L_4 = -G_1 G_4, L_5 = -G_4 H_2,$$
Number of two non-touching loops = 0
$$\Delta = 1 - (L_1 + L_2 + L_3 + L_4 + L_5)$$

$$\Delta = 1 - (-G_1 G_2 G_3 - G_2 G_3 H_2 - G_1 G_2 H_1 - G_1 G_4 - G_4 H_2)$$

$$\Delta_1 = 1, \Delta_2 = 1 \quad (\because \text{ All the loops are touching forward path 1 and 2)}$$

$$\frac{C}{R} = \frac{G_1 G_2 G_3 - G_2 G_3 H_2 - G_1 G_2 H_1 - G_1 G_4 - G_4 H_2)}{1 - (-G_1 G_2 G_3 - G_2 G_3 H_2 - G_1 G_2 H_1 - G_1 G_4 - G_4 H_2)}$$

$$C = G_1 G_2 G_3 - G_2 G_3 H_2 - G_1 G_2 H_1 - G_1 G_4 - G_4 H_2)$$

$$\mathbf{R}^{-1} + \mathbf{G}_{1}\mathbf{G}_{2}\mathbf{G}_{3} + \mathbf{G}_{2}\mathbf{G}_{3}\mathbf{H}_{2} + \mathbf{G}_{1}\mathbf{G}_{2}\mathbf{H}_{1} + \mathbf{G}_{1}\mathbf{G}_{4} + \mathbf{G}_{4}\mathbf{H}_{2}$$

ACE Engineering Publications

11

From the signal flow graph Number of forwarded paths = 2 $M_1 = G_1 G_2 G_3$ $M_2 = G_4$ $\frac{C(s)}{R(s)} = \sum_{k=1}^{n} \frac{M_{K}\Delta_{K}}{\Delta} = \frac{M_{1}\Delta_{1} + M_{2}\Delta_{2}}{\Delta}$ No of loops = 3 $L_1 = G_1 G_2 H_1$ $L_2 = -G_2 H_1$ $L_3 = -G_2 G_3 H_2$ No of non touching loops = 0 $\Delta = 1 - (L_1 + L_2 + L_3)$ $= 1 - G_1 G_2 H_1 + G_2 H_1 + G_2 G_3 H_2$ $\Delta_1 = \Delta$ for that part of the graph which is not touching 1st forward path = Similarly $\Delta_2 = 1 - G_1 G_2 H_1 + G_2 H_1 + G_2 G_3 H_2$ $\therefore \frac{C(s)}{R(s)} = \frac{G_1G_2G_3 + G_4[1 - G_1G_2H_1 + G_2G_3H_2 + G_2H_1]}{1 - G_1G_2H_1 + G_2H_1 + G_2G_3H_2}$ Since 1995 **04.** Sol: When w(s) = 0 H_3/G_3 R(s) G₃ ►Y(s) G٢ H_2 H_{1}

ACE Engineering Publications

$$\left. : \frac{Y(s)}{R(s)} \right|_{w=0} = \frac{G_1 G_2 G_3}{1 + G_3 H_2 + G_2 H_3 + G_1 G_2 G_3 H_1} = M(s)$$

When R(s) = 0

By shifting summing point

ACE Engineering Publications

A

$$M_{w}(s) = \frac{Y(s)}{W(s)}\Big|_{R=0} = \frac{G_{3}(1+G_{2}H_{3})}{1+G_{2}H_{3}+G_{2}G_{1}G_{3}H_{1}+G_{3}H_{2}}$$

.

05.

Sol:
$$\frac{Y_5}{Y_1}$$
: no of forward paths = 2
 $M_1 = G_1 G_2 G_3$ and $M_2 = G_4 G_3$
No of loops = 5
 $L_1 = -G_1 H_1$, $L_2 = -G_3 H_2$, $L_3 = -G_1 G_2 G_3 H_3$, $L_4 = -G_4 G_3 H_3$ and $L_5 = -H_4$
Product of two non-touching loops = 2
 $L_1L_5 = G_1H_1H_4$
 $L_1L_2 = G_1H_1G_3H_2$
 $\therefore \frac{Y_5}{Y_1} = \frac{M_1\Delta_1 + M_2\Delta_2}{1 - (L_1 + L_2 + L_3 + L_4 + L_5) + [L_1L_5 + L_1L_2]}$
 $= \frac{G_1G_2G_3 + G_3G_4}{1 + G_1H_1 + G_3H_2 + G_1G_2G_3H_3 + G_4G_3H_3 + H_4 + G_1H_1H_4 + G_1H_1G_3H_2}$
 $\frac{Y_4}{Y_1}$:
Forward paths = 2
 $M_1 = G_1 G_2$
 $M_2 = G_4$
And $\Delta_1 = (1+H_4)$

ACE Engineering Publications

,	ACE
	Engineering Publications

Postal Coac	hing Solutions
-------------	----------------

ACE Engineering Publications	15	Postal Coaching Solutions
$3.6 = 8 \left(1 - e^{\frac{-0.32}{T}} \right)$ $0.45 = 1 - e^{\frac{-0.32}{T}}$ $0.55 = e^{\frac{-0.32}{T}}$ $0.55 = e^{\frac{-0.32}{T}}$ $-0.59 = \frac{-0.32}{T}$ $T = 0.535 \text{ sec}$ 02. Ans: (c) Sol: $\cos \phi = \xi$ $\cos 60 = 0.5$ $\cos 45 = 0.707$ Poles left side $0.5 \le \xi \le 0.707$ Poles right side $-0.707 \le \xi \le -0.5$ $\therefore 0.5 \le \xi \le 0.707$ $3 \text{ rad/s} \le \omega_n \le 5 \text{ rad/s}$ 03. Ans: (c) Sol: For R-L-C circuit: $T.F = \frac{V_o(s)}{V_i(s)}$ $v_o(s) = \frac{1}{C_S} I(s)$ $= \frac{1}{C_S} \frac{V_i(s)}{R + L_S + \frac{1}{C_S}}$ $T.F = \frac{V_o(s)}{V_i(s)} = \frac{1}{RCs + LCs^2 + 1}$		Postal Coaching Solutions $s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0$ $s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2} = 0$ $\omega_{n} = \frac{1}{\sqrt{LC}} 2\xi\omega_{n} = \frac{R}{L}$ $\xi = \frac{R}{2}\sqrt{\frac{C}{L}}$ $\xi = \frac{10}{2}\sqrt{\frac{10\times10^{-6}}{1\times10^{-3}}} = 0.5$ M.P = e $\sqrt{\frac{5\pi}{\sqrt{1-\xi^{2}}}} = 16.3\% \approx 16\%$ O4. Ans: (b) Sol: TF $= \frac{8/s(s+2)}{1-(\frac{-8 \text{ as}}{s(s+2)} - \frac{8}{s(s+2)})}$ $= \frac{8}{s(s+2) + 8as + 8}$ $= \frac{8}{s^{2} + 2s + 8as + 8}$ $= \frac{8}{s^{2} + (2 + 8a)s + 8}$ $\omega_{n}^{2} = 8 \Rightarrow \omega_{n} = 2\sqrt{2}$ $2\xi\omega_{n} = 2 + 8a$ $\xi = \frac{1+4a}{2\sqrt{2}}$ $\frac{1}{\sqrt{2}} = \frac{1+4a}{2\sqrt{2}} \Rightarrow a = 0.25$
$T.F = \frac{V_{o}(s)}{V_{i}(s)} = \frac{1}{RCs + LCs^{2} + 1}$ $= \frac{\frac{1}{LC}}{\frac{1}{s^{2} + \frac{R}{L}s + \frac{1}{LC}}}$		$\sqrt{2}$ $2\sqrt{2}$ 05. Ans: 4 sec Sol: T.F = $\frac{100}{(s+1)(s+100)}$ 100
ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubanesw	var + Luckr	$= \frac{100}{s^2 + 101s + 100}$ now + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

ACE
Engineering Publications

Control Systems

.....(1)

.....(2)

response approaches a

response approaches a

complex & right side of

$$\begin{split} & \omega_n^2 = 100 \\ & \omega_n = 10 \\ & 2\xi\omega_n = 101 \\ & \xi = \frac{101}{20} \\ & \xi > 1 \rightarrow \text{system is over damped i.e., roots are real & unequal. \\ & \text{Using dominate pole concept,} \\ & \text{TF} = \frac{100}{100(s+1)} = \frac{1}{s+1}, \text{ Here } \tau = 1 \text{ sec} \\ & \therefore \text{ Setting time for 2% criterion } = 4\tau \\ & -4 \text{ sec} \\ \\ \textbf{06.} \quad M_p = \frac{C(t_p) - C(\infty)}{C(\infty)} \\ & = \frac{1.254 - 1.04}{1.04} = 0.2 \\ & \xi = \sqrt{\frac{(\ln M_p)^2}{C(\infty)}} \\ & = \frac{1.254 - 1.04}{1.04} = 0.2 \\ & \xi = \sqrt{\frac{(\ln M_p)^2}{C(m)}} \\ & = \frac{1.254 - 1.04}{1.04} = 0.2 \\ & \xi = \sqrt{\frac{(\ln M_p)^2}{C(m)}} \\ & M_p = 0.2 ; \xi = 0.46 \\ \hline \textbf{01.} \text{TF} = \frac{K_1}{s^2 + as + 2} \text{ and } H(s) = K_2 \\ \hline \textbf{C1.} \text{TF} = \frac{G(s)}{1 + C(s)} \\ \hline \textbf{C1.} \text{TF} = \frac{G(s)}{1 + C(s)} \\ \hline \textbf{C2.} \text{ if } \frac{K_1}{s^2 + as + 2} + K_1K_2 \\ \hline \textbf{DC or steady state gain from the TF} \\ & \frac{K_1}{2 + K_1K_2} = 1 \\ \hline \textbf{M} = 1 \\ \hline \textbf{M} = \frac{K_1}{2\sqrt{\frac{C}{L}}} \\ \hline \textbf{M} = \frac{K_$$

ACE Engineering Publications

ACE

10.

11.

12.

(i) If R↑, steady state voltage across C will
be reduced (wrong)
(Since steady state value does not
depend on
$$\xi$$
)
(ii) If $\xi \uparrow$, C (∞) = remain same
(ii) If $\xi \uparrow$, C (∞) = remain same
(iii) If $\xi \uparrow$, C (∞) = remain same
(iii) If $\xi \uparrow$, C (∞) = remain same
(iii) If $\xi \downarrow$, t_s $\uparrow \Rightarrow 3^{rd}$
Statement is false
(iv) If $\xi = 0$
True
 $\Rightarrow 2$ and 4 are correct
10.
Sol: (i) Unstable system
 \therefore error = ∞
(ii) G(s) = $\frac{10(s+1)}{s^2}$
Step \rightarrow R (s) = $\frac{1}{s}$
 $k_p = \infty$
 $e_{ss} = \frac{A}{1+k_p} = \frac{1}{1+k_p} = \frac{1}{1+10}$
(unstable system
 \therefore error $k_p = \infty$
 $e_{ss} = \frac{A}{1+k_p} = \frac{1}{1-0}$
(system is increased by 1)
 $\Rightarrow c_{ss} = 0,1$
13. Ans: (a)
Sol: Given data: $r(t) = 400tu(t)$ rad/sec
Steady state error -10°
 $i.e., e_{ss} = \frac{\pi}{10}$ (10°) radians
 $G(s) = \frac{20K}{s(1+0.1s)}$ and H(s) = 1
rut) = 400tu(t) $\Rightarrow 400/s^2$
Error (e_{ss}) $= \frac{A}{K_v} = \frac{400}{K_v}$
Kv = $\lim_{s \to 0} S(s)$
14. Ans: (b)
Sol: Given data: $r(t) = 400tu(t) = 400/s^2$
Error (e_{ss}) $= \frac{A}{K_v} = \frac{400}{K_v}$
Kv = $\lim_{s \to 0} S(s)$
Kv = $20K$
 $e_{ss} = \frac{400}{K_v}$

ACE Engineering Publications

	18	Control Systems
$e_{ss} = \frac{20}{K} = \frac{\pi}{18}$ $K = 114.5$		$t \rightarrow \infty$ input = 0 \therefore Error = zero
15. Ans: (d) Sol: $\frac{d^2 y}{dt^2} = -e(t)$ $s^2 Y(s) = -E(s)$ $x(t) = t u(t) \Rightarrow X(s) = \frac{1}{s^2}$		17. Ans: (c) Sol: $\frac{C(s)}{R(s)} = \frac{100}{\frac{(s+1)(s+5)}{1+\frac{100 \times 0.2}{(s+1)(s+5)}}}$ $= \frac{100}{(s+1)(s+5)+20}$
$X(s) = \underbrace{-1}_{s^2} E(s)$ $Y(s) = \frac{-1}{s^2} E(s)$ $\frac{Y(s)}{E(s)} = \frac{-1}{s^2}$ $\frac{E(s)}{X(s)} = \frac{-1}{1 + \frac{1}{s^2}}$ $= \frac{-1}{s^2}$	ERJ	$= \frac{100}{s^{2} + 6s + 5 + 20}$ $= \frac{100}{s^{2} + 6s + 5 + 25}$ $\omega_{n}^{2} = 25, \omega_{n} = 5$ $2\xi\omega_{n} = 6$ $\xi = \frac{6}{10} = \frac{3}{5}$ $\omega_{d} = \omega_{n}\sqrt{1 - \xi^{2}}$ $= 5\sqrt{1 - \left(\frac{3}{5}\right)^{2}}$
$E(s) = \frac{1}{1+s^{2}} X(s)$ $= \frac{-s^{2}}{1+s^{2}} \times \frac{1}{s^{2}} = \frac{-1}{1+s^{2}}$ $= L^{-1} \left[\frac{-1}{1+s^{2}} \right] = -\sin t$ 16. Ans: (a) Sol: $e_{ss} = 0.1$ for step input For pulse input = 10 time = 1 sec error is function of input		18. Ans: (c) Sol: $f(t) = \frac{Md^2x}{dt^2} + B\frac{dx}{dt} + Kx(t)$ Applying Laplace transform on both sides, with zero initial conditions $F(s) = Ms^2X(s) + BsX(s) + KX(s)$ $\frac{X(s)}{F(s)} = \frac{1}{Ms^2 + Bs + K}$ Characteristic equation is $Ms^2 + Bs + K = 0$

$s^2 + \frac{B}{N}s + \frac{K}{K} = 0$ $\omega_n = \sqrt{A}$	
M M Compare with $s^2 + 2\zeta \omega_n s + \omega_n^2 = 0$ $2\zeta\omega_n = \frac{B}{M}$ $\xi = \frac{B}{2\sqrt{MK}}$ $\omega_n = \sqrt{\frac{K}{M}}$ Time constant $T = \frac{1}{\zeta\omega_n} = \frac{1}{B} \times 2M$ $T = \frac{2M}{B}$ Hence, statements 2 & 3 are correct M Setting time = $4/\xi\omega_n = 4$ $2\xi\omega_n = P$ $\therefore \frac{4}{P/2} = 4$ $\xi\omega_n = P/2$ $\Rightarrow P = \frac{8}{4} = 2$ $e^{\frac{-\pi\xi}{\sqrt{1+\xi^2}}} = 0.1 \Rightarrow \frac{\pi\xi}{\sqrt{1-\xi^2}} = \ell n 10 = 2.$ $\Rightarrow \frac{\xi^2}{1-\xi^2} = 0.5373$ $\Rightarrow 1.5373 \xi^2 = 0.5373$ $\xi = 0.59$	3
19. Ans: (c) Sol: type 1 system has a infinite positional error constant $\xi \omega_n = 1$ $\Rightarrow \omega_n = 1.694 \Rightarrow A = \omega_n^2 = 2.87$	
20. Ans: (a) Sol: Given $G(s) = \frac{1}{s(1+s)(s+2)}$, $H(s) = 1$. It is type-I system Positional error constant $k_p = \underset{s \to 0}{\text{Lt}} G(s) H(s)$ $k_p = \underset{s \to 0}{\text{Lt}} \frac{1}{s(1+s)(s+2)}$ $= \infty$ Steady state error due to step input $= \frac{1}{1+k_p} = 0$ 21. A 22. Sol: $\frac{R(s)}{S} = \frac{10}{10}$ $\frac{C(s)}{R(s)} = \frac{10}{s(s+0.8+10K)+10}$ $= \frac{10}{s^2 + s(0.8+10K)!0}$ $\omega_n = \sqrt{10}$ $2\xi\omega_n = 0.8+10$ K $\Rightarrow 2 \times \frac{1}{2} \times \sqrt{10} = 0.8$ $\Rightarrow K = 0.236$ $t = \frac{\pi - \phi}{\pi - \cos^{-1}(\xi)}$	C(s)
Sol: Open loop T/F G(s) = $\frac{A}{S(S+P)}$ C.L T/F = $\frac{A}{S^2 + SP + A}$ $t_r - \frac{\omega_d}{\omega_d} = \frac{\omega_n \sqrt{1 - \xi^2}}{\omega_n \sqrt{1 - \xi^2}}$ $= \frac{\pi - \pi/3}{2.88} = 0.74 \sec$	

ACE

20

$$t_{p} = \frac{\pi}{\omega_{d}} = 1.1 \text{sec}$$

%Mp = $e^{-\frac{\pi\xi}{\sqrt{1-\xi^{2}}}} = 0.163 \times 100 = 16.3\%$
 $t_{s} \text{ (for 2\%)} = \frac{4}{\xi\omega_{n}} = \frac{4}{0.5 \times \sqrt{10}} = 2.53 \text{sec}$

Solutions for Conventional Practice Questions

01.

Sol: % $M_p = 25\%$

$$t_{p} = \frac{\pi}{\omega_{d}} = 2 \sec$$

$$T.F = \frac{k_{1}/s^{2}}{1 + (1 + k_{2}s)\frac{k_{1}}{s^{2}}} = \frac{k_{1}}{s^{2} + k_{1} + k_{1}k_{2}s}$$

$$e^{-\xi\pi/\sqrt{1-\xi^{2}}} = 0.25$$

$$\xi = 0.4037$$

$$\omega_{d} = \frac{\pi}{2} = \omega_{n}\sqrt{1-\xi^{2}}$$

$$\omega_{n} = 1.7169 \text{ rad/sec}$$

$$\omega_{n} = \sqrt{k_{1}}$$

$$k_{1} = \omega_{n}^{2} = 1.7169^{2} = 2.94$$

$$k_{1} = 2.94$$

$$2\xi\omega_{n} = k_{1}k_{2}$$

$$\frac{2 \times 0.4 \times 1.72}{2.94} = k_{2} \implies k_{2} = 0.472$$

Sol:
$$T.F = \frac{A}{s^2 + ks + A}$$

Given $\xi = 0.6$
 $\omega_d = 8$

$$\omega_{d} = \omega_{n} \sqrt{1-\xi^{2}}$$

$$\omega_{n} = \frac{8}{\sqrt{1-(0.6)^{2}}} = 10 \text{ rad/sec}$$
Comparing with standard second order
system, TF = $\frac{\omega_{n}^{2}}{s^{2}+2\xi\omega_{n}s+\omega_{n}^{2}}$
 $\omega_{n} = 10 \text{ rad/sec}$
 $A = \omega_{n}^{2} = 10^{2} = 100$
 $A = 100$
 $2\xi\omega_{n} = k$
 $2(0.6)(10) = k$
 $k = 12$
input $R(s) = \frac{2}{S}$
 $\frac{C(s)}{R(s)} = \frac{100}{s^{2}+12s+100}$
 $\therefore \sqrt[9]{0}M_{p} = e^{\frac{-\pi\xi}{\sqrt{1-\xi^{2}}}} \times 100 = 9.47\%$
 $\frac{c(t_{p})-c(\infty)}{c(\infty)} \times 100 = 9.47$
 $c(t_{p}) = \frac{9.47}{100} \times c(\infty) + c(\infty) = \frac{9.47}{100} \times (2) + 2$
 $c(t_{p}) = 2.189$
 \therefore Peak value of response = 2.189
03.
Sol: (i) In the absence of derivative feedback
 $(a = 0)$, the system can be represented as

ACE Engineering Publications

Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

19

03.

,	ACE
No la	Engineering Publications

 $\frac{C(s)}{R(s)} = \frac{\frac{1}{s(s+2)}}{1 + \frac{9}{s(s+2)}} = \frac{9}{s^2 + 2s + 9}$ $CE = s^2 + 2s + 9 = 0 \Longrightarrow s^2 + 2\zeta \omega_n s + \omega_n^2 = 0$ $\omega_n^2 = 9$ and $2\zeta \omega_n = 2$ $\omega_n = \sqrt{9}$ $\zeta \omega_n = 1$ $\omega_n = 3 \text{ rad/sec}$ $\zeta_{.3} = 1 \Longrightarrow \zeta = \frac{1}{2}$ Damping ratio $\xi = \frac{1}{2}$ Natural undamped frequency = 3 rad/secCalculation of steady state error for a given ramp input r(t) = tu(t) implies $R(s) = \frac{1}{s^2}$ Steady state error for unit ramp input is $e_{ss} = \frac{A}{K_{v}} = \frac{1}{K_{v}}$ (A=1) $K_v = \lim_{s \to 0} s.G(s) = Velocity error constant$ Given open loop transfer function is $G(s) = \frac{9}{s(s+2)}$ $K_v = \lim_{s \to 0} s \cdot \frac{9}{s(s+2)} = \frac{9}{0+2} = \frac{9}{2}$ Since & $e_{ss} = \frac{1}{\frac{9}{2}} = \frac{2}{9} = 0.22$ (ii) By Mason's gain formula C(s) s(s+2)

 $\frac{C(s)}{R(s)} = \frac{\overline{s(s+2)}}{1 - \left(-\frac{9as}{s(s+2)} - \frac{9}{s(s+2)}\right)}$ $\frac{C(s)}{R(s)} = \frac{9}{s^2 + s(9a+2) + 9}$ $CE = s^{2} + (9a + 2)s + 9 = 0$ $=s^2+2\zeta\omega_ns+\omega_n^2=0$ Comparing, we get $\omega_n = 3 \text{ rad/sec}$ $2\zeta \omega_n = (9a + 2)$ ($\zeta = 0.7$ given) (2)(0.7)(3) = (9a+2)4.2 = 9a + 2a = 0.24Steady state error for unit ramp input is $e_{ss} = \frac{A}{K_v} = \frac{1}{K_v} \quad (A=1)$ 9 9 ac

$$G(s) = \frac{1}{s(s+2)+9as} = \frac{1}{s(s+2+9a)}$$
$$K_v = \lim_{s \to 0} sG(s) = \frac{9}{2+9(0.24)} = 2.16 \text{ \&}$$

 $e_{ss} = \frac{1}{2.16} = 0.46$

(iii) Given data $\zeta=0.7$ and $e_{ss}=\frac{2}{9}$ as in

Case (i):

The gain of 9 in the forward loop be adjusted to higher value 'K' to reduce the steady state error

$$\therefore \frac{K}{s(s+2)}$$

With this, $G(s) = \frac{K}{s(s+2) + Kas}$

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

as

ACE

04.

22

 $\frac{C(s)}{R(s)} = \frac{K}{s(s+2) + Kas + K}$ CE is $s^2+s(2+Ka)+K=0$ -----(1) and $s^2 + 2\zeta \omega_n s + \omega_n^2 = 0$ ------(2) Comparing equation (1) and (2), we get $\omega_n^2 = K$ and $\omega_n = \sqrt{K}$ $2\zeta \omega_n = 2 + aK \implies 2\zeta \cdot \sqrt{K} = 2 + aK$ $\zeta = \frac{2 + Ka}{2\sqrt{K}} = 0.7 \quad \dots \quad (3)$ Steady state error for unit ramp input is as in case (i) $e_{ss} = \frac{1}{K_{v}} = \frac{2}{9}$ implies $K_{v} = \frac{9}{2}$ $K_v = \lim_{s \to 0} sG(s)$ $= \lim_{s \to 0} s \frac{K}{s(s+2) + Kas} = \frac{K}{Ka+2} = \frac{9}{2}$ $\frac{K}{Ka+2} = \frac{9}{2}$ ------ (4) Substituting equation (3) in (4) $\frac{K}{2(0.7)\sqrt{K}} = \frac{9}{2}$ gives K=39.69 Substituting the value of K in (4) gives a = 0.171805. Therefore, K = 39.69 and a = 0.1718By increasing gain to 39.69 and maintain a = 0.1718, we will get the required response. **Sol:** Given $M_p = 0.2$, $C = 10^{-6}F$ and L = 1HR = ?

From given diagram,

$$\frac{V_{0}(s)}{V_{i}(s)} = \frac{1/sC}{R + Ls + 1/sC}$$
$$TF = \frac{1}{LCs^{2} + sRC + 1} = \frac{1/LC}{s^{2} + \frac{R}{L}s + 1/LC}$$

By comparing above transfer function with standard second order equation.

2
$$\xi \omega_n = \frac{R}{L} \text{ and } \omega_n = \frac{1}{\sqrt{LC}}$$

Where $\xi = \sqrt{\frac{(\ell n M_p)^2}{\pi^2 + (\ell n M_p)^2}}$
 $= \sqrt{\frac{(\ell n 0.2)^2}{\pi^2 + (\ell n 0.2)^2}}$
 $= 0.456$
 $2\xi \times \frac{1}{\sqrt{LC}} = \frac{R}{L}$
 $2\xi = R\sqrt{\frac{C}{L}}$
 $R\sqrt{10^{-6}} = 0.912$
 $\Rightarrow R = 912\Omega$
(a)

Sol: Input is unit ramp and n(t) = 0

ACE Engineering Fublications	23	Postal Coaching Solutions
Inner block becomes, $\frac{K(1+0.02s)}{s^2(s+25)+K_tsK}$		(b) INPUT=Unit step
Now error $e_{ss} = \frac{A}{K_v}$ Where $K_v = \underset{s \to 0}{\text{Lt}} sG(s) = \underset{s \to 0}{\text{Lt}} \frac{sK(1+0.02s)}{s[s(s+25)+K_tK]}$		$\overbrace{K_{ts}}^{K} \longrightarrow OUTPUT C(s)$
$= \frac{K}{KK_{t}}$ $= 1/K_{t}$ Error $e_{ss} = \frac{1}{K_{v}} = K_{t}$	ERI	By applying Masson's gain formula $\frac{C(s)}{R(s)} = \frac{K}{s^{2}(s+25) + KK_{t}s + K(1+0.02s)}$ $R(s) = \frac{1}{s} \text{ (step input)}$
To get the constraints on the value of K and K _t $C.E = s^{2}(s+25) + KK_{t}s + K(1+0.025s) = 0$ $s^{3} + 25s^{2} + K(K_{t} + 0.02)s + K = 0$	1	$C(s) = \frac{K}{s(s^{2}(s+25) + KK_{t}s + K(1+0.02s))}$ $C(\infty) = \lim_{s \to 0} sC(s)$ $= \lim_{s \to 0} s \frac{K}{s(s^{2}(s+25) + KK_{t}s + K(1+0.02s))}$
$ \begin{array}{c c} s^{3} \\ s^{2} \\ s^{1} \\ s^{0} \\ \end{array} \\ \begin{array}{c} 1 \\ 25 \\ K \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	ce 1	= 1 06. Sol: The given second order system $a \frac{d^2\theta}{d^2 + b} \frac{d\theta}{d^2} + c\theta = F(t)$
For the system to be stable, K> 0, and $\frac{25K(K_t + 0.02) - K}{25} > 0$ $\Rightarrow 25K(K_t + 0.02) > K$	C	$dt^{2} dt = 0$ $Taking Laplace transform on both side we will get$ $as^{2}\theta(s) + bs\theta(s) + c\theta(s) = F(s)$
$\Rightarrow K_t + 0.02 > 1/25$ $\Rightarrow K_t > 0.04 - 0.02$ $\Rightarrow K_t > 0.02$ The constraints are $K_t > 0.02$ and $K > 0$		$\Rightarrow (as^{-} + bs + c) \ \theta(s) = F(s)$ Transfer function $= \frac{\theta(s)}{F(s)} = \frac{1}{as^{2} + bs + c}$ \therefore Step response $\theta(s) = \left(\frac{1}{as^{2} + bs + c}\right) \frac{1}{s}$
Now the block diagram is,		

ACE Engineering Publications

ACE
Engineering Publications

Control Systems

ACE Engineering Publications

ACE Engineering Publications	25	Postal Coaching Solutions
02. (i) $s^{5} + s^{4} + s^{3} + s^{2} + s + 1 = 0$ $+ s^{5}$ 1 1 1 1 $+ s^{4}$ 1 1 1 1 $+ s^{3}$ 0(2) 0(1) 0 $+ s^{2}$ $\frac{1}{2}$ 1 (1) $- s^{1}$ $- 3$ 0 (2) $+ s^{0}$ 1		$AE = s^{4} - 1 = 0$ $\frac{dAE}{ds} = 4s^{3} + 0 = 0$ $CE \qquad AE$ No. of CE roots = 6 No. of AE roots = 4 No. of sign changes No. of sign changes in the 1 st column= 1 below AE = 1 No. of RHP = 1 No. of RHP = 1 No. of LHP = 3 No. of j\omegap = 2 No. of j\omegap = 2 No. of LHP = 1 $03. CE = s^{3} + 20 s^{2} + 16s + 16 K = 0$
AE (1) = $s^4 + s^2 + 1 = 0$ $\frac{d(AE)}{ds} = 4s^3 + 2s = 0$ $\Rightarrow 2s^3 + s = 0$ AE CE No. of sign changes below AE = 2 No. of AE roots = 4 No. of CE roots = 5 No. of LHP = 2 No. of LHP = 2 No. of jop = 0 System is unstable	.ER/	$\begin{vmatrix} s^{3} \\ s^{2} \end{vmatrix} = 1 16$ $\begin{vmatrix} s^{2} \\ 20 \\ 16K \end{vmatrix}$ $\begin{vmatrix} 20(16) - 16K \\ 20 \\ 0 \end{vmatrix}$ $\begin{vmatrix} 20(16) - 16K \\ 20 \end{vmatrix} = 0$ $\Rightarrow 20 (16) - 16K > 0$ $\Rightarrow 20 (16) - 16K > 0$ $\Rightarrow K < 20 \text{ and } 16K > 0 \Rightarrow K > 0$ Range of K for stability $0 < K < 20$ (ii) For the system to oscillate with ω_{n} it
(ii) $s^{6} + 2s^{5} + 2s^{4} + 0s^{3} - s^{2} - 2s - 2 = 0$ s^{6} 1 2 -1 -2 s^{5} 2(1) 0 -2(-1) 0 s^{4} 2(1) +0 -2(-1) 0 s^{3} 0(4) 0 0 0 s^{2} 0(ε) -1 0 0 s^{1} 4/ ε $-s^{0}$ -1 ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubanese	war + Luck	i.e., s ¹ row should be 0 s ² row should be AE \therefore A.E roots = $\pm j\omega_n$ \therefore s ¹ row $\Rightarrow 20 (16) - 16 \text{ K} = 0$ \Rightarrow K = 20 AE is $20s^2 + 16 \text{ K} = 0$ $20s^2 + 16 (20) = 0$ \Rightarrow s = $\pm j4$ $\omega_n = 4 \text{ rad/sec}$ know + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

ACE Engineering Publications	26	Control Systems
04. Sol: $CE = 1 + \frac{K(s+1)}{s^3 + as^2 + 2s + 1} = 0$ $s^3 + as^2 + (K+2) s + K + 1 = 0$ $s^3 + as^2 + (K+2) s + (K+1) = 0$ $\overline{s^3 + as^2 + (K+2) s + (K+1)} = 0$ $\overline{s^2}^2$ a K+1 $s^1 = \frac{a(K+2) - (K+1)}{a} = 0$ $g^0 = K + 1$ Given, $\omega_n = 2$ $\Rightarrow s^1 row = 0$ $s^2 row is A.E$ a (K+2) - (K+1) = 0 $a = \frac{K+1}{K+2}$ $AE = as^2 + K + 1 = 0$ $= \frac{K+1}{K+2}s^2 + K + 1 = 0$ $(k+1) \left(\frac{s^2}{k+2} + 1\right) = 0$ $s^2 + k + 2 = 0$ $s = \pm j\sqrt{(k+2)}$ $\omega_n = \sqrt{k+2} = 2$ k = 2 $a = \frac{k+1}{k+2} = \frac{3}{4} = 0.75$		D5. Sol: $s^{3} + ks^{2} + 9s + 18$ s^{3} 1 9 s^{2} K 18 s^{1} $\frac{9K - 18}{K}$ 0 s^{0} 18 Given that system is marginally stable, Hence, s^{1} row = 0 $\frac{9K - 18}{K} = 0$ $9K = 18 \Rightarrow K = 2$ A.E is $9s^{2} + 18 = 0$ $Ks^{2} + 18 = 0$, $2s^{2} + 18 = 0$, $2s^{2} + 18 = 0 \Rightarrow 2s^{2} = -18$ $s = \pm j3$ $\therefore \omega_{n} = 3$ rad/sec. D6. Ans: (d) Sol: Given transfer function $G(s) = \frac{k}{(s^{2} + 1)^{2}}$ Characteristic equation $1 - G(s).H(s) = 0$ $1 - \frac{k}{(s^{2} + 1)^{2}} = 0$ $s^{4} + 2s^{2} + 1 - k = 0 \dots (1)$ RH criteria $\frac{s^{4} 1 2 1 - K}{s^{3} 4 4 4} - \frac{1}{s^{2}}$
CE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubanes	war + Luckn	ow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

AE = $s^4 + 2s^2 + 1 - K$ $\frac{d}{ds}(AE) = 4s^3 + 4s$ 1-K > 0 no poles are on RHS plane and LHS plane. All poles are on j∞- axis $\therefore 0 < K < 1$ system marginally stable.

07. Ans: (d)

Sol: Assertion: FALSE

Let the TF= s. "s" is the differentiator Impulse response $L^{-1}[TF] = L^{-1}[s] = \delta'(t)$

 $\mathop{\rm Lt}_{t\to\infty} \,\,\delta'(t)=0$

: It is BIBO stable

 $\mathbf{x}(t)$

Reason: True

 $\mathbf{x}(\mathbf{t}) = \mathbf{t} \operatorname{sint}$

 $\lim_{t\to\infty} x(t) = \lim_{t\to\infty} t \text{ sint is unbounded}$

08. Ans: (a)

Sol: Assertion: TRUE

If feedback is not properly utilized the closed loop system may become unstable.

Reason: True

Feedback changes the location of poles

Let
$$G(s) = \frac{-2}{s+1}$$
 $H(s) = 1$

Open loop pole s = -1 (stable)

$$CLTF = \frac{\frac{-2}{s+1}}{1 + \frac{-2}{s+1}} = \frac{-2}{s-1}$$

Closed loop pole is at s = 1 (unstable) \therefore After applying the feedback no more system is open loop. It becomes closed loop system. Hence poles are affected.

Solutions for Conventional Practice Questions

01. Sol:

Sinc

Sol: Given open loop Transfer function

$$G(s) = \frac{K}{s(s+4)(s^{2}+4s+20)}$$

$$\underbrace{CE}_{(s^{2}+4s)(s^{2}+4s+20)+K=0}_{(s^{2}+4s)(s^{2}+4s+20)+K=0}_{(s^{4}+4s^{3}+20s^{2}+4s^{3}+16s^{2}+80s+K=0)}_{s^{4}+8s^{3}+36s^{2}+80s+K=0}_{s^{4}+8s^{3}+36s^{2}+80s+K=0}_{s^{4}+8s^{3}+36s^{2}+80s+K=0}_{s^{6}}_{K}$$
i) The system to be stable for

$$K > 0 \& \frac{26 \times 80 - 8K}{26} > 0$$

$$K < 260$$

$$\therefore 0 < K < 260$$

ii) The system to cause sustained oscillations

ACE Engineering Publications

ACE Engineering Publications	28					Control	Systems
K = 260		1	R-H Ta	bulation			
$26s^2 + 260 = 0$		s^8	1	10	48	128	128
$s = \pm j\sqrt{10}$		s^7	3(1)	24(8)	96(32)	192(64)	0
$\omega_n = \sqrt{10 \text{ rad}/\text{sec}}$		s^6	2(1)	16(8)	64(32)	128(64)	0
02		s^5	0(3)	0(16)	0(32)	0	0
Sol: C.E. equation $6 + 5 + 6 + 0 + 3 + 2 + 6 + 0$		s ⁴	$\frac{8}{3}(1)$	$\frac{64}{3}(8)$	64(24)	0	0
$S^{*} + S^{*} - 6S^{*} + 0.S^{*} - S^{*} - S + 6 = 0$		s^3	-8(-1)	-40(-5)	0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		s^2	3(1)	24(8)	0	0	0
$\begin{vmatrix} s^4 \\ -6 \\ 0 \\ 6 \end{vmatrix}$		s^1	3	0	0	0	0
$s^{3} 0(-24) 0$	- 51	s ⁰	8	0	0	0	0
	EKU	ΝG	$AE = s^{6}$ $\frac{d(AE)}{ds} =$	$+ 8s^4 + 32s^5$ = $6s^5 + 32s^5$	$s^{2} + 64 =$ $s^{3} + 64s =$	0 = 0	
A.E equations $-6s^2 + 6 = 0$ $\frac{dA}{ds} = -24 s^3 = 0$				$3s^5 + 16s$	$^{3}+32s =$	0	
Number of LHP = 2		N	No.of CE I	Roots = 8	No.	of AE Roo	ts = 6
Number of RHP = 2 Number of $j\omega p = 2$		• N C	hanges = 2	of sigr 2.	Nun \bullet Nun \bullet char $= 2$	nber of nges below	sign the AE
03. Sin Sol: CE is 1+G(s) = 0	ce '	• 1 F	Tumber of S-pla	f Roots in $ne = 2$	• Nun RH	nber of R of s-plane =	oots in = 2.
$1 + \frac{128}{s^8 + 3s^7 + 10s^6 + 24s^5 + 48s^4 + 96s^3 + 128s^2 + 192s} = 0$ $s^8 + 3s^7 + 10s^6 + 24s^5 + 48s^4 + 96s^3 + 128s^2 + 192s$ + 128 = 0	5	 N J N I S u 	Sumber of ω axis = 2. Number of A . H of s -plato, the nstable.	f Roots or f Roots ir ne = 4. system is	n • Nun LH · n • Nun jω a s • AE root are resp	her of R of s-plane = her of Ro xis = 2. roots are a s and thes symmetric ect to the o	oots in = 2 pots on also CE the roots al with rigin

94. $ \begin{aligned} s^{4} & 1^{\circ} & 5 & 10k \\ s^{3} & \frac{1}{k} & 10 & 0 \\ s^{2} & \frac{5k-10}{k} & \frac{10k^{2}}{k} \\ s^{4} & \frac{5k-10}{k} & \frac{10k^{2}}{k} \\ s^{0} & \frac{5k-10}{k} & \frac{10k^{2}}{k} \\ s^{0} & 10k \\ \end{aligned} $ As there should not be any sign changes in the first column of Routh's array $k > 0$, $ \frac{5k-10}{k} > 0 \\ \frac{5k-20}{k} > 0 \\ \frac{5k-20}$	p4. $s^{4} \begin{bmatrix} 1^{1} & 5 & 10k \\ k & 10 & 0 \\ \frac{s^{2}}{k} \end{bmatrix} \begin{bmatrix} \frac{5k-10}{k} & \frac{10k^{2}}{k} \\ \frac{5k-10}{k} \end{bmatrix} \begin{bmatrix} \frac{5k-10}{k} & \frac{10k^{2}}{k} \\ \frac{5k-10}{k} \end{bmatrix} \begin{bmatrix} \frac{5k-10}{k} \\ \frac{5k-10}{k} \end{bmatrix} \end{bmatrix} \end{bmatrix} \\ Closed loop transfer function \\ = \frac{A}{1+A} = \frac{\mu(s+\alpha)^{2}}{\alpha^{2}(1+s)s^{2} + \mu(s+\alpha)^{2}} \\ Characteristic equation \\ \alpha^{2}(1+s)s^{2} + \mu(s^{2}+\alpha^{2}+2\alpha)s = 0 \\ \Rightarrow \alpha^{2}s^{4} + \alpha^{2}s^{3} + \mu s^{2} + 2\alpha\mu s + \mu \alpha^{2} = 0 \\ The system stability can be calculated by applying Routh Hurwitz criteria. \\ Apply RH eriteria \\ \hline \frac{s^{4}}{s^{3}} \frac{\alpha^{2}}{\alpha^{2}} + \frac{\mu}{2\mu\alpha} \frac{\mu\alpha^{2}}{\alpha} \\ \frac{s^{4}}{\mu^{2}\mu\alpha} \frac{2\mu\alpha}{\alpha} \frac{1}{\alpha} \\ \frac{s^{4}}{\mu^{2}\mu\alpha} \frac{1}{\alpha} \\ \frac{s^{4}}{\mu^{4}\mu\alpha} \frac{1}{\alpha} \\ \frac{s^{4}}{\mu^{4}\mu\alpha} \frac{1}{\alpha} \\ \frac{s^{4}}{\mu^{4}\mu\alpha} \frac{1}{\mu^{4}\mu\alpha} \frac{1}{\alpha} \\ \frac{s^{4}}{\mu^{4}\mu\alpha} \frac{1}{\mu^{4}\mu\alpha} \frac{1}{\alpha} \\ \frac{s^{4}}{\mu^{4}\mu\alpha} \frac{1}{\mu^{4}\mu\alpha} \frac{1}{\mu^{4}\mu\alpha} \frac{1}{\mu^{4}\mu\alpha} \frac{1}{\mu^{4}\mu\alpha} \frac{1}{\mu^{4}\mu\alpha} \frac{1}{\mu^{4}\mu\alpha} \frac{1}{\mu^{4}\mu$	ACE Engineering Publications	29	Postal Coaching Solutions
$\alpha < \frac{1}{2}$	$\omega \sim /2$	9 9 1 1 1 1 1 1 1 1		05. Sol: The given open loop transfer function $A = \frac{\mu(s + \alpha)^2}{\alpha^2(1+s)s^3}$ Closed loop transfer function $= \frac{A}{1+A} = \frac{\mu(s + \alpha)^2}{\alpha^2(1+s)s^3 + \mu(s + \alpha)^2}$ Characteristic equation $\alpha^2(1+s)s^3 + \mu(s^2 + \alpha^2 + 2\alpha s) = 0$ $\Rightarrow \alpha^2 s^4 + \alpha^2 s^3 + \mu s^2 + 2\alpha \mu s + \mu \alpha^2 = 0$ The system stability can be calculated by applying Routh Hurwitz criteria. Apply RH eriteria $\frac{s^4}{\alpha^2} \frac{\alpha^2}{\mu - 2\mu\alpha} \frac{\mu \alpha^2}{\mu \alpha^2} \frac{1}{2\mu\alpha} \frac{1}{\alpha} \frac{1}{\alpha^2 + 2\mu\alpha} \frac{1}{\alpha^2 + 2\mu$

Engineering Publications	30	Control Systems
$\mu \alpha (2\mu - 4\mu\alpha - \alpha^3) > 0$ As μ is positive $\alpha (2\mu - 4\mu\alpha - \alpha^3) > 0$		It is odd multiples of 180° , Hence s ₁ lies on Root locus
Two cases will be possible (i) $\alpha > 0$, $2\mu - 4\mu\alpha - \alpha^3 > 0$ & (ii) $\alpha < 0$, $2\mu - 4\mu\alpha - \alpha^3 < 0$		$s_2 = -3 - j\sqrt{3}$ $G(s).H(s) = \frac{K}{(-3 - j\sqrt{3} + 2)^3}$
(i) $\alpha > 0$, $\mu (2-4\alpha) > \alpha^{3}$ $\alpha > 0$, $\mu > \frac{\alpha^{3}}{2-4\alpha}$		$=\frac{K}{\left(-1-j\sqrt{3}\right)^3}$
(ii) $\alpha < 0, \mu (2-4\alpha) < \alpha^3$ $\mu < \frac{\alpha^3}{2-4\alpha} \dots (2)$		$= -3 [180^{\circ} + 60^{\circ}] = -720^{\circ}$ It is not odd multiples of 180°, Hence s ₂ is not lies on Root locus.
$2-4\alpha$ As $\alpha < 0, \frac{\alpha^3}{2-4\alpha}$ is -ve	ERI	02. Ans: (a) Sol: Over damped – roots are real & unequal $\Rightarrow 0 \le k \le 4$
$\therefore \alpha > 0, \alpha < \frac{1}{2}, \mu > \frac{\alpha^3}{2 - 4\alpha}$		$\Rightarrow 0 < k < 4$ (b) k = 4 roots are real & equal $\Rightarrow Critically damped \xi = 1$ (c) k > 4 \Rightarrow roots are complex
5. Root Locus Diagram		(c) $k > 4 \implies$ roots are complex 0 < $\xi < 1 \implies$ under damped
01. Ans: (a) Sol: $s_1 = -1 + j\sqrt{3}$ $s_2 = -3 - j\sqrt{3}$		03. Ans: (a) Sol: Asymptotes meeting point is nothing but centroid
G(s).H(s) = $\frac{K}{(s+2)^3}$ s ₁ = -1 + $j\sqrt{3}$	C	centroid $\sigma = \frac{\sum \text{poles} - \sum \text{zeros}}{p - z}$ $= \frac{-3 - 0}{3 - 0} = -1$
$G(s).H(s) = \frac{K}{(-1+j\sqrt{3}+2)^3}$		centroid = $(-1, 0)$
$=\frac{K}{\left(1+j\sqrt{3}\right)^3}$		04. Ans: (b) Sol: break point $= \frac{dK}{ds} = 0$
$= -3\tan^{-1}(\sqrt{3})$ $= -180^{\circ}$		$\frac{d}{ds} (G_1(s).H_1(s)) = 0$

$$\frac{d}{ds}[s(s+1)(s+2)] = 0$$

$$3s^{2} + 6s + 2 = 0$$

$$s = -0.422, -1.57$$

$$\xrightarrow{-2} -1 = 0$$

But s = -1.57 do not lie on root locus So, s = -0.422 is valid break point. Point of intersection wrt j ω axis

2

0

$$s^3 + 3s^2 + 2s + k = 0$$

3 1

$$S^{3} = \begin{bmatrix} s \\ s^{2} \\ s^{1} \\ s^{0} \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ \frac{6-k}{3} \\ \frac{6-k}{3} \\ \frac{6-k}{3} \\ \frac{6-k}{3} \\ \frac{3}{2} \\ \frac{6-k}{3} \\ \frac{6-$$

 $s = \pm j \sqrt{2}$

point of inter section: $s = \pm j\sqrt{2}$

05. Ans: (b)

Sol:

Since

substitute s = -0.423 and apply the magnitude criteria.

$$\left| \frac{\mathrm{K}}{(-0.423)(-0.423+1)(-0.423+2)} \right| = 1$$

K = 0.354

when the roots are complex conjugate then the system response is under damped.

From K > 0.384 to K < 6 roots are complex conjugate then system to be under damped the values of k is 0.384 < K < 6.

06. Ans: (c)

Sol: If the roots are lies on the real axis then system exhibits the non-oscillatory response. from $K \ge 0$ to $K \le 0.384$ roots lies on the real axis. Hence for $0 \le K \le 0.384$ system exhibits the non-oscillatory response.

32

Control Systems

08. Ans: (c) Sol: G(s).H(s) = $\frac{K(s+3)}{s(s+2)}$ $k|_{s=-4} = \left|\frac{(-4)(-4+2)}{(-4+3)}\right|$ $= \left|\frac{(-4)(-2)}{(-1)}\right| = 8$

09. Ans: (a)

Sol: $s^2-4s+8 = 0 \Rightarrow s = 2\pm 2j$ are two zeroes $s^2+4s+8 = 0 \Rightarrow s = -2\pm 2j$ are two poles $\phi_A = 180 - \angle GH|_{s=2\pm 2j}$ $GH = \frac{k[s - (2 + 2j)[s - (2 - 2j)]]}{[s - (-2 + 2j)[s - (-2 - 2j)]]}$ $\angle GH|_{s=2\pm 2j} = \frac{\angle k \angle 4j}{\angle 4 \angle 4 + 4j}$ $= 90^\circ - 45^\circ = 45^\circ$ $\phi_A = 180^\circ - 45^\circ = \pm 135^\circ$

10. Ans: (b)

Sol: $s^2-4s+8 = 0 \Rightarrow s = 2\pm 2j$ are two zeroes $s^2+4s+8 = 0 \Rightarrow s = -2\pm 2j$ are two poles

$$\begin{split} \varphi_{d} &= 180^{\circ} + \angle GH \big|_{s=-2\pm 2j} \\ \angle GH \big|_{s=-2\pm 2j} &= \angle \frac{k[s-(2+2j)][s-(2-2j)]}{[s-(-2-2j)]} \Big|_{s=-2\pm 2j} \\ &= \frac{\angle k(-4)(-4+4j)}{\angle 4j} \\ &= 180^{\circ} + 180^{\circ} - 45^{\circ} - 90^{\circ} = 225^{\circ} \\ \varphi_{d} &= 180^{\circ} + 225^{\circ} = 405^{\circ} \\ \therefore \varphi_{d} &= \pm 45^{\circ} \end{split}$$

11. Ans: (d)

Sol: Poles s = -2, -5; Zero s = -10

 \therefore Breakaway point exist between -2 and -5

12.

Sol: Refer Pg No: 84, Vol-1 Ex: 8

Solutions for Conventional Practice Questions 01. Sol: $G(s)H(s) = \frac{K(s+3)}{s(s+2)}$ Poles s = 0, -2Zeros s = -3Number of asymptotes = |P - Z| = 1(i) Break points: $\frac{d}{ds}G(s)H(s) = 0$ $\frac{d}{ds}\left[\frac{s+3}{s(s+2)}\right] = 0$ $(s^2 + 2s) - (s+3)(2s+2) = 0$ $s^2 + 2s = 2s^2 + 2s + 6s + 6$ $s^2 + 6s + 6 = 0$ s = -1.267, -4.732

ACE Engineering Publications

- : Both points are valid break points.
- (ii) |G(s)H(s)| = 1 $\left|\frac{s(s+2)}{s+3}\right| = K$ $K|_{s=-1} = \left|\frac{-1(1)}{2}\right| = \frac{1}{2} = 0.5$ $K|_{s=-4} = \left|\frac{(-4)(-2)}{-1}\right| = 8$
- (iii) Proof of circle for complex plane

$$\angle \frac{k(s+3)}{s(s+2)} = -180^{\circ}$$

at $s = \sigma + j\omega$ angle criteria
$$\angle \frac{(\sigma + j\omega + 3)}{(\sigma + j\omega)(\sigma + 2 + j\omega)} = -180^{\circ}$$

$$\tan^{-1}\frac{\omega}{3+\sigma} - \tan^{-1}\frac{\omega}{\sigma} - \tan^{-1}\frac{\omega}{\sigma+2} = -180^{\circ}$$

$$180 + \tan^{-1}\frac{\omega}{3+\sigma} = \tan^{-1}\frac{\omega}{\sigma} + \tan^{-1}\frac{\omega}{\sigma+2}$$

Taking tan on both sides, we get
$$\frac{\omega}{3+\sigma} = \frac{\frac{\omega}{\sigma} + \frac{\omega}{\sigma+2}}{1-(\frac{\omega}{\sigma})(\frac{\omega}{\sigma+2})}$$

$$\frac{\omega}{3+\sigma} = \frac{\omega(\sigma+2) + \omega\sigma}{\sigma(\sigma+2) - \omega^2}$$

$$\sigma^{2} + 2\sigma - \omega^{2} = (2\sigma + 2) (3 + \sigma)$$

$$\sigma^{2} + 2\sigma - \omega^{2} = 6\sigma + 2\sigma^{2} + 6 + 2\sigma$$

$$\Rightarrow \sigma^{2} + 6\sigma + \omega^{2} + 6 = 0$$

$$\Rightarrow (\sigma + 3)^{2} + (\omega - 0)^{2} = (\sqrt{3})^{2}$$

It is of the form,

$$(x - a)^{2} + (y - b)^{2} = r^{2}$$
 which is a circle
Where, centre (a, b) = (-3, 0) and radius is

$$r = \sqrt{3}$$

02.

ACE Engineering Publications

Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

All the 3 points are valid break points CE $\Rightarrow s(s+4) (s^{2}+4s+20)+K=0$ $s^{4}+8s^{2}+36s^{2}+80s+K=0$ $s^{4}=\begin{vmatrix} 1 & 36 & K \\ 8 & 80 & 0 \\ s^{2}=26 & K \\ 26 & k \\ s^{0}=k \\ k \end{vmatrix}$ (i) The value of K for the system to be stable K > 0 & $\frac{26\times80-8K}{26} > 0$ K < 260 k < 260 (ii) For K = 260 (ii) For K = 260 $26s^{2}+260 = 0$ $s^{2}=-10$ $s=\pm j\sqrt{10}$ $\omega_{n} = \sqrt{10} \text{ rad/sce}$ $\therefore \text{ Natural frequency of sustained oscillations = \sqrt{10} \text{ rad/sce} \frac{2(\sigma^{2}-\omega^{2}+2\sigma+5)}{(\sigma^{2}-\omega^{2}+\sigma+5)} = -180^{\circ} \text{ tars } \sigma + j\omega 2\frac{[\sigma^{2}-\omega^{2}+2\sigma+5]+j(2\omega+2\omega)]}{(\sigma^{2}-\omega^{2}+2\sigma+5)+j(2\omega+2\omega)]} = -180^{\circ} \frac{2[\sigma^{2}-\omega^{2}+2\sigma+5]+j(2\omega+2\omega)]}{(\sigma^{2}-\omega^{2}+2\sigma+5)} = -180^{\circ} \text{ tars } \sigma + j\omega 2\frac{[\sigma^{2}-\omega^{2}+2\sigma+5]+j(2\omega+2\omega)]}{(\sigma^{2}-\omega^{2}+2\sigma+5)+j(2\omega+2\omega)} = -180^{\circ} \frac{2\pi\omega+2\omega}{\sigma^{2}-\omega^{2}+2\sigma+5} = -180^{\circ} \text{ tars } \sigma + j\omega 2\frac{[\sigma^{2}-\omega^{2}+2\sigma+5]+j(2\omega+2\omega)]}{(\sigma^{2}-\omega^{2}+2\sigma+5)} = -180^{\circ} \text{ tars } \sigma + j\omega \frac{2\pi\omega+2\omega}{\sigma^{2}-\omega^{2}+2\sigma+5} = -180^{\circ} \text{ tars } \sigma + j\omega \frac{2\pi\omega+2\omega}{\sigma^{2}-\omega^{2}+2\sigma+5} = -180^{\circ} \text{ tars } \sigma + j\omega \frac{2\pi\omega+2\omega}{\sigma^{2}-\omega^{2}+2\sigma+5} = -180^{\circ} \text{ tars } \sigma + j\omega \frac{2\pi\omega+2\omega}{\sigma^{2}-\omega^{2}+2\sigma+5} = -180^{\circ} \text{ tars } \sigma + j\omega \frac{2\pi\omega+2\omega}{\sigma^{2}-\omega^{2}+\sigma+5} = -180^{\circ} \text{ tars } \sigma + j\omega \frac{2\pi\omega+2\omega}{\sigma^{2}-\omega^{2}+\sigma+5} = -180^{\circ} \text{ tars } \sigma + j\omega \frac{2\pi\omega+2\omega}{\sigma^{2}-\omega^{2}+\sigma+5} = -180^{\circ} \text{ tars } \sigma + j\omega \frac{2\pi\omega+2\omega}{\sigma^{2}-\omega^{2}+\sigma+5} = -180^{\circ} \text{ tars } \sigma + j\omega \frac{2\pi\omega+2\omega}{\sigma^{2}-\omega^{2}+\sigma+5} = -180^{\circ} \text{ tars } \sigma + j\omega \frac{2\pi\omega+2\omega}{\sigma^{2}-\omega^{2}+\sigma+5} = -180^{\circ} \text{ tars } \sigma + j\omega \frac{2\pi\omega+2\omega}{\sigma^{2}-\omega^{2}+\sigma+5} = -180^{\circ} \text{ tars } \sigma + j\omega \frac{2\pi\omega+2\omega}{\sigma^{2}-\omega^{2}+\sigma+5} = -180^{\circ} \text{ tars } \sigma + j\omega \frac{2\pi\omega+2\omega}{\sigma^{2}-\omega^{2}+\sigma+5} = (2\sigma\omega+\omega)(\sigma^{2}-\omega^{2}+\sigma+5) = (2\sigma\omega+\omega)(\sigma^{2}-\omega^{2}$	Regineering Publications	34	Control Systems
$ s = \pm \int \sqrt{10} \ \alpha_n = \sqrt{10} \ rad/sec $ $ \therefore \text{ Natural frequency of sustained oscillations} = \sqrt{10} \ rad/sec $ $ 03. $ $ 05. $ $ 0$	All the 3 points are valid break points CE $\Rightarrow s(s + 4) (s^{2} + 4s + 20) + K = 0$ $s^{4} + 8s^{3} + 36s^{2} + 80s + K = 0$ $\begin{cases}s^{4} & 1 & 36 & K \\ 8 & 80 & 0 \\ 26 & K \\ s^{1} & \frac{26 \times 80 - 8K}{26} \\ s^{0} & K \end{cases}$ (i) The value of K for the system to be stable $K > 0 \& \frac{26 \times 80 - 8K}{26} > 0$ $K < 260$ (ii) For K = 260 $26s^{2} + 260 = 0$ $s^{2} = -10$ $s = \pm i \sqrt{10}$	34	$\frac{\text{RLD}}{K = \emptyset} + j2.179$ $K = \emptyset + j2.179$ Proof of circle for complex plane $\sum \frac{K(s^2 + 2s + 5)}{s^2 + s + 6} = -180^\circ \text{ at } s = \sigma + j\omega$ [Angle criteria should be satisfied] $\sum \frac{\{(\sigma + j\omega)^2 + 2(\sigma + j\omega) + 5\}}{(\sigma + j\omega)^2 + (\sigma + j\omega) + 5} = -180^\circ$ $\sum \frac{[\sigma^2 - \omega^2 + 2\sigma + 5] + j(2\omega + 2\sigma\omega)]}{(\sigma^2 - \omega^2 + \sigma + 5) + j(2\omega \sigma + \omega)} = -180^\circ$ $\tan^{-1}(\frac{2\omega + 2\sigma\omega}{\sigma^2 - \omega^2 + 2\sigma + 5}) - \tan^{-1}(\frac{2\sigma\omega + \omega}{\sigma^2 - \omega^2 + \sigma + 5}) = -180^\circ$
03. 03. Sol: $G(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $G(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + s + 5)}; H(s) = 1$ $Q(s)H(s) = \frac{K(s^{2} + 2s + 5)}{(s^{2} + 2s + 5)}; H(s) = 1$ $Q(s)H(s) = K(s^{2$	$s = \pm j \sqrt{10}$ ω _n = √10 rad/sec ∴ Natural frequency of sustaine oscillations = √10 rad/sec	ce	$\tan^{-1}\left(\frac{2\sigma\omega+2\omega}{\sigma^2-\omega^2+2\sigma+5}\right) = -180^\circ + \tan^{-1}\left\{\frac{2\sigma\omega+\omega}{\sigma^2-\omega^2+\sigma+5}\right\}$ Apply tan on both sides $\frac{2\sigma\omega+2\omega}{\sigma^2-\omega^2+2\sigma+5} = \frac{2\sigma\omega+\omega}{\sigma^2-\omega^2+\sigma+5}$
	03. Sol: $G(s) = \frac{K(s^2 + 2s + 5)}{(s^2 + s + 5)}; H(s) = 1$ $G(s)H(s) = \frac{K(s^2 + 2s + 5)}{(s^2 + s + 5)}$ Pole = $-0.5 \pm j2.179$		$(2\sigma\omega + 2\omega) (\sigma^{2} - \omega^{2} + \sigma + 5) = (2\sigma\omega + \omega) (\sigma^{2} - \omega^{2} + 2\sigma + 5)$ $(2\sigma + 2) (\sigma^{2} - \omega^{2} + \sigma + 5) = (2\sigma + 1) (\sigma^{2} - \omega^{2} + 2\sigma + 5)$ $-\sigma^{2} - \omega^{2} + 5 = 0$ $\sigma^{2} + \omega^{2} = 5$ Comparing with $(x, a)^{2} + (y, b)^{2} = r^{2}$

Which is a circle with centre (a, b) and radius 'r' Center (0,0)

radius $\sqrt{5}$

:. Root loci is a circle.

04.

Sol: Poles at (-2, 0), (-2, 0)

Zeros at (-1, 0), (-1, 0)

i.e., double poles, double zeros at same point

$$G(s)H(s) = \frac{K(S+1)^2}{(S+2)^2}$$

Put $s = \sigma + j\omega$, for complex plane angle criteria should be satisfied

For any point on root loci

$$2\tan^{-1}\left(\frac{\omega}{\sigma+1}\right) - 2\tan^{-1}\left(\frac{\omega}{\sigma+2}\right) = -180^{\circ}$$

$$\angle \frac{K(\sigma + j\omega + 1)^{2}}{(\sigma + j\omega + 2)^{2}} = -180^{\circ}$$

$$\tan^{-1}\left(\frac{\omega}{\sigma+1}\right) - \tan^{-1}\left(\frac{\omega}{\sigma+2}\right) = -90^{\circ}$$

$$\tan^{-1}\left\{\frac{\frac{\omega}{\sigma+1} - \frac{\omega}{\sigma+2}}{1 + \frac{\omega}{\sigma+1}\frac{\sigma}{\sigma+2}}\right\} = -90^{\circ}$$

$$\frac{\frac{\omega}{\sigma+1} - \frac{\omega}{\sigma+2}}{1 + \frac{\omega}{\sigma+1}\frac{\sigma}{\sigma+2}} = \infty \implies 1 + \frac{\omega}{\sigma+1} \times \frac{\omega}{\sigma+2} = 0$$

$$\sigma^{2} + 3\sigma + 2 + \omega^{2} = 0$$

$$(\sigma + 1.5)^{2} + \omega^{2} = 0.25$$
Comparing with $(x - a)^{2} + (y - b)^{2} = r^{2}$
which is a equation of circle

: Plot of root loci is a circle.

05.

Sol: Necessary conditions for stability:

Let us consider the characteristic equation $a_0s^4 + a_1s^3 + a_2s^2 + a_3s + a_4 = 0$

For stability necessary condition are

- All the coefficients (a₀, a₁ etc..) in the CE should be of the same sign.
- There should not be any missing coefficients in the CE.

The given open loop transfer function

$$G(s) = \frac{k}{s(1+s\tau_1)(1+s\tau_2)}$$

Hence characteristic equation

(i)
$$CE = 1 + \frac{K}{s(1+s\tau_1)(1+s\tau_2)} = 0$$

 $s(1+s\tau_1)(1+s\tau_2) + K = 0$
 $s^3\tau_1\tau_2 + s^2(\tau_1+\tau_2) + s + K = 0$

R-H tabulation

For stability $\tau_1 \tau_2 > 0$, $\tau_1 + \tau_2 > 0$, K > 0 and $\frac{(\tau_1 + \tau_2) - K \tau_1 \tau_2}{\tau_1 + \tau_2} > 0$

ACE Engineering Publications

Engineering Publications	36	Control Systems
$\Rightarrow (\tau_{1} + \tau_{2}) > K \tau_{1} \tau_{2}$ $\frac{(\tau_{1} + \tau_{2})}{\tau_{1} \tau_{2}} > K \Rightarrow K < \frac{(\tau_{1} + \tau_{2})}{(\tau_{1} - \tau_{2})}$ So condition for stability $0 < K < \frac{\tau_{1} + \tau_{2}}{\tau_{1} \tau_{2}}$ (ii) Given open loop transfer function $G(s) = \frac{K}{s(1 + s \tau_{1})(1 + s \tau_{2})}$ Ex: Let assume $G(s) = \frac{K}{s(s + 2)(s + 5)}$ No. of root locus branches= $3(3^{rd} \text{ ordes})$ system) No. of Asymptotes N = P - Z = $3 - 0 = 3$ Angle of Asymptotes $P - Z = 3 - 0 = 3$ Angle of Asymptotes $= \frac{(2\ell + 1)180^{\circ}}{P - Z}$ $\ell = 0, 1, 2$ $= 60^{\circ}, 180^{\circ}, 300^{\circ}$ Centroid $\sigma = \frac{(\sum \text{ real part poles } -\sum \text{ real part of zeros }) \text{ of } G(s)H(s)$ $\frac{P - Z}{=(\frac{-2 - 5}{3}) = (\frac{-7}{3}) = -2.33$ Break away point $G_{1}(s)H_{1}(s) = 0$ $\frac{d}{ds}[s(s^{2} + 7s + 10)] = 0$ $\frac{d}{ds}[s(s^{2} + 7s + 10s] = 0$ $3s^{2} + 14s + 10 = 0 \text{ gives } s = -0.88, -3.786$		As two poles exist on right side of $s = -3.786$ root loci does not exist. \therefore It is not a valid break point. s = -0.88 is a valid break away point. Intersection of the RLD with respect to the imaginary axis is calculated from RH criteria $CE = s^3 + 7s^2 + 10s + K = 0$ Routh tabulation $s^3 \begin{vmatrix} 1 & 10 \\ 7 & K \\ 1 & 0 \\ 7 & K \\ s^1 \begin{vmatrix} 70 - K & 0 \\ 7 & 0 \\ s^0 \end{vmatrix} K = 0$ $rac{70 - K}{7} = 0$ gives $K = 70$ AE is $7s^2 + K = 0$ $7s^2 = -K$ $7s^2 = -K$ $7s^2 = -K$ $7s^2 = -70$ ($s = j\omega$) $s = \pm j3.16$ rad/sec. is the point of intersection of root loci with imaginary axis $Plot of Root loci of G(s)H(s) = j\omega$ $s = \frac{K}{s(s + 2)(s + 5)}$ Stable for $0 < K < 70$ $\omega_n = 3.16 rad/sec$ $(K = \omega)$ $(K = 0)$ -2.33 $(K = 0)$ $(K = 0)$ σ j = 1.16 $(K = 0)$ $(K = 0)$ $(K = 0)$ σ j = 1.16 (K = 0) $(K = 0)$ $($
ACE Engineering Publications Hyderabad + Delhi + Bhonal + Pune + Buhaness	war 🗲 Luckn	ow + Patna + Bengaluru + Chennai + Vijavawada + Vizag + Tirunati + Kolkata + Ahmedahad

	37	Postal Coaching Solutions
Root locus diagram after addition of	a	02. Ans: (d)
Zero to the OLTF		Sol: $G(s) H(s) = \frac{100}{100}$
Let the zero be added to the OLTF at $s = -3$		s(s+2)(s+16)
i.e; $G(s) = \frac{K(s+3)}{s(s+2)(s+5)}$		Gain margin (G.M) = $\frac{1}{ G(j\omega)H(j\omega) _{\omega=\omega_{pc}}}$
Centroid (σ) = $\sigma = \frac{(0-2-5+3)}{3-1} = -2$		$\left G(j\omega).H(j\omega) \right _{\omega=\omega_{pc}} = \frac{100}{\omega_{pc}\sqrt{\omega_{pc}^2 + 16}\sqrt{\omega_{pc}^2 + 16^2}}$
Angle of asymptotes = $\pm 90^{\circ}$		$=\frac{5}{1}$
$\begin{bmatrix} (K=\infty) \\ \vdots \\ $		$G.M = \frac{64}{5} = 12.8$
$(K=0)$ $(K=\infty)$ $(K=0)^{-1.13}$ $(K=0)$	- 51	03. Ans: (c)
$\begin{array}{c c} & & & & \\ \hline & & & \\ \hline -5 & -3 & \\ \hline \end{array} \begin{array}{c} -2 & \\ \hline \end{array} \begin{array}{c} s = 0 \\ \hline \end{array} \end{array}$	o Ku	Sol: G(s).H(s) = $\frac{2 e^{-0.5s}}{(s+1)}$ gain crossover frequency,
$(K=\infty)$		$\omega_{gc} = G(j\omega)H(j\omega) _{\omega=\omega_{rev}} = 1$
		2 1
6. Frequency Response Analysis		$\frac{1}{\sqrt{\omega_{gc}^2+1}}$ - 1
01. Ans: (c)		$\omega_{\rm gc}^2 + 1 = 4 \implies \omega_{\rm gc} = \sqrt{3} \text{ rad / sec}$
Sol: $G(s).H(s) = \frac{100}{s(s+4)(s+16)}$		04. Ans: (b) Sol: $\omega_{rr} = \sqrt{3} rad/sec$
Phase crossover frequency (ω_{pc}) : Sin	ce 1	P M = $180^{\circ} + \langle G(i\omega) H(i\omega) / \omega = \omega$
$\angle G(j\omega).H(j\omega)/\omega = \omega_{pc} = -180^{\circ}$		$G(i\omega) H(i\omega) = -0.5 \omega - tan^{-1}(\omega)$
$-90^{\circ} - \tan^{-1}(\omega_{pc}/4) - \tan^{-1}(\omega_{pc}/16) = -180^{\circ}$		2.00° , 10° , ω_{ee}
$-\tan^{-1}(\omega_{\rm pc}/4) - \tan^{-1}(\omega_{\rm pc}/16) = -90^{\circ}$		$= -109.62^{\circ}$ P M = 70.39°
$\tan[\tan^{-1}(\omega_{pc}/4) + \tan^{-1}(\omega_{pc}/16)] = \tan(90^{\circ})$)	
$\frac{\frac{\omega_{\rm pc}}{4} + \frac{\omega_{\rm pc}}{16}}{1 - \frac{\omega_{\rm pc}}{4} \cdot \frac{\omega_{\rm pc}}{16}} = \frac{1}{0}$		05. Ans: (a) Sol: $M_r = 2.5 = \frac{1}{2\xi\sqrt{1-\xi^2}}$
$\omega_{\rm pc}^2 = 16 \times 4 \Longrightarrow \omega_{\rm pc} = 8 \text{ rad/sec}$		$2\xi\sqrt{1-\xi^2} = \frac{1}{2.5}$
ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubanesw	var + Lucki	now + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Eggineering Publications	38	Control Systems
$\xi^4 - \xi^2 + 0.04 = 0$		At $\omega = 10$ slope changed to -60 dB/dec
$\xi^2 = 0.958$ $\xi^2 = 0.0417$		Change in slope = $-60-(-20)$
$\xi = 0.204$ (M _r >1)		= -40 dB/dec
06. Ans: (a) Sol: Closed loop T.F = $\frac{1}{s+2}$		TF (G(s)H(s)) = $\frac{K\left(1+\frac{s}{0.1}\right)}{s^2\left(\frac{s}{10}+1\right)^2}$
		$20 \log K - 2 (20 \log 0.1) = 20 dB$
$\begin{array}{c c} \text{Input} & & \\ \hline \\ cos(2t+20^{\circ}) & & \\ \hline \\ s+2 & \\ \hline \\ Output & Acos(2t+20^{\circ}+20^{\circ}) & \\ \hline \\ \end{array}$	-ө)	$20 \log K = 20 - 40$
		$20 \log K = -20$
$A = \frac{1}{\sqrt{\omega^2 + 4}} = \frac{1}{\sqrt{4 + 4}} = \frac{1}{\sqrt{8}} = \frac{1}{2\sqrt{2}}$ $\phi = -\tan^{-1}\omega/2$ $= -\tan^{-1}2/2$ $\Rightarrow \phi = -\tan^{-1}(1) = -45^{\circ}$ output $= \frac{1}{2\sqrt{2}}\cos(2t + 20^{\circ} - 45^{\circ})$ $= \frac{1}{2\sqrt{2}}\cos(2t - 25^{\circ})$	ERI	$K = 0.1$ $G(s)H(s) = \frac{\left(0.1\right)\left(1 + \frac{s}{0.1}\right)}{s^2\left(1 + \frac{s}{10}\right)^2}$ $= \frac{\left(0.1\right) \times 10^2 (s + 0.1)}{\left(0.1\right)s^2 (s + 10)^2}$ $G(s)H(s) = \frac{100(s + 0.1)}{s^2 (s + 10)^2}$
07. Ans: (c)		08. Ans: (b)
Sol: Initial slope = -40 dB/dec Sir	nce 1	$\frac{1995}{\text{Ks}} = \frac{1}{1000}$
Two integral terms $\left(\frac{1}{s^2}\right)$		$\frac{(1+\frac{s}{2})\left(1+\frac{s}{10}\right)}{\left(1+\frac{s}{10}\right)}$
\therefore Part of TF = G(s)H(s) = $\frac{K}{s^2}$		$12 = 20 \log K + 20 \log 0.5$ $12 = 20 \log K + (-6)$
at $\omega = 0.1$		$20 \log K = 18 dB = 20 \log 2^3$
Change in slope = $-20 - (-40)$		K = 8
= 20°		$G(s)H(s) = \frac{8s \times 2 \times 10}{(2+s)(10+s)}$
Part of TF = G(s) H(s) = $\frac{K\left(1 + \frac{s}{0.1}\right)}{s^2}$		$G(s)H(s) = \frac{160s}{(2+s)(10+s)}$
ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubanes	war 🗲 Lucki	now + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

09. Ans: (b) Sol: $y_1 = -12 \frac{x_1 - x_2}{y_1 - 12 \frac{x_2}{y_1 - 12 \frac{x_2}{y_1 - 12 \frac{x_2}{y_1 - 12 \frac{x_2}{y_2 - y_1}}}{y_1 - 12 \frac{x_2}{y_2 - y_1} \frac{x_2 - x_1}{y_1 - 12 \frac{x_2}{y_2 - x_1}} = -40 \frac{x_2 - y_1}{(1 + s)^2}$ $\frac{y_2 - y_1}{x_2 - x_1} = -40 \frac{x_2 - y_1}{(1 + s)^2} = -40 \frac{x_2 - y_1}{y_1 - 10g_1} = -40$ $y_1 = +60 \frac{x_2 - y_1}{y_1 - 10g_1} = -40$ $y_1 = +60 \frac{x_2 - y_1}{y_1 - 10g_1} = -40$ $y_1 = +60 \frac{x_2 - y_1}{y_1 - 10g_1} = -40$ $y_1 = -20 \frac{x_2 - y_1}{y_2 - y_1} = -40 \frac{x_2 - y_1}{y_1 - 10g_1} = -40$ $y_1 = -20 \frac{x_1 - x_2}{y_2 - y_1} = -40 \frac{x_2 - y_1}{y_1 - 10g_1} = -40$ $y_1 = -20 \frac{x_1 - x_2}{y_2 - x_1} = -40 \frac{x_2 - y_1}{y_1 - 10g_1} = -40$ $y_1 = -20 \frac{x_1 - x_2}{y_2 - x_1} = -40 \frac{x_2 - y_1}{y_1 - 10g_1} = -40$ $y_1 = -20 \frac{x_1 - x_2}{y_2 - x_1} = -40 \frac{x_1 - x_2}{y_2 - $	ACE Engineering Publications	39	Postal Coaching Solutions
$K = 10^{3}$ $G(s)H(s) = \frac{10^{3}(s+10)^{2}(s+20)}{10^{2} \times 20 \times (s+1)^{2}}$ $= \frac{(s+10)^{2}(s+20)}{2(s+1)^{2}}$ $I0. \text{ Ans: (d)}$ Sol: $I0. \text{ Ans: (d)}$ $I1. \text{ Sol: } \frac{200}{s(s+2)} = \frac{100}{s(1+\frac{s}{2})}$ $x = -KT \Rightarrow -(100) \times \frac{1}{2} = x = -50$ $I2. \text{ Ans: (c)}$ Sol: For stability (-1, j0) should not be enclosed	99. Ans: (b) Sol: $y_{2}=20 \text{ dB}$ $y_{1} = \frac{x_{1}}{10} \frac{x_{2}}{10} + 6 \text{ dB/oct}$ $G(s)H(s) = \frac{K\left(1 + \frac{s}{10}\right)^{2}\left(1 + \frac{s}{20}\right)}{(1 + s)^{2}}$ $\frac{y_{2} - y_{1}}{x_{2} - x_{1}} = -40 \text{ dB/dec}$ $\frac{20 - y_{1}}{\log 10 - \log 1} = -40$ $y_{1} = +60 \text{ dB} _{\infty \le 1}$ $\Rightarrow 20 \log K = 60$ $K = 10^{3}$ $G(s)H(s) = \frac{10^{3}(s + 10)^{2}(s + 20)}{10^{2} \times 20 \times (s + 1)^{2}}$ $= \frac{(s + 10)^{2}(s + 20)}{2(s + 1)^{2}}$ 10. Ans: (d) Sol: $\int_{0}^{ G(s)H(s) } \frac{ G(s)H(s) }{\sqrt{1 + \frac{40}{3}}} = \frac{\sqrt{3}}{\sqrt{3}}$ $\int_{0}^{ G(s)H(s) } \frac{ G(s)H(s) }{\sqrt{1 + \frac{40}{3}}} = \frac{\sqrt{3}}{\sqrt{3}}$		$\frac{\text{Postal Coaching Solutions}}{\omega_1 \text{ calculation:}}$ $\frac{0-20}{\log 1 - \log \omega_1}$ = -20 dB/dec $\omega_1 = 0.1$ $\frac{-20 - 0}{\log \omega_2 - \log 1}$ = -20dB/dec $\omega_2 = 10$ $G(s)H(s) = \frac{K\left(1 + \frac{s}{0.1}\right)}{s^2\left(1 + \frac{s}{10}\right)}$ 20logK-2 (20 log 0.1) = 20 20 logK = 20-40 K = 0.1 $G(s)H(s) = \frac{0.1 \times \frac{1}{0.1}(0.1 + s)}{s^2 \frac{1}{10}(10 + s)}$ = $\frac{10(0.1 + s)}{s^2(10 + s)}$ 11. Sol: $\frac{200}{s(s+2)} = \frac{100}{s\left(1 + \frac{s}{2}\right)}$ $x = -KT \Rightarrow -(100) \times \frac{1}{2} = x = -50$ 12. Ans: (c) Sol: For stability (-1, j0) should not be enclosed
by the polar plot.			by the polar plot.

ACE Engineering Publications

Engineering Publications	40		Control Systems
For stability		16.	Ans: (b)
1 > 0.01 K		Sol	: Open loop system is stable, since the open
\Rightarrow K < 100			loop poles are lies in the left half of s-plane
			$\therefore P = 0.$
13.			From the plot $N = -2$.
Sol: $GM = -40 dB$			No.of encirclements $N = P - Z$
$201 = \frac{1}{2}$ 10 $z = 10^{2}$			N = -2, P = 0 (Given)
$20\log - = -40 \implies a = 10$			\therefore N = P - Z
POI = 100			-2 = 0 - Z
			Z = 2
14.			Two closed loop poles are lies on RH of s-
Sol: (i) $GM = \frac{1}{2} = +10 = 20 dB$			plane and hence the closed loop system is
0.1	ERI	No	unstable.
$PM = 180^{\circ} - 140^{\circ} = 40^{\circ}$	- Control of Control o		ACA
(ii) $PM = 180 - 150^\circ = 30^\circ$		17.	Ans: (c)
$GM = \frac{1}{2} = \infty$ POI = 0		Sol	GH plane
			$\omega = \infty$
(iii) ω_{PC} does not exist			(-1,0) (0.4)
$GM = \frac{1}{0} = \infty PM = 180^{\circ} + 0^{\circ} = 180^{\circ}$			
(iv) a not evict			$\omega = 0$
$(\mathbf{IV}) \omega_{gc}$ not exist			K
$\omega_{\rm pc} = \infty$		4	$\frac{1}{K} = 0.4$ When $K = 1$
$GM = \frac{1}{0} = \infty$		4.00	Now K double Ks 0.4
	ice	19	Now, K double, $\frac{1}{K} = 0.4$
$PM - \omega$			$K_{c} = 0.4 \times 2 = 0.8$
(v) $GM = \frac{1}{0.5} = 2$			GH plane
$PM = 180 - 90 = 90^{\circ}$			
			(-1.0) $(0.8$
15. Ans: (d)			
Sol: For stability (-1, j0) should not be enclose	ed		$\begin{vmatrix} & & \\ & $
by the polar plot. In figures (1) & (2) (-1 , j())		
is not enclosed.			Even though the value of K is double, the
\therefore Systems represented by (1) & (2) and	re		system is stable (negative real axis
stable.			magnitude is less than one)
ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaness	war + Luck	know +	Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

ACE 41 Oscillations depends on 'ξ' the polar plot $\xi \propto \frac{1}{\sqrt{K}}$ as K is increased ξ reduced, then

more oscillations.

18. Ans: (a)

Sol: Given system $G(s) = \frac{10(s-12)}{s(s+2)(s+3)}$

It is a non minimum phase system since s = 12 is a zero on the right half of s-plane.

19.

10(s+3)**Sol:** Given that G(s)H(s) =s(s-1)s-plane **Nyquist Contour** jω C_2 £→0 ►R→∞ $\omega = 0$ $\omega = 0$

- Nyquist plot is the mapping of Nyquist contour(s-plane) into G(s)H(s) plane.
- The Nyquist contour in the s-plane enclosing the entire right half of S-plane is shown figure.

The Nyquist Contour has four sections C_1 , C₂, C₃ and C₄. These sections are mapped into G(s)H(s) plane

Mapping of section C_1 : It is the positive imaginary axis, therefore sub s = $j\omega$, $(0 \le \omega \le \infty)$ in the TF G(s) H(s), which gives

$$G(s)H(s) = \frac{10(s+3)}{s(s-1)}$$

Let $s = i\omega$

$$G(j\omega)H(j\omega) = \frac{10(j\omega+3)}{j\omega(j\omega-1)}$$

$$G(j\omega)H(j\omega) = \frac{10\sqrt{\omega^2 + 9}}{\omega\sqrt{\omega^2 + 1}} \angle \{\tan^{-1}\left(\frac{\omega}{3}\right) - [90^0 + 180^0 - \tan^{-1}(\omega)]\}$$

At $\omega = 0 \implies \infty \angle -270^0$

At
$$\omega = \omega_{\rm pc} = \sqrt{3} \implies 10 \angle -180^\circ$$

At
$$\omega = \infty \Longrightarrow 0 \angle -90^{\circ}$$

point of intersection of the Nyquist plot with respect to negative real axis is 1 / 11 1

$$\operatorname{ArgG}(j\omega)H(j\omega) = \operatorname{arg}\frac{10(j\omega+3)}{j\omega(j\omega-1)}$$

 $= -180^{\circ}$ will give the ' ω_{pc} '

Magnitude of $G(j\omega)H(j\omega)$ gives the point of intersection

$$\angle \tan^{-1}(\frac{\omega}{3}) - [90^{\circ} + 180^{\circ} - \tan^{-1}(\omega))$$

= $-180^{\circ} | \omega = \omega_{pc}$
 $\angle \tan^{-1}(\frac{\omega_{pc}}{3}) - [90^{\circ} + 180^{\circ} - \tan^{-1}(\omega_{pc})) = -180^{\circ}$
 $\tan^{-1}(\frac{\omega_{pc}}{3}) + \tan^{-1}(\omega_{pc}) = 90^{\circ}$

Taking "tan" both the sides

$$\frac{\frac{\omega_{pc}}{3} + \omega_{pc}}{1 - \frac{(\omega_{pc})^2}{3}} = \tan 90^\circ = \infty$$

ACE Engineering Publications

Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

$$1 - \frac{\omega_{pc}^2}{3} = 0$$

 $\omega_{\rm pc} = \sqrt{3} \text{ rad/sec}$

Therefore the point of intersection is

The mapping of the section C_1 is shown figure.

Mapping of section C₂: It is the radius 'R' semicircle, therefore sub $s = \lim_{R \to \infty} Re^{j\theta}$ (θ is from 90⁰ to 0⁰ to -90⁰) in the TF G(s)H(s), which merges to the origin in G(s)H(s) plane.

The plot is shown in figure.

Mapping of section C₃: It is the negative imaginary axis, therefore sub $s = j\omega$,

 $(-\infty \le \omega \le 0)$ in the TF G(s)H(s), which gives the mirror image of the polar plot and is symmetrical with respect to the real axis, The plot is shown in figure.

Mapping of section C₄: It is the radius ' ε ' semicircle, therefore subs = $\lim_{\varepsilon \to 0} \varepsilon e^{j\theta}$

 $(-90^{\circ} \le \theta \le 90^{\circ})$ in the TF G(s)H(s), which gives clockwise infinite radius semicircle in G(s)H(s) plane.

The plot is shown below

$$G(\epsilon e^{j\theta})H(\epsilon e^{j\theta}) = \frac{10(\epsilon e^{j\theta} + 3)}{\epsilon e^{j\theta}(\epsilon e^{j\theta} - 1)}$$

$$G(\epsilon e^{j\theta})H(\epsilon e^{j\theta}) \approx \frac{10 \times 3}{-\epsilon e^{j\theta}} = \infty \angle 180^{0} - \theta$$
When, $\theta = -90^{0} \quad \infty \angle 270^{0}$
 $\theta = -40^{0} \quad \infty \angle 220^{0}$
 $\theta = 0^{0} \quad \infty \angle 0^{0}$
 $\theta = 40^{0} \quad \infty \angle 140^{0}$
 $\theta = 90^{0} \quad \infty \angle 90^{0}$

It is clear that the plot is clockwise ' ∞ ' radius semicircle centred at the origin.

ACE Engineering Publications

20.

Sol: The given bode plot is shown below.

i.e., there is one pole at origin (or) one integral term.

ACE Engineering Publications

At $\omega = 2$ rad/sec, slope is changed to 0dB/

portion of transfer function

octave.

 $G(s) = \frac{K}{s}$

 \therefore Change in slope = present slope previous slope

$$= 0 - (-6) = 6 \text{ dB/octave}$$

: There is a real zero at corner frequency $\omega_1 = 2$.

$$(1+sT_1) = \left(1+\frac{s}{\omega_1}\right) = \left(1+\frac{s}{Z}\right)$$

At $\omega = 10$ rad/sec, slope is changed to -6dB/octave.

 \therefore change in slope = -6 - 0

= -6 dB/octave.

: There is a real pole at corner frequency $\omega_2 = 2.$

$$\frac{1}{1+sT_2} = \frac{1}{\left(1+\frac{s}{\omega_2}\right)} = \frac{1}{\left(1+\frac{s}{10}\right)}$$

At $\omega = 50$ rad/sec, slope is changed to -12dB/octave.

: change in slope =
$$-12 - (-6)$$

= -6 dB/octave

 \therefore There is a real pole at corner frequency $\omega_3 = 50 \text{ rad/sec.}$

$$\frac{1}{1+ST_3} = \frac{1}{\left(1+\frac{S}{\omega_3}\right)} = \frac{1}{\left(1+\frac{S}{50}\right)}$$

At $\omega = 100$ rad/sec, the slope changed to -6dB/octave.

Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Since

Control Systems

Engineering Publications	45	Postal Coaching Solutions
RH criteria: The characteristic equation is $s^{3}T_{1}T_{2}+s^{2}(T_{1}+T_{2})+s+K=0$ For stability the condition is $0 < K < \frac{T_{1}+T_{2}}{T_{1}T_{2}}$ 02. Sol: $G(s) = \frac{10^{4}}{s(s+10)^{2}}$ $ G(j\omega) = \frac{10^{4}}{1 i c (i \omega + 10)^{2}} = \frac{10^{4}}{(1 - 10)^{2}}$		$TF = \frac{5 \times \omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$ Since the steady state gain is 5 so the transfer function is multiplied by it's magnitude i.e, steady state gain 5. $M_r = \frac{1 \times 5}{2\xi \sqrt{1 - \xi^2}} = \frac{10}{\sqrt{3}}$ $\xi = 0.5, 0.88$ But $\xi < \frac{1}{\sqrt{2}}, \therefore \xi = 0.5$ $\omega = 0.5 \frac{1}{\sqrt{2}} = 5\sqrt{2}$
At $\omega = \omega_{gc}$, $ G(j\omega) = 1$ $\frac{10^4}{\omega(\omega^2 + 100)} = 1$ $\omega^3 + 100 \omega - 10^4 = 0$ Solve the above equation $\omega_{gc} = 20$ as ω is real $\angle G(j\omega) = -90 - 2\tan^{-1}\left(\frac{\omega}{10}\right)$	ERJ	$\omega_{r} = \omega_{n} \sqrt{1 - 2\xi^{2}} = 5\sqrt{2}$ $\omega_{n} = 10$ TF = $\frac{500}{s^{2} + 10s + 100}$ 04. Refer Page No. 109 Example 25. 05. Sol: G(s)H(s) = $\frac{K}{s(1 + sT_{1})(1 + sT_{2})}$
$\angle G(s) _{\omega=\omega_{gc}} = -90 - 2\tan^{-1}(2)$ Sin = -216.869° PM = $180 + \angle G(s) _{\omega=\omega_{gc}}$ PM = -36.869	ceí	$G(j\omega)H(j\omega) = \frac{K}{j\omega(1+j\omega T_1)(1+j\omega T_2)}$ $ G(j\omega)H(j\omega) = \frac{K}{\omega\sqrt{1+(\omega^2 T_1^2)}\sqrt{1+\omega^2 T_2^2}},$ $\angle G(j\omega)H(j\omega) = -90 - \tan^{-1}\omega T_1 - \tan^{-1}\omega T_2$ Nyquist contour in s-plane
03. Sol: Given that The steady state gain = 5 $M_r = \frac{10}{\sqrt{3}}$ at $\omega_r = 5\sqrt{2}$ rad/sec ACE Engineering Publications	var + Lucki	$\begin{array}{c} & & & & \\ & & & & \\ & &$

ACE

47

By equating phase to -180° then we can get phase cross - over frequency.

$$-180 = -180 - \tan^{-1}(\omega) + \tan^{-1}(4\omega)$$

$$\Rightarrow \frac{\omega + 2\omega}{1 - 2\omega^2} = 4\omega$$

$$\frac{3}{4} = 1 - 2\omega^2$$
$$2\omega^2 = \frac{1}{4} \implies \omega^2 = \frac{1}{2}$$

$$\omega_{\rm pc} = \frac{1}{2\sqrt{2}} \text{ rad/sec}$$

$$|G(s)H(s)| = \frac{\sqrt{16\omega^2 + 1}}{\omega^2 \sqrt{(\omega^2 + 1)(4\omega^2 + 1)}}$$

$$|G(s)H(s)||_{\omega=\omega_{pc}} = \frac{8\sqrt{16\frac{1}{8}+1}}{\sqrt{(\frac{1}{8}+1)(4\frac{1}{8}+1)}}$$

 $|G(s)H(s)|_{\omega=\omega_{1}} = 10.67$

: Critical point lies inside the unit circle. Number of encirclement about the critical point is N = -2.

Number of right hand open loop poles P = 0.

Control Systems

But $\xi < \frac{1}{\sqrt{2}}$ $\therefore \xi = 0.34$ $\rightarrow \omega_{r} = \omega_{n}\sqrt{1-2\xi^{2}}$ $3 = \omega_{n}\sqrt{1-2(0.34)^{2}}$ $\omega_{n} = 3.42 \text{ rad/sec}$ $CLTF = \frac{0.9 \times 11.69}{s^{2} + 2.32s + 11.69}$ $t_{p} = \frac{\pi}{\omega_{n}\sqrt{1-\xi^{2}}} = 0.975 \text{ sec}$ $\% M_{p} = e^{-\pi\xi/\sqrt{1-\xi^{2}}} = 32.11\%$ $C(s) = \frac{0.9 \times 11.69}{s^{2} + 2.32s + 11.69} R(s)$ $C(\infty) = \text{Lt} \frac{0.9 \times 11.69}{11.69} = 0.9$ Steady state error = input - output = 1 - 0.9 = 0.108. Sol: $G(s)H(s) = \frac{40}{s(1+0.1s)} = \frac{40}{s(1+s/10)}$

199 Magnitude Plot

Factor	Slope of	Slope of	Frequency
	Factor	Mag plot	Range
1	-20 dB/dec	-20dB/dec	0→10
s			
1	-20dB/dec	-40dB/dec	10→∞
$\overline{\left[1+s/10\right]}$			

 $|G(j\omega)H(j\omega)|_{\omega=1} = 20\log 40 - 20\log 1 = 32 \text{ dB}$

07. Sol:

Engineering Publications	49	Postal Coaching Solutions
Phase plot: Phase $\phi = -90 - \tan^{-1}\left(\frac{\omega}{10}\right)$ $\frac{\omega}{1} = \frac{\phi}{-95.7^{\circ}}$ $5 = -116^{\circ}$ $10 = -135^{\circ}$ $20 = -153^{\circ}$	49	Postal Coaching Solutions Calculation for ω_{gc} :- (a) $\omega = \omega_{gc}$, $ G(j\omega)H(j\omega) = 1$ $\left \frac{40}{(j\omega)(10 + \frac{j\omega}{10})}\right = 1$ $400 = 10 \sqrt{\omega^2 + 10}$ $(400)^2 = \omega^2 (\omega^2 + 100)$ Let $\omega^2 = x$ $x^2 + 100x - 160000 = 0$ $x_1 = 400 \angle 97.18$
$32 \text{ dB} -20 \text{ dB/dec} -40 \text{ dB/dec} 0$ $-40 \text{ dB/dec} 0$ $-95.7^{\circ} -116^{\circ} -175^{\circ} -153^{\circ} 0$		$x_{2} = 400 \ \angle -97$ $\omega_{gc} = 20 \ \angle 48.5$ $\omega_{gc} = 20 \ rad/sec$ $\frac{40}{ \omega 1 + 0.1j\omega } = 1$ $\frac{40}{\omega\sqrt{1 + (0.1\omega)^{2}}} = 1$ $(40)^{2} = \omega^{2} (1 + 0.01\omega^{2})$ $(40)^{2} = \omega^{2} + 0.01 \ \omega^{4}$ $1600 = x + 0.01 \ x^{2}$ $x_{1} = 400 \ \angle -97$
$-270^{\circ} 1 5 10 20 \qquad \qquad$	war + Lucki	$\omega_{pc} = \infty \text{ rad/sed}$ $GM = \infty$ $M \mid_{\omega = \omega_{pc}} = -\infty dB$ $GM = -M_{\omega = \omega_{pc}}$ $= -(-\infty) = \infty$ $\omega_{gc} = 20 \text{ rad/sec}$ $\phi \mid_{\omega_{gc}} = -153^{\circ}$ $PM = 180 - 153 = 27^{\circ}$ now + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

50

Control Systems

Engineering Publications	51	Postal Coaching Solutions
--------------------------	----	---------------------------

04. Ans: (d)

Sol: PD controller improves transient stability and PI controller improves steady state stability. PID controller combines the advantages of the above two controllers.

05.

Sol: For
$$K_{I} = 0 \Rightarrow$$

$$\frac{C(s)}{R(s)} = \frac{(K_{P} + K_{D}s)}{s(s+1) + (K_{P} + K_{D}s)}$$

$$= \frac{K_{P} + K_{D}s}{s^{2} + (1 + K_{D})s + K_{P}}$$

$$\omega_{n} = \sqrt{K_{P}}$$

$$2\xi\omega_{n} = 1 + K_{D}$$

$$\Rightarrow 2(0.9) \sqrt{K_{P}} = 1 + K_{D}$$

$$\Rightarrow 1.8 \sqrt{K_{P}} = 1 + K_{D}$$

$$(1)$$
Dominant time constant $\frac{1}{\xi\omega_{n}} = 1$

$$\Rightarrow \omega_{n} = \frac{1}{0.9} = 1.111$$

$$K_{P} = \omega_{n}^{2} = 1.11^{2}$$

$$= 1.234$$
From eq. (1),

$$\Rightarrow 1.8 \times \frac{1}{0.9} = 1 + K_{D}$$

$$\Rightarrow K_{D} = 1$$
Solutions for Conventional Practice Questions

01.

Sol: Given that

$$\theta_{c}(t) = 20 \left[e(t) + \frac{1}{T_{r}} \int_{0}^{t} e(t) dt + T_{d} \frac{de(t)}{dt} \right]$$

Applying Laplace transform on both sides with zero initial conditions

i) If Integral action is not used then,

 $\theta_{c}(s)=20(1+T_{d}s)E(s)$

$$\frac{\theta_{\rm c}(s)}{\rm E(s)} = 20(1+T_{\rm d}s)$$

Characteristic equation is 1+G(s)H(s) = 0

$$1 + \frac{40 \times 20(1 + T_{d}s)}{10(s^{2} + 8s + 80)} = 0$$

$$s^{2} + s\left(\frac{80 + 800T_{d}}{10}\right) + 160 = 0 \dots (2)$$

 $2^{nd} \text{ order prototype characteristic equation is,}$ $s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2} = 0 \text{ then we get,}$ $\omega_{n} = \sqrt{160} \implies \omega_{n} = 12.649 \text{ rad/sec}$ and $2\xi\omega_{n} = \frac{80 + 800T_{d}}{10} \text{ for } \xi = 1$ $2 \times 1 \times 12.649 = 8 (1+10 \text{ T}_{d})$ $T_{d} = 0.216 \text{ sec.}$

ii) If the value of derivative time is maintain then,

ACE Engineering Publications

- THERE I	
1 A V	ALTH
	Engineering Publications

٦

$$\begin{split} &= k_{p} + \frac{k_{1}}{s} \Rightarrow \frac{s(k_{p}) + (k_{1})}{s} \\ &G(s) \text{ with controller } = G_{C}(s) \\ &= \frac{100(sk_{p} + k_{1})}{(s+4)(s+5)(s+7)s} \\ &PM = 180^{\circ} + \angle G(s)H(s)|_{\omega = \omega_{pc}} \\ &50 = 180^{\circ} + \angle G_{C}(s)H(s) \\ &\therefore \angle G(s)H(s)|_{\omega = \omega_{pc}} = -130^{\circ} \\ &\angle G_{C}(s)H(s) = -130^{\circ} \\ &G(c)H(s) = -130^{\circ} \\ &H(s) = -40^{\circ} + \tan^{-1}(\frac{2}{5}) - \tan^{-1}(\frac{2}{7}) = -130^{\circ} \\ &H(s) = -40^{\circ} + \tan^{-1}(0.5) \\ \\ &H(s) = -40^{\circ} +$$

04.

Sol: Given lead network can be drawn as,

$$\frac{V_0(s)}{V_i(s)} = \frac{R_2}{R_2 + R_1 || \frac{1}{sC}}$$

$$= \frac{R_2}{R_1 + R_2} \left[\frac{1 + R_1 Cs}{1 + \frac{R_1 R_2 Cs}{R_1 + R_2}} \right]$$

$$T = \left(\frac{R_1 R_2}{R_1 + R_2}\right) C \text{ and } a = \frac{R_1 + R_2}{R_2}$$

Transfer function
$$= \frac{1}{a} \left(\frac{1+a}{1+Ts} \right)$$

The sinusoidal transfer function is

$$G_{c}(j\omega) = \frac{1 + jaT\omega}{1 + j\omega T}$$

Phase angle at any frequency ω is given by $\phi = \angle G_c(j\omega) = \tan^{-1}(a\omega T) - \tan^{-1}(\omega T)$ Differentiating with respect to ' ω '

$$\frac{d\phi}{d\omega} = \frac{aT}{1 + (a\omega T)^2} - \frac{1}{1 + (\omega T)^2}$$
When $\frac{d\phi}{d\omega} = 0$

$$\frac{aT}{1 + (a\omega_m T)^2} - \frac{T}{1 + (\omega_m T)^2} = 0$$

$$\Rightarrow \frac{aT}{1 + (a\omega_m T)^2} = \frac{T}{1 + (\omega_m T)^2}$$

ACE Engineering Publications

Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

At $\omega = \omega_{m}$ the maximum phase lead ϕ_{m} is $\phi|_{\omega=\omega_{m}} = \tan^{-1}(a\omega_{m}T) - \tan^{-1}(\omega_{m}T)$ $= \tan^{-1}\left(a.\frac{1}{T\sqrt{a}}.T\right) - \tan^{-1}\left(\frac{1}{T\sqrt{a}}.T\right)^{-1}$ $\phi_{m} = \tan^{-1}\left(\sqrt{a}\right) - \tan^{-1}\left(\frac{1}{\sqrt{a}}\right)$

Apply 'tan' on both sides, then we get

$$\tan\phi_{\rm m} = \frac{\sqrt{a} - \frac{1}{\sqrt{a}}}{1 + \sqrt{a} \cdot \frac{1}{\sqrt{a}}} = \frac{\frac{a - 1}{\sqrt{a}}}{2}$$

$$\tan \phi_{\rm m} = \frac{a-1}{2\sqrt{a}}$$
$$\phi_{\rm m} = \tan^{-1} \left(\frac{a-1}{2\sqrt{a}} \right)$$

 \therefore Maximum value of phase lead ϕ_m is

$$AC = \sqrt{(a-1)^2 + 4a}$$
$$= a^2 + 1 - 2a + 4a$$
$$= \sqrt{(a+1)^2}$$
$$= a + 1$$
$$\therefore \sin \phi_m = \frac{a-1}{a+1}$$

8. State Space Analysis

01. Ans: (a)
Sol:
$$TF = \frac{1}{s^2 + 5s + 6}$$

 $= \frac{1}{(s+2)(s+3)}$
 $= \frac{1}{s+2} + \frac{-1}{s+3}$
 $\therefore A = \begin{bmatrix} -2 & 0\\ 0 & -3 \end{bmatrix} B = \begin{bmatrix} 1\\ -1 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$

02. Ans: (c)

Since

Sol: Given problem is Controllable canonical form.

(or) $TF = C[sI - A]^{-1}B + D$ $= [6 \ 5 \ 1] \begin{bmatrix} s & 1 & 0 \\ 0 & s & 1 \\ -5 & -3 & s+6 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$ $= \frac{3s^2 + 15s + 18}{s^3 + 6s^2 + 3s + 5}$

ACE Engineering Publications Hyderabad + Delhi + 1

Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Control Systems

Control Systems

$$O/P_{1} \Rightarrow y_{1} = V_{c}$$

$$O/P_{2} \Rightarrow y_{2} = R_{2} i_{2}$$

$$y = \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & R_{2} \end{bmatrix} \begin{bmatrix} V_{c} \\ i_{1} \\ i_{2} \end{bmatrix}$$

$$y = C X$$

$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & R_{2} \end{bmatrix}$$

07. Ans: (a)

Sol: $T.F = C[sI-A]^{-1}B + D$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} s+4 & 1 \\ 3 & s+1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \frac{1}{s^{2}+5s+1} \begin{bmatrix} s+1 & -1 \\ -3 & s+4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= \frac{1}{s^{2}+5s+1} \begin{bmatrix} 1 & 0 \end{bmatrix}_{i\times 2} \begin{bmatrix} s+1 & -1 \\ -3 & s+4 \end{bmatrix}_{2\times 2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= \frac{1}{s^{2}+5s+1} \begin{bmatrix} s+1 & -1 \end{bmatrix}_{i\times 2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{2\times 1}$$
$$= \frac{1}{s^{2}+5s+1} \begin{bmatrix} s+1 & -1 \end{bmatrix}_{i\times 2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{2\times 1}$$
$$= \frac{1}{s^{2}+5s+1} \begin{bmatrix} s+1-1 \end{bmatrix}$$
$$= \frac{s}{s^{2}+5s+1}$$

08. Ans: (c)

Sol: State transition matrix $\phi(t) = L^{-1}[(sI-A)^{-1}]$

$$sI - A = \begin{bmatrix} s+3 & -1 \\ 0 & s+2 \end{bmatrix}$$
$$[sI - A]^{-1} = \frac{1}{(s+2)(s+3)} \begin{bmatrix} s+2 & 1 \\ 0 & s+3 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{s+3} & \frac{1}{(s+2)(s+3)} \\ 0 & \frac{1}{s+2} \end{bmatrix}$$

$$L^{-1}[[sI - A]^{-1}] = \begin{bmatrix} e^{-3t} & e^{-2t} - e^{-3t} \\ 0 & e^{-2t} \end{bmatrix}$$

09. Ans: (b) Sol: Controllability $[M] = \begin{bmatrix} B & AB & A^{2}B.. & A^{n-1}B \end{bmatrix}$ $AB = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ $M = \begin{bmatrix} 0 & 1 \\ 1 & -3 \end{bmatrix}$ $|M| = -1 \neq 0 \text{ (Controllable)}$ Observability $[N] = \begin{bmatrix} C^{T} & A^{T}C^{T} \dots & (A^{T})^{n-1}C^{T} \end{bmatrix}$

$$\begin{bmatrix} \mathbf{N} \end{bmatrix} = \begin{bmatrix} \mathbf{C}^{\mathsf{T}} & \mathbf{A}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}} \\ \mathbf{A}^{\mathsf{T}} \mathbf{C}^{\mathsf{T}} &= \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$
$$\mathbf{N} = \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix}$$

 $|\mathbf{N}| = 0$ (Not observable)

10. Ans: (c)

Sol: According to Gilberts test the system is controllable and observable.

11. Ans: (c)
Sol:
$$\frac{Y(s)}{U(s)} = \frac{b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3}$$

at node \dot{x}_1
 $\dot{x}_1 = -a_1 x_1 - a_2 x_2 - a_3 x_3$
at $\dot{x}_2 = x_1$ & $\dot{x}_3 = x_2$

Where A: State matrix B: Input matrix C: Output matrix
D: Transition matrix Characteristic equation sI - A = 0
$\begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}$ $\Rightarrow \begin{vmatrix} S & -1 & 0 \\ 0 & S & -1 & = 0 \\ 0 & 2 & S + 3 \end{vmatrix}$ $\Rightarrow s[s(s+3)+2]+1(0) = 0$
$\Rightarrow s(s^{2} + 3s + 2) = 0$ $\Rightarrow s(s+1)(s+2) = 0$ The roots are 0, -1,-2. Solutions for Conventional Practice Questions
01. Sol: $\frac{Y(s)}{U(s)} = \frac{10(2s+3)}{(s+1)(s+2)(s+3)}$ i) Phase variable form $\frac{Y(s)}{U(s)} = \frac{10(2s+3)}{(s^2+3s+2)(s+3)}$
$= \frac{10(2s+3)}{s^3 + 3s^2 + 2s + 3s^2 + 9s + 6}$ $\frac{Y(s)}{U(s)} = \frac{10(2s+3)}{s^3 + 6s^2 + 11s + 6}$ $\begin{bmatrix} \dot{x}(t) \\ = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x(t) \\ = \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix} V$

Engineering Publications	58	Control Systems
$y(t) = \begin{bmatrix} 3 & 2 & 0 \end{bmatrix} x(t)$ ii) Normal forms $\frac{Y(s)}{U(s)} = \frac{10(2s+3)}{(s+1)(s+2)(s+3)}$ Apply the partial fractions $\frac{10(2s+3)}{(s+1)(s+2)(s+3)} = \frac{5}{s+1} + \frac{10}{s+2} - \frac{15}{s+3}$ $\begin{bmatrix} \dot{x}(t) \\ = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 5 \\ 10 \\ -15 \end{bmatrix}$ $y(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} x(t)$ 02. Sol: $\frac{Y(s)}{U(s)} = \frac{(s^2 - 3s - 1)}{(s+1)^2(s+4)}$ $= \frac{A}{s+1} + \frac{B}{(s+1)^2} + \frac{C}{s+4}$ $= \frac{1}{(s+1)^2} - \frac{2}{(s+1)} + \frac{3}{s+4}$ $Y(s) = \frac{U(s)}{(s+1)^2} - \frac{2U(s)}{s+1} + \frac{3U(s)}{s+4}$ $Y(s) = x_1 - 2x_2 + 3x_3$ $x_1 = \frac{U(s)}{(s+1)^2} = \frac{U(s)}{s+1} \times \frac{1}{s+1} = \frac{x_2}{s+1}$ $\Rightarrow sx_1 + x_1 = x_2$ $\dot{x}_1 = -x_1 + x_2 - \dots (1)$ $x_2 = \frac{U(s)}{s+1}$ $sx_2 + x_2 = U$ $\dot{x}_2 = U - x_2 - \dots (2)$ $x_3 = \frac{U}{s+4}$ $sx_3 + 4x_3 = U$		Control Systems $\dot{x}_{3} = U - 4x_{3} \qquad(3)$ From equations 1, 2 and 3 Normal form is $\begin{bmatrix} \dot{x}(t) \end{bmatrix} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -4 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} u(t)$ $y(t) = \begin{bmatrix} 1 & -2 & 3 \end{bmatrix} x(t)$ 03. Sol: a) $A = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} B = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ $C = \begin{bmatrix} 1 & 2 \end{bmatrix}$ $T.F = C(sI - A)^{-1}B + D$ $(sI - A) = \begin{bmatrix} s+5 & 1 \\ -3 & s+1 \end{bmatrix}$ $(sI - A)^{-1} = \frac{\begin{bmatrix} s+1 & -1 \\ +3 & s+5 \end{bmatrix}}{(s+1)(s+5)+3}$ $T.F = \frac{\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} s+1 & -1 \\ 3 & s+5 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix}}{s^{2}+6s+8}$ $= \frac{\begin{bmatrix} s+1+6 & -1+2s+10 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix}}{s^{2}+6s+8}$ $= \frac{\begin{bmatrix} s+7 & 2s+9 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix}}{s^{2}+6s+8}$ $= \frac{2s+14+10s+45}{s^{2}+6s+8} = \frac{12s+59}{s^{2}+6s+8}$ b) $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} B = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$
ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaness	war + Luck	now + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

$$e^{At} = \phi(t) = L^{-1} \{ (sI - A)^{-1} \}$$

$$(sI - A) = \begin{bmatrix} s & -1 \\ 2 & s + 3 \end{bmatrix}$$

$$(sI - A)^{-1} = \frac{\begin{bmatrix} s + 3 & 1 \\ -2 & s \end{bmatrix}}{s(s + 3) + 2}$$
where $u = T$ to the above matrix

Apply ILT to the above matrix

$$= L^{-1} \{ (sI - A)^{-1} \} = L^{-1} \left\{ \frac{s + 3}{s^{2} + 3s + 2} + \frac{s^{2} + 3s + 2}{s^{2} + 3s + 2} + \frac{s^{2} + 3s + 2}{s^{2} + 3s + 2} \right\}$$

$$= L^{-1} \left\{ \frac{2}{s+1} - \frac{1}{s+2} + \frac{1}{s+1} - \frac{1}{s+2} + \frac{2}{s+2} + \frac{1}{s+1} - \frac{1}{s+2} + \frac{2}{s+2} + \frac{1}{s+1} + \frac{1}{s+2} + \frac{2}{s+2} + \frac{1}{s+1} + \frac{1}{s+2} + \frac{1}{s+2} + \frac{1}{s+1} + \frac{1}{s+2} + \frac{1}{s+2} + \frac{1}{s+1} + \frac{1}{s+2} + \frac{1}{s+1} + \frac{1}{s+2} + \frac{1}{s+2} + \frac{1}{s+2} + \frac{1}{s+2} + \frac{1}{s+2} + \frac{1}{s+1} + \frac{1}{s+2} + \frac{1}{s+2} + \frac{1}{s+2} + \frac{1}{s+1} + \frac{1}{(s+1)^{2}(s+2)} + \frac{1}{s+2} + \frac{1}{s+2$$

$$= \begin{bmatrix} \frac{-2}{(s+1)} + \frac{4}{(s+1)^2} + \frac{2}{s+2} \\ \frac{4}{(s+1)} - \frac{4}{(s+1)^2} - \frac{4}{s+2} \end{bmatrix}$$
$$= \begin{bmatrix} -2e^{-t} + 4t \cdot e^{-t} + 2e^{-2t} \\ 4e^{-t} - 4t \cdot e^{-t} - 4 \cdot e^{-2t} \end{bmatrix} \dots \dots \dots (2)$$

Solution to state transition equation

$$= \begin{bmatrix} e^{-t} - e^{-2t} \\ -e^{-t} + 2e^{-2t} \end{bmatrix} + \begin{bmatrix} -2e^{-t} + 4t \cdot e^{-t} + 2e^{-2t} \\ 4e^{-t} - 4t \cdot e^{-t} - 4e^{-2t} \end{bmatrix}$$
$$= \begin{bmatrix} 4te^{-t} + e^{-2t} - e^{-t} \\ 3e^{-t} - 4t \cdot e^{-t} - 2e^{-2t} \end{bmatrix}$$

04.

Sol: Gilbert test is valid for normal form and Jordon form

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$$

For Controllability:

The third element in matrix A corresponding element in matrix B is zero.

:. the given system is not controllable.

For Observability:

The second row and second column element in matrix A corresponding element in matrix C is zero.

∴ The given system is not observable.

05.

Sol: A =
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 B = $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$

The system uses the state feedback control

ACE Engineering Publications

Engineering Publications	60	Control Systems
u = $-Kx$. The desired closed loop poles at S = $-3+j$ and S = $-3-j3$ Block diagram of state variable feedback	3	$= \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ k_1 & k_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k_1 & k_2 \end{bmatrix}$ $sI - (A - Bk) = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -k_1 & -k_2 \end{bmatrix}$
$r(t) + U(t) \xrightarrow{B} \xrightarrow{f} \xrightarrow{f} \xrightarrow{C} Y(t)$ $K \xrightarrow{K}$ State Variable Feedback $u = -K x$ is the control size of)	$= \begin{bmatrix} s & -1 \\ -k & s+k_2 \end{bmatrix}$ $ sI - (A - Bk) = 0$ $s(s+k_2) + k_1 = 0$ $s^2 + k_2s + k_1 = 0 \dots \dots$
u is the control signal $\therefore x(t) = (A - BK) x(t) + Br(t)$ Necessary and sufficient condition for arbitrary pole placement is that the system should be completely state controllable. The rank of the controllability matrix is given by $ M = [B \ AB \ A^2B \dots A^{n-1}B]$	ERI or n	From the given poles $(-2 \pm j4)$ \therefore Characteristic equation is $(s + 2)^2 + 4^2 = 0$ $s^2 + 4s + 20 = 0$ (2) Equate 1 & 2
	IS	$s^{2} + 4s + 20 = s^{2} + k_{2}s + k_{1}$ $k_{1} = 20, k_{2} = 4$ SVFB controller, ∴ $k = \begin{bmatrix} 20 & 4 \end{bmatrix}$
$ \mathbf{M} = 0 \text{ Not controllable}$ $\neq 0 \text{ controllable}$ $\mathbf{AB} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ Sin}$ $\begin{bmatrix} 0 & 1 \end{bmatrix}$	ce	06. Sol: State transition matrix $\phi(t) = L^{-1} (sI-A)^{-1}$ $(sI-A)^{-1} = \begin{bmatrix} s & -1 \end{bmatrix}^{-1}$
$M = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, M = -1 \neq 0$ So, the system is completely stat controllable and arbitrary pole placement i possible. Find characteristic equation from	e is a	$\begin{bmatrix} 2 & s+3 \end{bmatrix} = \frac{1}{s(s+3)+2} \begin{bmatrix} s+3 & 1 \\ -2 & s \end{bmatrix}$ $= \begin{bmatrix} \frac{s+3}{s^2+3s+2} & \frac{1}{s^2+3s+2} \end{bmatrix}$
given matrix A. Characteristic equation is $ sI - (A - Bk) = 0$ $A - Bk = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} k_1 & k_2 \end{bmatrix}$)	$\begin{bmatrix} -2 & s \\ s^2 + 3s + 2 & s^2 + 3s + 2 \end{bmatrix}$ $\phi(t) = L^{-1}[(sI-A)^{-1}]$
ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubanesw	I var + Luck	now + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

ACE
Engineering Publications

$\begin{bmatrix} s+3 & 1 \end{bmatrix}$	07.
$= L^{-1} \begin{vmatrix} \overline{(s+1)(s+2)} & \overline{(s+1)(s+2)} \end{vmatrix}$	Sol: $\dot{\mathbf{x}}_1 = -\mathbf{x}_1(t) + 5\mathbf{x}_2(t) \rightarrow (1)$
$\left\lfloor \frac{-2}{(s+1)(s+2)} \frac{s}{(s+1)(s+2)} \right\rfloor$	$\dot{\mathbf{x}}_2 = -6\mathbf{x}_1(t) + \mathbf{u}(t) \rightarrow (2)$
	$u(t) = -k_1 x_1 (t) - k_2 x_2 (t) + r(t) \rightarrow (3)$
$= L^{-1} \begin{vmatrix} \overline{s+1} & -\overline{s+2} & \overline{s+1} & -\overline{s+2} \end{vmatrix}$	From equation (2) and (3)
$\left \frac{-2}{s+1} + \frac{2}{s+2} - \frac{-1}{s+1} + \frac{2}{s+2}\right $	$\dot{\mathbf{x}}_2 = -6 \mathbf{x}_1 (t) - \mathbf{k}_1 \mathbf{x}_1(t) - \mathbf{k}_2 \mathbf{x}_2(t) + \mathbf{r}(t)$
$\begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \end{bmatrix}$	$= [-6-k_1] x_1(t) - k_2 x_2(t) + r(t) \rightarrow (4)$
$= \begin{bmatrix} -2e^{-t} + 2e^{-2t} & -e^{-t} + 2e^{-2t} \end{bmatrix}$	From (1) and (4)
State equation $x(t) = L^{-1}[(sI-A)^{-1}] x(0)$	$\mathbf{A} = \begin{bmatrix} -1 & 5 \\ \mathbf{I} & \mathbf{I} & \mathbf{I} \end{bmatrix} \mathbf{B} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
$+ L^{-1} [(sI-A)^{-1} BU(s)]$	$\begin{bmatrix} -\begin{bmatrix} 0 + K_1 \end{bmatrix} & -K_2 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$
$L^{-1}[(sI-A)^{-1}]x(0)$	$ \mathbf{s} = 0$
$= \begin{bmatrix} 2e^{-t} - e^{-2t} & e^{-t} - e^{-2t} \\ 1 \end{bmatrix}$	
$\left\lfloor -2e^{-t} + 2e^{-2t} - e^{-t} + 2e^{-2t} \right\rfloor \left\lfloor 0 \right\rfloor$	$\begin{vmatrix} 3+1 & -3 \\ 6+k & s+k \end{vmatrix} = 0$
$= \frac{2e^{-t} - e^{-2t}}{2e^{-t} - e^{-2t}} - \dots -$	$(s+1)(s+k_2) + 5(6+k_1)=0$
$\left\lfloor -2e^{-t}+2e^{-2t}\right\rfloor$	$s^{2} + (1+k_{2})s + 30 + 5k_{1} + k_{2} = 0$
$L^{-1}[(sI-A)^{-1}BU(s)]$	Compared with standard 2 nd order equation
\therefore (sI-A) ⁻¹ BU(s)	$2 \xi \omega_n = 1 + k_2$
$\begin{bmatrix} s+3 \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	$2(0.707)(10) = 1 + k_2$
$= \begin{vmatrix} (s+1)(s+2) & (s+1)(s+2) \\ -2 & s \end{vmatrix} \begin{vmatrix} 0 \\ 5 \end{vmatrix} \frac{1}{5}$	$k_2 = 13.14$
$\frac{-2}{(s+1)(s+2)} = \frac{3}{(s+1)(s+2)} \begin{bmatrix} 3 \end{bmatrix} s$	$\omega_n^2 = 100$
	$5k_1 + k_2 + 30 = 100$
$\overline{s(s+1)(s+2)}$ $[5/2-5e^{-t}+5/2e^{-2t}]$	$k_1 = 11.372$
$= \underbrace{5}_{5} = \begin{bmatrix} 5e^{-t} - 5e^{-2t} \end{bmatrix}$	$\therefore k_1 = 11.372, k_2 = 13.14$
$\lfloor (s+1)(s+2) \rfloor$	02
(2)	Sol: The given state equations
Adding (1) and (2) we get $\begin{bmatrix} -7 & 5 \\ 5 & -4 \end{bmatrix}$	$\begin{bmatrix} \dot{\mathbf{v}} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{v} \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$
State equation $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} - 3e^{-t} + \frac{1}{2}e^{-2t} \\ 3e^{-t} - 3e^{-2t} \end{bmatrix}$	$\begin{vmatrix} X_1 \\ \dot{X}_2 \\ \dot{X}_2 \end{vmatrix} = \begin{vmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{vmatrix} \begin{vmatrix} X_1 \\ X_2 \\ X_2 \end{vmatrix} + \begin{vmatrix} 1 \\ -2 \\ 1 \end{vmatrix} U$
$\mathbf{Y}(\mathbf{t}) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}$	$\begin{bmatrix} x_1 \end{bmatrix}$
$Y = X_2$	$\begin{bmatrix} \mathbf{Y} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{vmatrix} \mathbf{X}_2 \end{vmatrix}$
$y(t) = 3e^{-t} - 3e^{-2t}$	$\lfloor X_3 \rfloor$
ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bubaneswar + I	ucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

