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Static	Fields	
							(Solutions	for	Text	Book	Practice	Questions)

	
	
	

01. Ans: 1

Sol: k̂ysinzĵexîycosxV 2z22 


  

    z
2

y
z2

x
2 âysinzâexâycosx 

From divergence theorem 

  1.................dvD.dsn̂.V
v

  

            ysinz
z

ex
y

ycosx
x

D. 2z22














    = 1ysinycos 22   
dv = dxdydz 

Putting these value in equation 1 we have 

    
1

0

1

0

1

0

dzdydx1dsn̂.V

1dzdydx
1

0

1

0

1

0

     

02. Ans: (c)

Sol: Given y
2

x axayxA




Let I = 


d.A , I is evaluated over the path

shown in the Fig., as follows  

I = 


xaxd.A , y = 1,
3

2
to

3

1
fromx 

+ 


,ayd.A y
3

2
x  , y = from 1 to 3

     


 ,axd.A x  y = 3,
3

2
to

3

1
fromx 

     


 ,ayd.A y 31/x  , y = from 1 to 3 

    ydxxdyxydxxdyx 22

3

1
2

32/

31/

2
3

1
2

32/

31/

2

yx
2

x
yyx

2

x
y 

at  y = 1   3/2x      y = 3   3/1x 

  1)(3
3

1

3

1

3

4

2

3
1)(3

3

4

3

1

3

4

2

1







 






   

121
3

2

2

3

3

8

2

1
  

03. Ans: (d)
Sol:   F = a + sin2 a  zaz

     = Fa + Fa + Fzaz 

  . F  =      ZF
z

F
1

F
1














 

             z
z

sin
11 22 

















    = 2 + 2sincos 1 

    = 1 + 2sincos 

4

F. 


  = 2, 
0

F.


  = 1 

.
4

F 


 = 2.
0

F


04. Ans: (c)

Sol:  nZx aDDâ32â2D 

nsâρ416D 

1	Chapter	

Objective Practice Solutions 
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1 A z 

y 

x 
1 A 

ya


za



ya




xa












 


4

â32â2
4D Zx

nsâρ 2s m
C4ρ 

05. Ans: (d)
Sol:  V = 10y4 + 20x3

y
3

x
2 ây40âx60VE 

y0
3

x0
2

0 ây40âx60ED 

.D = 

)y40(
y

)x60(
x 0

3
0

2 







  

  = –120 x0 – 120 y20

(at 2, 0) = –120× 20 – 120 ×02 0 
= –240 0

06. Ans: (d)

Sol:  Given

         V(x, y, z) = 50 x2 + 50 y2 + 50 z2

)V(gradspacefreein)z,y,x(E 


V

         


















 zyx aV
z

aV
y

aV
x

           m/Vaz100ay100ax100 zyx 




)1,1,1(E

  m/Va100a100a100 zyx 

       222 111100= 1,1,1E 

3100  

Direction of the electric field is given by the 

unit vector in the direction of 


E . 

         
 
   zyxE aaa

3

1

1,1,1E

1,1,1E
a 







  or in i, j, k notation,    kji
3

1
aE 

 

07. Ans: (b)

Sol:   For valid B,.B = 0

  0Kxzaxyaaxa
z

a
y

a
x zyx

2
zyx 


















    2x –x – Kx = 0 

    2 – 1 – K = 0 

    K = 1 

08. Ans: (d)

Sol: The two infinitely long wires are oriented as

shown in the Fig. 

The infinitely long wire in the y-z plane 
carrying current along the ya


 direction

produces the magnetic field at the origin in 
the direction of  ya


  za


  = xa


 .

The infinitely long wire in the x-y plane 
carrying current along the xa


direction

produces the magnetic field at the origin in 
the direction of xa


  ya


  = za


 .

 where zyx aanda,a


are unit vectors along 

the ‘x’ , ‘y’ and ‘z’ axes respectively. 
 x and z components of magnetic field are 
non-zero at the origin. 
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E1 

31r   

2

1  

P1 

E2 

P2 

32r   

09.   Ans: (a) 
Sol: 0B.   
 A divergence less vector may be a curl of 

some other vector 

 AB   

 BA   

   
sl

ds.Bdl.A  

 
s

ds.B  is equal to magnetic flux   

through a surface. 
 

10.   Ans: (c) 
Sol:  In general, for an infinite sheet of current     

density K A/m 

        H = naK
2

1
  

          H =  zx aa8
2

1
  

              = − 4 ya   yzx aaa   
 

11.    Ans: (b)  
Sol:  
 
 
 
 

 
 
  )a(DD Snn 12

  

  x0nn aED
22

  

  x0x0n a4a22D
1

  

  From (a) 
  (0 – 4 0) ax = s  s= –30 
     

12.    Ans: (a) 
Sol:    
 
   
 
 

 zyx1 a4.0a8.0a2.1B


  

 zn a4.0B
1
   

 (Since z = 0 has normal component ax) 
 yxt a8.0a2.1B

1
  

 We know magnetic flux density is 
continuous 

 
21 nn BB   

 zn a4.0B
2
  

 Surface charge, k  = 0 
 0HH

12 tt   

 
12 tt HH   

 
12 t2t1 BB   

)a8.0a2.1(
2

1
B yxt2

  

22 nt2 BBB   

   zyx a4.0a4.0a6.0   

zyx2r0 a4.0a4.0a6.0H
2

  

m/A]a4.0a4.0a6.0[
1

H zyx
0

2 


  

 

13.    Ans: (b)   
Sol:  Tangential components of electric fields are 

   continuous  
21 tt EE    

 

    )1(sinEsinE 2211   

  
 
 
 
 
 
 
 
 
 

Normal component of electric flux densities 
are continuous across a charge free interface  

 
21 nn DD   

 )2(cosE3cosE3 2211   

 0
1 60   

 

 
 

0
2

2
21

45

1tan
3

tan

3

tan

2

1










 

2
1r
 1

2r


z = 0 

r = 1 

r = 2 

x2 aE 

x1 a2E 
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14. Ans: (b) 
Sol: E = –  V 
 Statement (I) is true 

Statement (II) is true 
  But Statement (II) is not the correct 

explanation of Statement (I).   

15. Ans: (a) 
Sol:  = Qenc  (from Gauss’s law) 
 Statement (I) is true. 

  = Qenc  = sD .ds  

 Statement (II) is true. 
 Statement (II) is true and correct explanation 

of Statement (I). 
 

16. Ans: (b)   
Sol: Statement (I) is true  
        W= Force  displacement 
 

 Statement (II) is true 

 
t

0Q Q

F
LtE
t

  

        Statement (II) is true but not the correct 
explanation of Statement (I).    

17. Ans: (c)   

Sol: 



 V2V  (Poisson’s equation)  

 For charge free region, 0V   

       0V2   (Laplace’s equation) 
         sLaplace,  equation is a special case of 

Poisson’s equation. So, statement (I) is true. 
 In case of charge free region Poisson’s 

equation becomes Laplace’s equation.              
So, statement (II) is false. 

 

18. Ans: (d)  
Sol: 0Etan   

 On the surface of conductor, tangential 
components of E-field does not exists 

 Statement (I) is false. 
 For a conductor to dielectric interface, 

normal components of electric flux densities 
are equal to surface change densities.  

                       D  = s nâ  

       Statement (II) is true 

19. Ans: (c) 
Sol: KâHH nt2t1   

 Statement (I) is true. 
 n2n1 BB   
 Statement (II) is false. 
 
20. Ans: (d) 
Sol: Magnetic field is always tangential to the 

conductor. 
Statement (I) is false. 

 
 
 
  
 
 
 
 

21p HHH   

        Here, 21 HH   

  pH = 0 

Statement (II) is true. 
 
21. Ans: (b) 
Sol: In static fields E and H are independent  
 Statement (I) is true. 
 E  = 0 
 H = J  
 In time varying fields E & H are depends on 

each other 

 
t

B
E




  

 
t

D
JH




  

Statement (II) is true. 
 But Statement (II) is not the correct 

explanation of Statement (I). 
 

22. Ans: (d) 
Sol: The solution of Poisson’s equation and 

solution of Laplac’s equation are not same. 
 Statement (I) is false  
 Statement (II) is true.  

 . 

2

d
 

2

d
 

I I . P 
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						Maxwell	Equations	&	EM	Waves	
 
 

 
 
 
 

 
 Identify polarization of following 
 (Page number 75 in Volume-I booklet) 
 

01.   m/Vâxtsin20E y  

Sol: At x = 0 
   m/Vâtsin20E y  

 Let  = t 
  = 0  0E   

 
y

â20E
2




  

  =   0E   

 
y

â20E
2

3



  

  =   0E   
 i.e., linear polarization and also vertical 

polarization with respect to axisx̂   
 
02.   m/Aâztcos45H x  
Sol:  This is linear polarization 
 
03.     yx âztsin30âztsin20E   

Sol:  phase difference between 
x

â component and  

y
â component is 0 

  So that it is linear polarization 

Note:  For phase difference 0   &  180, 
    irrespective of their amplitudes it must be 
    in linear polarization. 

 
04.    

yx
âztsin55âztcos55E   

Sol: Phase difference between 
x

â component and 

y
â  component is 

2


 

 Amplitudes are same. 
 So it is circular polarization 
 at z = 0 and let  = t 
  = 0  

yx
â0â55E   

 
yx

â55â0E
2




  

 It is CCW direction i.e. RHCP 

 
05.     zx âytcos50âytsin40E   

Sol:  Phase difference = 
2


 

 Amplitudes = not same 

 So it is elliptical polarization. To decide 
direction of rotation follow below procedure. 

 At y = 0, and Let  = t 

  = 0  
zx

â50â0E   

  = 
2


 

zx
â0â40E   

  =   
zx

â50â0E   

  = 
2

3
 

zx
â0â40E   

 It is Anti clock wise direction i.e., Right 
Hand Elliptical Polarization. 

 
 

06. 
Sol:      Ztj

yx
eâjâReE   

         
    
    














y
2

x

âztsinjztcosj

âztsinjztcos
ReE  

             yx âztsinâztcosE   
 

Magnitudes of amplitudes are same, phase 

difference is 
2


; So it is circular 

polarization. Now we proceed to decide 
direction of rotation. 
 
 

Here   
    yx âztsinâztcosE   

 

At z = 0 & let  = t 
 

2	Chapter	
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 = 0  
yx

â0âE   
 

 = 
2


 yx ââ0E   

 =    
yx

â0âE   

 = 
2

3
 

yx
ââ0E   

i.e., we get clock wise rotation i.e.,  
Left Hand Circular Polarization 
 

 

07.  not a valid EM wave representation  
 
08. 
Sol:    ârtcos5E  

 Let r = 0 &  = t 
  â5E0at  

 


 â0E
2

 

  =     â5E  

  = 
2

3
  â0E  

 i.e., linear polarization 
 
 

09. 
Sol:     ytj

zx
eâj2âImE   

     =
    
     











z

x

âytsinjytcosj2

âytsinjytcos
Im  

     = sin(ty)
x

â + 2cos(ty) 
z

â  

 Let y = 0 &  = t 
  = 0  

zx
â2â0E   

 
zx

â0âE
2




  

  =   
zx

â2â0E   

 
zx

â0âE
2

3



  

 So it is Right Hand Elliptical Polarization 

 
10.      zx â45ytsin30âytsin20E   

Sol: let y = 0 &  = t 
 At  = 0  

  
z

o

x
â45sin30â0E   

        = 
zx

â
2

30
â0   

 At  
z

0

x
â135sin30â20E

2



  

                =
zx

â
2

30
â20   

 At  =    
2

o

x
â225sin30â0E   

       = 
zx

â
2

30
â0   

 At  
z

o

x
â315sin30â20E

2

3



  

        = 
zx

â
2

30
â20   

 

 Note:   = 62.76 is the maximum values 
            direction obtained by 

  0
d

Ed



 at    y = 0  &   t =  

   at  
4


   

zx
â0â

2

20
E 


  

    at   = 
4


    zx â30â

2

20
E   

 So it is RHEP 
 
11.       yx â45ztsin20âztsin20E   

Sol:  Valid EM wave but polarization can not 
 defined. 
 This is a valid EM wave representation  but it 
  is not satisfy anyone of the polarization 
  principle 
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1 = 0 

n1 = 1 

2 = 0 r 

Fig. 

Medium, 1 Medium, 2 
Ai Glass slab 

n2 = 1.5 

2 = 0 1 = 0 

 
 
 
 
 
 

01. Ans: (c) 
Sol: Given flux   = (t3–2t)mWb 

 Magnitude of inducted emf 
sec4t

'

dt

d
e




  

 

 'e  = 
sec4t

2 2t3


  

     = 3(4)2–2 

     = 46mWb 
 

 This ‘e’ for one turn; but for 100 turns 

 mWb46100eNe '   

 e  = 4.6 volts 

 

02. Ans: (d) 

Sol: Given,  

         E = 120  cos (106  t − x) ya


V/m 

        H = A cos (106  t − x) za


 A/m 

  r = 8; r = 2 

        We know that, 




z

y

H

E
 

  Hz = 

8

2
120

E y


 = m/A2

120

E2 y 


 

       Hz = 2 cos (106  t − x) za


A/m 

    A = 2 

     =    =
8

6

103

8210




 

  = 0.0418rad/m 

03.  Ans: (b)     
Sol: This question relates to normal incidence of 

a UPW on the air (medium 1) to glass 
(medium 2) interface as shown in Fig. 

 
 
 

 
 
 
 
 
 
 
 If n1 and n2 are the refractive indices and v1 

and v2 are the velocities  

 
22

11

1

2

2

1

μ

μ

v

v

n

n




  

       021
2

1 μμμfor 



  

 

 For n1 = 1, n2 = 1.5  

  
3

2

5.1

1

2

1 



 

 

 Reflection coefficient,  

 
5

1

1
3

2

1
3

2

1

1

E

E

2

1

2

1

i

r 













  

 %4
25

1

|E|

|E|

P

P
2

i

2
r

i

r   

 
 
 
 

           

Objective Practice Solutions 
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lossless ( = 0)  
non-magnetic( = 0)  
dielectric( > 0) 

1 

free space 
 = 0,  = 0, 

 = 0 

Incident. wave 

Reflected. wave 

Interface 

2 

Fig. 

04. Ans: (d)      
Sol: Normal incidence is shown in Fig. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 Given:  Emax = 5 Emin   in medium 1. 

 5
E

E
SVSWR,

min

max   

 
3

2

15

15

1S

1S
|K| 








   

 

 Reflection coefficient,  

 
i

r

E

E
K 

3

2

1

1

1

2

1

2












  

 2233
1

2

1

2 







  

 12
1

2

5

1
,

5

1





  

        
0

0
1

μ
η


  

             97 10π3610π4    
 

              Ωπ)(120  
 

  Intrinsic impedance of the dielectric 

medium,  120
5

1
2 = 24 

05.  Ans: (a)                             
Sol: Given: 

 x25j
zy e)âjâ(10E 


 in free space. 

 xβj
zzyy e)aEa(EE 


 

 
c

ω
25β  

rad/s10325c25ω 8  

 f = 1.19 GHz  1.2 GHz 
 
 
 
 
 
 
 
 
  
 Ey = 10, Ez = j 10 
 Ez leads Ey by 90 
 At x = 0 
 Let Ey = 10 cos (t) 
 then Ez = 10 cos (t + 90) 
 A Left Hand screw is to be turned in the 

direction along the circle as time increases 
so that the screw moves in the direction of 
propagation, ‘x’. 

  The wave is left circularly polarized. 
 
06. Ans: (b)   
Sol: H = 0.2cos (t – x) zâ  
 

        Wave is progressing along + X direction 
   (+X) 

 
y

z

z

y

H

E

H

E
  

 ya)xtcos(2.0E


  

 -jβx ^
ysE = 0.2ηe a  ^-jβx

zsH = 0.2e a  

 *
avg s s

1
P = E ×H

2
 

     =  2 ^
x

1
0.2 ηa

2
 

z 

x 
y 

t = 270 t = 90 

t = 0 

t = 180 
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     =  2 2^
x

1
0.2 (120π)a w/m

2
 

     x = 1 plane  x
ˆds =dydza  

        Wavg = avg

S

P .ds  watts 

        =    dydz)120(2.0
2

1 2   

                        =  2 2 -41
(0.2) (120π) π(5) ×10

2
      

 

             = 0.0592 Watts  
    = 59.2 mW  60 mW 
 

07. Ans: (a)  

Sol: P  
2r

1
 

 
2
Q

2
p

p

Q

r

r

P

P


 
2

2

2

R

R









  

        
1

4

P

P

P

Q   = 4: 1 

 

08. Ans: (b) 

Sol:   = 


2
= 

f

1
 

         
f

1
  

1

2

2

1

f

f





 

         
9

9

102

1085.1







 

           =   75.0
2

5.1
 m 

 

 Similarly 

 3
102

10185.1
9

9








 

 m5.0
3

5.1
   

09. Ans: (b)  

Sol: 



= 
123 108.854801025π2

5


  

               = 44938.7 

       Since 



 >> 1 hence sea water is a good 

conductor 
 Where attenuation is 90%, transmission is 

10%, then e-x = 0.1 

 Where  is attenuation constant 

       = 
2

ωμσ
 

         
2

510410252 73 




 

     = 0.7025 
     x = ln(0.1) 
   0.7025x =  2.3 
       x = 3.27m 

 
10. Ans: (b) 

Sol: 159.0
2

11






   

 
11.  Ans: (c) 
Sol: E is minimum  
 H is maximum 
 i.e., ‘c’ is the option 
 0EE

21 TanTan   

 [perfect conductor 0E
2Tan  ]  

 
21 TannSTan HaJH   

 nSTan aJH
1

   

 [perfect conductor 0H
2Tan  ] 

 
12. Ans: (d)    

Sol:  -0.1x 6
z

ˆH=0.5e cos (10 t-2x)a A/m


  (+X) 

 y z

z y

E E
= η = -

H H
 

 Wave frequency = 106 radians/s 
 Phase constant  = 2 rad/m 
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Incident wave 

Reflected wave 

Transmitted 
wave 

Fig. 

y = 0 

free space 
(1 = 0, 1 = 0, 1 = 0) 
  1 = 0                   y < 0 

lossless medium 
(2 = 0, 2 = 0, 2 = 90) 
  y > 0           2 

med (1) med (2) 

Et 

Ei 

Er 

 2
2





 rad/m 

   =   = 3.14m. 
 The wave is traveling along +X direction, 

Given wave is polarized along Y.  
  It has Y-component of electric field  

 
13. Ans: (a)     

Sol: The normal incidence of a plane wave 
traveling in positive y – direction is shown 
at the interface y = 0 in Fig. 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
  

 Given: zzii aEE


  

 where m/V)yt103(cos24E 8
zi    

  = 3  108 rad/s, 
v


 ,      

 For free space, v = v0 = 3  108 m/s 
     
   = 1 rad/m 

 
xi

zi
01 H

E
  

 








120

)yt103(cos24E
H

8

0

zi
xi

 

 xxii aHH


  

 
1

1

H

H

2

1

2

1

21

21

i

r













 , 

 Where 3
9

0

0

1

2

21

21

2

1 













  

  
2

1

13

13

H

H

i

r 



  

        x
8

r a1y)t10(3cos
π120

24

2

1
H




           A/may)1t10(3cos
π10

1
x

8 
  

 Note that rH


is reflected wave which travels 
in negative y direction, which corresponds 
to + y term with  = 1 in the expression    

for rH


. 

 
14. Ans: (b) 

Sol:  Brewster’s angle -1 2
B

1

ε
θ =tan

ε
 

     
3

1
tan 1

B
  = 30o  

At this angle there is no reflected wave when 

wave is parallel polarized. 

 n1sini = n2sint 

 t2i1 sinsin   

 sint = i
2

1 sin 



 

 sint =  o
i 30

2

1
3   

     t = 60 
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15. Ans: (d)     

Sol:  Given that 

  Et = 2Er 

 Where  

       Et is electric field of transmitted wave 

 Er is electric field of reflected wave 

      2
E

E

r

t   

 If Ei is electric field of incident wave. 

 But    r 2

i 2 1

2E 2η
- =

E η +η
 

 and    
21

2

i

r

E

E




     

 and also  
12

12

i

r

E

E




    

 so  
12

2

12

12








     

             1 = 22 

 2
2

1 



    2

1

ε
=2

ε
     4

1

2 



 

 
16. Ans: (b) 
Sol: Solutions of wave equations represents a 

wave. 
 Statement (I) is true 
 An EM wave is a function of both space & 

time. 
Statement (II) is true 

 But Statement (II) is not the correct 
explanation of Statement (I). 

  
17. Ans: (d) 
Sol: The direction of Poynting vector is same as 

the direction of wave propagation 
 So, Statement (I) is false. 
 Polarization of a wave is defined as 

orientation of electric field vector 
 Statement (II) is true. 

18. Ans: (a) 

Sol: Skin depth 



2

 

 For perfect conductor, conductivity 

0
2

)( 


  

 Statement (I) is true 

 



1

=  

 Statement (II) is true 
Statement (II) is the correct explanation of 
Statement (I). 

 

19. Ans: (d) 
Sol: For TEM wave, electric and magnetic 

fields does not exist along the direction of 
propagation. 

 Statement (I) is false. 

 H,E  and K  are always orthogonal to each 
other.  

 KHE   
Statement (II) is true. 

  

20. Ans: (b) 
Sol: Intrinsic impedance  

 





j

j

H

E
 

 So, it will depends on medium properties. 
 Statement (I) is true. 
 For good conductor 

 
o45je

H

E




  Electric field leads 

magnetic field by 45 
 Statement (II) is true. 
 But Statement (II) is not the correct 

explanation of Statement (I). 
 

21. Ans: (d) 
Sol: For oblique the wave vector will makes 

some angle to the normal  
 Statement (I) is false. 
 For perpendicular polarization electric 

fields is normal total plane incidence 
 Statement (II) is true. 
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22. Ans: (b) 
Sol: K - wave number 
   - phase shift constant 

  = |K|  
 Statement (I) is true. 
 Suppressing time variations will gives 

phasor form 
 Statement (II) is true. 
 But Statement (II) is not the correct 

explanation of Statement (I). 
 
23. Ans: (b) 
Sol: Brewster angle is that angle of incidence 

for which no reflection takes place 
 Statement (I) is true. 
 Critical angle is the maximum angle of 

incidence, for reflections will exists 
 ci    TIR occurs 

 Statement (II) is true. 
 But Statement (II) is not the correct 

explanation of Statement (I). 
 
24. Ans: (b) 
Sol: For good conductor  

 
2


  

 Statement (I) is true. 

 Skindepth 



1

 

 Statement (II) is true. 
 But Statement (II) is not the correct 

explanation Statement (I). 
 

25. Ans: (d) 
Sol: To achieve elliptical polarization the phase 

difference between transverse fields would 
not be 0 (or) 180 

 Statement (I) is false. 
 VP  and HP are the special case in LP  
 Statement (II) is true. 
 
26. Ans: (c) 
Sol: Displacement current is the out come of 

Maxwell 

 Statement (I) is true. 
 Existence of magnetic charges would result 

displacement current 
 Statement (II) is false. 
 
27. Ans: (b) 

Sol: 
dt

d
VEMF


  

  - magnetic flux linkage 
 Statement (I) is true 
 According to lenz’s law the induced 

voltage in a loop is always so directed of to 
produce a flux opposing the change in the 
flux density. 

 S2 - true 
 But Statement (II) is not the correct 

explanation of Statement (I). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



14 Electromagnetics	
  
  
    

 
	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications 

 
 
 

01. 

Sol: Assuming the wave is coming from free 
space i.e. medium 1, 1 = 120, at frequency 
f = 2GHz.  

 Medium 2 is a conductor and 
  m/S108.5 7

2   
 We have, 

 1
101022

36108.5
99

7










  

 i.e at given frequency  medium 2 is a 
conductor 

  =  +j in conductor,
2


   

           
2

108.51041022 779 




 

    = 0.67106/m 
 So, m/1067.0 6  

  = 0.6 106 (1+j1) 

 Skin depth 





0
6.0

101 6

 i.e no 

exiting wave  
 so,  = 0, 2 = 0,  = –1 
 
 

02. 
Sol:  
 We have, conduction current density 

(JC) = E. and displacement current density 
(JD) = jE 

 

 



 tan
J

J

d

c is known as loss tangent 

 If 901 



, then the medium is 

behaving as conductor. 

 



 << 1  = 0 medium behaves  as 

dielectric 

 



= 1  = 45 medium behaves as a 

Quasi conductor or semi conductor 

03.  
Sol: 
 
 
 
 

 

 

 

 

 

    (i)  Standing wave ratio:  

   
12

12,
||1

||1








  

  1 = 0 = 120,  

  2 = 0 



60
12

3
120

r

r
 

   = 2
3/11

3/11

3

1

12060

12060









 

 
 

    (ii)  Reflected magnetic field:  

   


 R
PRR

E
âH  

  iR EE    

       =  ŷẑtcos30
3

1
   

  ẑâ PR   

    ztcos
120

10
ŷẑHR 


   

    ztcos
12

1
x̂HR 


  

 

Conventional Practice Solutions 

Ei =30cos(t–Z) ŷ  

Z < 0  
Free space  

Z  0 
Z = 0 

Z  

X 

Y  = 0  
r = 12 

r = 3  
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04.  
Sol: Given: E = E0cos(t – x) ŷ ,  

           


 0E
H cos(t – x) ẑ  in free space. 

  In free space , 

 vp = 











/1vp

 

 
c00


  

 Intrinsic impedance 
0

0

H

E




   

 

 As Ey  0, based on Maxwell equation  

   
t

H
E




   

   ẑHŷHx̂H
t

0E0
zyx

ẑŷx̂

zyx

y
































  

       ẑ0
x

E
ŷ00x̂

z

E
0 yy

























  

  = ẑH
t

ŷH
t

x̂H
t zyx 











  

        ẑ
x

E
ŷ0x̂0 y




  

     = ẑH
t

ŷH
t

x̂H
t zyx 











  

 Hx = Hy = 0  
 

 So, 
t

H

x

E
zy








 

    xtcosE
x

1

t

H
0

z 









 

           =   


 xtsin
E0  

      =  xtsin
E0 



   

   



 dtxtsin
E

H 0
z  

       =  xtcos
E0 



  

  ẑxtcos
E

H 0 



  

         0
0

0

00

0p
z

y 1
v.

H

E












  

  
0

0
0H

E




  ,  
c00


  

  at 10 MHz,   = 
30

2

103

102
8

7 





 

           m/rad
15


 ,  

 0 = 



120
0

0  

 As E is only along y-direction, it is a linearly 
polarized wave. The wave is propagating 
along + x direction. 

 
05. 

Sol: 

 Ei = 110 cos(t –4x) ẑ   V/m 
 r1 = 4    r2 = 9  

 1 = 
4

120
 = 60   r2 = 4  

      = 0 

 
9

4
1202    

      = 120  
3

2
 

   80  

  = 
12

12




 = 
7

1

6080

6080





 

 Phase constant 1 = 


4
c r  
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Inc. wave 

Fig. 

Medium, 1 
Free space 
 = 0 

 = 0 = 4 107 H/m 

 = 0 = 
910xπ36

1
 F/m 

Medium, 2 
Thick brass sheet 
r = 1, r = 1  

 = 1.649  107 mhos/m 

Hy 

Ex 

z 

x 

y 

 ER = Ei =  ẑx4tcos110
7

1
  

 |ET| = Ei = (1+)Ei = 





 

7

1
1 110 = 

7

8
110 

   = 125.7  

 2 = rrc



 




 


4

c4
   

   = 


1249
c2

c4
  

  ET = 125.7 cos(6  108t – 12x) ẑ  

 

06.  

Sol: Given: H = 2e–j0.1z ŷ , vp = 2 108 m/s and  

r = 1.8 .We have  = 0.1  

  = 2f = vp   = 2 108 0.1  

 f = 10 MHz  

  vp = 8

rr

102
c




 

  8

r

8

102
8.1

103





 

  118.1
8.1

5.1
r    

  r =  (1.118)2 = 1.25  

  = m20
10

102

f

v
7

8
p 


  

 |H||E|   

       =120 2
25.1

8.1
  

      778.904 V/m 

07.  

Sol:  Given: r = 4, r = 9, f = 10MHz = 107Hz 

 yk ââ  .given Exo = 400V/m. 

 We have, 

sec/m105
49

103c1 7
8

rr

p 











m/rad
5

2

105

102
7

7

p











   

 m5
10

105

f 7

7
p 





   

 







 80
9

4
120120

r

r  

    x̂ytcosEtE xo   

        = x̂y
5

2
t102cos400 7 






 

   

 and    ẑy
5

2
t102cos

80

400
tH 7 






 




  

               = ẑy
5

2
t102cos591.1 7 






 

  

 

08. 
Sol: Normal incidence is shown in Fig. 
 
 
 
 
 
 
 
 
 
 

 
  
 
 In medium, 1  



Postal	Coaching	Solutions	17 
 
 
     

 
	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications 

Fig. 

Hinc 

Einc 

Eref

Href

x 

y =  0
or x – z plane 

y 

z 

 Given : xx aEE


  

 Ex = 1225 cos (5.89  1010 t  z) V/m,  
 where   = 5.89 x 1010 r/sec. 

         Ωπ)(120ηηwhere,
η

E
H 01

1

x
y   

 For medium, 2 :  

 1
105.89

10π36101.649

ω

σ
10

97








 

  Brass sheet can be taken as almost 
perfect conductor with E and H equal to 
zero inside it. 

  Hy in the first medium gives rise to a 
surface current of linear current density, Js 

    Js = Hy A/m 
 Power that causes heating of the brass sheet 

= Power dissipated in the brass sheet 
 = P = s

2
rms,s RJ   

 where Js, rms  is the rms value of Js and Rs is 
the surface resistance given by  Rs = real 

(for good conductor) = 
σ2

μω   

 Ω
101.6492

10π4105.89
R

7

710

S 





 

              Ω104.74 2  

 W104.74
π)(1202

(1225)
P 2

2

2
  

       W0.25W1025 2    
 
09.   
Sol: 
 
 
 
 
 
 
 
 
 
 
 

 In a charge free medium, electric field is 

given by  xa)t(sin)y(sinAE


  

   xay)βt(ωcosy)βt(ωcos
2

A
E


 …… (1) 

 E


 can be written as  

 xxxx aEaEE


   ………… (2),  

 where  )ytcos(
2

A
Ex   

 and  )ytcos(
2

A
Ex            

         E has only x component. The y and z 
components are zero. 

(b) The 1st term 
xE  in equation (2) 

represents a plane wave traveling in the 
positive  y - direction with velocity        

v = 



 and the 2nd term 
xE  in equation 

(2) represents a  plane wave traveling in 
the       negative y-direction with 
the same velocity ‘v’ as shown in  Fig., 
giving rise to a standing       wave with 
reflection coefficient, 1  and standing 
wave ratio,   in the y - direction which 
does not progress. 

 

(a) From equation (3)   xx EE  so that E 

at y = 0 is equal to   xx EE = 0. 

       y = 0 plane can be taken as a perfect 
reflecting surface with no transmission 
for      y > 0  

      Let the intrinsic impedance of the 
medium be . For free space  

       = 0 = (120 ). 
      Then the associated magnetic field H  is 

given by zzzz aHaHH
   ,  

  where 
0

x
z

E
H







  and 
0

x
z

E
H





  

             m/Ay)βtcos(ωy)βt(ωcos
π240

A
H 


  

..…. (3) 
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Incident 
wave Transmitted 

wave 

Fig

Medium, 1 
Free space 

 = 0,  = 0,  
1 = 0, 1 = 0 

v1 = v0 = 3  108 m/s 
 = /v 

Medium, 2 
Copper slab 

2 = 5.8  107 mhos/m 
2 = 0 = 4  107 H/m 

2 = 0 = 
910x36π

1
 F/m 

Reflected wave 

Ei 

Et 

Fig. 

1 

Free space 
 = 0,  = 0 

v1, 1 
 

Lossless medium 
2 = 0,       2 = ? 
2                     2 = ? 

       and v2 = 
2

v1  

 

2 

Er 

10.    
Sol: Normal incidence of an EM wave is shown 

in Fig. 
 
 
 
 
 
 
 
 
 
 
 
 
 Given f = 300 MHz 

  in free space,  

 m/r2
103

103002

v 8

6

1
1 







  

 as 
1

1

2




 , 1 = 1 m 

 In medium, 2:   

 
8

97

2

2

103π2

10π36105.8

ω

σ







 

              1108.34 8   
 

(a) Attenuation constant, 2 = Phase shift 

constant, 2  
2


 

   σμfπα2   

       
778 105.8104π103π    

  = 2104 8.53   =  2.62105 Np/m 
 

 (b) 2 = 2.62  105 r/m 

(c) 
2α

1
depthSkinδ   

                  mm10
2.62

1
m

102.62

1 2
5




  

       mm100.38 2  

 (d) Phase velocity, 
2

2p β

ω
vv   

                        m/s
102.62

103π2
5

8




  

                 m/s107.2 3  

 (e) Group velocity, vg is given by  

    
p

2
0

g v

v
v  m/s101.25

107.2

109 13

3

16





  

 

11.  
Sol: Normal incidence at the interface between 

medium 1 and 2 is shown in Fig. 
 
    
 
 
 
 
 
 

 
 
 
 

 
0011

1

11
v





   ;  

22

2

1
v


  

 
22

00

1

2

v

v




  

 Given: 
2

1

v

v

1

2    

 0022 2   

 or  2 2 = 4 0 0 =  
16109

4


 ………...(1) 

 

 It is also given that a standing wave is set 
up in medium 1 (free space) with reflection 

coefficient 125.0
E

E
K

i

r   
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 In terms of intrinsic impedances: 

 
1

1
K

1

2

1

2









   ;  1KK
1

2

1

2 







        

 )1K()1K(
1

2 



   

  
K1

1K

η

η

1

2




   or  
9

7

125.1

875.0
  

 As  



 ,  
9

7

1

1

2

2

1

2 










 

 
9

7

02

02 



  or   ,
81

49

02

02 



     

 2

2

2 )120(
81

49





 ……………….. (2) 

 From (1) and (2), 

 2
16

2
2 )120(

81

49

109

4



  

 π120
9

7

103

2
μ

82 
    

     H/m)10π(4
9

14 7  

             H/mμ
9

14
0 





  

 From (1), 

F/m
10π414

9

109

4
7162 

  

          F/m
7

18

10xπ36

1

7

18
09









  

 

12.      
Sol: Given  

 V/m
125

a5a6a8
eEE

zyx4y)3xtj(
0




   

 (1) 
 f = 10 GHz 

 The equation of the plane wave traveling in 
the direction of unit vector n̂  normal to the 
plane of constant phase is given by  

 n̂eEE )r̂.n̂t(j
0




 (2) 

 where  = 2f is the radian frequency 
 and   = phase shift constant in the direction 

of n̂ . 
 r


 is the position vector in x, y, z 

coordinates 
 zyx azayaxr


  …………… (3) 

 
zyx a(C)cosa(B)cosa(A)cosn̂


  ……....(4) 

 where cos A, cos B, cos C are known as 
direction cosines.  

 A, B and C are the angles which the unit 
vector n̂ makes with the positive x, y and z 
axis. 

 (C)cosz(B)cosy(A)cosxr.n̂ 
 ……....(5) 

 n̂eEE
z])(βy)(βx)(βtω[j

0
zyx 


 ………….(6) 

 where x =  cos (A), 
                    y =  cos (B)      

 ……………. (7) 
  and     z =  cos (C)  
 
 x, y and z are the phase shift constants in 

x, y and z directions respectively 
 Similarly  

 
)A(cos

22

x
x 







  

 
)B(cos

2
y 


        

     ………….. (8) 

 
)C(cos

2
z 


   

 

 
)A(cos

v
x

x 






   

 
)B(cos

vy 


                  ………….. (9) 

 
)C(cos

vz 


   
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(i) Comparing (1) and (6), it can be 
concluded that the field vector E


 given  

by equation (1) represents  a plane wave 
in the direction of the unit vector n̂  

     where 

zyx a
125

5
a

125

6
a

125

8
n̂


  

          and  ,
125

8
)A(cos   

                       
125

6
(B)cos   

           
125

5
(C)cos   

      x =  cos (A) = 3,   

 y =  cos (B) = 4,  

 z =  cos (C) = 0 
 
(ii) The propagation constant  is given by 
         = 0 + j = j                  
     C)cosBcosA(cosββββ 22222

z
2
y

2
x   

               

    22 β
5

4

125

36

125

64
β 






   

       2

5

4
  = (3)2 + (4)2 = 25 

       
4

255
β2 

   

      r/m52.5
2

55
β  =5.59 r/m 

          = j 5.59 

 
(iii) Phase velocity in the y-direction  

        
(B)cosβ

ω

β

ω
v

y
y   

          
4

1010π2 9
  

          m/sec10π5 9  

          m/sec1015.7 9  

13.   
Sol: Normal incidence is shown in Fig. 
 
 
 
 
 
 
 
 
 
 
 

 
 In free space, given: 

   z)kt(ωjeaEaEE yyxx



...(1) 

 where Ex = 10   V/m,   

         Ey = 11.8   V/m  
    = 4  108 r/s  
 

 Phase shift constant  

 k  ………………... (2) 

 Magnitude of the electric field in the 
incident wave, E1 is 

 2
y

2
x

2
1 EEE   

        π239.24π)11.8(10 22   
 

 Intrinsic impedance in free space  

  



 )120(
0

0
0  

 

(a) Let the Average power associated with 
the incident wave be P1 

      

0

2
1

1 η2

E
P 

2W/m0.997
π1202

π239.24



  

 

(b) For ice given:  =   j  
          Where   = 9 0 and  
         = 0.001  90 = 103  

Incident wave 

0, 0 

y 

z 

x 

 = 0  

Block of Ice 

Fig. 

med (1) 
med (2) 

 = 0  
 =   j 

 = 0,  = 0  

Free space  

  0 
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 The loss mechanism in a non-magnetic 
dielectric medium different from free 
space is modeled by  = 0 and a 
complex permittivity  

         =   j  
      This gives rise to values of ,  and    
   different from free space values  
      = attenuation constant  
                 = Re{jk} 

         =   "j'jRe 0   

      = phase shift constant  
                 = Im{jk} 

         =   "j'jIm 0   

     = intrinsic impedance  

              =   "j'j

j 0




 

  For the given values of  and ,     

    )1(10
'

'' 3 

   

 

 Under this condition,   

 
'

μ
"

2

ω
α 0


  

                   

0

03
0

8

9

μ
109

2

10π4





   

           





40x
36

10x9x10
x2

95

    

           = 2  x 103 n/m = 6.284 x 103 n/m  
 
 

      )(9μω'μωββ 0002   

           
8

8

103

1
3104


  

           r/m12.56r/mπ4   
 

     and 
0

oo
2 9

μ

'

μ
ηη





   

        Ω125.66Ωπ)(40
3

π120
  

  Skin depth in ice,  

  m159
284.6

101 3




  

 

(c) In ice as   0, the amplitude of the 
field decreases exponentially according 
to the factor ez . 

         E2 in ice = E1 in free space  ez 
         E2 at a distance = 5  is given by  
     E2 = E1 e

5 = E1 e
5 V/m 

  Average power density at z = 5  
from the interface is 

        10

2

2
2

2 e
π402

π239.24

η2

E
P 


  

         210 W/me3   
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x=0 
x-0.1

x = l 

x 

A 

B 
ZR 

A 

B 

Vs 

							Transmission	Lines	
 
 
 
 
 

 

 
 
01.    Ans: (b)   

Sol:   Zin = Z0 




βtanjZZ

βtanjZZ

R0

0R




 

 Phase velocity 

  
β

ω
υp   

   
β

f2
υp


  

         π
102

10π2

υ

f2
β

8

8

p








  

         π.β     (Given l=1m) 

   0βtan   

       
j40)Ω(30

ZZ Rin




 

 
 

02.    Ans: (a)  
Sol:  

 
 
 

 
 

 Xj2

1

2
x e

C

C
K    

  2xate
C

C
K 4j

1

2
A    

    0xate
C

C
K 0j2

1

2
B    

 

 






4j

1

2

0j2

1

2

A

B

e
C

C

e
C

C

K

K
 = e-j4 

 
2

π
β

β

ω
υP   

 Given f = 50 MHz  
  
  pυ  = 2  108 m/s 

  






 

 2
4j

A

B e
K

K
 = e-j2 = 1(or) 1

R

i 



 

 
 

03.     Ans: (b)  
Sol:  

 
 
 
 
 

 
 
 
  

xj
2

xj
1 eCeCV    

 xj2

1

2
x e

C

C
K   

 xj2

1

230j
A e

C

C
e3.0K

0    

   1.0xj2

1

2
B e

C

C
K  

xj2

1

2

1.04j
xj2

1

2

A

B

e
C

C

ee
C

C

K

K









  

  4.j
AB e.KK  

    = 
00 7230j ee3.0    

    
0102je3.0   

Note: In the options 0.3
0102je  is given. But 

correct answer is 0.3
0102j

e  

Z 
A B 

2m 

Z0 

x = 0 x = 2m 

3	Chapter	

           

Objective Practice Solutions 
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Z0 = 50  

Z0 = 50  

 

/4 
100  

/4 

/4 
200  

Z0 = 50  
Fig. 

ZL 

P 

Q

R 

S 

Zi1 

Zi2 

04. Ans: (c)     
Sol: From the voltage SW pattern,  

Vmin = 1, Vmax = 4, VSWR = S = 4  
    Z0 = R0 = 50  
Let the resistive load be RL 
For Resistive loads  

   
0L

0

L RRfor
R

R
S   

   L0
L

0 RRfor
R

R
  

        RL = S R0 = 4  50 = 200   for RL > R0 
RL = R0/S = 50/4 = 12.5  for R0 > RL 

 As voltage minimum is occurring at the 
load point, RL = 12.5 . 

 
 

05.    Ans: (a)     
Sol:  Reflection coefficient:        

         
505.12

505.12

RR

RR

0L

0L








 6.0  

 

06.    Ans: (d)      
Sol:  The interconnection of TL’s is shown 
         in Fig.  

 
 

 25
100

50
Z

2

1i  

 
 

 5.12
200

50
Z

2

2i  
 

ZL = 25 || 12.5 = 
3

25
 

 
 
 

 
 

 
 
 
 

 
 

Reflection coefficient at PQ 
0L

0L

ZZ

ZZ




  

 
50

3
25

50
3
25






7

5

175

125
  

 At the input RS,  

Reflection coefficient,  =  2je
7

5
 

    As 
24

2 






  

         = 
7

5
e

7

5 j    

 

07.    Ans: (d)  

Sol:  Zin = 













tanjZZ

tanjZZ
Z

L0

0L
0  

 

 i)  For a shorted line,  

ZL = 0 

    = /8 

     = 
48

2 








 

  Zin = 










0Z

jZ0
Z

0

0
0  

  Zin = j Z0 

 

ii)  For a shorted line means ZL = 0  

  Given that 
4


  

     = 
24

2 








 

  Zin = 
0

Z

Z

Z 2
0

L

2
0   

  Zin =  
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iii)  Open line means ZL = ,  

  Given that 
2


  

         






2

.
2

  0tanπ   

       Zin = 










tanjZZ

tanjZZ
Z

L0

0L
0   

       Zin = ZL 
iv)  For a matched line of any length  
  ZL = Z0 

  Zin = 













tanjZZ

tanjZZ
Z

00

00
0 = Z0 

 

08. Ans: (c)      

Sol: The line is matched as ZL = Z0 = 50  and 
hence reflected wave is absent.  

 For the traveling wave, given: 

 Phase difference for a length of                    
2 mm = /4 rad 

 Frequency of excitation = 10 GHz 

 Phase velocity, 



pv  

    = 2  10  109 rad/sec 
    = Phase-shift per unit length 

        = m/rad
1024 3


 

  s/m106.1
10

8102
v 8

3

10

p 



  

 

09. Ans: (b) 

Sol:   












00

00

02.0909.0

909.003.0
S  

 For reciprocal;   S12 = S21 

 It is satisfied. 

 For lossless line 1SS
2

12

2

11   

                22 9.03.0  = 0.9  1 

  It is a lossy line 

10. Ans: (b)   
Sol: If we connect infinite number at 

transmission lines, the input impedance is 
same as characteristic impedance. 

 Statement (I) is true.  
 An infinite line is equal to finite line when 

the finite line is terminated by Z0 
 
 
 
 

 
 Statement (II) is true. 
        But Statement (II) is not the correct 

explanation of Statement (I). 
 

11. Ans: (b) 
Sol: For a Transmission line 
 The propagation constant, 

)CjG)(LjR(j   ------ (1)  

 The distortion less condition for 
transmission line is 

C

G

L

R
  ------ (2)  

From equation (1) and (2)  

LCj
L

C
Rj    (or) 

LCj
C

L
j   

C

L
G)or(

L

C
R   ----- (3) 

LC    

LC

1

LC
p 








  ------- (4) 

 A distortion less condition is same as the 
condition for minimum attenuation. So, 
statement (I) is true. 
From equation (3) and (4), it is clear that 
attenuation constant () and phase velocity 
(p) are independent of frequency in a 
distortion less transmission line. So, 
statement (II) is true but not the correct 
explanation for statement (I).    

ZL = Z0 Z0 
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12. Ans: (b)   

Sol: 











xtanjZZ

xtanjZZ
Z)x(Z

R0

0R
0  

 If x-changes, Z(x) - changes 

 So, impedance is not same 
 Statement (I) is true. 
 The reason for reflections is the impedance 

discontinuity 

 
0L

0L

ZZ

ZZ




   

 Statement (II) is true. 

        But Statement (II) is not the correct 

explanation of Statement (I). 

 
13. Ans: (a)    
Sol: 0L ZZ   

  = 0
ZZ

ZZ

0L

0L 



 

        




1

1
S = 1 

Both Statement (I) and Statement (II) are 
individually true and Statement (II) is the 
correct explanation of Statement (I). 

 
14. Ans: (c)   
Sol: The successive distance between two 

minimas is 
2


 

 Statement (I) is true. 
At the location of voltage minima,               
Voltage is minimum and current is 
maximum (Vmin,Imax). 

 min
max

min Z
I

V
Z   

 Statement (II) is false. 
 But Statement (II) is not the correct 

explanation of Statement (I). 

15. Ans: (c)    
Sol: Impedance transformers are used for 

matching purpose. 
 Statement (I) is true 

 
L

2
0

in Z

Z

4
Z 






 
l  

 Statement (II) is false. 

 
16. Ans: (b)    
Sol: Transmission line are used as circuit 

elements 
 

Length Short 
Circuited 
Line 

Open 
Circuited 
Line 

1.
4

0


 l  

2.
24





l  

3. 
4


l  

4. 
2


l  

1. Inductor 

 
2. Capacitor 
 
 

3. Parallel 
    Resonator 
 

4. Series 
    Resonator  

1. Capacitor 

 
2. Inductor 

 
3. Series 
     Resonator 
4. Parallel 
     Resonator 

 

 Stubs are used for matching purpose. 

Both Statement (I) and Statement (II) are 
individually true but statement (II) is not the 
correct explanation of statement (I). 

   
17. Ans: (d)    

Sol:  =
0L

0L

ZZ

ZZ




 

 ZL =  jX 

 || = 1 

 s =   

 Statement (I) is false but Statement (II) is 

true. 
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18. Ans: (b)    
Sol: Both Statement (I) and Statement (II) are 

individually true but statement (II) is not the 
correct explanation of statement (I). 

 
19. Ans: (b)    

Sol: Lin Z
2

Z 





 
l  

 Statement (I) is true 

 
L

2
0

in Z

Z

4
)1n2(Z 






 

l  

 Statement (II) is true 
Both Statement (I) and Statement (II) are 
individually true but statement (II) is not the 
correct explanation of statement (I). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
01. 
Sol: Lossless co-axial cable diameter ratio = 2  

  = 
a

b
 

 r = 2.025  
 For co-axial cable  

 Inductance = L =  a/bln
2


  

      =   H86.132ln
2

104 7




 

  

 Capacitance C =    a/bln

2

a/bln

2 r0



  

  =    
9

9

10
2ln18

025.2

2ln

025.2

36

10
2 






   

    = 0.16nF 

 Z0 = 



 



3.294
1016.0

1086.13

C

L
9

6

 

 
02. 
Sol:   
  
 
 
 
 
 

 
 

 (i)  = 
3

1

50100

50100





  

 (ii) VSWR () = 
||1
||1




=

3

1
1

3

1
1




 =2  

 (iii) Position of 1st Vmax at l = 0 (at load)  
      i.e., RL > R0  
     and 1st Vmin at l = /4 i.e., Vmax and Vmin 

     separated by /4  
 (iv) Impedance at Vmax = Rmax = R0   
                                    = 50  2 = 100  

  and  at Vmin = Rmin = 25
2

50R 0 


 

Conventional Practice Solutions 

50 100 

50 

f =100 kHz 

PL =100 mW
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75  

+ 

 
100 V 

Vg 

Ig (4/3) A 

S 
C 

Fig. 2 

A 

B 

P 

Q 
l 

A 

B 

Fig.3 

+ 

 

(4/3) A 

+ 

 

Vl 

P 

Q 

75  

100 V 

A C 

D B

/4 /4 

Fig.1 

Z0 = R0 = 600  

 mW100
Z

V
P

L

2
max

L   

  162.310010100V 3
max    

 max

min

V
VSWR

V
  

 min

3.162
V 1.581Volt

2
    

 Attenuation loss: Reduction in power 

carried by the wave due to imperfection of 

the structure (or) medium.  

 Reflection loss: Amount of reduction in 

delivered power at load due to mismatching 

at the load.  

 Transmission loss: Amount of reduction in 

available power at the load due to 

transmission of wave from input to load end.  

 Return loss: Amount of reduction in 

available power at the input due to 

mismatching at the input.   

 
03.   

Sol: The 
2


  TL consisting of two 






 

4
  

sections is shown in Fig.1  
 
 
  
 
 
 
 
 
 

 
 The short – circuit at CD gives rise to open 

– circuit at AB and the open – circuit at PQ 
gives rise to short – circuit at AB.    

 Therefore the effective load for               
100 V / 75  generator is a short-circuit. 

  The current through the generator, 

A
3

4

75

100
Ig   as shown in Fig.2 

 
 
 

 
 
 
 
 
 
 
 
 
 

 For a lossless transmission line the voltage, 

Vl at any distance ‘l’ as shown in Fig. 3 is 

given by  Vl = Vg cos l + j Ig R0 sin l 

 For l = /4, l = /2 
 
 
 
  
 
 
 
 
 
 
 

  Voltage at PQ is given by  

   VPQ = j Ig R0 = j (4/3) (600) 

                = j (800) V = 80090 V 

 
04.     
Sol: Given : Vg = 200 V (rms) 
 Internal resistance Rg = 200  
 Characteristic impedance, Z0 = 200  
 Length of TL, l = 10 m 
 Load resistance RL (or) ZL = 100  
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Z0 = 200  

Zin 

Ig 

Vg 
200 V 
(rms) 

l = 10 m 

Fig. 

IL 

100  ZL 

Rg 

 
 
 
 
 
 
 
 
 
 
 
  
 For a loss-less ( = 0) transmission line 

input impedance Zin is given by 

 
)(tanZjZ

)(tanZjZ
ZZ

L0

0L
0in








   

 

 The wavelength  for transmission line is 

given by 
f

v
  

 Given operating frequency, f = 37.5 MHz  
              = 37.5  106 Hz 

 m8
5.37

300

105.37

103
6

8





  

 

 The angle (l) is given 

 10
8

π2

λ

π2
β    

        





 

2

π
π2(1.25)π2  

 and tan (l) = tan (2 + /2) = tan (/2) 
 
 Therefore the input impedance Zin becomes 

  


 400
100

200200

Z

Z
Z

L

2
0

in
 

 

  (a) Current drawn from the generator, Ig is 
given by 

 
400)(200

200

)Z(R

V
I

ing

g
g 




  

               (rms)A
3

1

600

200
  

  (b) The current drawn from the generator will 
also incident on the load resistance at a    
phase shift of /2 radians 

      Ae
3

1
eII 2

j
2

j

gL







  

       Magnitude and phase of the current 
flowing in the load are 1/3 and 90 

 

  (c)  Power incident at the load, Pinci is given by 
       L

2
inciinci ZIP   

         W11.11100
3

1
2







  

 

  Reflection coefficient at the load is given by 

        
3

1

200100

200100

ZZ

ZZ

0L

0L 







  

 

       Power delivered to the load = Pinci (1  |  |2)  

                 = 





 

9

1
111.11 = 9.875W 
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																				Waveguides	
		

  
 

 
 

 
 

 

 
 

01. Ans: (b)   

Sol:  Evanescent modes means no wave 
propagation. 

 Dominant mode means, the guide has 
lowest cut-off frequency. 

 TM01 and TM10 not possible, the minimum 
values of m, n for TM are at least 1, 1 
respectively. 

 
 

02. Ans: (a)  

Sol: The mode which has lowest cutoff   
 frequency is called dominant mode TE10.  

 At 4GHz all modes are evanescent. 

 At 7GHz degenerate modes are possible  

 TE11 and TM11 are degenerate. 

 .GHz5
1032

103

a2

c
f

2

8

10TEc 



 
 

 At 6 GHz dominant mode will propagate. 
 At 11 GHz higher order modes are possible 
 
03. Ans: (a)     

Sol: Given: In a rectangular WG of cross-section 
: (a  b) 

 ŷz)βt(ωsinx
a

π2
sinH

a

π

h

μω
E 02

















   

 The    wave     is     traveling   in   the             
z-direction having Ey component only as 
function of ‘x’. As there is no component of 

E


 in the direction of propagation, za


 the 
wave is Transverse Electric (TE). 
Comparing the ‘sin’ term in E


 with the 

general expression: 







x
a

πm
sin   

        m = 2 

 As there is no function of ‘y’ in E


, n = 0 
  The mode of propagation in the WG             

is TE20 

04.  Ans: (d)  

Sol:  Given  

  a = 4.755, b = 2.215,  

  f = 12 GHz, c = 3  108 m/s 

 Cut off frequency  

  fc = 
22

b

n

a

m

2

c















 

 For TE10, mode 

  fc = 
a2

c
 = 3.15 GHz 

   f > fc (TE10 mode) so it propagates 

 For TE20  mode  

 fC (TE20) = 
2

a

2

2

c








  

                = 2 [fc(TE10)] = 6.30 GHz 

 f > fc [TE20] so it propagates 

 For TE01 mode  

  fC (TE01) = 
2b

1

2

c
 

              = GHz77.6
b2

c
  

   f > fc (TE01] so it propagate 

 For TE11 mode  

  fc[TE11] = 
22 b

1

a

1

2

c
 = 7.47 GHz 

  f > fc (TE11) so it propagate 

 So, all modes are possible to propagate. 
 

05. Ans: (a)   

Sol: Given a = 6cm, b = 4 cm f = 3 GHz 
 

 Cut off frequency  

 fc = 
2 2

c m n
+

2 a b
   
   
   

 

4	Chapter	

           

Objective Practice Solutions 
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 TE10: fc = 
a2

c
 = 2.5 GHz 

 TE01: fc = 
b2

c
 = 3.75 GHz 

 TE11: fc = 
2 2

c 1 1
+

2 a b
 = 4.50 GHz 

 TM11: fc = 
2 2

c 1 1
+

2 a b
= 4.50 GHz 

 
06. Ans: (a)  

Sol: 2m
a

2

a

m






 

 3n
b

3

b

n






 

 For TM wave propagating along z-direction  
 Ez  0 and Hz = 0 
 TM23 

 
22

c23 b

n

a

m

2

c
fTM 













  

 Substitute c = 3 ×1010 cm/sec 
    m  = 2,   a  = 6 cm 
    n = 3,   b = 3 cm 
 we get fc = 15.811 GHz 

 
2

c
TM f

f
1 






  

 GHz
2

10

2

10
f10

312
12





  

 and   = 120 . & fc = 15.811 GHz 
 Substitute all the above values and we get 

TM = 375 . 

 
07. Ans: (c)  

Sol: 
10

2
yo

avg
TE

E1
W = a.b

4 η
; 

 2
c

TE

/1
10






 

   =120, cm72.2
1011

103

f

c
9

10





  

 c = 2a = 22.29 = 4.58cm 

 So we get  52.469
10TE   

 Putting all the values  
  Wavg = 31.32kW 
 
08. Ans: (a) 

Sol: GHz5.7
22

103

a2

c
f

10

c10





  

 For b = a/2 , the next high order mode is 
TE01 or TE20. 

 GHz15
2

103
ff

10

cc 2001



 . 

 So the range of single mode (dominant 
mode propagation ) is 

 7.5 < f < 15GHz. 
 
09. Ans: (a) 

Sol:  
2
c

2
g

2

111








 

 GHz908.0fc    

 cm03.33
10908.0

103
9

10

c 



   

 Substitute g = 40 cm, c = 33.03 cm 

 We get,       = 25.47 cm 

              
47.25

103
f

10
  

            = 1.18 GHz 

 
10. Ans: (a) 

Sol:  GHz908.0
a2

c
  

            9

10

10908.02

103
a




  

        cm51.16  

          cm26.8
2

a
b   
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11. Ans: (a) 

Sol: 
2

c

f

f
1 






  

    
2

18.1

908.0
1

47.25

2









  

              = 0.157 rad/cm  

   = 15.7 rad/m 

 
12. Ans: (a) 
Sol: Waveguides are used as transmission lines 

at microwave frequencies 
 Statement (I) is true. 
 At microwave frequencies two wire lines 

offers high attenuation  
Statement (II) is true. 

 Statement (II) is the correct explanation of 
Statement (I). 

 
13. Ans: (b) 
Sol: Wave propagation inside the waveguide is 

by means of total internal reflection 
between the walls 

 Statement (I) is true. 
 The propagating modes inside the wave 

guides depends on excitation. 
 Statement (II) is true. 
 But Statement (II) is not the correct 

explanation of Statement (I).  

 
14. Ans: (b) 
Sol: The mode which has lowest cut-off 

frequencies or highest cut-off wavelength is 
called  dominant mode. 

 Statement (I) is true. 
 Dominant mode is recommended to have 

maximum transfer of energy through the 
waveguide. 

 Statement (II) is true.   
 But Statement (II) is not the correct 

explanation of Statement (I).  

15. Ans: (d) 
Sol: Rectangular waveguide does not support 

TEM waves 
 Statement (I) is false. 
 Waveguide has no central conductors 

Statement (II) is true. 
  
16. Ans: (b) 

Sol: 
2

c

g

f

f
1 









  

 g  

 Statement (I) is true. 

 
22

c b

n

a

m

2

1
f 
















  

 fc depends on dimension of the waveguide 
(ab), medium inside the waveguide and 
mode of propagation. 

 Statement (II) is true. 
 

17. Ans: (b) 
Sol: For Evanescent mode,   0,  = 0 and               

  - real. So, Statement (I) is true. 
 Evanescent waves are not propagating 

through the waveguide. 
 Statement (II) is true. 
 But Statement (II) is not the correct 

explanation of Statement (I). 
 
18. Ans: (c) 
Sol: If two different modes have same cut-off 

frequencies then those modes are called 
degenerative modes. 

 Statement (I) is true. 
 Degenerate modes are possible in the 

waveguides. 
 Statement (II) is false. 
  
19. Ans: (d) 
Sol: TM waves should not have magnetic field 

along the direction of propagation. 
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 Statement (I) is false. 
 For TE waves, electric fields lie entirely in 

the transverse plane. 
 Statement (II) is true. 
    
20. Ans: (b) 
Sol: Waveguides are in cylindrical structure  
 Statement (I) is true. 
   The preferred cross section of the 

waveguide are circular, rectangular or 
elliptical.  

  Statement (II) is true. 
   But Statement (II) is not the correct 

explanation of Statement (I). 
  

21. Ans: (b) 

Sol: 
2

c
g f

f
1 






  at f = fc 

 g = 0 
Statement (I) is true. 

    

           Above cut-off frequency (i.e. f  > fc ), the 
propagation constant (  ) is imaginary 

           i.e.  = j (for lossless medium) 
 

Statement (II) is true. 
 

          But Statement (II) is not the correct 
explanation of Statement (I). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
01. 

Sol:  Spacing between plates a = 8 cm, f = 6GHz 

 For TE10 mode GHz8.1
82

103

a2

c
f

10

c 



  

 
2

c

g

f

f
1 









 cm5

106

103

f

c
,

9

10





  

 cm2.5
95.0

5

6

8.1
1

5
2g 









  

     





















 84.396

95.0

377

6

8.1
1

377

f

f
1

22

c

g  

 
 

02.    
Sol: Given:  
 Cross section for rectangular WG is  
 (5 cm  3 cm) 
 Relative permittivity, r = 3 
 (i) Cutoff frequency for mode numbers, m  

 and n is given by 

      
22

0
C b

n

a

m

2

v
f 













  

      
r0

0

11
v





  

           sm /103
3

103 8
8




  

 
 

      For TE11 mode,  

       
22

8
C

(0.03)

1

(0.05)

1
10

2

3
f   

      GHz3.36638.8710
2

3
f 8

C   

Conventional Practice Solutions 
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      (ii)  Given:  
       Attenuation constant,  
          = (3) Np/m for TE11 mode 
      For f < fC ,   wave  does  not exist. 
              For rectangular WG   with (x  y)  
           cross-section, the fields are attenuated 

 with the factor, ez   

       where  )( 22
C     

          22
C

0

22
C ff

v

π2
ffμπ2α   

              
2

2
0

2
22

C 4

v
ff




     

       
2

2
0

2
2
C

2

4

v
ff




  

       
2

2
0

2
2
C 4

v
ff




  

           16

2

162

2

2
0

2

10
4

27

π4

103π9

π4

vα



  

         1822
C 10)366.3(f   

         



 

4

27
(33.66)10

π4

vα
f 216

2

2
0

2
2
C

 

                            25.11261016   

        GHz356.3Hz56.3310f 8   
 
03.   
Sol: For hollow rectangular WG given 
 Free space wavelength, 0 = 3.2 cm 
 Conditions to be satisfied 
 (i)  For TE10 mode,   = 1.4 0 
 (ii) C for TM11 mode = 0.4 C for TE10 

    mode 
 To design rectangular WG i.e., to find the 

cross section a  b. 
 Cut-off wavelength,  
  C for TE10 mode = 2a …………… (1) 
 From the condition (i): 
   = 1.4 0 ………………… (2) 
 The relation between   , C and 0 is given by 

 
2
0

2
C

2 λ

1

λ

1

λ

1
  

  
2

C

0

0

λ

λ
1

λ
λor












 

 Using (2), 
2

C

0

0
0

λ

λ
1

λ
λ1.4











  

 or  
14

10

4.1

1
1

2

C

0 










      

 
2
C

2
0

2

14

10
1










  

 










22

2
2
0

2
C 1014

14
 

         cm5724.4429.12.3
96

14
λλ 0C 







  

  Using (1), 2a = 4.5724,  a = 2.2862 cm 

 C for TM11 = 
22

b

1

a

1

2
















  

  = 0.4 [C for TE10] = 0.4 (2a) 

 
22

b

1

a

1

2
















 = 0.8 a 

 
 Squaring on both sides 
 2

22 a16.0

b

1

a

1

1

















   

  0.16 + 
2

b

a
16.0 






 = 1 

 
2

b

a








=
16.0

84.0
   

 2913.2
b

a







  

  cm9978.0
2913.2

2862.2
b   

 Therefore Cross-section of the given rectangular 
waveguide = 2.2862cm  0.9978 cm 
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Q. NO. 4 and 5 solution 
Sol: 
 
 
 
       
 
 
 
 
 

 
 
 
 Rectangular wave guide 
 The geometry of a rectangular waveguide is 

shown in fig. 
 Where it is assumed that the guide is filled 

with a dielectric material of permittivity  
and permeability .  

 Consider a > b Where a = length of the 
waveguide, b = breadth of the waveguide. 

 Waveguide is a single conductor hollow 
structure. 

 The walls of the waveguide are usually 
made of “Copper alloy (Brass)” and its 
inside surface is coated with a thin layer of 
either gold or silver in order to  
i) Improve the conductivity of the walls of 

the waveguide. 
ii) To ensure that the inside surface is 

smooth which reduces the losses inside 
the waveguide. 

 
 

   Properties and Characteristics of Waveguide 
 
   1) The conducting walls of the guide confine 

the electromagnetic fields and there by 
guide the electromagnetic wave through 
“multiple reflections” as shown in fig below 
Thus a number of distinct field 
configurations or modes can exist in 
waveguides. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   2) When the waves travel longitudinally down 
the guide. The plane waves are reflected 
from wall to wall as shown in fig. This 
process results in a component of either 
electric or magnetic field in the direction of 
propagation of the resultant wave. Thus 
only TM & TE waves can propagate 
through the waveguide. 

 

   3) TEM waves can’t propagate through the 
waveguide since it requires an axial 
conductor for axial current flow (or) an 
axial displacement current to support a 
transverse magnetic field. 

 

   4) The wave length inside the wave guide 
(called guide wavelength λg) is quite 
different from the free space wave length λ0. 
Because of multiple reflections from the 
walls of the guide, “λg will always be 
greater than λ0”. 

   5) When the wave length inside the waveguide 
differs from that outside the waveguide, the 
velocity of the wave propagation inside the 
waveguide must also be different from that 
through free space. 

  

   6) If one end of the waveguide is closed using 
a shorting plate and allowed a wave to 
propagate from the other end, then there 

x 

y 

z 

 , 

0
a 

b 

Dielectric Conductor

 = wave length of signal in unbounded 
medium. 

cosθ

λ
λn   is in the direction normal to 

the reflecting plane 

sinθ

λ
λp   is parallel to the plane. 

Multiple reflections 

Walls of the wave guide 





n   p 


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will be complete reflection of the waves 
resulting in standing waves. If the other end 
is also closed using shorting plate, then the 
hallow space so formed can support a signal 
which can bounce back and forth between 
the two shorting plates. This results in 
“Resonance”. The hollow space so formed 
is called “Cavity” and the closed 
waveguide then becomes a “Cavity 
Resonator”. 

 

   7) In a two-line lossless transmission line 
system, all the frequency signals are 
allowed to propagate. But in a waveguide, 
there exist a cut off frequency (fc) below 
which propagation is not possible. i.e., all 
the frequencies above fc are allowed to 
propagate and hence waveguide acts as a 
“high pass filter”. 

 A Rectangular waveguide made of metallic 
of high conductivity with perfect dielectric, 
such as air of magnetic permeability  and 
permittivity  inside the guide. 

 For the conductor to dielectric interface, the 
boundary conditions are 

 
 
 

 
 
  
  0Etan   

  SnD      
  

  JHt   

    0H0B nnormal   

  0Hn   
 
 
 
 
 
 
 
 

 Consider the wave is propagating in z-
direction. 

 There are four boundaries i.e. x = 0, x = a, 
y = 0,  y = b 

 

Boundary Conditions are 
i) The tangential component of electric field 

must be zero 0EE tangentialt   

ii) The Normal component of magnetic field 
must be zero 0 normaln HH  

  
 

 
 
 
 
 
 
 
 

 
 
 

 From the above boundary conditions we 
conclude that 

 

 Electromagnetic waves do not pass through 
conductors, but rather, they are reflected. 

 Any electric field that touches a conductor 
must be perpendicular to it. 

 Any magnetic field close to a conductor 
must be parallel to it. 

 Fields associated with a propagating wave 
inside the waveguide are expected to satisfy 
Maxwell equations, wave equations & 
boundary conditions.  

 The Maxwell equations in time domain are 
expressed as  

 

0B.

ρD.

J
t

D
H

t

B
E

v

D















 

 Here the dielectric occupy the hollow 
region of waveguide is either low loss (or) 

loss less   (   1
J

J
or0σ

D

c  ) 

Conductor 
(High loss) 

Dielectric 
(Low loss) 

Boundary 

x = a 

y = b 

x = 0 
y = 0 

x 

y 
Wave propagation  
(Z-direction) 

At y = 0 and y = b(XZ-plane) 

0H0H

0E0,E0E

yn

zxt




 

At x = 0 and x = a (YZ-plane) 

0H0H

0E0,E0E

xn

zyt




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 The electric & magnetic field components 
are assumed to vary sinusoidally with 
respect to time. 

  tjωz γ
0 eeEE   then 

  
z

E
   and   EjeejE

t

E tjz
0 





   

       Eee)(E tjz
0    

        
2

2
2tjz2

02

2

z

E
   and EeejE

t

E






   

                 Eee)(E 2tjz2
0    

 tjωzγ
0 eeHH    then 

  
z

H
  and  HjeejH

t

H tjz
0 





   

             HeeH tjz
0    

  
2

2
2tjz2

02

2

z

H
  and HeejH

t

H






   

           HeeH 2tjz2
0    

 For time varying fields the Maxwell 
equations are  

         )1eqMaxwell(1MEEjH    

 2eqMaxwell2MEHjE   

         Consider Maxwell eq – (1) (ME-1) 
  EjH   

         zzyyxx

zyx

zyx

âEâEâEj

HHH
zyx

âââ











 

 Equating the components on both sides 

 

z
xy

y
zx

x
yz

Ej
y

H

x

H

Ej
x

H

z

H

Ej
z

H

y

H



























 

 Rearranging the above equations  

  

 iiiEj
y

H

x

H

iiEj
x

H
H

)i(EjH
y

H

z
xy

y
z

x

xy
z




















 

 

 Consider Maxwell eq – (2) (ME-2) 

 HjE   

  zzyyxx

zyx

zyx

âHâHâHj

EEE
zyx

âââ











 

 Equating the components on both sides 

 

z
xy

y
zx

x
yz

Hj
y

E

x

E

Hj
x

E

z

E

Hj
z

E

y

E



























 

 

 Rearranging the above equations 

 

 

 

 iiiHj
y

E

x

E

iiHj
x

E
E

iHjE
y

E

z
xy

y
z

x

xy
z




















 

 

 Combining (i) of ME-1 and (ii) of ME-2 
 From (ii) of ME-2 

 












x

E
E

j

1
H z

xy  

 

 Substituting Hy in (1) of ME-1 

 x
z

x
z Ej

x

E
E

j

1

y

H















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 x
z

x

2
z Ej

x

E

j
E

jy

H
















 

 x

2

x
zz E

j
j

x

E

jy

H















 

 x

22
zz E

jx

E

jy

H



























 

 x

2
zz E

j

h

x

E

jy

H















 

 
y

H

h

j

x

E

h
E z

2
z

2x 






  

  222hWhere  
 

 Similarly,  

  
x

E

h

j

y

H

h
H z

2
z

2y 






  

  
y

E

h

j

x

H

h
H z

2
z

2x 






  

  
x

H

h

j

y

E

h
E z

2
z

2y 






  

 
 

 The field components of the waveguide are 

 

x

H

h

j

y

E

h
E

y

H

h

j

x

E

h
E

z
2

z
2y

z
2

z
2x


















 

 

x

E

h

j

y

H

h
H

y

E

h

j

x

H

h
H

z
2

z
2y

z
2

z
2x


















 

  222hWhere  

 We know for a TEM wave 

   00  zz HandE  

 Substituting these values in above 
equations. The field components along x 
and y directions i.e. Ex, Ey, Hx, Hy vanish. 
“Hence a TEM wave can’t exist inside a 
wave guide. 

 Inspecting the above set of equations it can 
be concluded. That wave propagating inside 
the waveguide is either 

 TM      0E0HTEor0E&0H zzzz   

 In other words there is no possibility of 
TEM wave propagating inside the 
waveguide in other words for a wave 
propagating inside the waveguide 
supporting by transverse electric & 
magnetic fields there must be one of the 
longitudinal existing i.e. when a wave 
propagates along the waveguide in z-
direction either Ez field is present or Hz field 
is present. 

 This implies that to support wave 
propagation inside the waveguide when           
Hz = 0, Ez field is present which is termed. 
TM-wave, where as when Ez fields is zero 
Hz field is present the wave is TE wave. 

 For TM wave 0E,0H zz   

 For TE wave 0E,0H zz   

 

 TM Wave (or) E-Wave (or) Transverse 
Magnetic Wave: 0E,0H zz   

 

 The field equations are  

      

x

E

h

j
H

y

E

h

j
H

y

E

h
E

x

E

h
E

z
2y

x
2x

z
2y

z
2x





















  

 

 Where   22h  

 waveTMfor
jH

E

H

E

x

y
TM

y

x




  
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 TE Wave (or) H-ware (or) Transverse 
Electric Wave: 0E,0H zz   

   The field equations are  

 

y

H

h
H

x

H

h
H

x

H

h

j
E

y

H

h

j
E

z
2y

z
2x

z
2y

z
2x





















    

 Where   22h  

  waveTEfor 
j

H

E

H

E

x

y
TE

y

x




  

 

  From the above relationships 

  2TEM

2

TMTE 















  

  
 TM Wave solution: 
 For TM (Transverse magnetic)waves the 

magnetic field exists only along transverse 
directions and no component along the 
direction of propagation but Electric field 
components present in all directions. 

 The wave equations for waves propagating 
along the z-direction are given by 

 
2

z
2

z
2

t

E
E




  and Hz = 0 for TM wave 

 z
2

2
z

2

2
z

2

2
z

2

E
z

E

y

E

x

E















 

 z
2

z
2

2
z

2

2
z

2

EE
y

E

x

E










 

 0E)(
y

E

x

E
z

22
2
z

2

2
z

2










 

 0Eh
y

E

x

E
z

2
2
z

2

2
z

2










 

 Where  222h  
 The above equation solved by using 

“separation of variables” method. 
 Let us assume E z = XY 
    X = a pure function of x only 
    Y = a pure function of y only.  

 0XYh
y

XY

x

XY 2
2

2

2

2










 

 0XYh
y

Y
X

x

X
Y 2

2

2

2

2










 

 Dividing both sides XY 

 0h
y

Y1

x

X1 2
2

2

2

2










YX

 

 0
y

Y

Y

1
h

x

X

X

1
2

2
2

2

2























 

 Let us assume 

 22
2

2

Ah
x

X

X

1





 then 0A

y

Y

Y

1 2
2

2





 

  

 Rearranging 

 0B
x

X

X

1
0Ah

x

X

X

1 2
2

2
22

2

2










 

         Where 222 AhB   

 0XB
x

X
0B

x

X

X

1 2
2

2
2

2

2










 

 

 The general solutions are 
      BxsinCBxcosCX 21   
 

         Where C1 and C2 are constants. 

 0YA
y

Y
0A

y

Y

Y

1 2
2

2
2

2

2










 

 

  The general solutions are 
       AysinCAycosCY 43   
 
         Where C3 and C4 are constants.  
 Ez = XY = 
    )AysinCAycosC)(BxsinCBxcosC( 4321   
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 The above general solution is required to 
satisfy boundary conditions. 

 












by     0y

a      x0x
at   0Ez  

 AysinCCAycosCCE 41310xz   

 0E
0xz   only when C1 = 0. 

 BxsinCCBxcosCCE 32310yz   

 0E
0yz   only when C3 = 0. 

       sinAysinBx CCE 42z   

 Aysin  BasinCCE 42axz   

 0E
axz   only when 

         

,......3,2,1m  here  
a

m
B 

m Ba 

0  sinBa









w

 

 Absin  BxsinCCE 42bxz   

 0E
bxz   only when  

           

,......3,2,1n  here  
b

n
A 

n Ab 

0  sinAb









w

 

 y
b

nπ
sinx  

a

mπ
sinCCE 42z 














  

 

 TE wave solution: 
 For TE(Transverse electric)waves the 

electric field exists only along transverse 
directions and no component along the 
direction of propagation. But magnetic field 
components present in all directions. 

 The wave equations for waves propagating 
along the z-direction are given by 

        
2

z
2

z
2

t

H
H




   and   Ez = 0 for TE wave. 

 z
2

2
z

2

2
z

2

2
z

2

H
z

H

y

H

x

H










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
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x

H
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


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
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z
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z
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2
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







 

         Where  222h  
 The above equation solved by using 

“separation of variables” method. 
 

 Let us assume H z = XY 
    X= a pure function of x only 
    Y= a pure function of y only. 

    0XYh
y

XY

x

XY 2
2

2

2

2










 

 0XYh
y

Y
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x

X
Y 2

2

2

2

2










 

 
 Dividing both sides XY 

     0h
y

Y

Y

1

x

X

X

1 2
2

2

2

2










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y

Y

Y

1
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X
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1
2

2
2
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2























 

 

 Let us assume 
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2

2
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x

X

X

1





 then 0A

y

Y

Y

1 2
2

2





 

 

 Rearranging 

 0B
x

X

X

1
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x

X

X

1 2
2

2
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2









  

         Where 222 AhB   

 0XB
x

X
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x

X

X

1 2
2

2
2

2

2
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






  

 

 The general solutions are 

      BxsinCBxcosCX 65   
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         Where C5 and C6 are constants. 

 0YA
y

Y
0A

y

Y

Y

1 2
2

2
2

2

2









  

 The general solutions are 

       AysinCAycosCY 87   

         Where C7 and C8 are constants.  

 Hz = XY  

         )AysinCAycosC)(BxsinCBxcosC( 8765 

SinBxSinAyCCSinBxCosAyCC

CosBxSinAyCCCosBxCosAyCCH

8676

8575z




 

 The above general solution must be satisfy 
the boundary conditions are 

 
by  and  0yat    0H , 0E , 0E

a  xand  0at  x  0H , 0E , 0E

yzx

xzy




 

 TE Waves are 
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y
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h
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h

j
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2x 
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y
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


 

  Satisfies boundary conditions 

 by&0yat0H&E yx   

 Similarly, 

    ax&0xat0H0E xy   

 To satisfy this ax&0xat0
x
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
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x

H
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z 



 

  CosBxSinAyACC
y

H
75

z 



 

  SinBaCosAyBCC
x

H
75
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z 




 

 0SinBawhenonly0
x

H
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z 




 

 

          

,.........3,2,1mWhere
a

m
B

mBa

0SinBa









 

  CosBxSinAbACC
y

H
75
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z 


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 0SinAbwhenonly0
y

H
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z 

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.....3,2,1nWhere
b

n
A

nAb

0SinAb









 

 













 y

b

nπ
Cosx

a

mπ
CosCCH 75z  

 The Field Equations are: 

  yBCosBxSinACC
hx

E

h
E 422

z
2x







  

 yASinBxCosACC
hy

E

h
E 422

z
2y







  

 yASinBxCosACC
h

j

y

E

h

j
H 422

z
2x







  

        yBCosBxSinACC
h

j

x

E

h

j
H 422

z
2y







  

 Where 
b

n
A,

a

m
B





  

 

 Depending on the values of m and n, we 
have varies modes in TM waves. In general 
we represent the modes are TMmn. 

 
 

 Various TMmn Modes: 
  1)  TM00 Mode:  
 For which m = 0 and n = 0, we observe that 

all field components Ex, Ey, Hx, Hy are 
vanish inside the waveguide.  

 Hence TM00 Mode can’t exist inside the 
waveguide. 

  2)   TM01 Mode: 
 For m = 0, n = 1 then all the fields are     

vanish “Hence TM01 does not exist” 
 

  3)   TM10 Mode: 
 i.e. m=1 and n = 0. In this mode also all the 

fields are vanish 
      TM10 mode does not exist. 
 

  4)  TM11 Mode: 
 m =1 and n = 1. In this mode all the fields 

are not vanish. This mode is exist in 
rectangular waveguide. 

  TM11 mode exist 

 In a rectangular waveguide TM00, TM01, 
TM10 modes does not exist. 

 The lowest TM mode that can exist in a 
rectangular waveguide is TM11. 

  0n,0mTM  is the propagating TM wave in 

the rectangular waveguide. 
 

 The field Equations are: 

  CosBxSinAyACC
h

j

y

H

h

j
E 752

z
2x 







  

   .SinBxCosAyBCC
h

j

x

H

h

j
E 752

z
2y 







  

  SinBxCosAyBCC
hx

H

h
H 752

z
2x 









 CosBxSinAyACC
hy

H

h
H 752

z
2y 









Where 





 222h,
b

n
A,

a

m
B  

 Depending on the values of m and n, we 
have varies modes in TE waves. In general 
we represent the modes are TEmn. 

 
 Various TEmn Modes: 
  1)   TE00 Mode: 
  m = 0 and n = 0 all field components     
          Vanish inside the waveguide. 
  Hence TE00 doesn’t exist. 
  2)   TE01 Mode: 
  Form = 0 and n =1  Ey = 0, Hx = 0, Ex   
          and Hy are exist. 
 TE01 mode exists inside the waveguide. 
 

  3)  TE10 Mode:      
       For m =1 & n =0  Ex = 0, Hy = 0, Ey&Hx  
          are exist 
   TE10 mode exist 
  4)  TE11 Mode and all other higher modes  
      Can exist inside the waveguide 
 TE00 mode doesn’t exist in rectangular 

wave guide. 
 

     TE00 mode  Hz component is constant. 
 Then all Ex, Hy, Hx, Ey are Zero. 
 TEmo modes does exist for all values of m 

except m = 0. i.e. TE10, TE20, …… are exist 
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 TEon does exist for all values of n except n = 
0. i.e. TE01, TE02, …… are exist 

 The lowest values of n for TEon exist is n = 1  

 In Rectangular waveguide TM00, TM0n, 
TMm0, TE00 modes doesn’t exist. 

 Propagation Characteristics 
Note: The cut off frequency, cut off wave length, 

and phase and group velocities are   same 
for TE and TM modes. 

 We know that  

        
22

22222

b

n

a

m
BAwh 






 







 

  

 Where m, n are integers. 
 a = width of the wave guide 
 b = height of the wave guide 

  





 







 

 2
22

2

b

n

a

m
 

 The Propagation constant of the waveguide 
is    

   





 







 

 j
b

n

a

m 2
22

 

 

Case (i): Cut-off frequency: 
       We observe that all the lower frequencies 

are attenuated completely and higher 
frequencies are propagated. Thus there must 
exist a frequency at which the propagation 
just begins. This frequency is 
called “Cutoff Frequency” or “Threshold 
Frequency”  denoted by fc.  

 At cutoff frequency f = fc (or) cc f2 .  
 

 There is no wave propagation.  
           0or0,ffat.e.i c  

 0
b

n

a

m 2
c

22







 







 

  

 

         The value of    that causes this is called 
the cutoff angular frequency ( c ) that is  

 
22

c b

n

a

m1






 







 


  

 Cutoff frequency is 

 
22

c b

n

a

m

2

1
f 
















  

 
 
 

 
 
 
 

 
    Note that the cutoff frequency for a 

particular rectangular waveguide mode 
depends on the dimensions of the 
waveguide (a, b), the material inside the 
waveguide (,), and the indices of the 
mode (m, n). 

 The dominant mode in a particular guide is 
the mode having the lowest cutoff 
frequency. All the frequencies greater than 
fc is allowed to propagate inside the 
waveguide and those less than fc are 
attenuated. 

 All wave lengths greater than λc are 
attenuated and those less than λc are allowed 
to propagate inside the waveguide. 

 

Case (ii) (Evanescent): 
         The Propagation constant of the waveguide 

is 

        





 







 

 j
b

n

a

m 2
22

 

        When a wave guide is exited at frequencies 
less than cutoff the behavior is entirely 
different from the behavior at frequencies 
greater than cutoff. 

 

 At low frequencies i.e.  

,
b

n

a

m
orff

22
2

c 





 







 

  is real 

and positive equal to attenuation constant . 
Therefore the wave is completely attenuated. 
Also there is no phase shift and hence the 
wave can’t propagate, i.e. 0;   

Cutoff wavelength 

22c
c

b

n

a

m

2

f

v
















  
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 In this case no propagation at all. These 
non-propagating (or) attenuating modes are 
said to be “Evanescent”. 

 

Case (iii) (propagation) 
 At high frequencies i.e. 







 







 

 ,
b

n

a

m
orff

22
2

c  become 

imaginary equal to j phase shift occurs 
with respect to some reference and hence 
the wave propagates with some wave 
lengths inside the waveguide.   

 In a two-line lossless transmission line 
system, all the frequency signals are 
allowed to propagate. But in a waveguide, 
there exist a cut off frequency (fc) below 
which propagation is not possible. i.e., all 
the frequencies above fc are allowed to 
propagate and hence waveguide acts as a 
“high pass filter”. 

   0j   

 The phase constant   becomes 
    
 

 
 
 
 
 
 
 

 

















 







 


22

2

b

n

a

m
 

     2
c

2  

                       

                
2

c
2

c

f

f
11 


















  

 The phase constant of the wave propagating 
inside the waveguide that is  is a non-
linear function of frequency. This implies 

that wave propagation is dispersive type 
inside the waveguide i.e. the wave changes 
non-linearly with the frequency. 

.          
2

c1 









  

  

 Phase velocity 

vvand

f

f
1

v

1

1
v p

2
c

2
c

p 
































        

spacefreeinwavetheofvelocityv  

 The phase velocity is defined as the rate             
at which the wave changes its phase in             
terms of guide wave length.  
or The velocity at which a point of constant 
phase moves. 

 The velocity at which energy is transported 
down the length of the waveguide is defined 
as the group velocity.  

 In the waveguide phase velocity is not equal 
to the velocity of energy transport along the 
waveguide (group velocity). 

 The information in a wave guide generally 
does not travel at the phase velocity. 
Information travels at the group velocity, 
which must be less than the speed of light. 

 Note: The velocity of propagation for a 
TEM wave (plane wave or transmission line 
wave) is referred to as the phase velocity 
(the velocity at which a point of constant 
phase moves). The phase velocity of a TEM 
wave is equal to the velocity of energy 
transport. 

 

 Group Velocity 






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
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
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 vvvg  = velocity of wave in free space. 

 From the above we conclude that  
   2

pgpggp vvvandvvvorv.vv   

 v  = velocity of wave in unbounded 
dielectric medium. 

 

 pv Phase velocity of the wave in 

waveguide. 
 

 gv Group velocity of the wave in 

 waveguide.    
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  = guided wave length  propagating 
wave length inside the waveguide. 
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 Where  

           c = cutoff wavelength 

                         free space wave length 

                       = guide wave length. 

 

 We conclude that the wave length inside the 
waveguide is greater than the wave length 
outside the waveguide i.e.   

 

 Wave propagate through the waveguide 
only when c   

 

 The relation between phase velocity and 
guided wavelength of waveguide is 
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 We already know that 
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 From the above we conclude that  
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			Elements	of	Antennas	
 
 
 
 
 

 

 

 

01.  Ans: (c)     

Sol: Antenna receives 2 W of power: Pr = 2 W 
 RMS    value    of   incident   E   field   
       = 20 mV/m 
 Power density, Pd 

 =
η

E2
2

23

m/W
377

)1020( 
  

 Effective aperture area, 
d

r
e P

P
A   

            2

23

6

m1.885
400

2377

377

)10(20

102










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02.  Ans: (b)     

Sol: Lossless antenna directive gain = 6 dB = 4 

 Input power to the antenna = 1 mW 

 for lossless we get 100% efficiency 

  1
D

G

W

W

o

o

in

rad   

   Wrad = Win 

      Wrad = 1mW 
 
03. Ans: (c) 

Sol: Prad = 2
r2

2
0 m/Wâ

r

sinA 
 

 

 Wrad = 
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 
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 Wrad = A0 
3
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 U = r2 Prad = r2 
 2
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0 sinA
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


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A
3

8
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0

max

2
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       = 3
A8

A4

0
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
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      = 
2

3
 = Dmax = 1.5 

 
04. Ans: (d) 

Sol: Where  sd.PW radrad   

        r2
rad

rad â.
r2

W
P


  = râ

40


 W/m2 

 
05. Ans: (b) 

Sol: Rrad = 30 , Rl  = 10  

         GD = 4, Gp = ? 

             = 
RR

R

rad

rad


75.0

40

30
  

          Gp = DG   

                = 0.75  4 = 3 

 
06.  Ans: (c) 

Sol:  Dg = 30 dB = 1000 

  PT = 7.5 kW 

  
PowerRadiated

ensityintRadiation4
Dg


   

5	Chapter	

           

Objective Practice Solutions 
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   Dg = 4 
radW

U
 

   U = 



4

1000105.7 3

 

    U = r2 Prad 

 Prad : Power density we have to find  

 Prad at r = 40103 m 

  Prad = 
2r

U
 

         =
23

3

)1040(4

1000105.7




W/m2  

 
07.  Ans: (d) 

Sol: Wrad = 10kW 

 Emax
  = 120 mV/m 

 R = 20km 

  = 98% 

 
0

2
0

rad 2

E
P


  

       







1202

)10120( 23

 

       = 1.90910–5
 

 Umax = (20103)21.90910–5 

         = 7636 

 
rad

max
0 W

U
4D   

 D0 = 59.9
1010

43.7639
4

3



  

 98.0
D

G

0

0   

 G0 = 0.989.59 

      = 9.407 

08.  Ans: 0.21 

Sol: Given: 

 Antenna length, l = 1cm 

 Frequency, f = 1 GHz 

 Distance, r = 100 

 Wave length, 
f

C
  

    
9

8

10

103
  

    = 30 cm 

 
30

1d





, hence the given antenna is 

Hertzian dipole. 

 In the far field, the tangential electric field 

is given by, 
r4

sinIdj
E








 

                
22

23

103010041030

110210100377j







  

         cm/V21.0E    

 

09.   Ans: (c) 

Sol:  Given: 

  Length of dipole,   = 0.01 

  As it is very small, compared with 

 wavelength, hence it can be approximated to 

 Hertzian dipole 

  
2

2
rad

d
80R 












 

      = 80 2 (0.01)2  

   Rrad = 0.08  
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10.   Ans: (d) 

Sol: 

2
sin

2

n
sin

AF




  

 take limit  

 n

2
.

2

2
sin

Lt

2

n
.

2

n
2

n
sin

Lt

0
2

0
2

n



















 

 
11.  Ans: (b) 

Sol:  In broad side array the BWFN is given by 

 )rad(
L

2
BWFN


  

 Where, L = length of the array 

          L = (n–1) d 

 Given: n = 9 

 Spacing, 
4

d


  

 

4
)19(

2
BWFN





  

          







180

2

2
 

  BWFN = 57.29o 

 
12.   Ans: (d) 

Sol: The directivity of n-element end fire array is 

 given by 

 



L4

D  

 Where, L = (n–1)d 

 L   nd  )earglvery,1000n(   

 




nd4

D  

             
4

10004




  

   D ≃ 1000 

  Directivity, (in dB) = 30 

 
13.  Ans: 7.78 

Sol:  Directivity, 
rad

max

P

U
4D   

  Given: U(, ) = 2sin sin3; 0    ,  

              0 ≤  ≤  

 Umax = 2 

  









0 0

3
rad ddsinsinsin2P  

        









0 0

32 ddsinsin2  

        = 












 

3

4

2
2  

        
3

4
  

 







 



3

4
2

4D  

 D = 6 

 Directivity, (in dB) = 10log6 = 7.7815 

 
14.   Ans: 2793 

Sol:  For Hertzian dipole the directivity, D is 

given by D = 1.5 
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     e2
A

4
D 










  

 




4

5.1A
2

e  

 Ae = 0.119 2 

 Wavelength, m3
10

103
8

8




  

 Ae = 0.119  9 

 Ae = 1.074 m2 

 Aperture area of antenna is given by 

 
P

P
A r

e   

 Where, Pr = power received at the antenna 

load terminals. 

 P = power density of incident wave 

 
e

r

A

P
P   

    
074.1

103 6
  

  P = 2.793 W/m2 (or) 2793 nW/m2 

 

15.  Ans: (c) 

Sol: 

 

 

 

 
 

 

Given: No. of elements, n = 4  

 Spacing, 
4

d


  

 Direction of main beam (or) principal lobe, 

max = 60o 

 Array phase function,  is given by 

   = dcos +   

 To form a major lobe.   = 0 

  = –dcosmax 

 60cos
4

2 





  

 
4

C
  

 The phase shaft between the elements 

required is 
4

C
  

  

16. Ans: (b) 
Sol: Quarter wave monopole radiates in the upper 

hemisphere only 
 Statement (I) is true. 
   All dipole antennas are half wave dipole 

antennas  
 Statement (II) is true. 
   But Statement (II) is not the correct 

explanation of Statement (I). 
  

17. Ans: (b)   
Sol: Isotropic radiator radiates uniformly in the 

all the directions. So it is a non-directional 
antenna. 

 Statement (I) is true. 
 Isotropic radiator is taken as reference 

antenna 
 Statement (II) is true. 
 Statement (II) is not the correct explanation 

of Statement (I). 
 

18. Ans: (b)   
Sol: Ae  D 

D
4

A
2

e 


  

If Ae - high 
          D - high 
 

 Statement (I) is true. 

 
A

4
D




  

30o 

max
 = 60o 

  Axis of array 

end me 

Broadside    
 direction 

/4 
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 D 
A

1


 

 A  - Beam area 
 Statement (II) is true.   
        But Statement (II) is not the correct 

explanation of Statement (I). 
 
19.    Ans: (a) 
Sol: Omni directional antennas will radiates 

uniform radiations in azimuthal planes and 
non-uniform radiation in the elevation 
planes. 

 Statement (I) is true. 
 Hertzian dipole antenna is omni directional 

antenna. 
 Statement (II) is true and correct explanation 

for Statement (I). 
 

20. Ans: (b)   
Sol: Polarization of antenna is one of the design 

parameters of an antenna. 
 Statement (I) is true. 
 Polarization of wave is the property of the 

wave. 
 Statement (II) is true. 
        But Statement (II) is not the correct 

explanation of Statement (I). 
 

21. Ans: (b)   
Sol: Antenna array would result high directivity 

Statement (I) is true. 
 High directivity antennas are used for point 

to point communications. 
 Statement (II) is true. 
        But Statement (II) is not the correct 

explanation of Statement (I). 
 

22. Ans: (b)   
Sol: Fields in Fraunhofer near field zone are 

reactive fields. 
 Statement (I) is true. 
 Antennas are operated in the Fraunhofer far 

field zone only. 
 Statement (II) is true. 
 But Statement (II) is not the correct 

explanation of Statement (I). 

23. Ans: (b)   
Sol: For lossless antennas directivity and power 

gain are same 
 Statement (I) is true. 
 Radiation intensities is defined as power 

radiated per unit solid angle 
Statement (II) is true. 

        But Statement (II) is not the correct 
explanation of Statement (I). 

 
24. Ans: (a)   
Sol: For broad side antennas the maximum 

radiation is normal to the array axis. 
Statement (I) is true. 

 For maximum radiation normal to array axis 
the antennas are excited with uniform 
amplitudes and no progressive phase shift. 

 Statement (II) is true. 
 Statement (II) is the Correct explanation of 

Statement (I).     
 
25. Ans: (b)   
Sol: The maximum value of directive gain are 

called directivity 
 Statement (I) is true. 
 Isotropic radiator (non-directional) antenna. 
 Directivity is unity. 
 Statement (II) is true. 
        But Statement (II) is not the correct 

explanation of Statement (I). 
 
26. Ans: (b)   
Sol: The array factor is unique for a particularly 

geometry of antenna array  
 Statement (I) is true. 
 Over all radiation can not be obtained by 

array factor. 
 Statement (II) is true but not the correct 

explanation for statement (I). 
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  I1 

d    

Fig. 1  

I2 

I2 = k I1 

1 2 

 
 
01.    
Sol: A 2 - element array is shown in Fig. 1. 

where the elements are marked as 1 and 2 
with I2 = k I1   spacing = d  and direction 
of radiation with line of antennas =  

 
 
 
 
 
 

 
 
 
 In the present problem,  

 I2 = I1 = I0 ,  1
|I|

|I|
k

1

2    

  = 0 and  d = 0.5   
 

 General formula for n-elements with k =1 

  







 







 



2
sin

2

n
sin

E

E

1

T   

  = d cos  + ,  




2

 

 
 where E1 is the field strength due to antenna 

1 alone and ET is the magnitude of the total 
field strength due to both the antennas.  

 
 For n = 2,  = 0, d = 0.5    

 )(cos5.0
2





  =  cos  

 

 



























2

ψ
sin

2

ψ
cos

2

ψ
sin2

E

E

1

T  

                 





 






 cos

2

π
cos2

2

ψ
cos2  

        The radiation pattern is shown in  

            ET / E0 

 0  0 

 90  2 

 180  0 

 90  2  

 360  0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 By turning the direction of maximum 

radiation by 90 either clockwise or 
anticlockwise, the radiation pattern is as 
shown in Fig.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conventional Practice Solutions 

Direction of maximum radiation       
are 0 and 180 (End-fire array) 

Null 

Null 

0 max 180 max 

 90 

 90 

Fig.3 

Directions of maximum radiation are 
 =  90 (Broadside array) 

90 max 
2 

2 

Null Null 

90 max 

180 0 

Fig. 2 
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 i(t) = Im cos (t) 

Im / 2 

l 

Fig. 2 

 
 
 
 
 
 
 

 
 
 
 
 Let  = x be the phase shift required for 

this change in the pattern  

 





 





2

cos
2

cos2
E

E x

0

T    

 2  =  






 
2

α
)180or(0cos

2

π
cos2 x  

 1  =  





 


2

90cos x     

 1  =  





 

2
sin x    

 x = 180 
 Note that the requirement of  = d (= 

180) is satisfied for the end-fire array in 
Fig. 3. 

 
02.    
Sol: The 2 – element array of antennas A and B 

is shown in Fig. 1, where  is the direction 
of radiation from the line of antennas and       
 = 90  . 

 
 
 
 
 
 
 
 
 

 General formula for 1k
|I|

|I|

A

B   

 ,
2

cos2
E

E

A

T 





    = d cos() +  

 
4

3
d,

2 





 , 
2

3
d


  

 


 )(cos
2

3
 

 





 





2

cos
4

3
cos2

E

E

A

T  

 

      For the null at  = 30 or  = 60,  = ? 

 





 





28

3
cos20 ,  

 
228

3 






, 

4


   

 
 With this value of ,  

 





 





8

cos
4

3
cos2

E

E

A

T  …. (I) 

 For maximum radiation, 2
E

E

A

T   

 





or0
8

)(cos
4

3
m  

 0
mm 6.99,

6

1
)(cos   

 or m =  9.60 and  170.40 

 

 The radiation pattern  is  shown in Fig. 2. 
according to equation (I) with typical values 
of .  

 

          /2  ET/EA 

 

 0 
8

or
8

7 
 1.85 

 60        
2


     0 

 90        
8


  1.85 

 99.6         0     2 

 180      
8

5
 0.77 

3 /4 

Fig. 1

B A 

 

I0  I0 0 

 
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Fig. 1 

DIPOLE, A 

GROUND PLANE 

H 

Fig. 2 

A 

B 

H 

H 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
03.   
Sol: A dipole antenna having a sin  radiation 

pattern can be considered as an Hertzian 
dipole or elementary dipole (I dl element,    
dl < < ). Such a dipole ‘A’ vertically 
located above the ideal ground plane is 
shown in Fig.1  

 
 
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 

 Because of the perfect reflection from the 
ideal ground, this dipole configuration is 
equivalent to 2-element array as shown in 
Fig. 2, where ‘B’ is the mirror image 
antenna. Spacing between the antennas d = 

2 H, k = 1,  = 0,  d  = 





 H4

H2
2

 

 





 

2
cos2

E

E

A

T    

 



 cos
H4

cosd  

              = 2  (max.)  ,   if   = 0 
      = 0  (min.)  ,   if    =  
 

For Null at  = 45  

 = 











2

1H4
 

22

1H



  ,   

22
H


  

 For maximum radiation  
 = 0,   d cos  = 0 ,  = 90 
 

04.  

Sol:  (a) Linear array of two half – wave dipoles 
      A and B is shown in Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Given: d = 
4


, IB = k IA , k = 1, =  90 

1.85  = 0  =  1800 

Fig. 2 

 =  900 

 = 900 

Null 

Null 

0.77 

600 

 600 

2

2

 99.60 

99.60 

Fig. 1 

B A 

X 

Y 
d 

O 

M 

N 

 

rA 
rB 

to a remote 
point, P 

OM is  to NM 
OM = d sin() 

 
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0.5  0.5  

I0 = I +90 I1 = 2 I 0 I2 = I 90 

 

Fig.1 

I  I 2 I 3 

2  1  0  

MN = d cos() 

 
M 

N 

The radius vectors 


Ar  and 


Br  to a remote 
point, P can be considered parallel.  
Then rB = rA  OM = rA  d sin()  
 Path difference = rB  rA  
                    =  d sin() 
Phase difference due to this path difference    

   =   d sin(),  = 

2

  

 Phase difference between radiations from 
the two antennas,  
 =  d sin() +  ……............ (I) 
rB  rA may be used as far as the magnitudes 
of the fields from the two antennas are 
concerned.  
 Phasor sum of the fields will be  
E = EA (1 + k e j) 
where EA is the field strength due to A 
alone. 
 

The magnitude of the field strength  
ET = | EA (1 + k e j) |  

     = )(sink)cosk1(E 222
A   

For k = 1 as in the present problem 







 

2
cos2

E

E

A

T  …………… (II) 

 

Radiation pattern for 
A

T

E

E in the XY plane 

is given by equations (II) and (I). 
 

(b) For 
4

d


 , 
2

d


  and      
2


  

 From  (I)   

4
sin

42








 …………… (III) 

 From (II) and (III)  















 





4

sin
4

cos2
E

E

A

T  ………. (IV) 

 

For different values of , values of 
A

T

E

E
 are 

given below and the sketch of radiation 
pattern is shown in Fig. 2, with these values 

  
2


  

A

T

E

E
   

 0 
4


  2   

90   0      2 (max) 

         180 
4


  2  

          90  
2


  0 (null) 

  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

05.   
Sol: The three element array with elements 0, 1, 

2 is shown in Fig. 1 
 
 
 
 
 
 
 
 
 
 
 
 
 Element spacing d = 0.5  
 Path difference = MN = d cos() 
 Phase difference due to this path difference 

    = d cos()  

 = 0 

 = 180 

 = 90  = 90 

Null  Null  

2

2

2 

Fig. 2 
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 







2

2
d  

 Progressive Phase difference between the 
currents  

          = I1  I0 = I2  I1   

     =   90 = rad
2


  

 2
I

I
k

0

1
1  ,   1

I

I
k

0

2
2   

 Total progressive phase shift between 
successive radiations from the elements,   

  = d cos  +  = 
2

cos


  

 ψ2j
2

ψj
1

0

T ekek1
E

E
  

         ψ2jψj ee21   

         = (1 + 2 cos  + 1cos 2) 
      + j (2 sin  + sin 2) 
                                                                                            

         22

2

0

T ψ)2sinψsin(2ψ)2cosψcos2(1
E

E
  

       222 ]ψ)cos(1ψsin2[]ψcos2ψcos2[   

              = [2 cos  (1 + cos )]2 + [2 sin  (1+cos )]2 

     = (1 + cos )2  (4 cos2  + 4 sin2 ) 

             =
2

2

2
cos24 



 

 

  







2

ψ
cos16

E

E 4

2

0

T  

        







2

ψ
cos4

E

E 2

0

T  

 Differentiate w.r.t  

 
0

T

E

E
 is maximum or minimum when : 

0
2

1

2
sin

2
cos24 






 







   

 0
2

cos
2

sin 


  or   sin  = 0 

  = 0  (for max) ,    =   (for min) 

    
2

0

T

E

E
 

 0   16  (max) 
  or   0    (min) 

 
2

π
cosπψ  






 

2

1
cosπ   

      =  0 ,  when   =  60 (for max) 

      =  ,   when 
2

1
cos     

   =  120 (for min) 
  The direction of major lobe is   60  
 
 Half - Power Beam width 
 
 In terms of  , half power angles are given 

by 

 16
2

1

2
cos16 4 


  

 
2

1

2
cos2 


  

 841.0
2

1

2
cos 


 

  6.65,8.32
2




 

 In terms of  , half power angles are given 
by 

 6.65
2

cos 


    

 3644.0
180

6.65

2

1
cos   

 cos  = 0.8644  or  0.1356    
  =  30.2  or   82.2 
        Half - Power Beam width   =  52 
 

  When   = 0,  
2


      

2


  ,

2


  4

E

E

0

T   

         =  ,   
2


    
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d 

 A B 

Fig. 1 

 The power pattern or 
2

0

T

E

E
pattern is shown 

in Fig.2. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
06.    
Sol: 
   
 
 
 
 
 
 

 
    The array of 2 half wave dipoles A and B is 

shown in Fig.1 

 Given :  d = 1.5 ,  



 35.1
2

d  

 (a) IB = IA ,  | IA | = | IB |   
         k = 1,  = 0, (Broadside array) 

       





 

2
cos2

E

E

A

T    

              = d cos () +  
        For  = 0, d = 3    
         = 3  cos () 

      





 


 )(cos

2

3
cos2

E

E

A

T  

      
A

T

E

E
 is maximum = 2, if  = 90 

       For half-power beam width, BW = 2  

       2
2

1
φΔ(90cos

2

π3
cos2 



   

    
4

)(sin
2

3 



     

          
6

1
)(sin  ,    = 9.6 

    Half power Beam width = 2  = 19.2 
 
 

        (b) | IA |  =  | IB |,  k = 1 

       = 540 = 3 rad =  3  =    

      α)(cosdβψ   
              π3)(cosπ3    

          =  d (End fire array)  

     







2

ψ
cos2

E

E

A

T  

            



 





2

3
cos

2

3
cos2  

    
A

T

E

E
 is maximum = 2 

      if  0
2

3
cos

2

3





  

        = 0 and 180  
 

 Two principal maxima occur. 
 For half-power beam width = 2  

 2
2

1

2

π3
φ)(Δcos

2

π3
cos2 



      

     
4

]1)(cos[
2

3 


  

     
6

1
]1)(cos[        

          
6

5

6

1
1)(cos      

     = 33.6  
      Half-power beam width = 2 = 67.2 

30.2 
60 

82.2 

120 

 120 

82.2 

30.2  

4 

4 

4 

8 

8 

4 

1/2  Power  

1/2  Power  

1/2 Power  

1/2  
Power  

Fig .2  

60 

52 

52 

Max. 

Max. 

 = 90 

 =  90 

 = 180  = 0 

16 

16 

8 

8 
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33.56 

 33.56 

Null 
Prin. Max. 

3 
2.415 

2.415 

2.415 
Null 

Prin. Max. 

Fig. 2    Radiation Pattern 

3 

0.4  = 0 

 = 90 

 = 180 

 =  90 

120 

 120 

N 

d d 

0  2 

Fig. 1 

07.     
Sol: The three element array is shown in Fig. 1.  
 
 
 
 
       

  
      
 

 33.56,
4

λ
d N    

 
2

π

4

λ

λ

π2
dβ   

  = d cos  +       

2
sin

2

n
sin

E

E

0

T





 ,   n = 3 

 Nulls at 
2

3
  =   ,  2, etc 

  etc
3

4
,

3

2
  

  d cos N +  = 
3

2
 

  56.33cos
23

2 
  

  0.8333
2

π
π

3

2
α   

        75120   

      45)165(195 or  
 

 Principal (main) beam at  = 0   

 3n
E

E

0

T   

 d cos  +  = 0 

 
4

cos
2





    

 ,
2

1
cos      =  120 

  = +165 , gives cos  > 1,  is imaginary 
(Not possible)  

 The radiation pattern is shown in Fig. 2. for 
the sake of practice.   
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