

ESE | GATE | PSUs CE | ME | EE | EC | IN |PI

ENGINEERING MATHEMATICS

Text Book : Theory with worked out Examples and Practice Questions

♥ HYDERABAD ♥ DELHI ♥ BHOPAL ♥ PUNE ♥ BHUBANESWAR ♥ BANGALORE ♥ LUCKNOW ♥ PATNA ♥ CHENNAI ♥ VISAKHAPATNAM ♥ VIJAYAWADA ♥ TIRUPATI ♥ KOLKATA ♥ AHMEDABAD

Engineering Mathematics

(Solutions for Text Book Practice Questions)

01. Linear Algebra

01. Ans: 3

Sol: If rank of A is 1, then A has only one independent row.

The elements in R₁ and R₂ are proportional

 $\Rightarrow \frac{3}{P} = \frac{P}{3} = \frac{P}{P}$ $\Rightarrow P = 3$

02. Ans: 0

Sol: Here A and B are symmetric matrices.

 \Rightarrow (AB – BA) is a skew symmetric matrix of order (3 × 3)

 $\Rightarrow |AB - BA| = 0$

03. Ans: (c)

Sol: Now, $B = A^{-1} = \frac{adj(A)}{|A|}$

$$\Rightarrow \mathbf{B} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{13} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{A}_{23} \\ \mathbf{A}_{31} & \mathbf{A}_{32} & \mathbf{A}_{33} \end{bmatrix}^{\mathsf{T}}$$

$$= \frac{1}{|\mathbf{A}|} \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{21} & \mathbf{A}_{31} \\ \mathbf{A}_{12} & \mathbf{A}_{22} & \mathbf{A}_{32} \\ \mathbf{A}_{13} & \mathbf{A}_{23} & \mathbf{A}_{33} \end{bmatrix}$$

where $\mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} \end{bmatrix}$

 \therefore The element in the 2nd row and 3rd column of B is given by

$$\frac{1}{|A|} A_{32} = \frac{1}{|A|} (-1)^{3+2} M_{32}$$
$$= \frac{1}{2} (-1)(1-0) = \frac{-1}{2}$$

04. Ans: (a) Sol: Here, A^n is a zero matrix. \therefore rank of $A^n = 0$

05. Ans: 46 Sol: Here, $|adj A| = |A|^2$ (:: $|adj(A_{n \times n})| = |A|^{n-1}$) $\Rightarrow 2116 = |A|^2$ $\Rightarrow |A| = \pm 46$ \therefore Absolute value of |A| = 46

06. Ans: (b)Sol: S₁) If A and B are symmetric then AB need not be equal to BA

for example, if A =
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
and B =
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

then A and B are symmetric but AB is not equal to BA.

 \therefore S₁ is false.

 S_2) If A and B are symmetric then AB – BA is a skew-symmetric matrix of order 3.

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

1995

Engineering Publications	2	Postal Coaching Solutions
 ∴ AB – BA = 0 (∵ determinant of a skew symmetric matrix of odd order is 0) Hence, S₂ is true. 07. Ans: (a) Sol: Each element of the matrix in the principal 	-	$\mathbf{A} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 0 & n & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & n \end{bmatrix}$ $\therefore \mathbf{A} = \mathbf{n}^{n-2}$
but Each clement of the matrix in the principal diagonal and above the diagonal, we can chosen in q ways. Number of elements in the principal diagonal = n Number of elements above the principal diagonal = $n\left(\frac{n-1}{2}\right)$ By product rule,		 09. Ans: (a) Sol: S1 is true because, any subset of linearly independent set of vectors is always linearly independent set. S2 is not necessarily true, for example, {x1, x2, x3} can be linearly independent set and x4 is linear combination of x1, x2 and x3.
number of ways we can choose these elements = $q^n \cdot q^{n\left(\frac{n-1}{2}\right)}$ Required number of symmetric matrices = $q^{n\left(\frac{n+1}{2}\right)}$ 08. Ans: (b) Sol: $A = \begin{bmatrix} n-1 & -1 & \dots & -1 \\ -1 & n-1 & \dots & -1 \end{bmatrix}$ Since	e ce 1	 10. Ans: (c) Sol: The given matrix is skew-symmetric. Determinant of a skew symmetric matrix of odd order is 0. ∴ Rank of A < 3. Determinant of a non-zero skew symmetric matrix is ≥ 2 ∴ Rank of A = 2
Sol: A = $\begin{bmatrix} \dots & \dots & \dots & \dots \\ -1 & -1 & \dots & n-1 \end{bmatrix}$ R ₁ \rightarrow R ₁ + R ₂ + \dots + R _{n-1} A = $\begin{bmatrix} 1 & 1 & \dots & 1 \\ -1 & n-1 & \dots & -1 \\ \dots & \dots & \dots \\ -1 & -1 & \dots & n-1 \end{bmatrix}$ R ₂ \rightarrow R ₂ + R ₁ , R ₃ \rightarrow R ₃ + R ₁ ,, R _{n-1} \rightarrow R _{n-1} + R ₁ ,		11. Ans: (a) Sol: Let $A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 0 & \alpha \\ -2 & 2 & \alpha \end{bmatrix}$ For the system of linear equations to have a unique solution, det(A) $\neq 0$. $(0 - 2\alpha) + 2(2\alpha + 2\alpha) + (4 - 0) \neq 0$ $\Rightarrow -2\alpha + 8\alpha + 4 \neq 0$ $\Rightarrow 6\alpha + 4 \neq 0$ $\Rightarrow 6\alpha \neq -4$

3 **Engineering Mathematics** 13. Ans: (b) $\Rightarrow \alpha \neq \frac{-2}{3}$ **Sol:** Given, $A = \begin{bmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{bmatrix}$ \therefore Option (A) is correct. 12. Ans: (c) $\Rightarrow |\mathbf{A}| = \begin{vmatrix} \mathbf{k} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{k} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{k} \end{vmatrix}$ Sol: Given A = $\begin{vmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 4 & 3 & 10 \end{vmatrix}$ $\Rightarrow |A| = k(k^2 - 1) - (k - 1) + (1 - k)$ Applying $R_2 - 2R_1$, $R_3 - 4R_1$ \Rightarrow |A| = (k - 1)[k² + k - 2] $\sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -2 \\ 0 & -5 & -2 \end{bmatrix}$ \Rightarrow |A| = $(k-1)^2 (k+2)$ Thus, the system has a unique solution when $(k-1)^2 (k+2) \neq 0$ Applying $R_3 - R_1$ (or) $k \neq 1$ and $k \neq -2$ $\sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ 14. Ans: (c) The augmented matrix is Sol: which is an echlon matrix with two non-zero $(A | B) = \begin{bmatrix} 4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 1 \end{bmatrix}$ rows. \therefore Rank of A = 2 If rank of A is less than number of variables, $\begin{array}{cccc} R_2 \rightarrow 2R_2 - 3R_1 \\ R_3 \rightarrow 2R_3 + R_1 \end{array} \begin{bmatrix} 4 & 2 & 1 & 3 \\ 0 & 0 & 5 & 5 \\ 0 & 0 & -1 & -1 \end{bmatrix}$ then the system AX = O has infinitely many non-zero solutions. If rank of A is less than number of variables, then the system AX = B cannot have unique $R_3 \rightarrow 5R_3 + R_2 \begin{bmatrix} 4 & 2 & 1 & 3 \\ 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ solution. Hence, option (C) is not true. If rank of A is less than order of A, then the matrix A is singular. $\rho(A) = \rho(A \mid B) = 2$ (< number of variables). \therefore A⁻¹ does not exist : The system has infinitely many solutions.

ACE Engineering Publications

$\begin{array}{cccc} R_4 - R_3 \\ \\ \sim \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & -1 & -3 & -8 \\ 0 & 0 & 15 & 21 \\ 0 & 0 & 0 & 0 \end{pmatrix} \end{array}$

 $\therefore \rho(A) = \rho(AB) = 3 = no. of variables$ Hence, there exists only one solution.

19. Ans: (d)

Sol: If A $_{n \times n}$ has n distinct eigen values, then A has n linearly independent eigen vectors. If zero is one of the eigen values of A, then A is singular and A⁻¹ does not exist. If A is singular then rank of A < 3 and A cannot have 3 linearly independent rows.

 \therefore Only option (d) is correct.

20. Ans: (b)

Sol: If λ₁, λ₂, λ₃ are the eigen values of a 3×3 matrix A, then
(i) λ₁ + λ₂ + λ₃ = trace of A
(ii) λ₁ λ₂ λ₃ = |A|

 $\Rightarrow \lambda_1 + \lambda_2 + \lambda_3 = 18 \dots (1)$ and $\lambda_1 \lambda_2 \lambda_3 = 0 \dots (2)$ Here, the equations (1) & (2) satisfy with

option (b) only.

 \therefore Option (b) is correct.

21. Ans: (a)

Sol: Since, A is singular, $\lambda = 0$ is an eigen value. Also, rank of A = 1. The root $\lambda = 0$ is repeated n - 1 times. trace of A = n = 0 + 0 + + λ_n . $\Rightarrow \lambda_n = n$

 \therefore The distinct eigen values are 0 and n.

Engineering Mathematics

22. Ans: (c)
Sol: The characteristic equation is

$$(\lambda - 1) (\lambda - 2) (\lambda - 3) = 0$$

 $\lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0$
By Caley Hamilton's theorem,
 $A^3 - 6A^2 + 11A - 6I = 0$
Multiplying by A⁻¹,
 $(A^2 - 6A + 11I) = 6A^{-1}$
23. Ans: (b)
Sol: Let $A = \begin{bmatrix} 10 & -4 \\ 18 & -12 \end{bmatrix}$
Consider $|A - \lambda I| = 0$
 $\Rightarrow \lambda^2 - (-2)\lambda + (-120 + 72) = 0$
 $\Rightarrow \lambda^2 + 2\lambda - 48 = 0$
 $\therefore \lambda = 6, -8$ are eigen values of A.
For $\lambda = 6$, the eigen vectors are given by
 $\begin{bmatrix} A - 6I \end{bmatrix} X = O$
 $\Rightarrow \begin{bmatrix} 4 & -4 \\ 18 & -18 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\Rightarrow x - y = 0$
 $\Rightarrow x = y$
The eigen vectors are of the form
 $X_1 = k_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
For $\lambda = -8$, the eigen vectors are given by
 $\begin{bmatrix} A + 8I \end{bmatrix} X = O$
 $\Rightarrow \begin{bmatrix} 18 & -4 \\ 18 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\Rightarrow 18x - 4y = 0$
 $\Rightarrow 9x - 2y = 0$
The eigen vectors are of the form
 $X_1 = k_2 \begin{bmatrix} 2 \\ 9 \end{bmatrix}$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

5

Engineering Publications	7	Engineering Mathematics
28. Ans: 8 Sol: Given A = $\begin{bmatrix} 1 & 0 & -1 \\ -1 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ The characteristic equation is $\lambda^3 - \lambda^2 - 4\lambda + 4 = 0$ By Caley-Hamilton's theorem, $A^3 - A^2 - 4A + 4I = O$ adding 2I on both sides $A^3 - A^2 - 4A + 6I = 2I$ Let B = $A^3 - A^2 - 4A + 6I$ Now B = 2I	RIA	31. Ans: (a) Sol: For upper triangular matrix the eigen values are same as the elements in the principal diagonal. Let $A = \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}$ Then $(I + A) = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$ $\rightarrow II + AI = 1$
$\therefore \mathbf{B} = 2\mathbf{I} = 8$ 29. Ans: 2 Sol: $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ Clearly $\lambda = 2$ Since 30. Ans: (d) Sol: We have, $\mathbf{A}^{\mathrm{T}} = -\mathbf{A}$ (\because A is skew-symmetric) $\Rightarrow \mathbf{A} + \mathbf{A}^{\mathrm{T}} = (\mathbf{A} - \mathbf{A}) = \mathbf{O}$ Rank of $(\mathbf{A} + \mathbf{A}^{\mathrm{T}}) = 0$ \therefore Number of linearly independent eigenvectors = $\mathbf{n} - \operatorname{rank}$ of $(\mathbf{A} + \mathbf{A}^{\mathrm{T}}) = \mathbf{n}$		$\Rightarrow +A = 1$ $\therefore I + A \text{ is non-singular and hence invertible.}$ 32. Ans: 8 Sol: The characteristic equation of M is $\lambda^{3} - 12\lambda^{2} + a \lambda - 32 = 0 \dots \dots (1)$ Substituting $\lambda = 2$ in (1), we get $a = 36$ Now, the characteristic equation is $\lambda^{3} - 12\lambda^{2} + 36\lambda - 32 = 0$ $\Rightarrow (\lambda - 2) (\lambda^{2} - 10\lambda + 16) = 0$ $\Rightarrow \lambda = 2, 2, 8$ $\therefore \text{ The largest among the absolute values of the eigen values of M = 8.}$ 33. Ans: (d) Sol: Now, $ A = \begin{vmatrix} 2 & 0 & 1 \\ 4 & -3 & 3 \\ 0 & 2 & -1 \end{vmatrix}$ $\Rightarrow A = 2(3 - 6) - 0 + 1(8 - 0)$ $\therefore A = 8 - 6 = 2$ $\therefore \text{ Option (d) not true and other options are true}$

ACE Engineering Publications	8	Postal Coaching Solutions
34. Ans: (d) Sol: Applying $C_4 - 3C_1$ the determinant becomes $= \begin{bmatrix} -1 & 2 & 1 & 3 \\ 1 & 0 & 0 & 0 \\ 2 & 1 & -1 & -3 \\ 2 & 3 & 0 & 0 \end{bmatrix}$ Expanding the determinant by 2^{nd} row we will get the value 0. \therefore Option (a) is correct By deleting 1^{st} row 1^{st} coloumn of A, we get a 3rd order non zero minor. \therefore The rank of A is 3. If $ A = 0$ then the system AX = 0 hat infinitely many non zero solutions \therefore Option (c) is correct. If Rank of A is 3, then the system AX = I	e et ER // s	$\therefore \text{ The set of vectors is linear set and it forms a basis of R3}$ 36. $\mathbf{k} \neq 0$ Sol: If the given vectors form a basis, then they are linearly independent $\Rightarrow \begin{vmatrix} \mathbf{k} & 1 & 1 \\ 0 & 1 & 1 \\ \mathbf{k} & 0 & \mathbf{k} \end{vmatrix} \neq 0$ $\Rightarrow \mathbf{k}^2 + \mathbf{k} - \mathbf{k} \neq 0$ $\therefore \mathbf{k} \neq 0$ 02. Calculus 01. Ans: (a)
cannot have unique solution. 35. Ans: (a) Sol: Given $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$		Sol: $\lim_{x \to 5/4} (x - [x]) = \lim_{x \to 5/4} x - \lim_{x \to 5/4} [x]$ = $\frac{5}{4} - 1 = \frac{1}{4}$ 02. Ans: (d) Sol: $\lim_{x \to 2} \frac{ x - 2 }{ x - 2 }$
$\Rightarrow A \sim \begin{bmatrix} 1 & 2 & 2 \\ 0 & -3 & -2 \\ 0 & -2 & -3 \end{bmatrix}$ $R_{2} \rightarrow R_{2} - 2R_{1}, R_{3} \rightarrow R_{3} - 2R_{1}$ $\Rightarrow A \sim \begin{bmatrix} 1 & 2 & 2 \\ 0 & -3 & -2 \\ 0 & 0 & -5 \end{bmatrix}$ $R_{3} \rightarrow 3R_{3} - 2R_{2}$ $\Rightarrow \rho(A) = 3$ = number of linearly independent rows		Left Limit = $\lim_{x \to 2^{-}} \frac{-(x-2)}{x-2} = -1$ Right Limit = $\lim_{x \to 2^{+}} \frac{x-2}{x-2} = 1$ \therefore Left Limit \neq Right Limit \Rightarrow Limit does not exist 03. Ans: (d) Sol: $\lim_{x \to 4} [x]$ Left Limit = 3, Right Limit = 4 \Rightarrow Left Limit \neq Right Limit \Rightarrow Limit does not exist

Engineering Publications	9	Engineering Mathematics
04. Ans: 2 $x \sin x$ $\left(\frac{\sin x}{x}\right)$ 1		7. Ans: (b) Sol: $y = \lim_{x \to 0} x^{x}$
Sol: $\lim_{x \to 0} \frac{x \sin x}{1 - \cos x} = \lim_{x \to 0} \frac{(x)}{\left(\frac{1 - \cos x}{x^2}\right)} = \frac{1}{\frac{1}{2}} = 2$	2	$\log y = \underset{x \to 0}{\text{Lt}} \log x^{x}$ $= \underset{x \to 0}{\text{Lt}} x \log x$
05. Ans: 0		[.]
Sol: $\lim_{x \to \pi/2} [\text{Tanx} - \text{Secx}] = \lim_{x \to \pi/2} \left[\frac{\text{Sinx} - 1}{\text{Cosx}} \right] \left(\frac{0}{0} \text{ for } r \right)$	n)	$= \operatorname{Lt}_{x \to 0} \left[\frac{\log x}{\left(\frac{1}{x}\right)} \right]$
Using L'Hospital Rule, = $\lim_{x \to \pi/2} \left[\frac{\cos x}{-\sin x} \right] = \frac{0}{-1} = 0$	ERIA	$= \underset{x \to 0}{\text{Lt}} \left[\frac{\frac{1}{x}}{\left(\frac{-1}{x^2}\right)} \right] \text{By L'hospital rule}$
06. Ans: (c)		$= \operatorname{Lt}_{x \to 0} (-x) = 0$
Sol: $\lim_{x\to\infty} \left[1+x^2\right]^{e^{-x}} (\alpha^{\circ} \text{ for } m)$		$y = e^{o} = 1$
Let $y = [1 + x^2]^{e^{-x}}$ $\Rightarrow \log y = e^{-x} \log(1 + x^2)$	(28. Ans: (a) Sol: $1 \cdot \sqrt{a+x} - \sqrt{a-x}$ $1 \cdot (a+x) - (a-x)$
$\Rightarrow \lim_{x \to \infty} \log y = \lim_{x \to \infty} \frac{\partial (1 - for m)}{e^x}$ Using L'Hospital Rule $\Rightarrow \log \left(\lim_{x \to \infty} (1 + x^2)^{e^{-x}} \right)$	ice 1	$\lim_{x \to 0} x = \lim_{x \to 0} \frac{1}{x \sqrt{a + x} + \sqrt{a - x}}$ $\lim_{x \to 0} \frac{1}{x \sqrt{a + x} + \sqrt{a - x}} = \frac{1}{\sqrt{a + x} \sqrt{a - x}}$
$= \lim_{x \to \infty} \frac{\frac{1}{1 + x^2} (2x)}{e^x} \left[\frac{\infty}{\infty} \text{ for } m \right]$		$x \to 0$ $x[\sqrt{a} + x + \sqrt{a} - x] \sqrt{a} + \sqrt{a} \sqrt{a}$ 99. Ans: (a) Sol: (a) $f(2) = 3$,
$= \lim_{x \to \infty} \frac{2}{e^{x}(2x) + e^{x}(1 + x^{2})}$		RL = 2(2) - 1= 3, LL = $\frac{3+7}{3} = 3$
$=\frac{2}{\infty}=0$		$\Rightarrow f(x) \text{ is continuous at } x = 2$ (b) $f(2) = 2$, $\lim_{x \to 2} f(x) = 8 - 2 = 6 \neq f(2)$
$\implies \lim_{x \to \infty} \left(1 + x^2 \right)^{e^{-x}} = e^0 = 1$		$\Rightarrow f(x) \text{ is discontinuous at } x = 2$ (c) $f(2) = 2 + 2 = 4$, $LL = 2 + 2 = 4$,

Engineering Publications	10	Postal Coaching Solutions
RL = 2 - 4 = -2 $\Rightarrow LL \neq RL \Rightarrow Limit \text{ does not exist}$ $\Rightarrow f(x) \text{ is discontinuous at } x = 2$ (d) f(2) is not defined		i.e., $(x^2)_{x=2} = (mx + b)_{x=2}$ $\Rightarrow 4 = 2m + b$ $\therefore b = -4$ Hence, option (A) is correct.
$\Rightarrow f(x) \text{ is discontinuous} \text{at } x = 2$ 10. Ans: (a) Sol: Given $(f \circ g)(x) = f[g(x)]$ In $(-\infty, 0), g(x) = -x$ $\Rightarrow f[g(x)] = f(-x)$ $\Rightarrow f[g(x)] = x^2$ $\therefore f[g(x)] \text{ has no points of discontinuities in}$ $(-\infty, 0).$		 13. Ans: (c) Sol: (A) f(x) = x is not differentiable at x = 0 (B) f(x) = cot x is neither continuous nor differentiable at x = 0 (C) f(x) = sec x is differentiable in the interval (-π/2, π/2) and hence in the interval [-1, 1] (D) f(x) = cosec x is neither continuous nor
11. Ans: (a) Sol: We have $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1) = 1$		 (D) I(x) = cosec x is hermer continuous nor differentiable at x = 0 ∴ Option (c) is correct.
$\therefore f(x) \text{ is continuous at } x = 1$ Now, $f'(1^-) = \underset{x \to 1^-}{Lt} \frac{f(x) - f(1)}{x - 1}$ $= \underset{x \to 1}{Lt} \frac{x - 1}{x - 1} = 1$ and $f'(1^+) = \underset{h \to 1^+}{Lt} \frac{f(x) - f(1)}{x - 1}$ $= \underset{x \to 1}{Lt} \frac{(2x - 1) - 1}{x - 1} = 2$ Here, $f'(1^-) = 1 \neq f'(1^+) = 2$ $\therefore f(x) \text{ is not differentiable at } x = 1.$		14. And: (b) Sol: Let $f'(x) = \sin (x) + 2.\sin (2x) + 3$. $\sin (3x) - \frac{8}{\pi} = 0$ be the given equation. Then, $f(x) = -\cos(x) - \cos (2x) - \cos(3x)$ $-\frac{8}{\pi}(x) + k$ Here, if the function $f(x)$ satisfies the all the three conditions of the Rolle's theorem in [a, b], then the equation $f'(x) = 0$ has at least
12. Ans: (a) Sol: Since, f is differentiable at $x = 2$, $f'(2^-) = f'(2^+)$ $\Rightarrow (2x)_{x=2} = m$ $\therefore m = 4$ Since, f is continuous at $x = 2$		one real root in (a, b). As $\cos(ax)$ is continuous & differentiable function and $a_0 + a_1x$ is continuous & differentiable function for all x, the function f(x) is continuous and differentiable for all x. Here, (i) $f(x)$ is continuous on $\left[0, \frac{\pi}{2}\right]$

ACE Englaced Publication

Engineering Mathematics

 $\Rightarrow \frac{1}{1+0^2} > \frac{1}{1+c^2} > \frac{1}{1+c^2}$ (ii) f(x) is differentiable on $\left(0, \frac{\pi}{2}\right)$ $\Rightarrow \frac{1}{1+2^2} < \frac{1}{1+c^2} < \frac{1}{1+c^2}$ (iii) $f(0) = -3 + k = f\left(\frac{\pi}{2}\right)$ $\Rightarrow \frac{1}{5} < \frac{f(2)}{2} < \frac{1}{1}$ \therefore By a Rolle's theorem, the given equation has at least one root in $\left(0, \frac{\pi}{2}\right)$. $\therefore \frac{2}{5} < f(2) < 2$ (or) $f(2) \in (0.4, 2)$ Hence, option (B) is correct. 17. Ans: 2.5 range 2.49 to 2.51 15. Ans: (c) Sol: By Cauchy's mean value theorem, Sol: By Lagrange's theorem, we have $\frac{f'(c)}{g'(c)} = \frac{f(3) - f(2)}{g(3) - g(2)}$ $f'(C) = \frac{f(8) - f(1)}{8}$ $\Rightarrow -e^{2c} = \frac{e^3 - e^2}{e^{-3} - e^{-2}}$ $\Rightarrow 1 - \frac{4}{C^2} = \frac{8.5 - 5}{7} \quad (\because f'(x) = 1 - \frac{4}{x^2})$ $\therefore \quad c = 2.5 \in (2, 3)$ \Rightarrow C = $\pm 2\sqrt{2}$ (:: C = $-2\sqrt{2} \notin (1,8)$) $\therefore C = 2\sqrt{2} \in (1, 8)$ 18. Ans: (a) **Sol:** $f(x) = e^{Sinx} \Rightarrow f(0) = e^0 = 1$ $f'(x) = e^{Sinx}$. Cosx $\Rightarrow f'(0) = 1$ 16. Ans: (b) Sol: Let f(x) be defined on $f''(x) = e^{Sinx}$. $Cos^2 x + e^{Sinx} (-Sinx) \Rightarrow f''(0) =$ $[a, b] = [0, 2] \ni f^{1}(x) = \frac{1}{1 + x^{2}} \forall x.$ 1 - 0 = 1Taylor's Series for f(x) about x = 0 is Then by Lagrange's mean value theorem, ICC $f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots$ $\exists c \in (0,2) \ni f^{1}(c) = \frac{f(2) - f(0)}{2}$ $= 1 + x + \frac{x^2}{2!} + \dots$ $\Rightarrow \frac{1}{1+c^2} = \frac{f(2)}{2}$ \therefore c \in (0, 2) 19. Ans: (a) $\Rightarrow 0 < c < 2$ **Sol:** Coefficient of $x^4 = \frac{f^{(1)}(0)}{4!}$ $\Rightarrow 0^2 < c^2 < 2^2$ $\Rightarrow 1 + 0^2 < 1 + c^2 < 1 + 2^2$ Given $f(x) = \log(Secx)$ \Rightarrow f'(x) = $\frac{1}{\text{Secx}}$ Secx Tanx = Tanx

11

Eugineering Publications	12	Postal Coaching Solutions
$\Rightarrow f''(x) = \operatorname{Sec}^{2} x$ $\Rightarrow f'''(x) = 2\operatorname{Sec}^{2} x \operatorname{Tanx}$ $\Rightarrow f^{iv}(x) = 2[\operatorname{Sec}^{2} x \operatorname{Sec}^{2} x + \operatorname{Tanx}. 2\operatorname{Secx}.$ $\operatorname{Secx} \operatorname{Tanx}]$ $\Rightarrow f^{iv}(0) = 2$ $\therefore \operatorname{Coefficient} \operatorname{of} x^{4} = \frac{f^{iv}(0)}{4!} = \frac{2}{24} = \frac{1}{12}$ 20. Ans: (a) Sol: Given $f(x) = \operatorname{Tan}^{-1} x \Rightarrow f(0) = 0$		Postal Coaching Solutions 22. Ans: (a) Sol: Given $u = Sin\left(\frac{x^2 + y^2}{x + y}\right) \Rightarrow Sinu = \frac{x^2 + y^2}{x + y}$ $\Rightarrow f(u) = Sinu \text{ is homogeneous with deg,}$ n = 1 By Eulen's theorem $x.u_x + y.u_y = n \frac{f(u)}{f'(u)} = 1 - \frac{Sinu}{Cosu} = Tan u$ 23. Ans: (a)
$\Rightarrow f'(x) = \frac{1}{1+x^2} \Rightarrow f'(0) = 1$ $\Rightarrow f''(x) = \frac{-1}{1+x^2} (2x) \Rightarrow f''(0) = 0$ $\Rightarrow f'''(0) = -2$ $\Rightarrow f'''(x) = -2 \left[\frac{(1+x^2)(1) - x(2x)}{(1+x^2)^2} \right]$ Taylor's Series of f(x) about x = 0 is, $f(x) = f(0) + xf'(0) + \frac{x^2}{2!} f''(0) + \frac{x^3}{3!} f'''(0) + \dots \infty$ $= 0 + x(1) + \frac{x^2}{2!} (0) + \frac{x^3}{2!} (-2) + \dots \infty$		Sol: Given $u = x^{-2}Tan\left(\frac{y}{x}\right) + 3y^{3}Sin^{-1}\left(\frac{x}{y}\right)$ = f(x, y) + 3 g(x, y) Where $f(x, y)$ is homogeneous with deg $m = -2$ and $g(x, y)$ is homogeneous with deg $n = 3$ $\Rightarrow x^{2}$. $U_{xx} + 2xy \ U_{xy} + y^{2} \ U_{yy} = m(m-1)$ f(x,y) + 3 n(n-1) g(x, y) = -2(-2-1) f(x, y) + 3[3(3-1)g(x, y)] = 6 [f(x, y) + 3 g(x, y)] = 6 u
2! 3! Sin $= x - \frac{x^{3}}{3} = \dots \infty$ 21. Ans: (c) Sol: $e^{x+x^{2}} = 1 + \frac{(x + x^{2})}{1!} + \frac{(x + x^{2})^{2}}{2!} + \frac{(x + x^{2})^{3}}{3!} + \dots$ $\left(\because e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots \right)$ $\therefore e^{x+x^{2}} = 1 + x + \frac{3x^{2}}{2} + \frac{7x^{3}}{6}$		24. Ans: (a) Sol: $\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} + \frac{\partial u}{\partial z} \frac{dz}{dt}$ $= (3x^2 + z^2 + yz) e^t + (3y^2 + xz) (-Sint)$ $+ (2xz + xy)3t^2$ At t = 0, $\frac{du}{dt} = (3(1) + 0 + 0)(1) + [3(1) + 0](0) + [0 + 1](0)$ = 3

Engineering Publications	13Engineering Mathematics
25. Ans: (c) Sol: Given $x^{y} + y^{x} = -C$ Let $f(x,y) = x^{y} + y^{x}$ $\frac{dy}{dx} = -\frac{\partial f}{\partial x} = -\left[\frac{yx^{y-1} + y^{x} \log y}{x^{y} \log x + xy^{x-1}}\right]$ At (1 1) $\frac{dy}{dx} = -\left[\frac{1+0}{x^{y}}\right] = -1$	28. Ans: (c) Sol: $\frac{\partial(u, v, w)}{\partial(x, y, z)} = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} = \begin{vmatrix} 3 & 2 & -1 \\ 1 & -1 & 1 \\ 1 & 2 & -1 \end{vmatrix}$ = 3(1-2) - 2(-1-1) - 1(2+1) = -2
26. Ans: (a) Sol: $u = x \log(xy)$ $\frac{du}{dx} = \frac{\partial u}{\partial x} \frac{dx}{dx} + \frac{\partial u}{\partial y} \frac{dy}{dx}$	$\therefore \frac{\partial(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial(\mathbf{u}, \mathbf{v}, \mathbf{w})} = \frac{1}{\frac{\partial(\mathbf{u}, \mathbf{v}, \mathbf{w})}{\partial(\mathbf{x}, \mathbf{y}, \mathbf{z})}} = \frac{-1}{2}$ 29. Ans: (b) Sol: $f(\mathbf{x}) = \frac{\mathbf{x}^3}{3} - \mathbf{x} \Rightarrow f'(\mathbf{x}) = \frac{3\mathbf{x}^2}{3} - 1 = \mathbf{x}^2 - 1 = 0$
$= \left[x.\frac{1}{xy}(y) + \log(xy)\right](1) + \left[x.\frac{1}{xy}.(x).\frac{dy}{dx}\right]$ Given $\underbrace{x^3 + y^3 + 3xy}_{f(x,y)} = 1 \Longrightarrow \frac{dy}{dx} = -\frac{f_x}{f_y} = -\left[\frac{3x^2 + 3y}{3y^2 + 3x}\right]$ $\therefore \frac{du}{dx} = [1 + \log xy] - \frac{x}{y} \left[\frac{x^2 + y}{y^2 + x}\right]$	$\Rightarrow x \pm 1 \text{ are stationary}$ points f''(x) = 2x $f''(1) = 2 > 0 \Rightarrow \text{minimum at } x = 1$ $f''(-1) = -2 < 0 \Rightarrow \text{maximum at } x = -1$ 30. Ans: 5 Sol: $f(x) = x^3 - 6x^2 + 9x + 1$
27. Ans: (b) Sol: $\frac{\partial(\mathbf{u}, \mathbf{v})}{\partial(\mathbf{x}, \mathbf{y})} = \begin{vmatrix} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} & \frac{\partial \mathbf{u}}{\partial \mathbf{y}} \\ \frac{\partial \mathbf{v}}{\partial \mathbf{x}} & \frac{\partial \mathbf{v}}{\partial \mathbf{y}} \end{vmatrix} = \begin{vmatrix} 1 - \frac{\mathbf{y}^2}{\mathbf{x}} & \frac{2\mathbf{y}}{\mathbf{x}} \\ -\frac{\mathbf{y}^2}{\mathbf{x}^2} & \frac{2\mathbf{y}}{\mathbf{x}} \end{vmatrix}$ $= \frac{2\mathbf{y}}{\mathbf{x}} \left[1 - \frac{\mathbf{y}^2}{\mathbf{x}^2} - \left(-\frac{\mathbf{y}^2}{\mathbf{x}^2} \right) \right]$	$\Rightarrow f(x) - 3x - 12x + 9 = 0$ $\Rightarrow x^2 - 4x + 3 = 0$ $\Rightarrow x = 1,3$ The extreme value of f(x) in [a,b] may lie either at the stationary points or at the end points of the interval. $\therefore f(0) = 1, f(2) = 3, f(1) = 5, f(3) = 1$ $\therefore Maximum value = f(1) = 5$
$= \frac{2y}{x}$ ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	31. Ans: (c) Sol: Given $f(x) = (k^2 - 4)x^2 + 6x^3 + 8x^4$ $\Rightarrow f'(x) = 32x^3 + 18x^2 + 2(k^2 - 4)x$ and $f''(x) = 96x^2 + 36x + 2(k^2 - 4)$

ACE Engineering Publications

f(x) has local maxima at x = 0 $\Rightarrow f''(0) < 0$ $\Rightarrow 2(k^2 - 4) < 0$ $\Rightarrow k^2 - 4 < 0 \quad (\text{or}) \quad (k - 2) \quad (k + 2) < 0$ $\therefore -2 < k < 2$

32. Ans: 1

Sol: Let 2x & 2y be the length & breadth of the rectangle.

Let A = $2x \times 2y$ = 4xy be the area of the rectangle. Then A² = $4x^2y^2$ = $x^2(1-x^2) = x^2 - x^4$ Let f(x) = $x^2 - x^4$ Then f'(x) = $2x - 4x^3$ and f''(x) = $2 - 12x^2$

For maximum, we have

$$f'(x) = 0$$

$$\Rightarrow 2x(1-2x^2) = 0$$

$$\Rightarrow x = 0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$$

Here f''(0) > 0, $f''\left(\frac{1}{\sqrt{2}}\right) < 0$

$$\therefore \text{ Area } A = 4xy = 4x \times \frac{\sqrt{1 - x^2}}{2}$$
$$= 2x\sqrt{1 - x^2}$$
$$= 2 \times \frac{1}{\sqrt{2}} \times \sqrt{1 - \frac{1}{2}} = 2 \times \frac{1}{\sqrt{2}} \times \sqrt{1 - \frac{1}{2}} = \frac{1}{\sqrt{2}} \times \sqrt{1 - \frac{1}{2}} \times \sqrt{1 - \frac{1}{2}} \times \sqrt{1 - \frac{1}{2}} = \frac{1}{\sqrt{2}} \times \sqrt{1 - \frac{1}{2}} \times \sqrt{$$

Postal Coaching Solutions

33. Ans: 112
Sol: Let
$$f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$$

Then $p = f_x = 3x^2 + 3y^2 - 30x + 72$, $q = f_y$
 $= 6xy - 30y$
and $r = f_{xx} = 6x - 30$, $s = f_{xy} = 6y$,
 $t = f_{yy} = 6x - 30$
Consider $p = 0$ and $q = 0$
 $\Rightarrow 3x^2 + 3y^2 - 30x + 72 = 0$ and
 $6xy - 30y = 0$
 $\Rightarrow x^2 + y^2 - 10x + 24 = 0$ and $y(x - 5) = 0$
 $\Rightarrow x^2 + y^2 - 10x + 24 = 0$ and $x = 5$, $y = 0$
If $y = 0$ then $x^2 + y^2 - 10x + 24 = 0$ becomes
 $x^2 - 10x + 24 = 0$
 $\Rightarrow x = 4, 6$
If $x = 5$ then $x^2 + y^2 - 10x + 24 = 0$ becomes
 $25 + y^2 - 50 + 24 = 0$
 $\Rightarrow y^2 - 1 = 0$
 $\Rightarrow y^2 - 1 = 0$
 $\Rightarrow y = 1, -1$
∴ The stationary points are
 $(5, 1), (5, -1), (4, 0), (6, 0)$
At $(x, y) = (5, 1)$; $r = 0$, $s = 6$, $t = 0$
 $\Rightarrow rt - s^2 = 0 - 36 = -36 < 0$
 $\therefore (5, 1)$ is a saddle point
At $(x, y) = (5, -1)$; $r = 0$, $s = -6$, $t = 0$
 $\Rightarrow rt - s^2 = 0 - 36 = 36 < 0$

 \therefore (5, -1) is a saddle point

At (4, 0); r = -6, s = 0, t = -6 \Rightarrow $rt - s^2 = 36 - 0 = 36 > 0$ and r < 0 \therefore (4, 0) is a point of maxima

At (6, 0);
$$r = 6$$
, $s = 0$, $t = 6$
 $\Rightarrow rt - s^2 = 36 - 0 = 36 > 0$ and $r > 0$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

1

14

Engineering Publications	15	Engineering Mathematics
$\therefore (6, 0) \text{ is a point of minima}$ Hence, the maximum value of $f(x, y)$ at $(4, 0)$ is $f(4, 0) = (4)^3 + (0) - 15(4)^2 - (0) + (72)(4)$ = 112 34. Ans: 25 Sol: Let $A = \begin{pmatrix} x & y \\ y & 10 - x \end{pmatrix}$ Det $A = x(10 - x) - y^2$ For maximum value of Det A, $y = 0$ Now, $A = \begin{pmatrix} x & 0 \\ 0 & 10 - x \end{pmatrix}$ $\Rightarrow A = x(10 - x) = 10x - x^2$ Let $f(x) = 10x - x^2$ $\Rightarrow f'(x) = 10 - 2x$ $\Rightarrow f''(x) = -2$ Consider, $f'(x) = 0$ $\Rightarrow x = 5$ At $x = 5$, f'''(x) = -2 < 0 \therefore At $x = 5$, the function $f(x)$ has maximum and is equal to 25.	a a	36. Ans: (d) Sol: $\int_{0}^{1.5} x[x^{2}] dx = \int_{0}^{1} x[x^{2}] dx + \int_{1}^{\sqrt{2}} x[x^{2}] dx + \int_{\sqrt{2}}^{1.5} x[x^{2}] dx$ $= 0 + \int_{0}^{\sqrt{2}} x dx + \int_{\sqrt{2}}^{1.5} 2x dx = \frac{3}{4}$ 37. Ans: (d) Sol: $\int_{0}^{\pi} x \underbrace{\sin^{8} x \cos^{6} x}_{f(x)} dx$ $\left[\because \int_{0}^{a} x f(x) dx = \frac{a}{2} \int_{0}^{a} f(x) dx \text{ if } f(a - x) = f(x) \right]$ $= \frac{\pi}{2} \int_{0}^{\pi} \sin^{8} x \cos^{6} x dx$ $= \frac{\pi}{2} \times 2 \times \int_{0}^{\pi/2} \sin^{8} x \cos^{6} x dx$ $= \pi \left[\frac{(7.5.3.1)(5.3.1)}{14.12.10.8.6.4.2} \right] \frac{\pi}{2} = \frac{5\pi^{2}}{4096}$
35. Ans: (c)	ce 1	38. Ans: (a)
Sol: $\int_{4}^{y} x dx + \int_{4}^{0} -x dx + \int_{0}^{y} x dx$		Sol: Given that, $x \sin(\pi x) = \int_{0}^{x^{2}} f(t) dt$
$= -\frac{x^2}{2} \Big]_{-4}^{0} + \frac{x^2}{2} \Big]_{0}^{7}$ $= 0 - \Big[-\frac{16}{2} \Big] + \Big[\frac{49}{2} - 0 \Big]$ $= 8 + 24.5 = 32.5$		Differentiating both sides, we get $x \cos(\pi x) \cdot \pi + \sin(\pi x) = f(x) \cdot 2x$ Putting $x = 4$ $4\pi \cos(4\pi) = f(4) \cdot 8$ $\therefore f(4) = \frac{\pi}{2}$

39. Ans: (b)
39. Ans: (b)
30.
$$\lim_{x \to 0} \left[\sum_{i=1}^{n} \frac{\int_{x}^{i} \sin \sqrt{x} \, dx}{x^{2}} \right] \left(\frac{0}{0} \text{ for } m \right)$$
Using L'Hospital Rule,

$$= \lim_{x \to 0} \frac{(\sin 2x)(2x - (\sin 0)(0)}{3x^{2}} \left(\frac{0}{0} \text{ for } m \right)$$

$$= \lim_{x \to 0} \frac{2\cos 3x}{3} = \frac{2}{3}$$
40. Ans: 0.785 range 0.78 to 0.79
Sol: $\int_{0}^{x} \frac{\sin 2x}{\cos^{2} x + \sin^{4} x} \, dx$

$$= 2 \int_{0}^{x} \frac{\sin 2x}{\cos^{2} x + \sin^{4} x} \, dx$$

$$= 2 \int_{0}^{x} \frac{\sin 2x}{\cos^{2} x + \sin^{4} x} \, dx$$

$$= 2 \int_{0}^{x} \frac{\sin 2x}{\cos^{2} x + \sin^{4} x} \, dx$$

$$= 2 \int_{0}^{x} \frac{\tan x}{\cos^{2} x (1 + \tan^{4} x)} \, dx$$

$$= \int_{0}^{x} \frac{1}{\cos^{2} x (1 + \tan^{4} x)} \, dx$$

$$= \int_{0}^{x} \frac{1}{2} \frac{21}{1 + t^{4}} \, dt$$
 (by putting $\tan x = 1$)

$$= \frac{\pi}{4} = 0.785$$
5.1. The required area

$$= \int x \, dy = \int_{0}^{1} (\frac{1}{2} (y + 4) - \frac{1}{4} y^{2}) \, dy = 9$$

$$= \int_{0}^{y} \frac{1}{\sqrt{1 - 2}} \, dx$$
45. Ans: (c)
5.1. The required area

$$= \int x \, dy = \int_{0}^{1} (\frac{1}{2} (y + 4) - \frac{1}{4} y^{2}) \, dy = 9$$

$$= \int_{0}^{y} \frac{1}{\sqrt{1 - 2}} \, dx$$
45. Ans: (c)
5.1. The required area

$$= \int x \, dy = \int_{0}^{1} (\frac{1}{2} (y + 4) - \frac{1}{4} y^{2}) \, dy = 9$$

$$= \int_{0}^{y} \frac{1}{\sqrt{1 - 2}} \, dx$$

$$= \int_{0}^{1} \frac{1}{2} \frac{\pi}{2} - \frac{1}{3} \frac{\pi}{2} = K\pi$$

$$= \frac{1}{10} \left[\frac{1}{10} \right] = K \Rightarrow K = \frac{1}{60}$$
45. Ans: (c)
50.: $\int_{0}^{1} x \log x \, dx = \log x \cdot \frac{x^{2}}{2} - \int_{1}^{1} \frac{x^{2}}{2} \, dx$

$$= \frac{x^{2}}{2} \log x - \frac{x^{2}}{4} \, \int_{0}^{1} = -\frac{1}{4}$$
20. Explore the total to the theorem to the rest three the total to the theorem to the total to the total

46. Ans: (a)
Sol: Given
$$I = \int_{1}^{1} \frac{\sqrt{1+x^{2}}}{(x-1)^{2}} dx$$

Let $f(x) = \frac{\sqrt{1+x^{2}}}{(x-1)^{2}}$, $f(x) \to \infty$ as $x \to 1$
Let $g(x) = \frac{1}{(x-1)^{2}}$
Let $g(x) = \frac{1}{(x-1)^{2}}$
Let $g(x) = \frac{1}{x^{3}(x-1)^{2}} \times (x-1)^{2} = \sqrt{2}$
But $\int_{1}^{3} \frac{1}{(x-1)^{2}}$ is known to be divergent.
 \therefore By comparison test, the given integral also
divergent.
47. Ans: (a)
Sol: Given $I = \int_{1}^{3} \frac{x^{3}+1}{\sqrt{2-x}} dx$
Let $f(x) = \frac{x^{3}+1}{\sqrt{2-x}} dx$
Let $f(x) = \frac{x^{3}+1}{\sqrt{2-x}} dx$
Let $g(x) = \frac{1}{\sqrt{2-x}}$
Let $g(x) = \frac{1}{\sqrt{2-x}}$
Let $g(x) = \frac{1}{\sqrt{2-x}} (\frac{x^{3}+1}{\sqrt{2-x}} \times \sqrt{2-x}) = 9$ finite
But $\int_{1}^{3} g(x) dx$ is known to be convergent.
 \therefore By comparison test, the given integral also
convergent.
But $\int_{1}^{2} g(x) dx$ is known to be convergent.
 \therefore By comparison test, the given integral also
f(a) = tan^{-1} a + c
f(0) = 0
 $\Rightarrow c = 0$
 \therefore f(a) = tan^{-1} a
Sol: $x = \int_{x^{-1}}^{x} \int_{x^{-1}}^{x} \frac{1}{x} dx$
Sol: $x = \int_{x^{-1}}^{x} \int_{x^{-1}}^{x} \frac{1}{x} dx$
 $= \int_{0}^{x} \int_{x^{-1}}^{x} \frac{1}{x} dx$
 $f(a) = tan^{-1} a$
Sol. $x = \int_{x^{-1}}^{x} \frac{1}{x} dx$
 $= \int_{x^{-1}}^{x} \frac{1}{x} dx$
 $= \int_{x^{-1}}^{x} \frac{1}{x} dx$
 $= \int_{x^{-1}}^{x} \frac{1}{x} dx$
 $= \int_{x^{-1}}^{x} \frac{1}{x} dx$

17

ACE Engineering Publication

4

Engineering Mathematics

Engineering Publications	19	Engineering Mathematics
$\int_{0}^{1} \int_{x}^{1} e^{y^{2}} dy dx = \int_{y=0}^{1} \int_{x=0}^{y} e^{y^{2}} dy dx$		$= \left[\frac{y^3}{3} + \frac{3y^4}{8}\right]_0^1$
$= \int_0^1 e^{y^2} [\mathbf{x}]_0^y d\mathbf{y}$		$= \left[\frac{1}{3} + \frac{3}{8}\right]_{0}^{1} = \frac{17}{24}$
$=\int_{0}^{1}e^{y^{2}}ydy$		56. Ans: (c) Sol: $V = \iint Z dy dx$
$= \frac{1}{2} \int_{0}^{1} e^{y^{2}} (2y dy)$		$= \int_{1}^{1} \int_{1}^{x} z dy dx$
$= \frac{1}{2} \left[e^{y^2} \right]_0^0$ $= \frac{1}{2} \left[e^1 - e^0 \right]$	ER1/	$\int_{0}^{0} \int_{-x}^{x} (3 + x^{2} - 2y) dy dx$
$=\frac{1}{2}[e-1]$		$= \int_{0}^{1} \left[\left(3 + x^{2} \right) y - y^{2} \right]_{-x}^{x} dx$
55. Ans: (a)		$= \int_{0}^{1} \left[(3 + x^{2})(2x) - 0 \right] dx$
Sol: $\iint_{0} \iint_{0} y dz dx dy$		$= \int_{0}^{1} (6x + 2x^3) dx$
$= \int_{0}^{1} \int_{0}^{y} y(1 + x + y) dx dy$		$= \left[\frac{6x^2}{2} + \frac{2x^4}{4}\right]^1$
$= \int_{0}^{1} \int_{0}^{y} (h + y^{2} + xy) dx dy$ Since	ce 1	$V = 3 + \frac{1}{2} = \frac{7}{2}$
$= \int_{0}^{1} (y + y^{2}) [x]_{0}^{y} + y \left[\frac{x^{2}}{2}\right]_{0}^{y} dy$		57. Ans: (d)
$= \int_{0}^{1} \left[\left(y + y^{2} \right) y + \frac{y^{2}}{2} \right] dy$	2	Sol: Length = $\int_0^3 \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$
$= \int_{0}^{1} \left(2y^2 + 3y^3 \right) dy$		$= \int_0^3 \sqrt{1+x} \mathrm{d}x$
$= \int_0^1 \left[y^2 + \frac{3}{2} y^3 \right] dy$		$= \frac{2}{3} \left[(1+x)^{\frac{3}{2}} \right]_{0}^{3} = \frac{14}{3}$

Engineering Publications	20	Postal Coaching Solutions
58. Ans: 25.12		62. Ans: (c)
Sol: Volume = $\int_{-1}^{4} \pi y^2 dx$	Ş	Sol: $\phi(xy) = e^{xy} \sin(x+y)$
$= \int_0^4 \pi x dx$		$\nabla \phi = i \frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} + k \frac{\partial \phi}{dz}$
$= 8\pi$ cubic units		$\nabla \phi = i[e^{xy} (y) \sin (1+y) + e^{xy}(b) (x + y) +$
		$j[e^{xy}(x) \sin (x + y) + e^{xy}(x) (x+y)] + k[0]]$
59. Ans: 1.88		$\left(\nabla\Theta\right)\left(0,\frac{\pi}{2}\right)$
Sol: Volume = $\int_0^1 \pi x^2 dy$ = $\pi \int_0^1 y^{\frac{2}{3}} dy \approx 1.88$		$= i \left[e^{0} \frac{\pi}{2} \sin \frac{\pi}{2} + e^{0} \cos \frac{\pi}{2} + j \left[e^{0} 0 \sin \frac{\pi}{2} + e^{0} \cos \pi \right] \right]$
60. Ans: (a) Sol: $x^2 + y^2 + z^2 = 9$	ERIA	$\nabla \phi = i \left[\frac{\pi}{2} \right] + j[0] + k[0]$
let $\phi = x^2 + y^2 + z^2 = 9$		Required direction = $\nabla \phi = \frac{\pi}{2}i$
$\nabla \phi = 2xi + 2yj + 2zk$		
$\frac{\nabla \phi}{\partial t} = \frac{2xi + xyj + 2zk}{2}$		63. Ans: (b)
$ \nabla \phi = 2\sqrt{x^2 + y^2 + z^2}$	1	Sol:
Required unit-normal = $\frac{xi + yj + zk}{3}$		$\nabla \times \overline{\mathbf{v}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial \mathbf{x}} & \frac{\partial}{\partial \mathbf{y}} & \frac{\partial}{\partial \mathbf{z}} \end{vmatrix} = \overline{0}$
61. Ans: (b)		[2+6y+0z 4x+2(y+z) 2bx-3y+2z]
Sol: $\phi = x^2yz + 4xz^2$	co 1	$0 = i[2c - 2] \cdot i[4 - a] + k[2b - 6] = \overline{0}$
$\mathbf{a} = 2\mathbf{i} - \mathbf{j} - 2\mathbf{k}$		$\Rightarrow c = 1, a = 4, b = 3$
$\nabla \phi = i[2xyz + 4z^2] + j[x^2z] + k[x^2y + 82x]$		\Rightarrow a = 4; b = 3; c = 1
$\begin{bmatrix} v \phi \end{bmatrix}_{(1-2-1)} = 1[4+4] + 3[-1] + k[-10] = 8i - i + 10 k$		
Required directional derivative		64. Ans: (b)
= (8i - i + 10k) - (2i - j - 2k)	\$	Sol: $\overline{V} = e^x i + 2yj - k$
$(01 - 1 + 10K) \frac{1}{\sqrt{2^2 + (-1)^2 + (-2)^2}}$		div $\overline{\nabla} = e^x + 2 - 0 = e^x + 2 \neq 0$
$=\frac{16+1+20}{-37}$		i j k
$\sqrt{9}$ $-\frac{1}{3}$		and $\nabla \times \overline{\nabla} = \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = \overline{0}$
		$\begin{vmatrix} \mathbf{e}^{\mathbf{x}} & 0\mathbf{y} & 0\mathbf{z} \\ \mathbf{e}^{\mathbf{x}} & 2\mathbf{y} & -1 \end{vmatrix}$
	I	· · ·

Engineering Publications	21	Engineering Mathematics
65. Ans: (a) Sol: $\nabla[f(r)] = f'(r) \frac{\vec{r}}{r}$		$= \int_{(0,2,1)}^{(4,1,-1)} [2(z dx + x dx) + (2y) dy]$
$\nabla(\sin r) = (\cos r) \frac{\vec{r}}{r}$		$= \int_{(0,2,1)} \left[2 \ d(xz) + 2y \ dy \right]$
66. Ans: (c) Sol: div $[e^r.\vec{r}]$		$= \left(2(\mathbf{x}\mathbf{z}) + 2\frac{\mathbf{y}^2}{2}\right)_{(0,2,1)}^{(4,1,-1)}$
$\nabla . (\phi \overline{A}) = (\nabla \phi) . \overline{A} + \phi (\nabla . \overline{A}) \qquad \text{(Identity)}$ $\nabla . (e^{r} \ \overline{r}) = (\nabla e^{r}) . \overline{r} + e^{r} (\nabla . \ \overline{r})$		$= [2 (4) (-1) + (1)^{2}] - [(2) (0) (1) + (2)^{2}]$ $= -11$
$= e^{r} \frac{\vec{r}}{r} \cdot \vec{r} + e^{r} (3)$	ERI	69. Ans: 202
$= e^{r}(3) + e^{r} \frac{r^{2}}{r}$	2	Sol: Given $F = (2xy + z^3)i + x^2j + 3xz^2k$
$\nabla (e^2 \cdot \vec{r}) = e^r (3+r)$		Curl $\overline{F} = \begin{bmatrix} 1 & J & K \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix}$
67. Ans: (d)		$\left 2xy+z^3 x^2 3xz^2\right $
Sol: $\operatorname{curl}(\mathbf{r}^4 \mathbf{\ddot{r}}) = ?$		$= \bar{i}[0-0] - \bar{j}[3z^2 - 3z^2] + \bar{k}[2x - 2x] = \bar{0}$
$\operatorname{curl}\left[\phi\overline{\mathrm{F}}\right]$		$\Rightarrow \overline{F}$ is irrotational
$= \phi \operatorname{curl} \overline{F} + (\operatorname{grad} \phi) \times \overline{F} \qquad (\operatorname{Identity})$ $= \operatorname{curl} (r^4 \vec{r})$		\Rightarrow Work done by \overline{F} is independent of path of curve
$= r^4(\operatorname{curl} \bar{r}) + \operatorname{grad}(r^4) \times \bar{r}$		$\Rightarrow \overline{\mathrm{F}} = \nabla \phi$
	ce 1	995 where $\phi(x, y, z)$ is scalar potential
$= r^4 \cdot 0 + 4r^3 \frac{1}{r} \times \vec{r}$		$\Rightarrow (2xy + z^3)\overline{i} + x^2\overline{j} + 3xz^2\overline{k} = \frac{\partial\phi}{\partial x}\overline{i} + \frac{\partial\phi}{\partial y}\overline{j} + \frac{\partial\phi}{\partial z}\overline{k}$
= 0 + 0 = 0		$\Rightarrow d\phi = (2xy + z^3) dx + x^2 dy + 3xz^2 dz$
68. Ans: (b)		$\Rightarrow \int d\phi = \int (2xy + z^3) dx + x^2 dy + 3xz^2 dz$
Sol: L.I = $\int \overline{f} \cdot d\overline{r} = \int^{B} (f_1 dx + f_2 dy + f_3 dz)$		$\Rightarrow \int d\phi = \int d(x^2y + xz^3)$
C A (4,1,-1)		$\Rightarrow \phi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \mathbf{x}^2 \mathbf{y} + \mathbf{x} \mathbf{z}^3$
$= \int_{(0,2,1)} \left[(2z)dx + (2y)dy + (2x)dx \right]$		$\therefore \text{ Workdone } = \int_{C} \overline{F} \cdot d\overline{r} = \phi(3,1,4) - \phi(1,-2,1)$
$= \int_{(0,2,1)}^{(4,1,-1)} [(2z dx + 2x dz) + (2y) dy]$		= [9(1)+3(64)] - [1(-2) + 1(1)] = 202

Engineering Publications	22	Postal Coaching Solutions
70. Ans: (d) Sol: ^y		The given integral = $\iint_{\mathbb{R}} 2 dx dy$
y = 2x (2,4)		= 2 Area of the given ellipse = 2 (π . 2. 1) = 4 π
$(0,0) \xrightarrow{(2,0)} x$		72. Ans: 0 Sol: Given $\overline{A} = \nabla \phi$
By Green's Theorem,		$\Rightarrow \text{Curl } \overline{A} = \overline{0}$
$\int_{C} M dx + N dy = \iint_{R} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] dx dy$		$\Rightarrow \overline{A} \text{ is Irrotational}$.:.Line integral of Irrotational vector function
where $M = x + y$, $N = x^2$ and	ERIA	along a closed curve is zero
$\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} = 2x - 1$		i.e. $\int_{C} \overline{A} \cdot d\overline{r} = 0$, where C : $\frac{x^2}{4} + \frac{y^2}{9} = 1$ is a
The given integral= $\int_{x=0}^{2} \int_{y=0}^{2x} (2x-1) dy dx$		closed curve.
$= \int_0^2 \left[2xy - y \right]_0^{2x} dx$		73. Ans: (b)
$=\int_{0}^{2}\left[4x^{2}-2x\right]dx$	S	Sol: Using Gauss-Divergence Theorem,
$=\frac{20}{20}$		$\int_{S} F.N ds = \int_{V} div F dv$
3		$=\int_{V} 3 dv = 3 V$
71. Ans: (c) Sol: By Green's Theorem, we have		$= 3 \times \frac{4}{3} \pi r^3 = 4\pi (4)^3 = 256\pi$
$\left[M dx + N dy - \iint \left[\partial N - \partial M \right] dy dy \right]$		74. Ans: 264
$\int_{C} \int_{C} \int_{R} \int_{R} \left[\frac{\partial x}{\partial x} - \frac{\partial y}{\partial y} \right] dx dy$		Sol: Using Gauss-Divergence Theorem,
Here, $M = 2x - y$ and $N = x + 3 y$		$\iint_{S} xy dy dz + yz dzdx + zx dx dy = \iiint_{V} div \overline{F} dv$
$\frac{\partial \mathbf{N}}{\partial \mathbf{x}} - \frac{\partial \mathbf{M}}{\partial \mathbf{y}} = 2 \qquad \mathbf{y}$		$= \iiint_{V} (y+z+x) dv$
(0, 1)		$= \int_{x=0}^{4} \int_{y=0}^{3} \int_{z=0}^{4} (x+y+z) dz dy dx$
(-2, 0) $(2, 0)$ $(2, 0)$		$= \int_{x=0}^{4} \int_{y=0}^{3} [4x + 4y + 8] dy dz$
(0, -1)		$= \int_{x=0}^{4} \left[12x + 18 + 24 \right] dx = 264$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	ır • Luckno	w • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications	23	Engineering Mathematics
75. Ans: 0 Sol: By Stokes' theorem, we have $\int_{C} \overline{f} \cdot d\overline{r} = \iint_{S} (\nabla \times \overline{f}) \cdot \overline{n} ds$ Here, $\nabla \times \overline{f}$ $= \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (x^{2} + yz) & (y^{2} + xz) & (z^{2} + xy) \end{vmatrix} = \overline{0}$ $\Rightarrow \overline{f} \text{ is an irrotational}$		78. Ans: (d) Sol: Given $f(x) = \begin{cases} -1, -2 \le x \le 0\\ 2, \ 0 < x \le 0 \end{cases}$ The fourier series of $f(x)$ in [c, c+ 21] is given by f(x) = $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{\ell}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{\ell}\right)$ The term independent of 'x' in above fourier
$\therefore \int \overline{f} \cdot d\overline{r} = 0$ 76. Ans: (d) $\begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \partial & \partial & \partial \end{vmatrix}$		Series is given by $\frac{\ddot{a}_0}{2}$. Now, $\frac{a_0}{2} = \frac{1}{2} \left[\frac{1}{\ell} \int_{c}^{c+2\ell} f(x) dx \right]$ $a_0 = 1 \left[1 \int_{c}^{2} f(x) dx \right]$
Sol: Curl F = $\begin{vmatrix} \overline{\partial x} & \overline{\partial y} & \overline{\partial z} \\ 2xy - y & -yz^2 & -y^2z \end{vmatrix}$ = $\overline{i}[-2yz + 2yz] - \overline{j}[0] + \overline{k}[0+1]$ \Rightarrow Curl $\overline{F} = \overline{k}$ Using Stokes' theorem, $\int_{C} \overline{F}.d\overline{r} = \int_{S} curl \overline{F}.\overline{N} ds = \int_{S} \overline{k}.\overline{N} ds$ Let R be the protection of s on xy plane $\Rightarrow \int_{S} \overline{k}.\overline{N} ds = \iint_{R} \overline{k}.\overline{N} \frac{dxdy}{ \overline{N}.\overline{k} } = \iint_{R} 1 dx dy$	ce 1	$\Rightarrow \frac{a_0}{2} = \frac{1}{2} \left[\frac{1}{2} \int_{-2}^{0} f(x) dx \right]$ $\Rightarrow \frac{a_0}{2} = \frac{1}{4} \left[\int_{-2}^{0} (-1) dx + \int_{-2}^{0} (2) dx \right]$ $\Rightarrow \frac{a_0}{2} = \frac{1}{4} \left[(-x)_{-2}^{0} + (2x)_{0}^{2} \right]$ $\therefore \text{ The constant term is } \frac{a_0}{2} = \frac{1}{2}$ 79. Ans: (b) Sol: The given function is odd in $(-\pi, \pi)$
 = Area of Region = πr² = π(1)² = π 77. Ans: (d) Sol: The function f(x) = x² cos(x) is even function ∴ The fourier series of f(x) contain only cosine terms. The coefficient of sin 2x = 0 	n y S	$\therefore \text{ Fourier series of } f(x) \text{ contains only sine terms.}$ 80. Ans: (b) Sol: $f(x) = \sum_{n=1}^{\infty} \frac{k}{\pi} \left[\frac{2-2(-1)^n}{n} \right] \sin(nx)$

ACE Engineering Publications	24	Postal Coaching Solutions
At $x = \frac{\pi}{2}$		03_Probability & Statistics
$\mathbf{k} = \frac{\mathbf{k}}{\pi} \left[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \right]$		01. Ans: (a) Sol:
$\therefore \ 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots \infty = \frac{\pi}{4}$		(0, 1)
81. Ans: (c) Sol: $f(x) = \pi x - x^2$		
$f(x) = \sum_{n=1}^{\infty} b_n \sin nx$		(1, 0) X Let X and Y are two numbers in the interval
$b_n = \frac{2}{2} \int_0^{\pi} (\pi x - x^2) \sin nx dx$	ERI/	C(0, 1) We have choose X and Y such that
$b_{1} = \frac{2}{\pi} \int_{0}^{\pi} \left[(\pi x - x^{2}) \sin x \right] dx$		$X^2 + Y^2 < 1.$ Area of the shaded region
$\frac{2}{\pi} \left[(\pi x - x^2)(-\cos x) - (\pi - 2x)(-\sin x) + (-2)\cos x \right]$	$]_0^{\pi}$	Required probability = $\frac{2}{\text{Area of the square}}$ $\pi/4 \pi$
$=\frac{8}{\pi}$		$= \frac{1}{1} = \frac{1}{4}$
	5	02. Ans: (a) Sol: A non-decreasing sequence can be described
82. Ans: (b)		by a partition $n = n_0 + n_1 + n_2$ where n is number of times the digit i appear
Sol: $f(x) = (x - 1)^2$ The Half range agains series is	ce 1	9 in the sequence.
The Hall range cosine series is \sim		There are $(n + 1)$ choices for n_0 , and given n_0
$f(x) = \frac{a_0}{2} + \sum_{n} a_n \cos(n\pi x)$		there are $n - n_0 + 1$ choices for n_1 .
$\frac{1}{2} r^{\pi} (2)^{2}$		So, the total number of possibilities is
$a_n = -\frac{\pi}{\pi} \int_0^\infty (x - 1)^2 \cos(n\pi x) dx$	1	$\sum_{n_0=0}^{n} (n-n_0+1) = (n+1) \cdot (n+1) - \sum_{n_0=0}^{n} n_0$
$\frac{2}{\pi} \left[(x-1)^2 \cdot \left(\frac{\sin n\pi x}{n\pi} \right) + 2(x-1) \cdot \frac{\cos n\pi x}{n^2 \pi^2} - 2 \frac{\sin n\pi x}{n^3 \pi^3} \right]$	0	$= (n+1) \cdot (n+1) - \frac{n^2 + n}{2}$
$=\frac{4}{n^2\pi^2}$		$=\frac{(n+1)(n+2)}{2}$
		Required probability = $\frac{n^2 + 3n + 2}{2(3^n)}$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	ır • Luckno	w • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	25	Engineering Mathematics
03. Ans: (d) Sol: Number of ways, we can choose $R = C(n, 3)$ We have to count number of ways we ca choose R, so that median (R) = median (S). Each such set R contains median S, one c the $\left(\frac{n-1}{2}\right)$ elements of S less than media (S), and one of the $\left(\frac{n-1}{2}\right)$ elements of greater than median (S). $(n-1)^2$	n of S	$= 2\left(\frac{1}{3}\right)^{n} \left(\frac{2}{3}\right)^{n}$ The required probability $= 1 - 2\left(\frac{1}{3}\right)^{n} \left(\frac{2}{3}\right)^{n}$ $= \frac{3^{2n} - 2^{n+1}}{3^{2n}}$ 06. Ans: (c) Sol: Number of ways of selecting three integers $= {}^{20}C_{3}$
So, there are $\left(\frac{n-1}{2}\right)$ choices for R. Required probability = $\frac{\left(\frac{n-1}{2}\right)^2}{C(n,3)}$ = $\frac{3(n-1)}{2n(n-2)}$ 04. Ans: (a)	ERIA	We know that, product of three integers is even, if atleast one of the number is even. Number of ways of selecting 3 odd integers $= {}^{10}C_3$ \therefore Required probability $= 1 - \frac{{}^{10}C_3}{{}^{20}C_3}$ $= 1 - \frac{2}{19} = \frac{17}{19}$
 Sol: For each i ∈ {1, 2,, n}, let A_i heads be the event that the coin come up heads for the first time and continues t come up heads there after. Then, the desired event is the disjoint unio of A_i. Since, each A_i occurs with probability 2⁻ⁿ. The required probability = n. 2⁻ⁿ 	es o ce 1 n	07. Ans: (c) Sol: Given that $P(A B) = 1$ $\Rightarrow \frac{P(A \cap B)}{P(B)} = 1$ $\Rightarrow P(A \cap B) = P(B) \dots (1)$ $P(B^{C} A^{C}) = \frac{P(B^{C} \cap A^{C})}{P(A^{C})} = \frac{1 - P(A \cup B)}{1 - P(A)}$ $1 - \{P(A) + P(B) - P(A \cap B)\}$
05. Ans: (b) Sol: Probability of the event that we never get the consecutive heads or tails = P(HT HT HT) + P(TH TH TH) = $\left(\frac{1}{3}\right)^n \left(\frac{2}{3}\right)^n + \left(\frac{1}{3}\right)^n \cdot \left(\frac{2}{3}\right)^n$	le	$= \frac{1 - P(A)}{1 - P(A)}$ $= \frac{1 - P(A)}{1 - P(A)} [from (1)]$ $= 1$

Engineering Publications	26	Postal Coaching Solutions
O8. Ans: (a) Sol: Let A = Getting electric contract and B = Getting plumbing contract $P(A) = \frac{2}{5}; P(\overline{B}) = \frac{4}{7}; P(B) = \frac{3}{7}$ $P(A \cup B) = \frac{2}{3};$ $P(A \cap B) = \frac{2}{5} + \frac{3}{7} - \frac{2}{3} = \frac{17}{105}$		Each of the above sets has 20 elements. If one of the two numbers selected from S ₁ then the other must be chosen from S ₄ . If one of the two numbers selected from S ₂ then the other must be chosen from S ₃ . Number of favourable cases = C(20, 1).C(20, 1) + C(20, 1).C(20, 1) + C(20, 2) = 400 + 400 + 190 = 990 \therefore Required probability = $\frac{990}{C(100, 2)}$
109. Ans: (d) Sol: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A) = \frac{33}{100}$ $P(B) = \frac{14}{100}$ $P(A \cap B) = \frac{4}{100}$ $(A \cap B)$ is not empty set. Therefore, A and B are not mutually exclusive. $P(A \cap B) \neq P(A) \cdot P(B)$ Therefore, A and B are not independent.		$= \frac{990}{50 \times 99} = 0.2$ 11. Ans: 0.66 Range 0.65 to 0.67 Sol: Let N = the number of families Total No. of children = $\left(\frac{N}{2} \times 1\right) + \left(\frac{N}{2} \times 2\right)$ $= \frac{3N}{2}$ \therefore The Required Probability = $\frac{\left(\frac{N}{2} \times 2\right)}{\frac{3N}{2}}$
10. Ans: 0.2 Sol: To find the number of favourable cases consider the following partition of the giver set {1, 2,, 100} $S_1 = \{1, 6, 11,, 96\}$ $S_2 = \{2, 7, 12,, 97\}$ $S_3 = \{3, 8, 13,, 98\}$ $S_4 = \{4, 9, 14,, 99\}$ $S_5 = \{5, 10, 15,, 100\}$	3 1 1 5	$=\frac{2}{3} = 0.66$ 2. Ans: 0.125 Sol: Total number of outcomes = 6 ³ Number of outcomes in which sum of the numbers is 10 = Number of non-negative integer solutions to the equation a+b+ c =10 where 1 ≤ a, b, c ≤ 6 = Co-efficient of x ¹⁰ in the function (x + x ² + x ³ + x ⁴ + x ⁵ + x ⁶) ³ (x+x ² +x ³ +x ⁴ +x ⁵ +x ⁶) ³ = x ³ (1+x+x ² +x ³ +x ⁴ +x ⁵) ³

ACE

- $= x^{3}(1 x^{6})^{3}(1 x)^{-3}$ = $x^{3}(1 - 3x^{6} + 3x^{12} - x^{18}) \sum_{0}^{\infty} \frac{(n+1)(n+2)}{2} x^{n}$ = $(x^{3} - 3x^{9} + 3^{18} - x^{21}) \sum_{0}^{\infty} \frac{(n+1)(n+2)}{2} x^{n}$ Co-efficient of $x^{10} = 36 - 3 \times 3 = 27$
- $\therefore \text{ Required probability} = \frac{27}{216} = 0.125$

13. Ans: (a)

Sol: If A and B be disjoint events then $A \cap B = \{$ Probability of $A \cap B = 0$ (1) If A and B are independent then $P(A \cap B) = P(A).P(B)$ (2) From (1) and (2) P(A).P(B) = 0 $\Rightarrow Pr(A) = 0$ or Pr(B) = 0

14. Ans: 2.916 range 2.9 to 2.92

Sol: E(X) =
$$\frac{1}{6}(1+2+3+4+5+6) = 3.5$$

E(X²) = $\frac{1}{6}(1^2+2^2+3^3+4^4+5^2+6^2) = \frac{91}{6}$
∴ Variance = E(X²) - {E(X)}²
= $\frac{91}{6} - (3.5)^2 = 2.916$

15. Ans: (c) Sol: Total number of counters = $1 + 2 + \dots + n$ = $\frac{n(n+1)}{2}$ Probability of choosing counter k and winning $k^2 = \frac{2k}{n(n+1)}$

Expectation =
$$\sum_{k=1}^{n} \left\{ k^2 \cdot \frac{2k}{n(n+1)} \right\}$$

= $\frac{2}{n(n+1)} \cdot \frac{n^2(n+1)^2}{4}$
= $\frac{n(n+1)}{2}$

16. Ans: (b)

27

Sol: The probability that she gives birth between

8 am and 4 pm in a day =
$$\frac{1}{3}$$

By Total theorem of probability,

The required probability = $\left(\frac{1}{3} \times \frac{3}{4}\right) + \left(\frac{2}{3} \times \frac{1}{4}\right)$ = $\frac{5}{12}$

17. Ans: (b) Sol: Let A = getting red marble both times B = getting both marbles of same colour $P(A \cap B) = \frac{3}{10} \cdot \frac{2}{10}$ $P(B) = \frac{7}{10} \cdot \frac{6}{10} + \frac{3}{10} \cdot \frac{2}{10}$ Required probability = $\frac{P(A \cap B)}{P(B)} = \frac{6}{48} = \frac{1}{8}$

18. Ans: (d)

Sol: Let E_1 = The item selected is produced machine C and E_2 = Item selected is defective

$$P(E_1 \wedge E_2) = \frac{20}{100} \cdot \frac{5}{100}$$

Engineering Publications

$$\begin{split} & P(E_2) = \frac{50}{100} \left(\frac{3}{100}\right) + \frac{30}{100} \left(\frac{4}{100}\right) + \frac{20}{100} \left(\frac{5}{100}\right) \\ & \text{Required probability} \\ & = P(E_1/E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{100}{370} = \frac{10}{37} \\ & \text{19. Ans: 0.75 (No range)} \\ & \text{Sol: Total probability} = \int_{-\infty}^{\infty} f(x) dx = 1 \\ & \Rightarrow \int_{0}^{2} cx \, dx = 1 \\ & \Rightarrow \int_{0}^{2} cx \, dx = 1 \\ & \Rightarrow c = \frac{1}{2} \\ P(X > 1) = \int_{1}^{\infty} f(x) dx = \int_{1}^{2} \frac{1}{2} x(dx) = \frac{3}{4} = 0.75 \\ & \text{20. Ans: 1.944 range 1.94 to 1.95} \\ & \text{Sol: The probability distribution for Z is} \\ \hline \\ E(Z) = \sum Z.P(Z) \\ & = \frac{1}{36} (0.(6) + 1.(10) + 2(8) + 3(6) + 4(4) + 5(2)) \\ & = \frac{70}{36} = \frac{35}{18} = 1.944 \\ \hline \\ & \text{21. Ans: (c)} \\ & \text{Sol: E(a^n)} = \sum_{k=0}^{n} a^k \cdot P(X = k) \\ & = \sum_{k=0}^{n} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ & = \int_{k=0}^{\infty} a^k \cdot C(n, k) \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} \\ &$$

ACE Engineering Publications

$$\therefore E(2X + 1)^2 = E(4X^2 + 4X + 1)$$

= 4E(X²) + 4E(X) + 1
= 4× $\frac{93}{2}$ + 4× $\frac{11}{2}$ + 1= 209

25. Ans: 0.1
Sol: E(W) =
$$\int_0^{10} 0.003 V^2 f(V) dV$$

= $\int_0^{10} 0.003 V^2 \frac{1}{10} dV$
= 0.1 *lb/ft*²

Where f(V) = probability density function of V

26. Ans: (c)

Sol: Let X = Number of rupees you win on each throw.

The probability distribution of X is

X	0	1	2	3	4	5
P(X)	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{8}{36}$	<u>6</u> 36	$\frac{4}{36}$	$\frac{2}{36}$
E(X) =	=∑X.F	P(X) =	$\frac{35}{18}$			

27. Ans: 0.23 Range 0.22 to 0.24

Sol: Let X = number of ones in the sequence

$$n = 5$$

p = probability for digit $1 = 0.6$

q = 0.4

Required probability = P(X = 2)= C(5, 2). $(0.6)^2$. $(0.4)^3$ = 0.23

28. Ans: 0.25 Range 0.24 to 0.26

Sol: Given that, mean = 2(variance)

 $\Rightarrow np = 2(npq) \dots (1)$ further, np + npq = 3 \ldots (2)

Solving, n = 4, p = q =
$$\frac{1}{2}$$

P(X = 3) = C(4, 3).
$$\left(\frac{1}{2}\right)^3 \cdot \left(\frac{1}{2}\right) = \frac{1}{4} = 0.25$$

29. Ans: (d)

Sol: Let X = Number of times we get negative values.

P(X = k) = C(n, k) p^k q^{n-k}
Where p =
$$\frac{1}{2}$$
, q = $\frac{1}{2}$, n = 5

Required probability =
$$P(X \le 1)$$

$$= P(X = 0) + P(X = 1)$$

= ${}^{5}C_{0} \times \left(\frac{1}{2}\right)^{5} + {}^{5}C_{1} \times \left(\frac{1}{2}\right)^{4} \left(\frac{1}{2}\right)$
= $\frac{1+5}{32} = \frac{6}{32}$

30. Ans: (d)

Sol: We can choose four out of six winning in C(6, 4) different ways and if the probability of winning a game is p, then the probability of winning four out of six games

$$= C(6, 4) p^{4} (1-p)^{2}$$

= 15(p⁴ - 2p⁵ + p⁶)

31. Ans: 0.5706

Sol: The odds that the program will run is 2 : 1.

Therefore, $Pr(a \text{ program will run}) = \frac{2}{3}$. Let B

denote the event that four or more programs will run and A_j denote that exactly j program will run. Then,

$$\Pr(B) = \Pr(A_4 \cup A_5 \cup A_6)$$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Mathematics

ACE Engineering Publications

$$= \Pr(A_4) + \Pr(A_5) + \Pr(A_6)$$

= C(6,4) $\left(\frac{2}{3}\right)^4 \left(\frac{1}{3}\right)^2 + C(6,5) \left(\frac{2}{3}\right)^5 \left(\frac{1}{3}\right) + C(6,6) \left(\frac{2}{3}\right)^5$
= 0.5706

32. Ans: 4

- Sol: If n missiles are fired then probability of not hitting the target = $[1 - (0.3)]^n = (0.7)^n$
 - \Rightarrow Probability of hitting the target atleast once = $1 - (0.7)^n$

We have to fired the smallest +ve integer n 75

so that,
$$\{1 - (0.7)^n\} > \frac{1}{100}$$

 $\Rightarrow \{1 - (0.7)^n\} > 0.75$

The smallest +ve integer satisfying this inequality is n = 4

33. Ans: 0.224 range 0.2 to 0.3

Sol: Average calls per minute = $\frac{180}{60} = 3$

Here, we can use poisson distribution with $\lambda = 3$.

Required Probability =
$$P(X = 2) = \frac{e^{-3}.3}{2!}$$

$$=\frac{e^{-3}.9}{2}=4.5\ e^{-3}=0.224$$

34. Ans: 0.168

Sol: λ = average number of cars pass that point in

a 12 min period =
$$\frac{15}{60/12} = 3$$

Using the Poisson distribution.

$$Pr(k) = e^{-\lambda} \frac{\lambda^{k}}{k!}$$

∴ Required probability Pr(4)= $e^{-3} \frac{3^{4}}{4!} = 0.168$

35. Ans: 0.865 range 0.86 to 0.87

Sol: Let X = number of cashew nuts per biscuit. We can use Poisson distribution with mean

Postal Coaching Solutions

$$= \lambda = \frac{2000}{1000} = 2$$
$$(X = k) = \frac{e^{-\lambda} \cdot \lambda^{k}}{\angle k} \quad (k = 0, 1, 2...)$$

Probability that the biscuit contains no cashew nut = P(X = 0)

$$=e^{-\lambda}=e^{-2}=0.135$$

Required probability = 1 - 0.135 = 0.865

36. Ans: 0.2

Р

Sol: The area under normal curve is 1 and the curve is symmetric about mean.

with

$$3^{2}$$
1 ince 100 ince

37. Ans: (a)

Sol: The standard normal variable Z is given by

$$Z = \frac{x - \mu}{\sigma}$$
When x = 438

$$Z = \frac{438 - 440}{1} = -2$$
When x = 441

$$Z = \frac{441 - 440}{1} = 1$$

· · · · · ·

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

30

	31	Engineering Mathematics
The percentage of rods whose lengths li	e	Expected number of students who weigh
between 438 mm and 441 mm		less than 68 kgs = 300×0.0918
= P(438 < x < 441)		= 28
= P(-2 < Z < 1)		(c) When $X = 65$, we have $Z = -1$
= P(-2 < Z < 0) + P(0 < Z < 1)		When $X = 71$, we have $Z = +1$
0.9545 0.6826 0.01055		Required probability = $P(65 < X < 71)$
$= \frac{1}{2} + \frac{1}{2} = 0.81855$		= Area under the normal curve
≈ 81.85 %		to the left of $Z = -1$ and
		Z = +1
38. Ans: (d)		= 0.6826
Sol: The parameters of normal distribution are	u	(By Property of normal curve)
= 68 and σ = 3	ERI/	Expected number of students who
Let $X =$ weight of student in kgs		weighs between 65 and 71 kgs
χ Χ-μ		$= 300 \times 0.6826$
Standard normal variable = $Z = \frac{1}{\sigma}$		4≈205
(a) When $X = 72$, we have $Z = 1.33$		
Required probability = $P(X > 72)$		39. Ans: 0.8051
= Area under the normal curve to th	e ;	Sol: The probability of population has
right of $Z = 1.33$		Alzheimer's disease is
= 0.5 – (Area under the normal curve		p = 0.04, q = 0.96, n = 3500
between $Z = 0$ and $Z = 1.33$)		$\mu = np = (3500) \ (0.04) = 140$
= 0.5 - 0.4082		$\sigma^2 = npq = (3500) (0.04) (0.96)$
= 0.0918		$\sigma^2 = 134.4, \sigma \cong 11.59$
Expected number of students who weigh	te 1	Set X = number of people having
greater than 72 kgs = 300×0.0918		Alzheimer's disease
= 28		$P(X < 156) = P(X - \mu < 150 - \mu)$
(b) When $X = 64$, we have $Z = -1.33$		$\Gamma(X < 150) = \Gamma\left(\frac{-\sigma}{\sigma} < \frac{-\sigma}{\sigma}\right)$
Required probability = $P(X \le 64)$		p(-150-140)
= Area under the normal curve to the		$= P(Z < \frac{11.59}{11.59})$
left of $Z = -1.33$		= P(Z < 0.86)
= 0.5 - (Area under the normal curve)		
between $Z = 0$ and $Z = 1.33$)		
(By symmetry of normal curve)		
= 0.5 - 0.4082		
= 0.0918		Z = 0 $Z = 0.86$

Expinering Publications	32	Postal Coaching Solutions
= 0.5 + Area between z = 0 & z = 0.86 = 0.5 + 0.3051 = 0.8051		$E(x^{2}) = \frac{x^{3}}{3} \Big _{0}^{1} = \frac{1}{3}$
40. Ans: 0.7 range 0.65 to 0.75 Sol: The probability density function o	f	(c) $E(x^{2}) = \int_{0}^{1} x^{3} f(x) dx$ $x^{4} \Big _{1}^{1} = 1$
$X = f(x) = \begin{cases} \frac{1}{10} & \text{for } 0 \le x \le 10\\ 0 & \text{otherwise} \end{cases}$		$= \frac{1}{4} \Big _{0}^{2} = \frac{1}{4}$ (d) Variance = E(x ²) - (E(x)) ²
$P\{(X + \frac{1}{X}) \ge 7\} = \{P(X + 10 \ge 7X) \\ = P(X^2 - 7X + 10 \ge 0) \\ = P\{(X - 5) (X - 2) \ge 0\} \\ = P(X \le 2 \text{ or } X \ge 5)$	RIA	42. Ans: (d) Sol: If point chosen is (0,0), then length of
$= 1 - P(2 \le X \le 5)$ = $1 - \int_{2}^{5} f(x) dx$ = $1 - \int_{2}^{5} \frac{1}{10} dx$		position vector (minimum value of P can be O) will be 0 and the maximum value of P be $\sqrt{5}$ when point chosen is (1,2) Minimum value of P = 0 at (0,0) point
$=1 - \frac{3}{10} = 0.7$		Maximum value of P = $\sqrt{5}$ at (1,2) point Probability Density function of P = $f(P) = \frac{1}{\sqrt{5}} = \frac{1}{\sqrt{5}}$ as P is random variable
Sol: (a) $E(x) = \int_{0}^{1} x f(x) dx$ $f(x) = \frac{1}{1} = 1$	ce 1	995 $\sqrt{5} = 0$ $\sqrt{5}$ $E(P^2) = \int_{0}^{\sqrt{5}} P^2 f(P) dP$
$E(x) = \frac{x^2}{2} \Big _{0}^{1} = \frac{1}{2}$		$E(P^{2}) = \int_{0}^{1} P^{2} \frac{1}{\sqrt{5}} dP$ $= \frac{1}{\sqrt{5}} \left(\frac{P^{3}}{3}\right)_{0}^{\sqrt{5}}$
(b) $E(x^2) = \int_0^0 x^2 f(x) dx$ $f(x) = \frac{1}{b-a} = \frac{1}{1-0} = 1$		$= \frac{1}{\sqrt{5}} \times \frac{1}{3} (\sqrt{5})^3 = \frac{1}{3} \times \sqrt{5} \times \sqrt{5}$ $E(P^2) = \frac{5}{3}$

ACCE
43. Ans: (i) a (ii) b
Sol: Given that passenger derives at a bus stop at
10 AM:
While stop arrive time is uniformly
distributed between 10 AM to 10:30AM

$$f(x) = \frac{1}{b-a} = \frac{1}{300-0} = \frac{1}{30}$$
(i) As we know passenger arrives bus stop
at 10:00AM. But as given he want to wait
norm than 10 minutes means 10:10AM to
10:30AM

$$P(X \ge 10 \min) = \int_{0}^{50} f(x) dx$$

$$= \frac{1}{30} (x)_{10}^{50}$$
(ii) As per given condition passenger will
has to wait 10: 15 AM to 10: 25 AM.

$$P(15 \le x \le 25) = \int_{5}^{22} f(x) dx$$

$$= \frac{2^{3}}{30} dx$$

$$= \frac{1}{30}$$
(iii) As per given condition passenger will
has to wait 10: 15 AM to 10: 25 AM.

$$P(15 \le x \le 25) = \int_{5}^{22} f(x) dx$$

$$= \frac{2^{3}}{30} dx$$

$$= \frac{1}{30}$$
(iii) As per given condition passenger will
has to wait 10: 15 AM to 10: 25 AM.

$$P(15 \le x \le 25) = \int_{5}^{22} f(x) dx$$

$$= \frac{1}{30} dx$$

г

Engineering Publications	35	Engineering Mathematics
51. Ans: k = 6, Mean = $\frac{1}{2}$, Median = $\frac{1}{2}$ Mode = $\frac{1}{2}$ and S.D = $\frac{1}{2\sqrt{5}}$,	For max or min $f^{1}(x) = 0 \Rightarrow 6 - 12x = 0$ $\Rightarrow x = \frac{1}{2}$ $f^{11}(x) = -12$ $f^{11}\left(\frac{1}{2}\right) = -12 < 0$ \therefore maximum at $x = 1/2$
Sol: We have $\int_{-\infty}^{\infty} f(x) dx = 1$ $\int_{-\infty}^{1} k(x - x^2) dx = 1$:. mode is 1/2 S.D = $\sqrt{E(x^2) - (E(x))^2} = \frac{1}{2\sqrt{5}}$
$\Rightarrow k \left[\left(\frac{x^2}{2} \right)_0^1 - \left(\frac{x^3}{3} \right)_0^1 \right] = 1$ $\Rightarrow k \left(\frac{1}{2} - \frac{1}{3} \right) = 1$	R /	52. Ans: (i) a (ii) c (iii) d Sol: The regression line of x and y is 2x - y - 20 = 0 2x = y + 20 $x = \frac{1}{2}y + 10$
$\Rightarrow k \left(\frac{3-2}{6}\right) = 1 \Rightarrow k = 6$ $Mean = \int_{-\infty}^{\infty} xf(x) dx = \int_{0}^{1} 6(x^{2} - x^{3}) dx$ $= 6 \left[\frac{x^{3}}{3} - \frac{x^{4}}{4}\right]_{0}^{1} = 6 \left[\frac{1}{3} - \frac{1}{4}\right] = \frac{1}{2}$		The regression coefficient of x and y is $b_{xy} = \frac{1}{2}$ The regression line of y on x is 2y - x + 4 = 0 $2y = x - 4$
Median is that value 'a' for which $P(X \le a) = \frac{1}{2} \int_{0}^{a} 6(x - x^{2}) dx = \frac{1}{2}$ $\Rightarrow 6\left(\frac{a^{2}}{2} - \frac{a^{3}}{3}\right) = \frac{1}{2}$ $\Rightarrow 3a^{2} - 2a^{3} = \frac{1}{2}$ $\Rightarrow a = \frac{1}{2}$	ce 1	$y = \frac{1}{2}x - 2$ The regression coefficient of y on x is $b_{yx} = \frac{1}{2}$ (i) The correlation coefficient is $r = \sqrt{b_{yx} \ b_{xy}} = \sqrt{\frac{1}{4}}$ $r = \frac{1}{2}$
Mode a that value at which $f(x)$ is max/min $\therefore f(x) = 6x - 6x^2$ $f^1(x) = 6 - 12x$		(ii) Given $\sigma_y = \frac{1}{4}$ $b_{yx} = r \frac{\sigma_y}{\sigma_x}$

	36					Post	al Co	achir	ng Sol	lutio	ns
$\frac{1}{2} = \frac{1}{2} \frac{\frac{1}{4}}{\sigma_x}$		54 Se	4. ol:	X	65	66	67	68	69	70	71
 ∴ σ_x = 1/4 (iii) Both regression lines passing through (x̄, ȳ), we have 2x̄ - ȳ - 20 = 0 2ȳ - x̄ + 4 = 0 By solving these two equations, we get x̄ = 12 and ȳ = 4 	n ER <i>11</i>	N	We example x and the average $\frac{65+7}{2}$ $\frac{66+7}{2}$ we put $y = x$	$\frac{\mathbf{Y}}{\mathbf{Y}}$ ffect y the verage $\frac{71}{2} = 0$ it -68	67 chan e new e of 68 a 69 a	68 ge of v orig extre s the s the	66 origi ins a me v new new	69 n in 1 re cho values v orig	72 respectosen a s thus gin fo	72 et of at or we or x or x	69 both near take and viz;
53. Ans: 0.18 Sol: Given: $b_{yx} = 1.6$ and $b_{xy} = 0.4$ $r = \sqrt{b_{yx} b_{xy}}$ $r = \sqrt{1.6 \times 0.4}$ r = 0.8 Now, $b_{yx} = r \frac{\sigma_y}{\sigma_x}$			u – x X 65 66 67 68 69 70 71	- 08 Y 67 68 66 69 72 72 69 Total		7 - y - y - y - y - y - y - y - y - y -		u ² 9 4 1 0 1 4 9 28	$ \begin{array}{c c} v^2 \\ 4 \\ 1 \\ 9 \\ 0 \\ 9 \\ 9 \\ 0 \\ 31 \end{array} $	uv 6 2 3 0 0 3 6 0 20))
$1.6 = 0.8 \frac{\sigma_y}{\sigma_x}$ $\frac{\sigma_y}{\sigma_x} = \frac{1.6}{1.8} = \frac{2}{1}$ $\Rightarrow \sigma_x = 1 \text{ and } \sigma_y = 2$ The angle between two regression lines is $\tan \theta = \left(\frac{1 - r^2}{r}\right) \left(\frac{\sigma_x \sigma_y}{\sigma_x^2 \sigma_y^2}\right)$ $= \left\{\frac{1 - (0.8)^2}{0.8}\right\} \left\{\frac{(1)(2)}{(1)^2 + (2)^2}\right\} = 0.18$		55	5. Ans: bl: Null drawn days Alter drawn i.e. μ Two-	$\sqrt{\sum}$ $= \sqrt{\sqrt{2}}$ (b) Hyp h from nate h from $\neq 280$ tailed	$\frac{\sum uv}{2^2} \cdot \sqrt{\frac{20}{28} \cdot \sqrt{\frac{20}{28} \cdot \sqrt{\frac{9}{28} \cdot$	$\sum_{i=1}^{n} v^{2}$ $\overline{31} \approx$ sis H population of the solution of the soluti	0.67 0: Thation is H ₁ tion v	ne san with : The with 1 used.	mple mear e sam nean	has $\int \mu = 1$ ple is $\mu = 2$	been 280 s not 280

ACE

Now the test statistic $z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$ $\mu = 280$, $\overline{x} =$ mean of the sample = 265 $\sigma = 30$, n = size of the sample = 400 $Z = \frac{265 - 280}{30} = -10$ $\sqrt{400}$ $\Rightarrow |Z| = 10$ $Z_{\alpha} = 1.96$ Since |Z| = 10 > 1.96, we reject null hypothesis The sample is not drawn from population. 56. Ans: (c) **Sol:** $H_0: P = \frac{1}{5}$, i.e., 20% of \bigtriangledown the product manufactured is of top quality. $\mathbf{H}_1:\mathbf{P}\neq\frac{1}{5}.$

p = proportion of top quality products in the sample

 $=\frac{50}{400}=\frac{1}{8}$

From the alternative hypothesis H_1 , we note that two-tailed test is to be used.

Let LOS be 5%. Therefore, $z_{\alpha} = 1.96$.

$$z = \frac{p - P}{\sqrt{\frac{PQ}{n}}} = \frac{\frac{1}{8} - \frac{1}{5}}{\sqrt{\frac{1}{5} \times \frac{4}{5} \times \frac{1}{400}}}$$

Since the size of the sample is equal to 400.

i.e.,
$$z = \frac{3}{40} \times 50 = -3.75$$

Now $|z| = 3.75 > 1.96$.

The difference between p and P is significant at 5% level.

Also H_0 is rejected. Hence H_0 is wrong or the production of the particular day chosen is not a representative sample.

95% confidence limits for P are given by

$$\frac{\left|\mathbf{p}-\mathbf{P}\right|}{\sqrt{\frac{\mathbf{pq}}{n}}} \le 1.96$$

Note:

We have taken $\sqrt{\frac{pq}{n}}$ in the denominator,

because P is assumed to be unknown, for which we are trying to find the confidence limits and P is nearly equal to p.

$$i.e.\left(p - \sqrt{\frac{pq}{n}} \times 1.96\right) \le P \le \left(p + \sqrt{\frac{pq}{n}} \times 1.96\right)$$
$$i.e.\left(0.125 - \sqrt{\frac{1}{8} \times \frac{7}{8} \times \frac{1}{400}} \times 1.96\right) \le P$$
$$\le \left(0.125 + \sqrt{\frac{1}{8} \times \frac{7}{8} \times \frac{1}{400}} \times 1.96\right)$$

i.e. $0.093 \le P \le 0.157$

Therefore, 95% confidence limits for the percentage of top quality product are 9.3 and 15.7.

57. Ans: (d)

Sol: H₀: p = P, i.e. the hospital is not efficient. H₁: p < POne-tailed (left-tailed) test is to be used. Let LOS be 1%. Therefore, $z_{\alpha} = -2.33$.

ACE Engineering Publications

$$z = \frac{p - P}{\sqrt{\frac{PQ}{n}}}, \text{ where } p = \frac{63}{640} = 0.0984$$
$$P = 0.1726, \qquad Q = 0.8274$$
$$z = \frac{0.0984 - 0.1726}{\sqrt{\frac{0.1726 \times 0.8274}{640}}} = -4.96$$

 $\therefore |z| > |z_{\alpha}|$

Therefore, difference between p and P is significant. i.e., H_0 is rejected and H_1 is accepted.

That is, the hospital is efficient in bringing down the fatality rate of typhoid patients.

04_Differential Equations

01. Ans: (a) **Sol:** Given $y \, dx + (1 + x^2) (1 + \log y) \, dy = 0$ (1) Dividing by $y(1+x^2)$ $\Rightarrow \frac{1}{1+x^2} dx + \left(\frac{1}{y} + \frac{\log y}{y}\right) dy = 0$ $\Rightarrow \int \frac{1}{1+x^2} dx + \int \left[\frac{1}{y} + \frac{1}{y} (\log y)\right] dy = c$ $\therefore \tan^{-1}(x) + \log y + \frac{(\log y)^2}{2} = c$ is a general solution of equation (1) **02.** Ans: (d) **03.** Ans: (d) **Sol:** Given $\frac{dy}{dx} + y = 1$ with y = 0 at x = 0 $\Rightarrow \frac{dy}{1-y} = dx$ $\Rightarrow \int \frac{dy}{1-y} = -\int dx$ $\Rightarrow \log(y-1) = -2$ $\Rightarrow x = 1 + ke^{-x} ...$

Put x + y - 1 = t(2)

 $\Rightarrow 1 + \frac{dy}{dx} = \frac{dt}{dx}$ $\Rightarrow \frac{dy}{dy} = \frac{dt}{dy} - 1 \dots (3)$ Using (2) & (3), (1) becomes $\frac{dt}{dx} - 1 = t^2$ $\Rightarrow \frac{dt}{dx} = 1 + t^2 \Rightarrow \frac{dt}{1 + t^2} = dx$ Integrating both sides $\int \frac{dt}{1+t^2} = \int dx$ $\Rightarrow \tan^{-1} t = x + c$ \therefore The general solution of (1) is $\tan^{-1}(x+y-1) = x + c$ (or) x + y - 1 = tan(x + c)(or) y = 1 - x + tan(x+c)03. Ans: (d) **Sol:** Given $\frac{dy}{dx} + y = 1$ (1) with y = 0 at x = 0(2) $\Rightarrow \frac{dy}{1-y} = dx$ $\Rightarrow \int \frac{dy}{y-1} = -\int dx$ $\Rightarrow \log(y-1) = -x + c$ \Rightarrow y - 1 = e^{-x + c} = k e^{-x} where k = e^c \Rightarrow x = 1 + ke^{-x}(3) Using (2), (3) becomes 0 = 1 + k (or) k = -1 \therefore The solution of (1) with (2) is $y = 1 - e^{-x}$.

	39	Engineering Mathematics
04. Ans: (a)		06. Ans: (d)
Sol: Given $\frac{dy}{dx} + 7x^2y = 0$ (1)	S	Sol: $\frac{dy}{dx} = \frac{y}{x} + \sec\left(\frac{y}{x}\right)$ (1)
with $y(0) = \frac{3}{7}$ (2)		Let $\left(\frac{y}{x}\right) = z \implies y = zx$
Now, (1) is written as $\Rightarrow \int \frac{1}{2} dy + \int 7x^2 dx = C$		$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(z + x\frac{\mathrm{d}z}{\mathrm{d}x}\right)$
Jy J		\therefore (1) becomes
$\Rightarrow \log y + \frac{7x^3}{3} = C$		$\left(z+x\frac{dx}{dx}\right) = z + \sec z$
$\Rightarrow y = e^{-\frac{7x}{3}+C} - \dots - (3)$	ERIA	$\sqrt{G} x \frac{dz}{dx} = \sec z$
Using (2) , (3) becomes		$\int dx dx$
$\frac{3}{7} = e^0 \cdot e^c \text{ (or) } e^c = \frac{3}{7} - \dots + (4)$		$\int \cos z dz = \int \frac{1}{x}$
\therefore The solution of (1) with (3) & (4) is give	n	$\sin z = \log x + c$
by $\frac{-7x^3}{2} + C = \frac{-7x^3}{2} + C = \frac{-7x^3}{2} = C = \frac{3}{2} - \frac{-7x^3}{3}$		$\sin\left(\frac{y}{x}\right) = \log x + c$
$y = y(x) = e^{-3} = e^{-3} e^{-3} = e^{-3} e^{-3} = e^{-3} e^{-3} e^{-3} = e^{-3} e^$		07. Ans: (b)
Hence, $y(1) = y = \frac{3}{7} \cdot e^{-\frac{7}{3}}$	5	Sol: $(3x^2y^2 + x^2)dx + (2x^3y+y^2)dy = 0$ $(3x^2y^2 dx + 2x^3y dy) + x^2 dx + y^2 dy = 0$
05 Ans: (a)		$\int d(x^3y^2) + \int x^2 dx + \int y^2 dy = c$
Sol: $\frac{dy}{dx} = \frac{3x^2 - 2xy}{x^2}$		$\mathbf{x}^{3}\mathbf{y}^{2} + \left(\frac{\mathbf{x}^{3}}{3}\right) + \left(\frac{\mathbf{y}^{3}}{3}\right) = \mathbf{c}$
$x^2 dy = (3x^2 - 2xy) dx$		08. Ans: (a)
$(x^2 dy + 2xy dx) = 3x^2 dx$		Sol: $(x^2y^2 + y)dx + (2x^3y - x)dy = 0$
$\int d(x^2 y) = \int 3x^2 dx$		$(x^{2} y^{2} dx + 2x^{3} y dy) + (y dx - x dy) = 0$
$x^2 y = 3\left(\frac{x^3}{3}\right) + c$		$(y^2 dx + 2xy dy) + \left(\frac{ydx - xdy}{x^2}\right) = 0$
$(x^2y - x^3) = c$		$\int d(xy^2) - \int d\left(\frac{y}{x}\right) = c$
$\mathbf{x}^{2}(\mathbf{y}-\mathbf{x})=\mathbf{c}$		$xy^2 - \left(\frac{y}{y}\right) = c$
		5 (x)

Engineering Publications	40 Postal Coaching Solutions
09. Ans: (b) Sol: $(y - xy^2)dx + (x + x^2y) dy = 0$ (ydx + xdy) + xy (xdy - ydx) = 0	11. Ans: (c) Sol: Given that $r \sin \theta d\theta + (r^3 - 2r^2 \cos \theta + \cos \theta) dr = 0$
$\frac{(ydx + xdy)}{xy} + (xdy - ydx) = 0$ $d(xy) + (xdy - ydx) = 0$	Let $M = r \sin \theta$ and $N = r^3 - 2r^2 \cos \theta + \cos \theta$ $\partial M = \sin \theta$
$\frac{d(xy)^2}{(xy)^2} + \left(\frac{d(xy)}{xy}\right) = 0$ $\int \frac{d(xy)}{(xy)^2} + \int d\log\left(\frac{y}{x}\right) = c$	$\frac{\partial N}{\partial \theta} = (2r^2 - 1)\sin\theta$
$-\frac{1}{xy} + \log\left(\frac{y}{x}\right) = c$	$\frac{\partial M}{\partial r} - \frac{\partial N}{\partial \theta} = -2\left(r - \frac{1}{r}\right)$
10. Ans: (a) Sol: $2xy^3 dx + (3x^2y^2 + x^2y^3 + 1)dy = 0$	$I.F = e^{\int 2\left(r - \frac{1}{r}\right)dr}$
$(3x^2y^2 + x^2y^3 + 1) dy = -2 xy^3 dx$	$= \frac{e^{r^2}}{r^2}$
$\frac{\mathrm{dx}}{\mathrm{dy}} = -\frac{3\mathrm{x}}{2\mathrm{y}} - \frac{\mathrm{x}}{2} - \frac{1}{2\mathrm{xy}^3}$	r^2 Multiplying the given equation by LE
$\frac{\mathrm{dx}}{\mathrm{dy}} + \left(\frac{3}{2y} + \frac{1}{2}\right)x = \frac{-1}{2xy^3}$	$\frac{e^{r^2}}{r^2}\sin\theta d\theta + \frac{e^{r^2}}{r^2} (r^3 - 2r^2\cos\theta + \cos\theta)dr = 0$
$2x\frac{dx}{dy} + \left(\frac{3}{y} + 1\right)x^{2} = \frac{-1}{y^{3}}(1)$	The above equation is exact.
Let $x^2 = z \Rightarrow 2x \frac{dx}{dy} = \frac{dz}{dy}$ Since	$ce 199 \int \frac{e^{r^2}}{r^2} \sin\theta d\theta + \int e^{r^2} r dr = c$
(1) becomes $\frac{dz}{dy} + \left(\frac{3}{y} + 1\right)z = \left(-\frac{1}{y^3}\right)$	$\Rightarrow \frac{-e^{r^2}\cos\theta}{r} + \frac{e^{r^2}}{2} = c$
I.F = $e^{\int \left(\frac{2}{y}+1\right) dy} = e^{3\log y+y} = y^3 e^y$	12. Ans: (a) Sol: Given equation
$\therefore z(y^3 e^y) = \int \left(\frac{-1}{y^3}\right) y^3 e^y dy$	$(x^{2}y - 2xy^{2})dx + (3x^{2}y - x^{3})dy = 0$ $\frac{dy}{dt} = \frac{-(x^{2}y - 2xy^{2})}{(x^{2}y^{2} - 2xy^{2})} = \frac{2y^{2} - xy}{2x^{2}y^{2} - xy}$
$= -e^{y} + c$ $x^{2} y^{3} e^{y} + e^{y} = c$	dx $(3x^{-}y - x^{-}) = 3xy - x^{-}$ The above equation is homogenous

Engineering Pablications	41	Engineering Mathematics
Put y = vx $\frac{dy}{dx} = v + x \frac{dv}{dx}$ $v + x \frac{dv}{dx} = \frac{2v^2 - v}{3v - 1} - v = \frac{-v^2}{3v - 1}$ $\frac{3v - 1}{v^2} dv + \frac{dx}{x} = 0$ Integrating $3\log v + \frac{1}{v} + \log x = c$ $\left(\frac{x}{y}\right) + \log\left(\frac{y^3}{x^2}\right) = c$ 13. Ans: (a) Sol: $x^4y^1 + 4x^3y = x^8$ $x^4 \frac{dy}{dx} + 4x^3y = x^8$ $\frac{dy}{dx} + \frac{4y}{x} = x^4$ I.F : $e^{\int Pdx} = e^{4\int \frac{1}{x}dx}$ $= e^{4\log x} = x^4$ $\therefore y(x^4) = \int x^4 \cdot x^4 dx$ $= \left(\frac{x^4}{9}\right) + c$ Since	41	Engineering Mathematics $= \frac{e^{x}}{2} (\sin x - \cos x) + c$ $y = \frac{1}{2} (\sin x - \cos x) + ce^{-x}$ $y(\pi) = 1 \Rightarrow 1 = +\frac{1}{2} + ce^{-\pi}$ $\frac{1}{2} e^{\pi} = c$ $\therefore y = \frac{1}{2} (\sin x - \cos x + e^{\pi - x})$ 15. Ans: (b) Sol: $y^{1} + \frac{3y}{2} = \frac{3xy^{\frac{1}{3}}}{2}$ $y^{-1/3} \frac{dy}{dx} + \frac{3}{2} y^{2/3} = \left(\frac{3x}{2}\right) - \dots (1)$ Let $y^{2/3} = z$ $\Rightarrow \frac{2}{3} y^{-1/3} \frac{dy}{dx} = \frac{dz}{dx} - \dots (2)$ From (1) & (2) $\frac{dz}{dx} + z = x$ I.F: $e^{\int 1.dx} = e^{x}$ $\therefore ze^{x} = \int xe^{x} dx$ $y^{2/3}e^{x} = e^{x} (x - 1) + c$
$y = \left(9^{-1} x^{4}\right)$ 14. Ans: (a) Sol: $y^{1} + y = \sin x$ $\frac{dy}{dx} + y = \sin x$		$y^{2/3} = (x - 1) + c e^{-x}$ 16. Ans: (b) Sol: Given $\tan y \frac{dy}{dx} + \tan x = \cos y \cos^2 x$ $\frac{dy}{dx} + \cos y \cos^2 x = (1)$
I.F : $e^{\int 1.dx} = e^x$ $ye^x = \int e^x \sin x dx$		Sec y tan y $\frac{dx}{dx}$ + sec y tan x = cos x (1) Put sec y = v (2)

ACE Engineering Publications

 $\Rightarrow \sec y \tan y \frac{dy}{dx} = \frac{dv}{dx} \dots (3)$ Using (2) and (3), (1) becomes $\frac{dv}{dx} + (\tan x)v = \cos^2 x$ I.F = $e^{\int \tan x \, dx} = \sec x$ The solution is v. sec x = $\int \cos^2 x \cdot \sec x \, dx + c$ $\therefore \sec y = \cos x(\sin x + c)$ is a G.S

17. Ans: (d)

Sol: y'' + 4y' + 5y = 0 $(D^2 + 4 D + 5) y = 9$ AE has roots $(-2 \pm i)$ $\therefore y = e^{-2x}(c_1 \cos 2x + c_2 \sin x)$

18. Ans: (c)

Sol: Given equation y " -4y' - 6y = 0The auxiliary equation is $m^2 - 4m - 6 = 0$ $m = \frac{4 \pm \sqrt{16 + 24}}{2} = 2 \pm \sqrt{10}$ The solution is $y = c_1 e^{(2+\sqrt{10})x} + c_2 e^{(2-\sqrt{10})x}$ By algebraic manipulation

 $= e^{2x} [c_1 \cosh(\sqrt{10})x + c_2 \sinh(\sqrt{10})x]$

19. Ans: (a)

Sol: y''' - 6y'' + 11y' - 6y = 0 $(D^{3} - 6D^{2} + 11D - 6)y = 0$ $(D - 1)(D^{2} - 5D + 6)y = 0$ (D - 1)(D - 2)(D - 3)y = 0AE has roots 1, 2, 3 $\therefore y = (c_{1}e^{x} + c_{2}e^{2x} + c_{3}e^{3x})$

```
20. Ans: (b)
            Sol: Given equation of (D^2 + 1)^2 y = 0
                 The auxiliary equation is
                 (m^2 + 1)^2 = 0
                 m = \pm i, \pm i
                 y = (c_1 + c_2 x) \cos x + (c_3 + c_4 x) \sin x
            21. Ans: 4.54
            Sol: Given 2\frac{d^2y}{dt^2} + 8y = 0 .....(1)
                 with y(0) = 0 .....(2)
                 and y'(0) = 10 .....(3)
                 Now, (1) can be written as f(D)y = 0,
                 where f(D) = D^2 + 4 and d = \frac{d}{dt}
                 The auxiliary equation of (1) is given by f(m)
                 = 0
                 \Rightarrow m<sup>2</sup> + 4 = 0
                 \Rightarrow m = 0 ± 2i
                  \therefore The general solution of (1) is given by
                      y = c_1 \cos (2t) + c_2 \sin (2t) \dots (4)
                 \Rightarrow y' = -2c<sub>1</sub> sin (2t) + 2c<sub>2</sub> cos (2t) .....(5)
                           Using (2), (4) becomes
Since 19
                      Using (3), (5) becomes
                       10 = 0 + 2c_2
                 \Rightarrow c<sub>2</sub> = 5 .....(7)
                 \therefore The solution of (1) with (2) & (3) is given
                 by y = y(t) = 5 \sin(2t)
                 Hence, y(1) = 5 \sin(2) = 5(0.9092) = 4.54
```

ACE 43 **Engineering Mathematics** 22. Ans: (b) 25. Ans: (c) **Sol:** $y'' - 4y' + 13y = e^{2x}$ Sol: The given equation is $(D^2 + 1) v = 0$ $(D^2 - 4D + 13) y = e^{2x}$ \therefore A.E has roots $\pm i$ A.E has roots $(2 \pm 3 i)$ \therefore y = (c₁ cost + c₂ sint) :. $y_c = e^{2x} (c_1 \cos 3 x + c_2 \sin 3 x)$ $1 = c_1 \dots (1)$ (:: y = 1 at t = 0) $y_{p} = \frac{e^{2x}}{(D^{2} - 4D + 13)} = \frac{e^{2x}}{(4 - 8 + 13)} = \frac{e^{2x}}{9}$ $\frac{dy}{dt} = (-c_1 \sin t + c_2 \cos t)$ $\therefore y = (y_c + y_p)$ $0 = c_2....(2) \left(\because \frac{dy}{dt} = 0 \text{ at } t = 0 \right)$ $= e^{2x} (c_1 \cos 3x + c_2 \sin 3x) + \frac{e^{2x}}{9}$ \therefore from (1) & (2) $y = \cos t$ 26. Ans: 5 **Sol:** y'' + 4y'' + 8y'' + 8y' + 4y = 2023. Ans: (b) $(D^4 + 4D^3 + 8D^2 + 8D + 4) y = 20 e^{0.x}$ **Sol:** $c_1 e^x + e^{\frac{-x}{2}} c_2 \cos\left(\frac{\sqrt{3}}{2}\right) x + c_3 \sin\left(\frac{\sqrt{3}}{2}\right) x$ $y_{p} = \frac{20.e^{0.x}}{(D^{4} + 4D^{3} + 8D^{2} + 8D + 4)}$ $=\frac{20.e^{0.x}}{4}=5$ \Rightarrow AE has roots $1, \left(\frac{-1}{2} \pm \frac{\sqrt{3}}{2}i\right)$ \Rightarrow (D - 1) (D² + D + 1) y = 0 27. Ans: (a) $(D^3 - 1) v = 0$ **Sol:** $y^{v} - y' = 12e^{x}$ $(D^5 - D) y = 12 e^x$ 24. Ans: (b) 1995 $\therefore \quad \mathbf{y}_{p} = \frac{12e^{x}}{D(D^{4} - 1)}$ **Sol:** $y = (c_1e^x + c_2 e^x \cos x + c_3 e^x \sin x)$ is the general solution from the given independent $=\frac{12e^{x}}{D(D-1)(D+1)(D^{2}+1)}$ solutions \therefore y = c₁ e^x + e^x (c₂ cos x + c₃ sin x) \therefore A.E. has roots 1, (1 ± i) $=\frac{12xe^x}{22}$ $\therefore (D-1) (D^2 - 2D + 2) y = 0$ $(D^3 - 3D^2 + 4D - 2)v = 0$ $y_p = 3x e^x$ 28. Ans: (c) Sol: $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = -2\cosh(x)$

	44	Postal Coaching Solutions
$(D^{2} + 4D + 5) y = -(e^{x} + e^{-x})$ $y_{p} = \frac{-(e^{x} + e^{-x})}{(D^{2} + 4D + 5)}$ $= \frac{-e^{x}}{(1 + 4 + 5)} - \frac{e^{-x}}{(1 - 4 + 5)}$ $= \frac{-e^{x}}{10} - \frac{e^{-x}}{2}$		31. Ans: (*) Sol: $\frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \sin(2x)$ $(D^3 + 4D) y = \sin 2x$ $\therefore y_p = \frac{\sin 2x}{(D^3 + 4D)}$ $= \frac{1}{D} \frac{\sin 2x}{(D^2 + 4)}$
29. Ans: (d)		$y_{p} = \frac{1}{D} \left(\frac{-x}{4} \cos 2x \right)$
Sol: The given equation is $\frac{d}{dx^2} = e^x$ $\Rightarrow \frac{dy}{dx} = e^x + c_1$ $\Rightarrow y = e^x + c_1 x + c_2 \dots \dots (i)$ $\because y(0) = 1 \Rightarrow c_2 = 0$ $\because y^1(0) = 2 \Rightarrow c_1 = 1$ Substituting the values of $c_1 \& c_2$ in (i), w get $y = e^x + x$ 30. Ans: (a) Sol: $\frac{d^2y}{dx^2} + y = \cos(x)$ $(D^2 + 1) y = \cos x$ A.E has roots $\pm i$ $\therefore y_c = (c_1 \cos x + c_2 \sin x)$ $\therefore y = (y_c + y_p) = (c_1 \cos x + c_2 \sin x)$	e s	$= -\frac{1}{4} \left(\frac{x}{2} \sin 2x + \frac{\cos 2x}{4} \right)$ = $-\frac{1}{8} (2x \sin 2x + \cos 2x)$ 32. Ans: (a) Sol: $y''' + y = \sin(3x)$ $(D^3 + 1) y = \sin 3x$ $y_p = \frac{\sin 3x}{(D^3 + 1)}$ = $\frac{\sin 3x}{(-9D + 1)}$ (Replacing D ² by -9) = $(1+9D) \frac{\sin 3x}{(1-81D^2)}$ = $\frac{(1+9D)\sin 3x}{1-81(-9)}$
$\frac{x}{2}\sin x$ $y(0) = 1 \Longrightarrow 1 = c_1$ $y(\pi/2) = 0 \Longrightarrow 0 = c_2 + \frac{\pi}{4} \Longrightarrow c_2 = -\frac{\pi}{4}c$ $\therefore y = \left(\cos x - \frac{\pi}{4}\sin x + \frac{x}{2}\sin x\right)$	3	$= \frac{1}{730} (\sin 3x + 27 \cos 3x)$ 33. Ans: (c) Sol: y ''' + 8y = x ⁴ + 2x + 1 (D ² + 8) y = (x ⁴ + 2x + 1)

ACE Registering Publications	45 Engineering Mathematics
$y_{p} = \frac{(x^{4} + 2x + 1)}{(D^{3} + 8)}$	$=e^{-x}\left(\frac{x^2}{D^2}\right)$
$=\frac{1}{8}\left(1+\frac{D^{3}}{8}\right)^{-1}\left(x^{4}+2x+1\right)$	$=e^{-x}\left(\frac{1}{3}\cdot\frac{x^4}{4}\right)$
$=\frac{1}{8}\left(1-\frac{D^{3}}{8}\right)\left(x^{4}+2x+1\right)$	$=\frac{\mathbf{x}^4 \cdot \mathbf{e}^{-\mathbf{x}}}{12}$
$= \frac{1}{8} (x^4 + 2x + 1 - 3x)$ $= \frac{1}{8} (x^4 - x + 1)$	36. Ans: (a) Sol: $y'' - 2y' + 5y = e^x \cos(3x)$ $(D^2 - 2D + 5)y = e^x \cos 3x$
34. Ans: (b) Sol: y'' - 4y' - 2y = x ² (D ² - 4D - 2) y = x ² $y_{p} = \frac{x^{2}}{(D^{2} - 4D - 2)} = -\frac{1}{2} \left(1 + \left(2D - \frac{D^{2}}{2} \right) \right)^{-1} (x)$	(x^{2}) $\therefore y_{p} = \frac{e^{x} \cos 3x}{(D^{2} - 2D + 5)}$ $= e^{x} \frac{\cos 3x}{[(D + 1)^{2} - 2(D + 1) + 5]}$ $= e^{x} \frac{\cos 3x}{(D^{2} + 4)}$ $= \frac{e^{x}}{-5} \cos 3x$
$= -\frac{1}{2} \left[1 - \left(2D - \frac{D^2}{2} \right) + 4D^2 \right] (x^2)$ $= -\frac{1}{2} \left[1 - 2D + \frac{9}{2} D^2 \right] (x^2)$ $= -\frac{1}{2} \left[x^2 - 4x + 9 \right]$ 35. Ans: (d) Sol: (y'' + 2y' + y) = x^2 e^{-x}	37. Ans: (b) Sol: y " + 4y = x sin(x) $(D^2 + 4)y = x sin x$ $y_p = \frac{x sin x}{(D^2 + 4)}$ $= x \left(\frac{sin x}{D^2 + 4}\right) - \left(\frac{2D}{(D^2 + 4)^2}\right) sin x$
Sol. $(y' + 2y' + y) = x^2 e^{-x}$ $(D^2 + 2D + 1)y = x^2 e^{-x}$ $(D + 1)^2 y = x^2 e^{-x}$ $y_p = \frac{e^{-x}x^2}{(D+1)^2}$	$=\frac{x}{3}\sin x - \frac{2}{9}\cos x$

ACCE46**Postal Coaching Solutions**38. Ans: (a)38. Ans: (a)Sol:
$$y'' - 6y' + 9y = \frac{e^{3x}}{x^2}$$
(D - 3)' $y = \frac{e^{3x}}{x^2}$ $(D - 3)' y = \frac{e^{3x}}{x^2}$ (D - 3)' $y = \frac{e^{3x}}{x^2}$ $(D - 3)' y = \frac{e^{3x}}{x^2}$ (D - 1) $y - 4$ D $y + 6y = 0$ $(D - 3)' y = \frac{e^{3x}}{x^2}$ (D - 1) $y - 4$ D $y + 6y = 0$ $(D - 3)' y = \frac{e^{3x}}{x^2}$ (D - 1) $y - 4$ D $y + 6y = 0$ $(D - 3)' y = \frac{e^{3x}}{x^2}$ (D - 1) $y - 4$ D $y + 6y = 0$ $(D - 3)' y = \frac{e^{3x}}{x^2}$ (D - 1) $y - 4$ D $y + 6y = 0$ $(D - 2)$ (D - 3) $y = 0$ (D - 2) (D - 3) $y = 0$ $y = (e_1 e^{3x} + e^{3x}) = e^{6x}$ (D - 1) $(D - 2)$ (D - 3) $y = 0$ Let $y_p = (A \ y_1 + B \ y_2)$ from method of(D - 1) $(D - 2)$ for $a \ x^{n-1} = \frac{2}{a}$ Where $A = -\int \frac{e^{3x}}{x^2} - \frac{xe^{3x}}{e^{6x}} dx$ - - log x $= -\log x$ $and B = \int \frac{e^{3x}}{x^2} + \frac{e^{3x}}{e^{6x}} dx$ $= -\log x$ $and B = \int \frac{e^{3x}}{x^2} + \frac{e^{3x}}{e^{6x}} dx$ $= -\log x$ $and B = \int \frac{e^{3x}}{x^2} + \frac{e^{3x}}{e^{6x}} dx$ $= -\log x$ $and B = \int \frac{e^{3x}}{x^2} + \frac{e^{6x}}{e^{6x}} dx$ $y_p = (-\log x)e^{3x} + (\frac{-1}{x})xe^{3x}$ $(D - 1)(D - 2)y + 2y = 4e^{6x}$ $(D - 1)(D - 2)y + 2y = 4e^{6x}$ $(D - 1)(D - 2)y + 2y = 4e^{6x}$ $y_y = (e_1e^2 + y^2 + 2)^2$ $y_y = (x^2 + y^2) = (e_1x + e_2x^2 + 2)$ $y_y = (y_x + y_y) = (e_1x + e_2x^2 + 2)$ $y_y = (y_x + y_y) = (e_1x + e_2x^2 + 2)$ $y_y = (y_x + y_y) = (e_1x + e_2x^2 + 2)$ $y_y = (y_y + y_y) = (e_1x + e_2x^2 + 2)$ $y_y = (y_y + y_y) = (e_1x + e_2x$

ACE
Engineering Publications

47

Engineering Mathematics

$1+p = f'(x^2 + y^2 + z^2)(2x + 2zp) (2)$	47. Ans: (c)
Differentiating (1) partially w . r. t 'y'	Solv Solv $\partial u = 2 \partial$
$1 + q = f'(x^2 + y^2 + z^2)(2y + 2zq)$	Sol: Sol: $\frac{\partial x}{\partial x} = 2\frac{\partial x}{\partial x}$
$c_1(2,2,2) = 1+q \qquad (2)$	$u(x, 0) = 6e^{-3x}$
$f'(x^2 + y^2 + z^2) = \frac{1}{2y + 2zq} \rightarrow (3)$	u = XT
Sub (3) in (2)	'x' only and T
$\left(1+a \right)$	Sub (3) in (1)
$1 + p = \left(\frac{1 + q}{2y + 2zq}\right)(2x + 2zp)$	X'T = 8 XT' -
(1 + p) 2 (y + zq) = (1 + q) 2 (x + pz)	$\mathbf{X'T} = \mathbf{X} \ (\mathbf{2T'})$
y + py + zq + pqz = x + xq + pz + pqz	$\frac{X'}{T} = \frac{2T' + T}{T}$
p(y-z) + q(z-x) = x - y	ХТ
GINEER	$\frac{X'}{X} = k \& \frac{8T}{2}$
43. Ans: (b)	
Sol: $u_{xx} - 6u_{xy} + 9u_{yy} = xy^2$	$\frac{X}{X} = k \Longrightarrow \frac{dX}{1}$
$B^2 - 4AC = 36 - 4(1)(9) = 36 - 36 = 0$	X dx
Equation (1) is parabolic	$\frac{dX}{dx} = k dx$
	X
44. Ans: (c)	On integrating
Sol: $3u_{xx} + 6u_{xy} - 16u_{yy} = 0 \rightarrow (1)$	$\log X = kx + $
$B^2 - 4AC = 36 - 4(3)(-16)$	$\mathbf{X} = \mathbf{c}_1 \mathbf{e}^{\mathbf{k}}$
= 36 + 192 = 228 > 0	$\frac{2T'+T}{T} = k$
Equation (1) is hyperbolic	Т
Cinee	$\frac{dT}{dT} = \frac{(k-1)T}{k}$
45. Ans: (a)	dt 2
Sol: $6u_{xx} + 7u_{yy} - 3u_{xy} = 4u_x + u_y$	$\frac{1}{dT} = \begin{pmatrix} k-1 \end{pmatrix}$
$B^2 - 4AC = 9 - 4$ (6) (7) = 9 - 168 = -159 <	$T^{ur} = \begin{pmatrix} 2 \end{pmatrix}$
0	On integrating
Equation (1) is elliptic	$Log T = \left(\frac{k}{2}\right)$
46. Ans: (c)	(k-1)
Sol: $x^5 u_{xx} - xu_{yy} + 2u_y = 0 x > 0$	$T = c_2 e^{\left(\frac{1}{2}\right)t}$
$B^2 - 4AC = 0 - 4 (x^5) (-x) = 4x^6 > 0$	Sub (4) & (5)
Equation (1) is hyperbolic	
	$\mathbf{u} = \mathbf{c}_1 \mathbf{e}^{\mathbf{k}\mathbf{x}} \mathbf{c}_2$
	Given $u(x, 0)$
	1

 $\frac{\partial u}{\partial t} + u$ ------ (1) ^{3x} ----- (2) -- (3) where X is a function of T is a function of 't' only + XT+ T) = K $\frac{T'+T}{T} = K$ $\dot{t} = kX$ $\log \log C_1$ $^{\mathrm{kx}} \rightarrow (4)$ $\Rightarrow 2T' + T = kT$ $\left(\frac{1}{2}\right) dt$ ıg $\left(\frac{-1}{2}\right)t + \log C_2$ \rightarrow (5)) in (3) $e^{\left(\frac{k-l}{2}\right)t}$

 $= 6e^{-3x}$

Engineering Publications	48	Postal Coaching Solutions
$6e^{-3x} = u(x, 0) = C_1 C_2 e^{kx}$		$\frac{X'}{X'} = \frac{4Y'}{X'} = k$
$c_1c_2 = 6 \& k = -3$		$\begin{array}{cccc} X & Y \\ X' & \cdot & \cdot & 4Y' \\ \end{array}$
$u = 6e^{-3x} \cdot e^{(-2)^{t}}$ $u = 6e^{-3x} e^{-2t}$		$\frac{1}{X} = k$ and $\frac{1}{Y} = k$
		$\Rightarrow X = c_1 e^{kx}$ and $Y = c_2 e^{\frac{ky}{4}}$
48. Ans: (b) 2^{2}		Now, the solution is,
Sol: The given equation is $\frac{\partial \mathbf{u}}{\partial t} = \alpha \frac{\partial^2 \mathbf{u}}{\partial x^2}$ (1))	$u = c_1 c_2 e^{kx} e^{\frac{ky}{4}}$
Let $u = X(x).T(t)$ be the solution of (1) $\partial^2 u$ " ∂u ,		$u = c_3 e^{kx} e^{\frac{ky}{4}}$ (ii)
Then $\frac{\partial^2 u}{\partial x^2} = X T$ and $\frac{\partial u}{\partial t} = XT$	ER <i>II</i>	Given $u(0, y) = 8e^{-3y}$
Substituting in equation (i) $X''T = \alpha XT'$		$\Rightarrow 8e^{-3y} = u(0,y) = c_3 e^{\frac{k}{4}y}$
$\frac{X''}{X''} = \frac{\alpha T'}{X'} = k$		\Rightarrow c ₃ = 8, k = -12
		$\therefore u = 8 e^{-12x - 3y}$
$\frac{X}{X} = \frac{k}{\alpha}$ and $\frac{1}{T} = k$		50 Apr: (a)
$x_1 \sqrt{\frac{k}{2}} - x_1 \sqrt{\frac{k}{2}}$		Sol: The given equation is
$\Rightarrow T = c_1 e^{\kappa t} \text{ and } X = c_2 e^{-\sqrt{\alpha}} + c_3 e^{-\sqrt{\alpha}}$		$p - q = \log(x + y)$
The solution of equation (1) is $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$:. The auxiliary equations are
$\mathbf{u} = \mathbf{c}_1 \mathbf{e}^{\mathrm{kt}} \left \mathbf{c}_2 \mathbf{e}^{\left(\sqrt{\frac{k}{\alpha}}\right)\mathbf{x}} + \mathbf{c}_3 \mathbf{e}^{-\left(\sqrt{\frac{k}{\alpha}}\right)\mathbf{x}} \right $		$\frac{dx}{1} = \frac{dy}{-1} = \frac{dz}{\log(x+y)}$
Since	ce 1	$\frac{dx}{dy}$
40 Ans: (a)		Consider $\frac{-1}{1} = \frac{-1}{-1}$
49. Alls: (a) $\partial u + \partial u$		$\therefore x + y = C$
Sol: Given $\frac{1}{\partial x} = 4 \frac{1}{\partial y}$ (1)		Consider $\frac{dx}{1} = \frac{dz}{\log(x+y)}$
Let $u = X(x).Y(y)$ be the solution of (i)		$1 \log(x + y)$
Then $\frac{\partial u}{\partial x} = X'Y$ and $\frac{\partial u}{\partial y} = XY'$		$\Rightarrow dx = \frac{1}{\log C} dz$
Substituting in equation (i) $X^{1}Y = 4XY'$		$\Rightarrow x = \frac{z}{\log C} + C_1$
28 1 1281		$\Rightarrow x - \frac{z}{\log x + y} = C_1$

ACE

51. Ans: (b)

 $\therefore \text{ The solution is} \\ \phi \left[x + y, x - \frac{z}{\log(x + y)} \right] = 0$

Sol: The auxiliary equations are $\frac{\mathrm{d}x}{\mathrm{z}-\mathrm{y}} = \frac{\mathrm{d}y}{\mathrm{x}-\mathrm{z}} = \frac{\mathrm{d}z}{\mathrm{y}-\mathrm{x}} \quad \dots \dots \dots \dots (\mathrm{i})$ Using the multipliers 1, 1, 1 each of the fractions in (i) = $\frac{dx + dy + dz}{0}$ \Rightarrow dx+ dy + dz = 0 \Rightarrow x + y + z = C₁ (ii) Using the multipliers x, y, z each of the fractions in (i) $= \frac{x\,dx + y\,dy + z\,dz}{0}$ \Rightarrow x dx+ y dy + z dz = 0 \Rightarrow x² + y² + z² = C₂ (iii) ... The solution is $f(x + y + z, x^{2} + y^{2} + z^{2}) = 0$ Since 52. Ans: (c) Sol: The given equation is $q = 3p^2$ (Type-I) Let the solution be z = ax + by + c(1) \Rightarrow p = a and q = b Substituting in the equation Type-I, we have $b = 3a^2$ (2)

Eliminating b from (1) & (2) The solution is $z = ax + 3a^2y + c$

53. Ans: (d)
Sol: Given
$$p^2 z^2 + q^2 = 1$$
(1)
where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$
Let $q = ap$ (2)
 $p^2 z^2 + a^2 p^2 = 1$
 $\Rightarrow p^2 (z^2 + a^2) = 1$
 $\Rightarrow p = \pm \frac{1}{\sqrt{a^2 + z^2}}$
 $\Rightarrow q = ap = \pm \frac{a}{\sqrt{a^2 + z^2}}$

Consider
$$dz = p dx + q dy$$

$$\Rightarrow dz = \frac{\pm 1}{\sqrt{a^2 + z^2}} dx + \frac{\pm a}{\sqrt{a^2 + z^2}} dy$$

$$\Rightarrow \int \sqrt{a^2 + z^2} dz = \int \pm dx \pm \int a dy + c$$

$$\therefore \frac{z}{2} \sqrt{a^2 + z^2} + \frac{a^2}{2} \sinh^{-1}(z/a) = \pm (x + ay) + c$$

is a required solution.

ol: The given equation is

$$p^2 + q^2 = x + y$$
 (Type-III)
 $\Rightarrow p^2 - x = y - q^2 = a$ (say)
 $\Rightarrow p = \sqrt{a + x}$ and $q = \sqrt{y - a}$
Consider $dz = p \ dx + q \ dy$
 $\Rightarrow dz = \sqrt{a + x} \ dx + \sqrt{y - a} \ dy$
Intégrating,

$$z = \left(\frac{2}{3}\right) \left(a + x\right)^{3/2} + \left(\frac{2}{3}\right) \left(y - a\right)^{3/2} + b$$

	50	
55. Ans: (c) Sol: The given equation can be written as		u(1,
$z = px + qy + \frac{1}{p-q} (1ype-1v)$ The solution is		\Rightarrow U
$z = ax + by + \frac{1}{(a-b)}$ for $p = a \& q = b$		\Rightarrow U
56. Ans: (d) Sol: Given $\frac{\partial^2 u}{\partial x^2} = 25 \frac{\partial^2 u}{\partial t^2}$ (or) $\frac{\partial^2 u}{\partial t^2} = \frac{1}{25} \frac{\partial^2 u}{\partial t^2}$ (1) GINER	ERI	⇒u ∴u
(or) $\frac{\partial t^2}{\partial t^2} = \frac{25}{25} \frac{\partial x^2}{\partial x^2}$ (1) with $u(0) = 3x$ (2) and $\frac{\partial u(0)}{\partial t} = 3$ (3)		Sol: Give
If the given one dimensional wave equation	n	
is of the form $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial u^2}{\partial x^2}, -\infty < x < \infty, t > 0$	>	with
0 and $c > 0$, satisfying the conditions $u(x, 0)$))	and
= I(x) and $\frac{\partial f}{\partial t} = g(x)$, where I(x) a	e	Nov
g(x) are given functions representing the initial displacement and initial velocity respectively then its general solution is given in	ee 1 /, n	995
by		⇒ u
$u(x, t) = \frac{1}{2} [f(x - ct) + f(x + ct)] + \frac{1}{2c} \int_{x - ct}^{x + ct} g(s) ds$		
Comparing the given problem with abov	e	whe
general problem, we have		Put
$c = \frac{1}{5}, f(x) = 3x, g(x) = 3$		
Now,		\Rightarrow s

$$u(1, 1) = \frac{1}{2} \left[f\left(1 - \frac{1}{5}\right) + f\left(1 + \frac{1}{5}\right) \right] + \frac{1}{2\left(\frac{1}{5}\right)} \int_{1 - \frac{1}{5}}^{1 + \frac{1}{5}} 3 \, ds$$

$$\Rightarrow u(1, 1) = \frac{1}{2} \left[3\left(\frac{4}{5}\right) + 3\left(\frac{6}{5}\right) \right] + \frac{5}{2}(3) \, \left(s\right)_{\frac{4}{5}}^{\frac{6}{5}}$$

$$\Rightarrow u(1, 1) = \frac{1}{2} \left[\frac{3}{5} \times (4 + 6) \right] + \frac{15}{2} \left[\frac{6}{5} - \frac{4}{5} \right]$$

$$\Rightarrow u(1, 1) = 3 + \frac{15}{2} \left(\frac{2}{5} \right)$$

$$\therefore u(1, 1) = 6$$

s: (a) ven that $\frac{\partial u}{\partial t} = \frac{1}{\pi^2} \frac{\partial^2 u}{\partial x^2} \dots$ $\left(\because \frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2} \right)$ (1) B.C's : u(0, t) = 0 (:: u(0, t) = 0) u(1, t) = 0 (:: u(l, t) = 0) I.C's : $u(x, 0) = sin(\pi x)$ (2) $(\because u(x, 0) = f(x))$ w, the solution of (1) is given by

$$5 u(x,t) = \sum_{n=1}^{\infty} a_n . \sin\left(\frac{n\pi x}{\ell}\right) . e^{-\left(\frac{n^2\pi^2 c^2}{\ell^2}\right)t}$$

$$\Rightarrow u(x,t) = \sum_{n=1}^{\infty} a_n \sin(n\pi x) . e^{-n^2 t}(3)$$

where $a_n = \frac{2}{\ell} \int_0^{\ell} f(x) \sin\left(\frac{n\pi x}{\ell}\right) dx$
Put $t = 0$ in (3), we get
 $u(x, 0) = \sum_{n=1}^{\infty} a_n \sin(n\pi x)$
 $\Rightarrow \sin(\pi x) = \sum_{n=1}^{\infty} a_n \sin(n\pi x)$

Engineering Publications	51	Engineering Mathematics
$\Rightarrow \sin(\pi x) = a_1 \sin(\pi x) + a_2 \sin(2\pi x) + \dots$ Comparing coefficients of sin on both side of above, we get $a_1 = 1, a_2 = 0, a_3 = 0, a_4 = 0, \dots (4)$ \therefore The solution of (1) with (2) from (3) and (4) is $u(x, t) = \sin(\pi x). e^{-\left[\frac{\pi^2}{1}\left(\frac{1}{\pi^2}\right)\right]^t} = e^{-t} \sin(\pi x)$ 58. Ans: (c) Sol: Given $u_t = (\sqrt{2})^2 u_{xx} \dots (1)$ $(\because u_t = c^2 u_{xx})$ with B.C's: $u(0, t) = 0$ $(\because u(0, t) = 0)$ $u(\pi, t) = 0$ $(\because u(\ell, t) = 0)$ and I.C: $u(x, 0) = \sin(x) \dots (2)$ $(\because u(x, 0) = f(x))$ The solution of (1) is given by $u(x, t) = \sum_{n=1}^{\infty} a_n . \sin\left(\frac{n\pi x}{\ell}\right) \cdot e^{-\left(\frac{n\pi c}{\ell}\right)^2 t}$ $\Rightarrow u(x, t) = \sum_{n=1}^{\infty} a_n . \sin(nx) e^{-2n^2 t} \dots (3)$ $\Rightarrow u(x, 0) = \sum_{n=1}^{\infty} a_n . \sin(nx)$ (for $t = 0$) $\Rightarrow \sin(x) = a_1 \sin x + a_2 \sin(2x) + \dots (3)$	51 s 4 d	Engineering Mathematics 59. Ans: (b) Sol: Given $u_u = 2^2 u_{xx}$ (1) $(\because u_{tt} = c^2 u_{xx})$ with B.C's : $u(0,t) = 0$ $(\because u(0,t) = 0)$ $u(\pi,t) = 0$ $(\because u(0,t) = 0)$ and I.C's : $u(x, 0) = 0$ $(\because u(t,t) = 0)$ $\frac{\partial}{\partial t}u(x,0) = 2 \sin(x) \left(\because \frac{\partial u}{\partial t}(x,0) = g(x)\right)$ The solution of (1) is given by $u(x,t) = \sum_{n=1}^{\infty} b_n .sin\left(\frac{n\pi x}{\ell}\right).sin\left(\frac{n\pi ct}{\ell}\right)$ $\Rightarrow u(x,t) = \sum_{n=1}^{\infty} b_n sin(nx).sin(n2t)(2)$ $\Rightarrow \frac{\partial}{\partial t}u(x,t) = \sum_{n=1}^{\infty} b_n sin(nx).cos(2nt).2n$ $\Rightarrow \frac{\partial}{\partial t}u(x,0) = \sum_{n=1}^{\infty} b_n sin(nx)(2n)$ for $t = 0$ $\Rightarrow sin(x) = b_1 sin(x). 2 + b_2. 2(2). sin(2x)$ $\Rightarrow b_1 = \frac{1}{2}, b_2 = 0, b_3 = 0,(3)$ \therefore The solution of (1) with given conditions from (2) and (3) is given by $u(x, t) = b_1.sin(x) . sin(2t) + 0 + 0$ $= \frac{1}{2} sin(x) sin(2t)$
$\Rightarrow u(x,0) = \sum_{n=1}^{\infty} a_n . \sin(nx) \text{ (for } t = 0)$ $\Rightarrow \sin(x) = a_1 \sin x + a_2 \sin(2x) + \dots$ $\Rightarrow a_1 = 1, a_2 = 0, a_3 = 0, a_4 = 0, a_5 = 0, \dots$ (4) $\therefore \text{ The solution of (1) with (2) from (3) and (4)}$ is $u(x, t) = a_1 \sin(x) . e^{-2t}$ Hence, $u(\pi/2, \log 5) = 1. \sin(\frac{\pi}{2}) . e^{-2\log 5}$ $= 5^{-2} = 0.04$		$u(x, t) = b_{1}.\sin(x) \cdot \sin(2t) + 0 + 0$ $= \frac{1}{2}\sin(x).\sin(2t)$ Hence, $u\left(\frac{\pi}{3}, \frac{\pi}{6}\right) = \frac{1}{2}\sin\left(\frac{\pi}{3}\right).\sin\left(\frac{2\pi}{6}\right)$ $= \frac{1}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{3}{8}$

Engineering Publications	52	Postal Coaching Solutions
60. Ans: (a) Sol: Given $u_{tt} = u_{xx}$ (1) $(\because u_{tt} = c^2 u_{xx})$ with B.C's: $u(0, t) = 0$ $(\because u(0, t) = 0$ $u(\pi, t) = 0$ $(\because u(\ell, t) = 0)$ and I.C's: $u(x, 0) = 2 \sin(x)$ (2) $(\because u(x, 0) = f(x))$ $\stackrel{\partial}{\longrightarrow} u(x, 0) = 0$)	$y = m = \infty$ $u(0, y) = 0$ $y=0$ $u(x, y) = f(x)$ $u(x, y) = f(x)$ $x=0$
$\overline{\partial t}^{n} u(x, 0) = 0$ $\left(\because \frac{\partial u}{\partial t}(x, 0) = 0 \right)$ Now, the solution of the wave equation is given by $u(x, t) = \sum_{n=1}^{\infty} a_{n} \sin\left(\frac{n\pi x}{\ell}\right) \cdot \cos\left(\frac{n\pi ct}{\ell}\right)$ $\Rightarrow u(x, t) = \sum_{n=1}^{\infty} a_{n} \sin(nx) \cdot \cos(nt) \dots \dots (3)$ $\Rightarrow u(x, 0) = \sum_{n=1}^{\infty} a_{n} \sin(nx) \text{for } t = 0$	RIA S	The G.S of (1) satisfying above all boundary conditions is $u(x, y) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{\ell}\right) e^{-\left(\frac{n\pi y}{\ell}\right)} \rightarrow (6)$ where $b_n = \frac{2}{\ell} \int_0^{\ell} f(x) \sin\left(\frac{n\pi x}{\ell}\right) dx$ Now, $b_n = \frac{2}{\ell} \int_0^{\ell} u_0 \sin\left(\frac{n\pi x}{\ell}\right) dx$ $\Rightarrow b_n = \frac{2u_0}{\ell} \left[-\frac{\cos\left(\frac{n\pi x}{\ell}\right)}{n\pi} \right]^{\ell}$
$\Rightarrow 2\sin(x) = \sum_{n=1}^{\infty} a_n \sin(nx)$ $\Rightarrow 2\sin(x) = a_1 . \sin x + a_2 \sin(2x) + \dots$ $\Rightarrow a_1 = 2, a_2 = 0. a_3 = 0 \dots (4)$ $\therefore The solution of (1) with (2) from (3) and (4) is given by u(x, t) = a_1 . \sin(x) \cos(t) = 2 . \sin(x) \cos(t)61. Ans: (a)Sol: Given u_{xx} + u_{yy} = 0 \rightarrow (1)u(0, y) = 0 \rightarrow (2) \forall y > 0u(l, y) = 0 \rightarrow (3) \forall y > 0u(x, 0) = f(x) = u_0 \rightarrow (4) 0 < x lu(x, \infty) = 0 \qquad \rightarrow (5) 0 < x < l$	d I	$\Rightarrow b_{n} = \frac{2u_{0}}{n\pi} [1 - \cos(n\pi)]$ $\Rightarrow b_{n} = \frac{2u_{0}}{n\pi} [1 - (-1)^{n}] \rightarrow (7)$ Using (7) (i.e. the value of b_{n} in (6), the required solution is), the equation (6) becomes $u(x, y) = \sum_{n=1}^{\infty} \frac{2u_{0}}{n\pi} [1 - (-1)^{n}] \cdot \sin\left(\frac{n\pi x}{\ell}\right) e^{\left(\frac{-2\pi y}{\ell}\right)}$ (or) $u(x, y) = \sum_{n=1}^{\infty} \frac{2u_{0}}{(2n-1)\pi} (2) \cdot \sin\left[\frac{(2n-1)\pi x}{\ell}\right] \cdot e^{-\left[\frac{(2n-1)\pi y}{\ell}\right]}$

Т

	CEE ing Publications	54	Postal Coaching Solutions
65. Ans Sol: $L\left\{\frac{s}{t}\right\}$	$\frac{(c)}{(t)}$ $\frac{\sin at}{t} = \frac{a}{2}$		$= \frac{2s}{(s^{2} + 1)^{2}}$ L{e ^{-t} t sint} = $\frac{2(s + 1)}{[(s + 1)^{2} + 1]^{2}}$
$L\left\{\frac{s}{s}\right\}$	$\frac{\sin at}{t} = \int_{s}^{\infty} \frac{a}{s^{2} + a^{2}} ds$ a. $\frac{1}{a} \tan^{-1} \left(\frac{s}{a}\right)^{\infty}$		68. Ans: (c) Sol: Sol: $L(\sin t) = \frac{1}{s^2 + 1}$
= tar = co	a (a)) _s $n^{-1} \infty - \tan^{-1} \frac{s}{a} = \frac{\pi}{2} - \tan^{-1} \frac{s}{a}$ $\cot^{-1}\left(\frac{s}{a}\right)$	R 1/	$L\left(\frac{\sin t}{t}\right) = \int_{s}^{\infty} \frac{1}{s^{2} + 1} ds$ $= \left[\tan^{-1} s\right]_{s}^{\infty}$ $= \frac{\pi}{-} \tan^{-1} s$
66. Ans Sol: $L \begin{cases} t \\ 0 \\ 0 \end{cases}$	$: (\mathbf{d})$ $e^{-t} \sin t dt \Big\} 1$ $(\mathbf{n}, \mathbf{t}) = -\frac{1}{2}$	Ť	$2 \operatorname{tail} = 5$ $= \cot^{-1} s$ $L\{f^{1}(t)\} = s. L\{f(t)\} - f(0)$ $\Rightarrow L\{f^{1}(t)\} = s. L\{\frac{\sin t}{t}\} - f(0)$ $L\{f^{1}(t)\} = s \cot^{-1} s - f(0) = s \cot^{-1} s - 1$
$L \left\{ e^{-} \right\}$ $L \left\{ e^{-} \right\}$	$\begin{cases} \sin t \ = \ s^{2} + 1 \\ -t \sin t \ = \ \frac{1}{(s+1)^{2} + 1} \\ e^{-t} \sin t dt \ = \ \frac{1}{s} \left(\frac{1}{(s+1)^{2} + 1} \right) \end{cases}$	ce 1	69. Ans: (a) Sol: $f(t) = \begin{cases} t, 0 < t \le 1 \\ 0, 1 < t < 2 \end{cases}$ \therefore f(t) is periodic function with period 2
67. Ans Sol: L {t L {s L {t	: (b) $e^{-t} \sin t$ } $\sin t$ } = $\frac{1}{s^2 + 1}$ $\sin t$ } = (-1) $\frac{d}{ds} \left[\frac{1}{s^2 + 1} \right] = (-1) \frac{(-1)2s}{(s^2 + 1)^2}$		$L\{f(t)\} = \frac{1}{1 - e^{-2s}} \int_0^2 e^{-st} f(t) dt$ = $\frac{1}{1 - e^{-2s}} \int_0^1 t \cdot e^{-st} dt$ = $\frac{1}{1 - e^{-2s}} \left[t \cdot \left(\frac{e^{-st}}{-s} \right) - 1 \left(\frac{e^{-st}}{s^2} \right) \right]_0^1$ 1 $\left[\left(e^{-s} \right) \cdot \left(e^{-s} \right) - 1 \right]$
			$= \frac{1}{1 - e^{-2s}} \left[\left(\frac{c}{-s} \right) - \left(\frac{c}{s^2} \right) + \frac{1}{s^2} \right]$

	55	Engineering Mathematics
70. Ans: (d) Sol: By definition of laplace transform		73. Ans: (a) Sol: we have
$L \left\{ u(t-a) \right\} = \int_{0}^{\infty} e^{-st} . u(t-a) dt$		$\mathrm{L}^{-1}\left(\frac{1}{\mathrm{s}^2+9}\right) = \frac{\sin 3\mathrm{t}}{3}$
$= \int_{a}^{\infty} e^{-st} \cdot 1 dt$		By first shifting property $L^{-1}\left(\frac{1}{(s-2)^2+9}\right) = e^{2t} \frac{\sin 3t}{3}$
$= \left\lfloor \frac{e^{-st}}{-s} \right\rfloor_0 = \frac{e^{-as}}{s}$	7	74. Ans: (a)
71. Ans: (b)	ERIA	Sol: $L^{-1}\left(\frac{s+3}{s^2+2s+1}\right) = L^{-1}\left(\frac{s+1+2}{(s+1)^2}\right)$
Sol: L{e} = $\frac{1}{s-1}$ e ^t u(t-4) = [e ^{t-4} . u(t-4)]e ⁴		$= L^{-1}\left(\frac{1}{s+1}\right) + 2L^{-1}\left(\frac{1}{(s+1)^2}\right)$
By second shifting property $L[e^{t}.u(t-4)] = e^{4}. L[e^{t-4}.u(t-4)]$		$= e^{-t} + 2 e^{-t} t$ (By first shifting property)
$= e^{4} \cdot \left(\frac{e^{-4s}}{s-1}\right) = \frac{e^{4-4s}}{s-1} = \frac{e^{-4(s-1)}}{s-1}$	ŝ	75. Ans: (b) Sol: $L^{-1}\left(\frac{1}{s^2+2s}\right) = L^{-1}\left(\frac{1}{s(s+2)}\right)$
72. Ans: 0.08 Sol: L (cos t) = $\frac{s}{s^2 + 1}$		$=\frac{1}{2}L^{-1}\left(\frac{1}{s}-\frac{1}{(s+2)}\right)$
$L(t \cos t) = \int_0^\infty e^{-st} (t \cos t) dt$ Sin	ce 1	995 = $\frac{1}{2}(1-e^{-2t})$
$\Rightarrow (-1). \ \frac{d}{ds} \left(\frac{s}{s^2 + 1} \right) = \int_0^\infty e^{-st} \left(t \ \cos t \right) dt$		$= \frac{1}{2} \left(\frac{e^{t} - e^{-t}}{e^{t}} \right) = e^{-t} . \sinh(t)$
$\Rightarrow \frac{s^2 - 1}{\left(s^2 + 1\right)^2} = \int_0^\infty e^{-st} \left(t \cos t\right) dt$		76. Ans: (c) Solv $\mathbf{L}^{-1} \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t}$
Put s = 3 9-1 f [∞] -st to 1.		Sol: L $\left(\frac{1}{(s+1)}\right)^{t} = e^{t}$
$\Rightarrow \frac{1}{\left(3^2 + 1\right)^2} = \int_0^\infty e^{-3t} t \cos t dt$		$L^{-1}\left(\frac{1}{s(s+1)}\right) = \int_{0}^{\infty} e^{-t} dt = 1 - e^{-t}$
$\therefore \int_0^\infty e^{-st} t. \cos t dt = \frac{2}{25} = 0.08$		$L^{-1}\left(\frac{1}{s^{2}(s+1)}\right) = \int_{0}^{t} (1 - e^{-t}) dt = t + e^{-t} - 1$

Regineering Publications	56	Postal Coaching Solutions
77. Ans: (a)		80. Ans: (a)
Sol: $L^{-1}\left(\frac{1}{s+3}\right) = e^{-3t}$	\$	Sol: $L^{-1}\left(\frac{s+3}{(s+1)(s-2)}\right)$
$L^{-1}\left(\frac{e^{-4s}}{s+3}\right) = e^{-3(t-4)}u(t-4)$		$= L^{-1} \left(\frac{s+1+2}{(s+1)(s-2)} \right)$
By 2 nd shifting property		-1(1 2)
$\int e^{-3(t-4)} \text{ when } t \ge 4$		$=L^{-1}\left(\frac{1}{s-2}+\frac{1}{(s+1)(s-2)}\right)$
0 other wise		$= L^{-1} \left(\frac{1}{s-2} - \frac{2}{3} \frac{1}{s+1} + \frac{2}{3} \frac{1}{s-2} \right)$
78. Ans: (b)		(Partial fractions)
Sol: Let $L^{-1}\left(\log\left(\frac{s-a}{s-b}\right)\right) = f(t)$	EKI	$= L^{-1}\left(\frac{5}{3}\left(\frac{1}{s-2}\right) - \frac{2}{3}\left(\frac{1}{s+1}\right)\right)$
$\Rightarrow L[f(t)] = \log\left(\frac{s-a}{s-b}\right)$		$=\frac{5}{3}e^{2t}-\frac{2}{3}e^{-t}$
$= \log (s-a) - \log (s-b)$		
$\Rightarrow L[t.f(t)] = (-1) \frac{d}{ds} (\log (s-a) - \log (s-b))$ $= \frac{1}{s-b} - \frac{1}{s-a}$ $t. f(t) = L^{-1} \left(\frac{1}{s-b} - \frac{1}{s-a}\right)$ $= e^{bt} - e^{at}$ $\therefore f(t) = \frac{e^{bt} - e^{at}}{t}$	ce 1	81. Ans: (d) Sol: Given $y^{1}(t) + 5 y(t) = u(t)$ (1) with $y(0) = 1$ (2) Applying L. T on both sides of (1), we get L $\{y^{1}(t)+5 y(t)\} = L \{u(t)\}$ $\Rightarrow L\{y^{1}(t)\}+5 L\{y(t)\}=\frac{1}{s}$ $\Rightarrow [s.\overline{y}(s) - y(0)]+5.\overline{y}(s) = \frac{1}{s}$
		$\Rightarrow (s+5)\overline{y}(s) - 1 = \frac{1}{2}$
79. Ans: (c)		s 1 s+1
Sol: $L^{-1}\left(\frac{1}{(s-1)(s-2)}\right) = L^{-1}\left(\frac{1}{s-2} - \frac{1}{s-1}\right)$		$\Rightarrow (s+5)\overline{y}(s) = 1 + \frac{1}{s} = \frac{s+1}{5}$
$=e^{2t}-e^{t}$		$\Rightarrow \overline{y}(s) = \frac{s+1}{s.(s+5)}$
		$\Rightarrow \overline{y}(s) = \frac{1}{5} \cdot \frac{1}{s} + \frac{4}{5} \cdot \frac{1}{s+5}$

ACE 57 **Engineering Mathematics** Applying inverse Laplace transform on both 03. Ans: (c) $f(z) = x^2 + iy^3$ sides of above, we get Sol: $u = x^2 : v = v^3$ $L^{-1}\{\overline{y}(s)\} = \frac{1}{5}L^{-1}\left\{\frac{1}{s}\right\} + \frac{4}{5}L^{-1}\left\{\frac{1}{s+5}\right\}$ $u_x = 2x \& v_x = 3y^2$ $u_x = v_v$ only at (0,0) $\therefore y(t) = \frac{1}{5} + \frac{4}{5}e^{-5t}$ is a solution of (1) Hence f(z) is differentiable only at (0,0). \Rightarrow f(z) is not analytic any where. **05_Complex Variables** 04. Ans: (d) **Sol:** If f(z) = u + iv is analytic then its derivative 01. Ans: (b) $f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ z = x + iySol: Let $x = r \cos \theta$ and $y = r \sin \theta$ (we get this in the proof of C-R equations). Now $z = r. e^{i\theta}$ \therefore Option (c) is correct. $ze^{i\alpha} = r. e^{i\theta} . e^{i\alpha}$ Now $\frac{dw}{dz} = f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial w}{\partial x}$ $= r \cdot e^{i(\theta + \alpha)}$ \therefore ze^{i α} is the point of rotation of (x, y) : Options (a) is correct through an angle α Again, $\frac{dw}{dz} = f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ 02. Ans: (b) $= \frac{\partial v}{\partial v} - i \frac{\partial u}{\partial v} \qquad (using C-R equations)$ **Sol:** $\left|\frac{z-3}{z+3}\right| < 2 \implies |z-3| < 2 |z+3|$ $= -i\left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial y}\right) = -i\frac{\partial w}{\partial y}$ $\Rightarrow |z-3|^2 < 4 |z+3|^2$ $\Rightarrow |(x-3) + iy|^2 < 4 |(x+3) + iy|^2 < 1995$: Option (b) is correct \Rightarrow (x - 3)² + y² < 4 ((x + 3)² + y²) $x^2 - 6x + 9 + y^2 < 4(x^2 + 9 + 6x + y^2)$ 05. Ans: (a) $0 < 3x^2 + 3y^2 + 30 x + 27$ **Sol:** $f(z) = (x^3 - 3xy^2) + i(3x^2y - y^3)$ $0 < 3 (x^2 + 10 x + y^2 + 9)$ $f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ $0 < (x+5)^2 + v^2 - 16$

- $\therefore \quad (x+5)^2 + y^2 16 > 0 \Rightarrow \text{out side of}$ $(x+5)^2 + y^2 = 16$
- 06. Ans: (a) Sol: Let u + iv = f(z) = z Im (z) = (x + iy) yThen $u + iv = f(z) = xy + iy^2$

 $=(3x^2-3y^2)+i(6xy)$

Engineering Fublications	58	Postal Coaching Solutions
$\Rightarrow u = xy \text{and} v = y^2$ $\Rightarrow u_x = y \qquad v_x = 0$ $u_y = x \qquad v_y = 2y$ Here, $u_x = v_y$ and $v_x = -u_y$ only at one poin origin. i.e., C.R equations $u_x = v_y$ and $v_x = -u_y$ are satisfied only at origin. Furthe u, v, v_x, v_y, u_x, u_y are also continuous a origin. $\therefore f(z) = z \text{ Im}(z) \text{ is differentiable only a}$ origin (0,0). 07. Ans: (d) Sol: $\sin(z)$, $\cos(z)$ and polynomial $az^2 + bz + c$ are analytic everywhere. $\therefore \sin(z), \cos(z) \text{ and } az^2 + bz + c \text{ are are}$ entire functions. Here, $\frac{1}{z-1}$ is analytic at every point excep at $z = 1$ because the function $\frac{1}{z-1}$ is no defined at $z = 1$. $\Rightarrow \frac{1}{z-1}$ is not analytic at $z = 1$ $\therefore \frac{1}{z-1}$ is not an entire function	58 t t t t t t t	Postal Coaching Solutions 09. Ans: (d) Sol: Given that $v = x^3 - 3xy^2$ $\Rightarrow v_x = 3x^2 - 3y^2$ and $v_y = -6xy$ Consider du = $u_x dx + u_y dy$ $\Rightarrow du = (v_y) dx + (-v_x) dy$ $(\because u_x = v_y & w_x = -u_y)$ $\Rightarrow du = (-6xy) dx + (-3x^2 + 3y^2) dy$ which is an exact differential form $\Rightarrow \int du = \int (-6xy) dx + \int (3y^2) dy + k$ $\therefore u(x, y) = -3x^2y + y^3 + k$ 10. Ans: (c) Sol: $u = \log r$ $\frac{\partial u}{\partial r} = \frac{1}{r}; \frac{\partial u}{\partial \theta} = 0$ $dv = \frac{\partial v}{\partial \theta} d\theta + \frac{\partial v}{\partial r} dr$ $= \left(r\frac{\partial u}{\partial r}\right) d\theta + \left(\frac{-1}{r}\frac{\partial u}{\partial \theta}\right) dr$ (using C-R equations) $u = \int r \times \frac{1}{r} d\theta + \int -\frac{1}{r} \times 0 dr = \theta + c$ 11. Ans: (c) Sol: Given that Re{f ^d (z)} = 2x + 2, f(0) = 2 and f(1) = 1 + 2i
08. Ans: (a) Sol: $u(x, y) = Ax + By$ $u_x = A$; $u_y = B$ \therefore $f'(z) = u_x + i v_x$ $= u_x - i u_y$ ($\therefore u_y = -v_x$) = A - i B f(z) = (A - iB)z + iC		Sol: Given that Re{I (z)} = 2x + 2, I(0) = 2 and f(1) = 1 + 2i Let f ¹ (z) = u + iv, then u = 2x + 2 Consider f ¹¹ (z) = u _x + i v _x = u _x - i u _y = 2 - i 0 $\Rightarrow f^{1}(z) = 2z + c$ $\Rightarrow f(z) = z^{2} + cz + k$ $\because f(0) = 2$ $\Rightarrow k = 2$ $\because f(i) = 1 + 2i$

Engineering Publications	59	Engineering Mathematics
$\Rightarrow (i)^{2} + c(i) + k = 1 + 2i$ $\Rightarrow c = 2$ $\therefore f(z) = z^{2} + 2z + 2$ $\Rightarrow f^{1}(z) = 2z + 2$ $\Rightarrow f^{1}(z) = 2(x + i y) + 2 = 2(x + 1) + i(2y)$ $\therefore \text{ Imaginary part of } f^{1}(z) = 2y$		$\Rightarrow f^{l}(z) = e^{x}[-y \sin y + \cos y + x \cos y] + i$ $e^{x}[\sin y + y \cos y + x \sin y]$ $\Rightarrow \int f^{l}(z) = ze^{z} - e^{z} + e^{z} + c$ $\therefore f(z) = z e^{z} + c, c = c_{1} + ic_{2} \text{ is a required analytic function.}$
12. Ans: (c) Sol: $u = e^y \sin x$ $u_x = e^y \cos x$; $u_y = e^y \sin x$ $f'(z) = u_x + i v_x = u_x + i(-u_y)$ $f'(z) = e^y \cos x - i e^y \sin x$ replace $x = z & y = 0$ $f'(z) = \cos z - i \sin z$ $\Rightarrow f(z) = \sin z + i \cos z + i c$	R /	15. Ans: (d) Sol: u = 2x(1 - y) $u_x = 2(1 - y) \Rightarrow u_{xx} = 0$ $u_y = 2x(-1) \Rightarrow u_{yy} = 0$ ∴ $u_{xx} + u_{yy} = 0$ u is Harmonic $f(z) = u + iv = 2x(1 - y) + i(2y + x^2 - y^2)$ x = z & y = 0 $f(z) = 2z + i(0 + z^2 - 0) = 2z + iz^2$
= i e ^{-iz} + ic 13. Ans: (c) Sol: u = xy $u_x = y$; $u_y = x$ $f'(z) = u_x + i v_x = u_x + i (-u_y)$ f'(z) = y - ix replace x by z & y with 0 f'(z) = 0 is a size	.e 1	is differentiable every where $\Rightarrow f(z) \text{ is Analytic}$ 16. Ans: (a) Sol: $f(z) = 12 z^2 - 4iz$ is entire function $\therefore \int_{c} f(z) dz \text{ is independent of the path}$ $f(z) dz = \int_{c}^{2+3i} (12z^2 - 4iz) dz = (12\frac{z^3}{z^2} - 4i\frac{z^2}{z^2})^{2+3i}$
1 (2) $= 0 - i2i2$ \therefore f(z) $= -i\frac{z^2}{2} + ic$ 14. Ans: (a) Sol: Given that $v = e^x[y \cos y + x \sin y]$ $\Rightarrow v_x = e^x [0 + \sin y] + e^x[y \cos y + x \sin y]$ and $v_y = e^x[-y \sin y + \cos y + x \cos y]$ Consider f ¹ (z) $= u_x - iu_y$ \Rightarrow f ¹ (z) $= v_y + i v_x$ (\because $u_x = v_y$ & $v_x = -u_y$)	C	$\int_{c}^{1} (2 - 2iz^{2})_{l+i}^{2+3i} = (4z^{3} - 2iz^{2})_{l+i}^{2+3i}$ = $4(2 + 3i)^{3} - 2i(2 + 3i)^{2} - 4(1 + i)^{3}$ + $2i(1+i)^{2}$ = $4(8 - 27i + 36i - 54) - 2i(4 - 9 + 12i)$ - $4(1 - i + 3i - 3) + 2i(1 - 1 + 2i)$ = $4(9i - 46) - 2i(-5 + 12i) - 4(-2 + 2i) - 4$ = $36i - 184 + 10i + 24 + 8 - 8i - 4$ = $38i - 156$

ACE Engineering Publications

Postal Coaching Solutions

17. Ans: (b)

Sol: $f(z) = \frac{z^2 - 1}{z^3 - z^2 + 9z - 9} = \frac{(z - 1)(z + 1)}{(z - 1)(z^2 + 9)}$ \therefore z = ± 3i are poles which are outside of |z| = 2 \therefore f(z) is Analytic inside and on |z| = 2According to integral theorem $\oint \frac{z^2 - 1}{z^3 - z^2 + 9z - 9} dz = 0$ Options are wrong so answer is '0'. 18. Ans: (d) 20. Sol: $\oint \frac{z-1}{z^2+1} dz$ Sol $=\oint \frac{z-1}{(z+i)(z-i)} dz$ only z = -i is inside of |z + i| = 1 $=\oint_{a} \frac{z-1/(z-i)}{(z+i)} dz$ According to Cauchy's integral formula = 2 π i ϕ (-i) where $\phi(z) = \frac{(z-1)}{(z-i)}$ Since 199 $\phi(-i) = \frac{-i-1}{-i-i} = \frac{i+1}{2i}$ $=2\pi i \left(\frac{(i+1)}{2i}\right)$ $=\pi$ (i + 1) 19. Ans: (d) **Sol:** $f(z) = \frac{e^{2z}}{(z+1)^4}$

z = -1 is pole inside of |z| = 2According to formula

$$\oint_{c} \frac{\phi(z)}{(z-a)^{n+1}} dz = \frac{2\pi i}{n!} \phi^{n}(a)$$

$$\therefore \oint_{c} \frac{e^{2z}}{(z+1)^{4}} dz = \frac{2\pi i}{3!} \phi^{""}(-1)$$
where $\phi(z) = e^{2z}$

$$\phi^{""}(z) = 8e^{2z}$$

$$= \frac{\pi i}{3} (8e^{-2})$$

$$= \frac{8}{3} \pi i e^{-2}$$
Ans: (c)

$$: \oint_{c} \frac{e^{z}}{(z^{2} + \pi^{2})^{2}} dz = \oint_{c} \frac{e^{z}}{(z + \pi i)^{2}(z - \pi i)^{2}} dz$$

$$\therefore z = \pm \pi i \text{ are singular points lie inside 'c'}$$
Residue at $z = \pi i$ is

$$\lim_{z \to \pi i} \frac{1}{1!} \frac{d}{dz} \left\{ (z - \pi i)^{2} \frac{e^{z}}{(z - \pi i)^{2}(z + \pi i)^{2}} \right\} = \frac{\pi + i}{4\pi^{3}}$$
Residue at $z = -\pi i$ is

$$\lim_{z \to -\pi i} \frac{1}{1!} \frac{d}{dz} \left\{ (z + \pi i)^2 \frac{e^z}{(z - \pi i)^2 (z + \pi i)^2} \right\} = \frac{\pi - i}{4\pi^3}$$

Then
$$\oint_{c} \frac{e^{z}}{\left(z^{2} + \pi^{2}\right)^{2}} dz = 2\pi i (\text{sum of residues}).$$

$$= 2\pi i \left[\frac{\pi + 1}{4\pi^3} + \frac{\pi - 1}{4\pi^3} \right] = \frac{1}{\pi}$$

21. Ans: (a)
Sol:
$$f(z) = \frac{e^{3z}}{(z - \pi i)}$$

 $z = \pi i$ is singular pt.
 $|z - 2| + |z + 2| = | + \pi i - 2| + |\pi i + 2|$

ACE

$$= \sqrt{\pi^2 + 4} + \sqrt{\pi^2 + 4}$$
$$= 2\sqrt{\pi^2 + 4} = 7.44 > 6$$
$$\therefore z = \pi i \text{ is outside of the path}$$

Hence
$$\oint_{c} \frac{e^{3z}}{z - \pi i} dz = 0$$

22. Ans: (b)

Sol:
$$\frac{1}{2\pi i} \oint_{c} \frac{e^{zt}}{(z^{2}+1)} dz = \frac{1}{2\pi i} \oint_{c} \frac{e^{zt}}{(z+i)(z-i)} dz$$

$$\therefore z = \pm i \text{ are singular points inside of } |z| = 2$$

$$= \frac{1}{2\pi i} \oint_{c} \left(\frac{e^{zt}}{2i(z-i)} - \frac{e^{zt}}{2i(z+i)} \right) dz$$

$$= \frac{1}{-4\pi} \oint_{c} \left(\frac{e^{zt}}{(z-i)} - \frac{e^{zt}}{(z+i)} \right) dz$$

According to formula

$$= \frac{-1}{4\pi} 2\pi i \left(e^{it} - e^{-it} \right) = \frac{-1}{4} \left(-4 \right) \frac{e^{it} - e^{-it}}{2i} = +\sin 23$$

23. Ans: (c)

(U)

Sol:
$$\oint_{c} \frac{\sinh z}{z^4} dz$$

z = 0 is singular point inside of |z| = 2According to formula

$$=\frac{2\pi i}{3!}\phi'''(0) \text{ where } \phi(z) = \sin hz$$

$$\phi'''(z) = \cosh z$$

$$=\frac{\pi}{3}\cosh(0)=\frac{\pi}{3}$$

24. Ans: (b)

Sol: Let $f(z) = e^z + \sin z$ and $z_0 = \pi$

Then Taylor's series expansion of f(z) about a point $z = z_0$ (or) in power of $(z - z_0)$ is

given by
$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

where $a_n = \frac{f^{(n)}(z_0)}{n!}$

Here, the coefficient of $(z - z_0)^n$ in the Taylor's series expansion of f(z) about $z = z_0$ c(n) ()

is given by
$$a_n = \frac{f''(z_0)}{n!}$$
.
 $\therefore a_2 = \frac{f''(z_0)}{2!} = \frac{f''(\pi)}{2!}$
 $= \frac{(e^z - \sin z)_{z=\pi}}{2} = \frac{e^{\pi}}{2}$

25. Ans: 1
Sol: Let
$$f(z) = log\left(\frac{z}{1-z}\right)$$
 and $|z| > 1$
(or) $\left|\frac{1}{z}\right| < 1$

Z

Since 1995
Then
$$f(z) = \log\left[\frac{z}{z\left(1-\frac{1}{z}\right)}\right] = \log\left[\frac{1}{1-\frac{1}{z}}\right]$$

$$\Rightarrow f(z) = \log\left(1 - \frac{1}{z}\right) = -\log\left(1 - \frac{1}{z}\right), \quad \left|\frac{1}{z}\right| < 1$$
$$\Rightarrow f(z) = -\left[-\left\{\frac{1}{z} + \frac{1}{2}\left(\frac{1}{z}\right)^2 + \frac{1}{3}\left(\frac{1}{z}\right)^3 + \dots\right\}\right],$$
$$\left|\frac{1}{z}\right| < 1$$

61

ACE Engineering Publications

$$R_{1} = \operatorname{Res}(f(z) : z = -1)$$

$$= \operatorname{Lt}_{z \to -1} \left[\left[z - (-1) \right] \frac{z - 1}{(z + 1)(z - 3)} \right]$$

$$\therefore R_{1} = \operatorname{Lt}_{z \to -1} \left[\frac{z - 1}{z - 3} \right] = \frac{1}{2}$$

$$R_{2} = \operatorname{Res}(f(z) : z = 3)$$

$$= \operatorname{Lt}_{z \to 3} \left[(z - 3) \cdot \frac{z - 1}{(z - 1)(z - 3)} \right]$$

$$= \operatorname{Lt}_{z \to 3} \left(\frac{z - 1}{z + 1} \right) = \frac{1}{2}$$

Hence, the sum of the residues of f(z) at its singular points is $R_1 + R_2 = \frac{1}{2} + \frac{1}{2} = 1$.

31. Ans: 0

Sol: The singular points of $f(z) = \frac{\sin z}{z \cdot \cos(z)}$ are

given by $z.\cos(z) = 0$ $\Rightarrow z = 0$ and $z = (2n+1) \frac{\pi}{2}$, $n \in I$ $\Rightarrow z = 0$ and $z = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$ $\Rightarrow z = \frac{\pi}{2}$ and $z = -\frac{\pi}{2}$ are the given singular

points of
$$f(z)$$
.

Here,
$$z = \frac{\pi}{2}$$
 and $z = -\frac{\pi}{2}$ are simple poles of
 $f(z) = \frac{\sin z}{z \cos(z)} = \frac{\phi(z)}{\psi(z)}$,
where $\psi^{1}(z) = \cos(z) - z \sin z$

$$R_1 = \operatorname{Res}(f(z): z = \frac{\pi}{2})$$

$$= \frac{\phi\left(\frac{\pi}{2}\right)}{\psi'\left(\frac{\pi}{2}\right)} = \frac{1}{0-\frac{\pi}{2}} = \frac{-2}{\pi}$$
$$R_2 = \operatorname{Res}(f(z): z = -\frac{\pi}{2})$$
$$= \frac{\phi\left(-\frac{\pi}{2}\right)}{\psi'\left(-\frac{\pi}{2}\right)} = \frac{-1}{0-\frac{\pi}{2}} = \frac{2}{\pi}$$

Hence, the sum of the residues of the function f(z) at given singular points $z = \frac{\pi}{2}$ and $z = -\frac{\pi}{2}$ is $R_1 + R_2 = \left(\frac{-2}{\pi}\right) + \left(\frac{2}{\pi}\right) = 0$

32. Ans: 1

63

Sol: The given singular point z = 0 is a simple pole (or) 1st order pole of

$$f(z) = \frac{1 + e^{z}}{z \cos(z) + \sin(z)}$$
Now $R_1 = \operatorname{Res} (f(z) : z = 0) = \operatorname{Lt}_{z \to 0} (z - 0) f(z)$

$$\Rightarrow R_1 = \operatorname{Lt}_{z \to 0} (z - 0) \cdot \frac{1 + e^{z}}{z \cos(z) + \sin(z)}$$

$$\left(\frac{0}{0} \text{ form}\right)$$

$$\Rightarrow R_1 = \operatorname{Lt}_{z \to 0} \frac{z(0 + e^{z}) + (1 + e^{z})}{-z \sin(z) + \cos(z) + \cos(z)}$$

$$\therefore R_1 = \frac{0 + 1 + 1}{0 + 1 + 1} = 1$$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Mathematics

ACE

64

33. Ans: 2 Sol: $f(z) = \frac{2+3\csc z}{z} = \frac{2}{z} + \frac{3\csc z}{z}$ $= \frac{2}{z} + \frac{3}{z\sin z}$ $\operatorname{Res}|_{z=0} = \operatorname{Res}|_{z=0}$ of $\frac{2}{z} + \operatorname{Res}|_{z=0}$ of $\frac{3}{z\sin z}$ $= \operatorname{coefficient}$ of $\frac{1}{z}$ in both terms (\therefore In second term $\frac{1}{z}$ term not exist) = 2 + 0= 2

34. Ans: (d)

Sol: $f(z) = e^{z} \tan z = e^{z} \frac{\sin z}{\cos z}$ is not analytic at $z = \pm \frac{\pi}{2}, \ \pm \frac{3\pi}{2}, \ \pm \frac{5\pi}{2}, \dots$

Of these points only $z = \pm \frac{\pi}{2}$ lie inside C

Residue at $z = \pi/2$ is

$$\lim_{z \to \pi/2} \left\{ \left(z - \frac{\pi}{2} \right) \frac{e^z \sin z}{\cos z} \right\} = e^{\pi/2}$$

Residue at $z = -\pi/2$ is

$$\lim_{z \to -\pi/2} \left\{ \left(z + \frac{\pi}{2} \right) \frac{e^z \sin z}{\cos z} \right\} = e^{-\pi/2}$$

Then $\oint_{c} e^{z} \tan z \, dz = 2\pi i (\text{sum of residues}).$

$$=2\pi i (e^{\pi/2} + e^{-\pi/2})$$

35. Ans: (a) Sol: $\oint_{c} \frac{e^{\frac{1}{z}}}{z} dz \text{ where c is } |z| = 2$ z = 0 is essential singularity $f(z) = \frac{e^{1/z}}{z} = \frac{1}{z} \left(1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \dots \right)$ $= \frac{1}{z} + \frac{1}{z^2} + \frac{1}{2!z^3} + \dots \right)$ $Res|_{z=0} = \text{ coefficient of } \frac{1}{z} = 1$ According to residue theorem $2\pi i (Res|_{z=0}) = 2\pi i (1) = 2\pi i$

06_Numerical Method

C **01.** Ans: (c) **Sol:** $f(x) = x^3 + x^2 + x + 7 = 0$ f(-3) = -8 and f(-2) = 5A root lies in (-3, -2) **10.** Let $x_1 = \frac{-2-3}{2} = -2.5$ is first approximation to the root $\therefore f(x_1) = f(-2.5) < 0$ Now, Root lies in [-2.5, -2]Let $x_2 = \frac{-2.5-2}{2} = -2.25$ is second approximation root.

> 02. Ans: 0.67 Sol: $f(x) = x^3 + x - 1 = 0$ Let $x_0 = 0.5$, $x_1 = 1$ $f(x_0) = f(0.5) = -0.375$

Engineering Publications	65	Engineering Mathematics
$f(x_1) = f(1) = 1$		Take $x_0 = 0.7357 \& x_1 = 1$
$\therefore x_{2} = \frac{f(x_{1})x_{0} - f(x_{0})x_{1}}{f(x_{1}) - f(x_{0})}$		$\therefore x_3 = \frac{f(x_2)x_1 - f(x_1)x_2}{f(x_2) - f(x_1)}$
is first approximation root $1(0,5) = (-0,275)(1)$		$=\frac{0.9929}{1.1027}=0.8395$
$=\frac{1(0.5)-(-0.375)(1)}{1-(-0.375)}$		1.1827
$= \frac{0.5 + 0.375}{0.875} = \frac{0.875}{0.875}$		04. Ans: -3.26
1.375 1.375		Sol: $f(x) = x^{3} - 10x + 100$ -x = -2 $f'(x) = 5x^{4} - 10$
= 0.0303		$f(x_0) = -2$ $f(x_0) = -3x - 10$
$f(x_2) = f(0.6363)$		$\mathbf{x}_1 = \mathbf{x}_o - \frac{\mathbf{x}_o}{\mathbf{f}'(\mathbf{x}_o)}$
= (0.0303) + (0.0303) - 1 = $0.2576 + 0.6363 - 1$	ENU	$G = (-2) - \frac{88}{-3} = -3.26$
= -0.1061 < 0		70
Root lies in (0.6363, 1)		05. Ans: 1.57
$\mathbf{x}_3 = \frac{f(\mathbf{x}_1)\mathbf{x}_2 - f(\mathbf{x}_2)\mathbf{x}_1}{f(\mathbf{x}_2)\mathbf{x}_2 - f(\mathbf{x}_2)\mathbf{x}_1}$		Sol: $f(x) = x^3 - 5x^2 + 6x - 1$ $f'(x) = 2x^2 - 10x + 6$
$I(X_1) - I(X_2)$ I(0.6363) - (-0.1061)I		$x_{o} = 1.5$
$=\frac{1(0.0505)^{-}(-0.1001)^{-}}{1+0.1061}$		$\mathbf{x}_{\star} = \mathbf{x}_{\star} - \frac{\mathbf{f}(\mathbf{x}_{o})}{\mathbf{x}_{o}}$
= 0.6711		$f'(x_o)$
03. Ans: (b)		= 1.57
Sol: $f(x) = xe^x - x = 0$ Sin	ce 1	06. Ans: (a)
f(0) = -2 < 0, f(1) = 2.7183 - 2 > 0		Sol: $x = \sqrt[5]{N}$
Let $x_0 = 0$, $x_1 = 1$ $f(x_1)x_0 = f(x_0)x_1$		$x^{5} = N$ $f(x) = x^{5}$ N
$x_2 = \frac{f(x_1) - f(x_0)}{f(x_1) - f(x_0)}$	Y	$f'(x) = 5 x^4$
$=\frac{0.7183(0)-(-2).1}{0.7182(-2)}$		$\mathbf{x}_{n+1} = \mathbf{x}_n - \frac{\mathbf{f}(\mathbf{x}_n)}{\mathbf{f}(\mathbf{x}_n)}$
0.7183 - (-2)		$\begin{array}{c} \mathbf{x}_{n+1} & \mathbf{x}_{n} \\ \mathbf{f}'(\mathbf{x}_{n}) \\ \mathbf{f}'(\mathbf{x}_{n}) \end{array}$
$=\frac{2}{2.7183}$		$= x_n - \frac{(x_n^5 - N)}{5x^4} = \frac{4x_n^5 + N}{5x^4}$
= 0.7357		JX_n JX_n
$f(x_2) = f(0.7357)$ = 0.7357 .e ^{0.7357} - 2 = -0.4644		
	I	

Engineering Publications	66	Postal Coaching Solutions
07. Ans: (c) Sol: Putting n = 0 in the iteration formula of the above example $x_{1} = \frac{4x_{o}^{5} + N}{5x_{o}^{4}}$	e	11. Ans: (a) Sol: Error = Exact value of the integral – The value of the integral by the simpson's rule = 0 - 0 = 0
$=\frac{4(2^5)+30}{5(2^4)}=\frac{158}{80}=1.975$	-	12. 10.04 $\frac{1.2}{c}$
08. Ans: (a) Sol: Given $x_{n+1} = \frac{2x_n^3 + 1}{3x_n^2 + 1}$	ER I/	Sol: Given $\int_{0}^{1.2} f(x) dx$ By Simpsons rule $\int_{0}^{1.2} f(x) dx$
Suppose the formula converges to the roc after n iterations $x_{n+1} = x_n = x$ $x = \frac{2x^3 + 1}{2x^2 + 1}$	ot	$= \frac{h}{3} [(y_0 + y_6) + 2(y_2 + y_4) + 4(y_1 + y_3 + y_5)]$ $= \frac{0.2}{3} [(9.6 + 12.2) + 2(7.4 + 7.6) + 4(9.1 + 6.8 + 8.8)]$
$\Rightarrow x^3 + x - 1 = 0$		= 10.04
09. Ans: 1.7845 Sol: $\int_{0}^{2} f(x) dx = \frac{h}{2} [(y_{0} + y_{4}) + 2(y_{1} + y_{2} + y_{3})]$ $= \frac{0.5}{2} [(0 + 1.26) + 2(0.794 + 1 + 1.145)]$	ce 1	Sol: $\mathbf{x} \qquad 0 1 2 3 4 5 6$ $\mathbf{f}(\mathbf{x}) = \frac{1}{1 + \mathbf{x}^2} 1 \frac{1}{2} \frac{1}{5} \frac{1}{10} \frac{1}{17} \frac{1}{26} \frac{1}{37}$
= 1.7845 10. Ans: (a) Sol: x -1 0 1	C	$\int_{0}^{6} \frac{dx}{1+x^{2}} = \frac{h}{2} [(y_{0} + y_{6}) + 2(y_{1} + y_{2} + y_{3} + y_{4} + y_{5})] - \frac{1}{2} [(1+1) + 2(1+1) + 1 + 1 + 1]]$
$\begin{aligned} \mathbf{f}(\mathbf{x}) &= 5\mathbf{x}^3 - 3\mathbf{x}^2 + 2\mathbf{x} + 1 \ -9 \ 1 \ 5 \\ \\ \int_{-1}^{1} \mathbf{f}(\mathbf{x}) d\mathbf{x} &= \frac{\mathbf{h}}{3} [(\mathbf{y}_0 + \mathbf{y}_2) + 2(0) + 4(\mathbf{y}_1)] \\ &= \frac{1}{3} [(-4) + 4(1)] = 0 \end{aligned}$		$= \frac{1}{2} \left[\left(\frac{1+37}{37} \right)^{+2} \left(\frac{1}{2} + \frac{1}{5} + \frac{1}{10} + \frac{1}{17} + \frac{1}{26} \right) \right]$ = 1.4107
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	ır • Luckno	w • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	67	Engineering Mathematics
14. Ans: (a)		$\left(\frac{1}{1} \times \frac{1}{1} \times 24\right) < 10^{-5}$
Sol: The volume of cylinder = $\pi \int_0^1 y^2 dy$		$\left(\frac{180}{180}\times\frac{1}{n^4}\times\frac{1}{24}\right) \le 10$
$=\pi\frac{h}{2}\left[\left(y_{0}^{2}+y_{4}^{2}\right)+2y_{2}^{2}+4\left(y_{1}^{2}+y_{3}^{2}\right)\right]$		$\Rightarrow n \ge 10.738$ $\therefore n \ge 10.738$
$=\pi\frac{0.25}{3}[(1+1)+2(9)+4(4+1)]$	-	17. Ans: $x = 0.9$, $y = 1 \& z = 1$
$=\pi \frac{0.25}{3}[40]$		Sol: Let $10x + y + z = 12$
$=\frac{10\pi}{3}$		2x + 10y + z = 13 2x+2y + 10z = 14 and
J		$x_0 = 0, y_0 = 0, z_0 = 0$
15. Ans: (a)		Then first iteration will be
Sol: Error = Max $\left \frac{b-a}{12} \times h^2 \times f''(x)\right $		$\mathbf{x}_1 = \frac{1}{10} (12 - \mathbf{y}_0 - \mathbf{z}_0)$
$=\frac{1}{12}\times\frac{1}{100}\times6(2.718)$		= 1.2
= 0.0136		$y_1 = \frac{1}{10} (13 - 2x_1 + 10y_0)$
Here, $f(x) = e^{x^2}$		$=\frac{1}{10}(13-2(1.2)-0)=1.06$
$Max f^{11}(x) _{[0,1]} = 6e$		$z_1 = \frac{1}{2}(14 - 2x_1 - 2y_1)$
$\therefore h = \frac{b-a}{n}$		
1 Sine	ce 1	$995 = \frac{1}{10} (14 - 2(1.2) - 2.(1.06)) = 0.95$
$=\frac{10}{10}$		Second iteration will be
16. Ans: (c)		$x_2 = \frac{1}{10}(12 - y_1 - z_1)$
Sol: $\left \frac{b-a}{100} \times h^4 \times \max f^{iv}(x)\right \le 10^{-5}$		= 0.90
180 · · ·		$y_2 = \frac{1}{10} (13 - 2x_2 + 10y_1) = 1.00$
Let $h = \frac{b-a}{n} = \frac{1}{n}$		$z_2 = \frac{1}{10} (14 - 2x_2 - 2y_2) = 1.00$
$f(x) = \frac{1}{x}$		The required solution after second iteration is
Max $ f^{iv}(x) _{at x = 1} = 24$		x = 0.9, y = 1 & z = 1

	68	Postal Coaching Solutions
18. Ans: 0.992		22. Ans: 0.02
Sol: $v^1 = f(x, v) = 4 - 2xv$		Sol: $f(x, y) = x + y$
$x_0 = 0, y_0 = 0.2, h = 0.2$		$x_0 = 0, v_0 = 0, h = 0.2$
By Taylor's theorem,		$k_1 = h(f_0, y_0)$
$y(x) = y(x_0 + h)$		= 0.2(0+0) = 0
\mathbf{h}^2		$k_2 = hf(x_0 + h, y_0 + k_1)$
$= y(x_0) + h y'(x_0) + \frac{2}{2!} y''(x_0)$		= 0.2(0.2 + (0.0))
$(2,2)^2$		= 0.04
$= 0.2 + 0.24) + \frac{(0.2)^{2}}{21}(-0.4)$		$-$ 0 $\frac{1}{2}$ (0 + 0.04) = 0.02
2!		$y_1 = 0 + \frac{1}{2}(0 + 0.04) = 0.02$
= 0.992		
INE	ERIA	23. Ans: 0.96
19. Ans: 1		Sol: Let $\frac{dy}{dy} = f(x, y) = 4 - 2xy$
Sol: $f(x, y) = 4 - 2xy$		dx dx dx dx
$x_0 = 0, y_0 = 0.2, f_1 = 0.2$		$x_o = 0, y_o = 0.2, 4 = 0.2$
By Euler's formula		$k_1 = h.f(x_o, y_o) = 0.2 (4 - x_o y_o) = 0.8$
$y_1 = y_0 + h f(x_0, y_0) = 0.2 + 0.2(4 - 0) = 1$		$\mathbf{k}_{0} = \mathbf{h} \mathbf{f} \left(\mathbf{x}_{1} + \frac{\mathbf{h}_{1}}{\mathbf{x}_{2}} + \frac{\mathbf{k}_{1}}{\mathbf{x}_{2}} \right)$
20. Ann 11		$x_2 = 11 \left(x_0 + \frac{1}{2}, y_0 + \frac{1}{2} \right)$
20. Ans: 1.1 Sol: Dy Eularia formula		= (0.2) (4 - 2(0.1) (0.6))
Sol: By Euler's formula, y = y + h f(y - y)		=(0.2)(3.88)=0.776
$y_1 - y_0 + \prod_{x_0, y_0} (x_0, y_0)$ $y_1 = 1 + (0, 1) (1, 0) = 1, 1$		k_2
$y_1 = 1 + (0.1)(1 - 0) = 1.1$		$k_3 = h I(x_0 + h, y_0 + \frac{1}{2})$
21 Ans: 0.968		= (0.2) (4 - 2(0.2) (0.976)) = 0.7219
dv (ce 1	$k_4 = h. f(x_o + h, y_o + k_3)$
Sol: $\frac{dy}{dx} = f(x, y) = 4 - 2xy$		= (0.2) (4 - 2(0.2) (0.9219)) = 0.7262
$x_0 = 0, y_0 = 0.2, h = 0.2$		$v(0,2) = v_1 = v_2 + \frac{1}{2}(k_1 + 2k_2 + 2k_3 + k_4)$
		$5(0.2)^{-5}$ 50^{-6} $6^{(m_1 + 2m_2 + 2m_3 + m_4)}$
$y_1 = y_0 + \frac{1}{2}(k_1 + k_2)$		$= 0.2 + \frac{1}{2}(0.8 + 2(0.776 + 0.7219) + 0.7262)$
$k_1 = hf(x_0, y_0) = 0.2 (4 - 0) = 0.8$		6 (************************************
$k_2 = hf(x_0 + h, y_0 + k_1)$		= 0.97
= 0.2 (4 - 2(0.2)) = 0.736		
$y_{i} = 0.2 + \frac{1}{2}(0.8 + 0.736)$		25. Ans: 1.1165
$y_1 = 0.2 + \frac{1}{2}(0.0 \pm 0.750)$		Sol: $I(x, y) = x + y$, y = 0, $y = 1$, $f = 0, 1$
= 0.968		$x_0 = 0, y_0 = 1, I_1 = 0.1$
		$\kappa_1 = nI(x_0, y_0) = 0.1$

$$\begin{aligned} k_2 &= hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) \\ &= 0.1 \left[\left(x_0 + \frac{h}{2}\right) + \left(y_1 + \frac{k_1}{2}\right)^2 \right] \\ &= 0.1168 \\ k_3 &= hf\left(x_0 + h, y_0 + \frac{k_2}{2}\right) \\ &= 0.1[0.05 + 1.1185] \\ &= 0.1168 \\ k_4 &= hf(x_0 + h, y_0 + k_3) = 0.1347 \\ y_1 &= y_0 = \frac{1}{6} \left[k_1 + 2k_2 + 2k_3 + k_4 \right] \\ &= 1 + 0.1164 \\ y_1 &= 1.1164 \end{aligned}$$

26. Ans: 2.6 – 1.3x, 2.3

Sol: The various summations are given as follows:

	Xi	yi	\mathbf{x}_{i}^{2}	x _i y _i	
	-2	6	4	-12	
	-1	3	1	-3	
	0	2	0	0	
	1	2	1	2	
Σ	-2	13	06	-13	

 $\Sigma \mathbf{y}_i = \mathbf{n}\mathbf{a} + \mathbf{b} \Sigma \mathbf{x}_i$ Thus, $\Sigma x_i y_i = a \Sigma x_i + b \Sigma x_i^2$

These are called normal equations. Solving for a and b, we get

$$b = \frac{n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{n \sum x_{i}^{2} - (\sum x_{i})^{2}}$$

$$a = \frac{\sum y_i}{n} - b \frac{\sum x_i}{n} = \overline{y} - b\overline{x}$$

$$b = \frac{4 \times (-13) - (-2) \times 13}{4 \times 6 - 6}$$

$$= -1.3$$

$$a = \frac{13}{4} - 1.3 \times \frac{(-2)}{4} = 2.6$$

Therefore, the linear equation is y = 2.6 - 1.3xThe least squares error = $\sum_{i=1}^{4} \{y_i - (a + bx_i)\}^2$ $= (6-5.2)^{2} + (3-3.9)^{2} + (2-2.6)^{2} + (2-1.3)^{2}$

27. Ans: i.
$$8x^2 - 19x + 12$$
 ii. 6 iii. 13
Sol: $f(x) = \frac{(x-3)(x-4)}{(1-3)(1-4)}(1) + \frac{(x-1)(x-4)}{(3-1)(3-4)}(27)$
 $+ \frac{(x-1)(x-3)}{(4-1)(4-3)}(64)$
 $f(x) = 8x^2 - 19x + 12$
 $f(2) = 6$
 $f^1(2) = 13$
 $f(x) = f(x_0) + (x - x_0) f[x_0, x_1]$
 $+ (x - x_0) (x - x_1) f[x_0, x_1, x_2]$
 $= 1 + (x - 1) 13 + (x - 1) (x - 3) 8$
 $= 8x^2 - 19x + 12$
 $p(2) = 6$
 $p^1(2) = 13$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

	A A A A A A A A A A A A A A A A A A A	CEE ag Publications			70	Postal Coaching Soluti
28. Sol	Ans: :	$8x^2 - 19x$	+12, 6, 13			Therefore $f(x)$ $f(x) = f(0) + C(x, 1) \Delta f(0) + C(x, 2) f(0)$
	x	P(x)	Фp	∆ ² p		$=3+(x \times 3)+\left(\frac{x(x-1)}{2}\times 2\right)$
	1	1	$\frac{27-1}{-13}$			$f(x) = x^2 + 2x + 3$

 $\frac{37 - 13}{4 - 1} = 8$

$$f^{l}(x) = 2x + 2$$

 $f(0.5) = 4.25$
 $f^{l}(0.5) = 3$

By Newton's divided difference formula $P(x) = P(x_0) + (x - x_0) f[x_0, x_1]$

 $\frac{64 - 27}{4 - 3} = 37$

3 - 1

 $+(x-x_0)(x-x_1) f[x_0, x_1, x_2)$ = 1 + (x - 1)13 + (x - 1)(x - 3).8 $=8x^{2}-19x+12$ $P^{1}(x) = 16 x - 19$ P(2) = 6 $P^{1}(2) = 13$

29. Ans: $x^2 + 2x + 3$, 4.25, 3

3

4

27

64

Sol: Since the given observations are at equal interval of width unity. Since 1995

Construct the following difference table.

X	f(x)	$\Delta f(x)$	$\Delta^2 \mathbf{f}(\mathbf{x})$	$\Delta^3 \mathbf{f}(\mathbf{x})$	
0	3				
		3			
1	6		2		
		5		0	
2	11		2		
		7		0	
3	18		2		
		9			
4	27				