GATE | PSUs

CIVIL ENGINEERING

Strength of Materials

Text Book : Theory with worked out Examples and Practice Questions

HYDERABAD | AHMEDABAD | DELHI | BHOPAL | PUNE | BHUBANESWAR | BANGALORE | LUCKNOW PATNA | CHENNAI | VISAKHAPATNAM | VIJAYAWADA | TIRUPATHI | KOLKATA

Strength of Materials

(Solutions for Text Book Practice Questions)

01. Simple Stress and Strains

Fundamental, Mechanical Properties of Materials, Stress Strain Diagram

01. Ans: (b)

Sol:

- **Ductility:** The property of materials to allow large deformations or large extensions without failure (large plastic zone) is termed as ductility.
- **Brittleness:** A brittle material is one which exhibits a relatively small extensions or deformations prior to fracture. Failure without warning (No plastic zone) i.e. no plastic deformation.
- **Tenacity**: High tensile strength.
- **Creep:** Creep is the gradual increase of plastic strain in a material with time at constant load.
- **Plasticity:** The property by which material undergoes permanent deformation even after removal of load.
- Endurance limit: The stress level below which a specimen can withstand cyclic stress indefinitely without failure.
- **Fatigue:** Decreased Resistance of material to repeated reversal of stresses.

02. Ans: (a)

Sol:

- When the material is subjected to stresses, it undergoes to strains. After removal of stress, if the strain is not restored/recovered, then it is called inelastic material.
- For rigid plastic material:

- Any material that can be subjected to large strains before it fractures is called a ductile
 material. Thus, it has large plastic zone.
 - Materials that exhibit little or no yielding before failure are referred as brittle materials. Thus, they have no plastic zone.

03. Ans: (a)

Sol: *Refer to the solution of Q. No. (01).*

04. Ans: (b)

Sol: The stress-strain diagram for ductile material is shown below.

σ

0

Т

P – Proportionality limit

R – Upper yield point

S – Lower yield point

T – Ultimate tensile strength

the response of the material is

independent of the orientation of the load axis of the sample, then we say that the material is isotropic or in other words we can say the isotropy of a material is its

which

the three orthogonal directions x, y and z.

information that the properties are same in

gives

us

the

Q – Elastic limit

U – Failure

 $OP \rightarrow Stage I$

 $PS \rightarrow Stage II$

 $ST \rightarrow Stage III$

 $TU \rightarrow Stage IV$

From above,

05. Ans: (b)

If

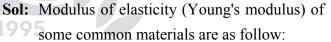
characteristics.

Sol:

•

CIVIL-Postal Coaching Solutions

A material is homogeneous if it has the same composition throughout the body. Hence, the elastic properties are the same at every point in the body in a given direction. However, the properties need not to be the same in all the directions for the material. Thus, both A and B are false.


06. Ans: (a)

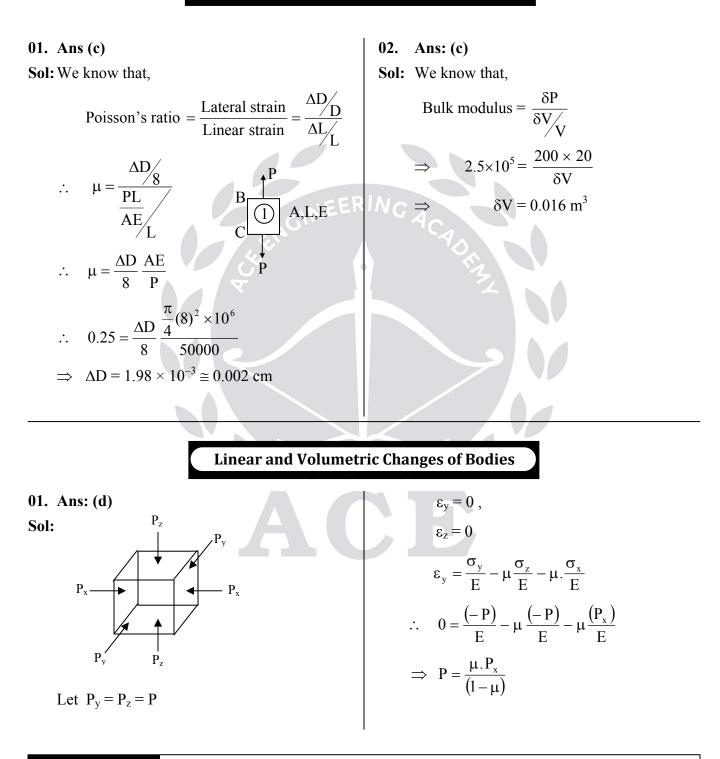
- Sol: Strain hardening increase in strength after plastic zone by rearrangement of molecules in material.
 - Visco-elastic material exhibits a mixture of creep as well as elastic after effects at room temperature. Thus their behavior is time dependant

Ans: (a) 07.

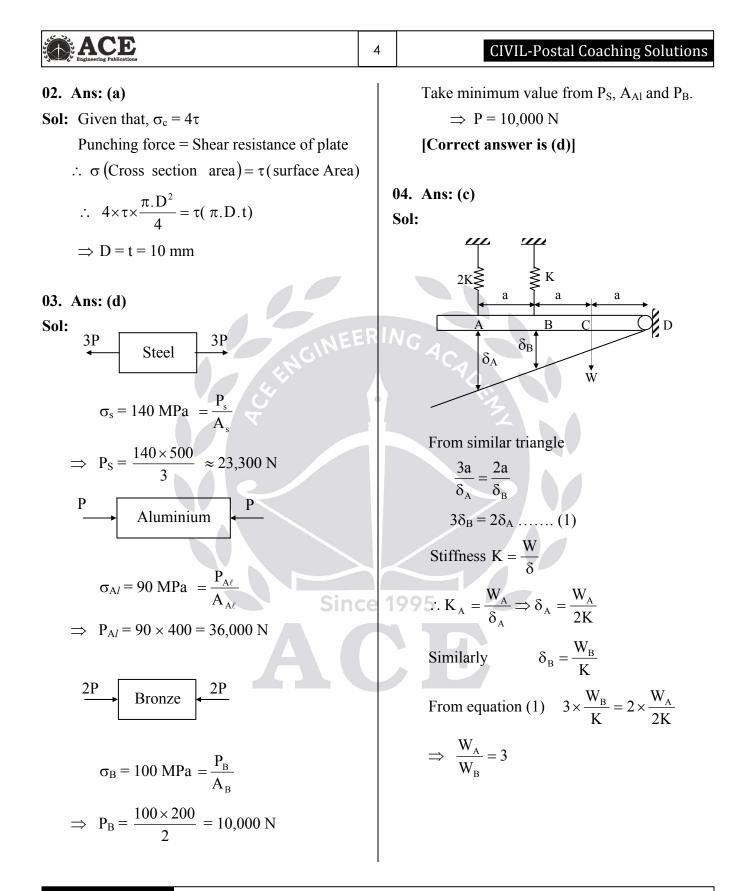
Sol: *Refer to the solution of Q. No. (01).*

08. Ans: (a)

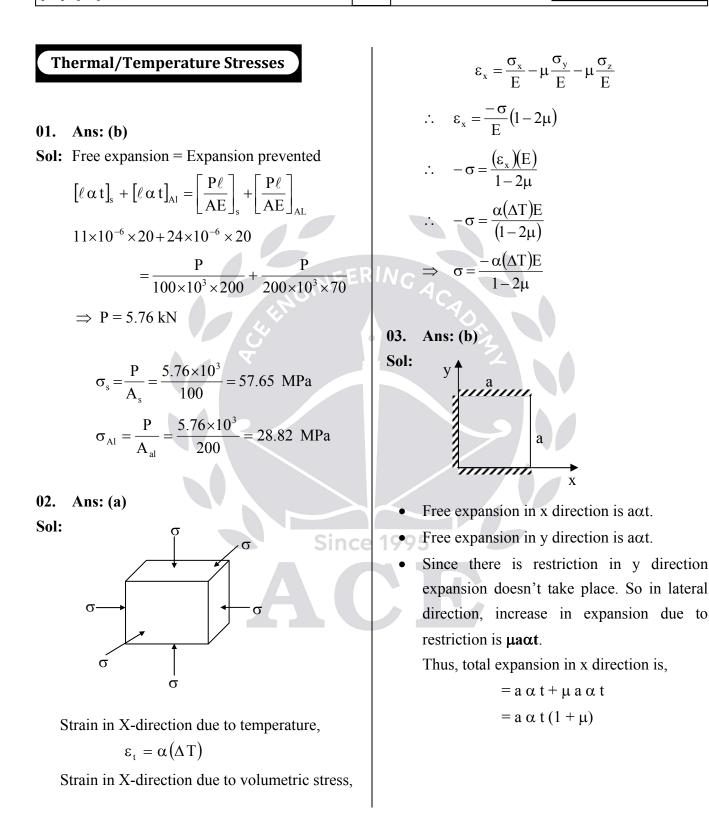
Material	Young's Modulus (E)
Steel	200 GPa
Cast iron	100 GPa
Aluminum	60 to 70 GPa
Timber	10 GPa
Rubber	0.01 to 0.1 GPa


09. Ans: (a)

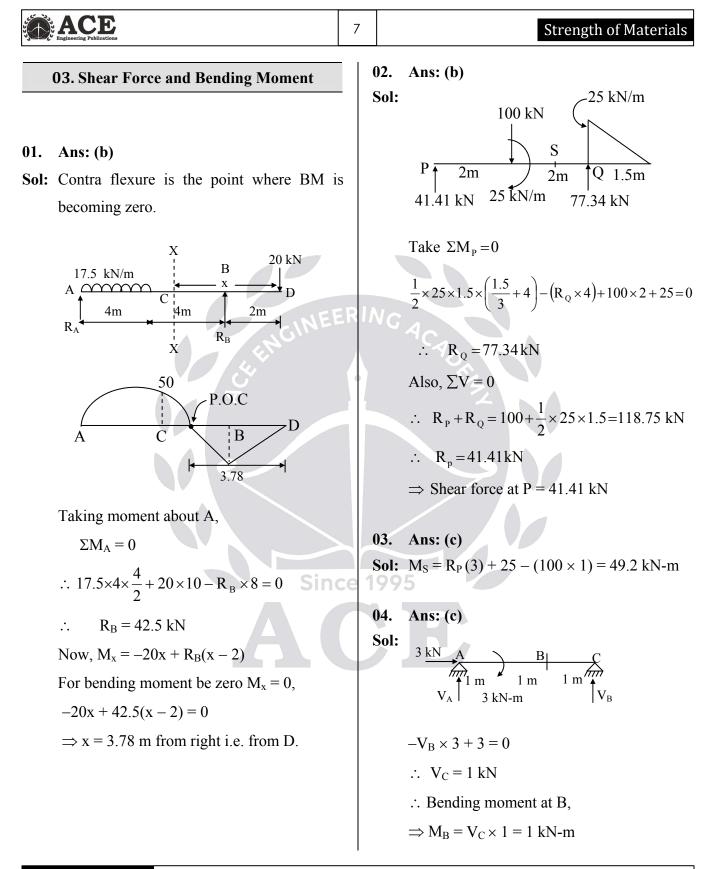
Sol: Addition of carbon will increase strength, thereby ductility will decrease.


Since

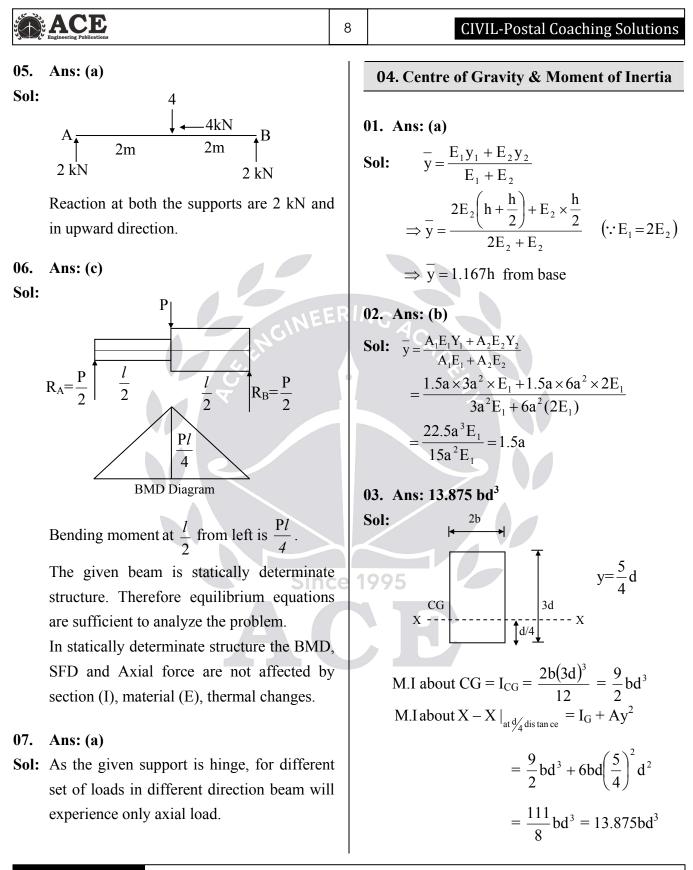
Elastic Constants and Their Relationships


ACE Engincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

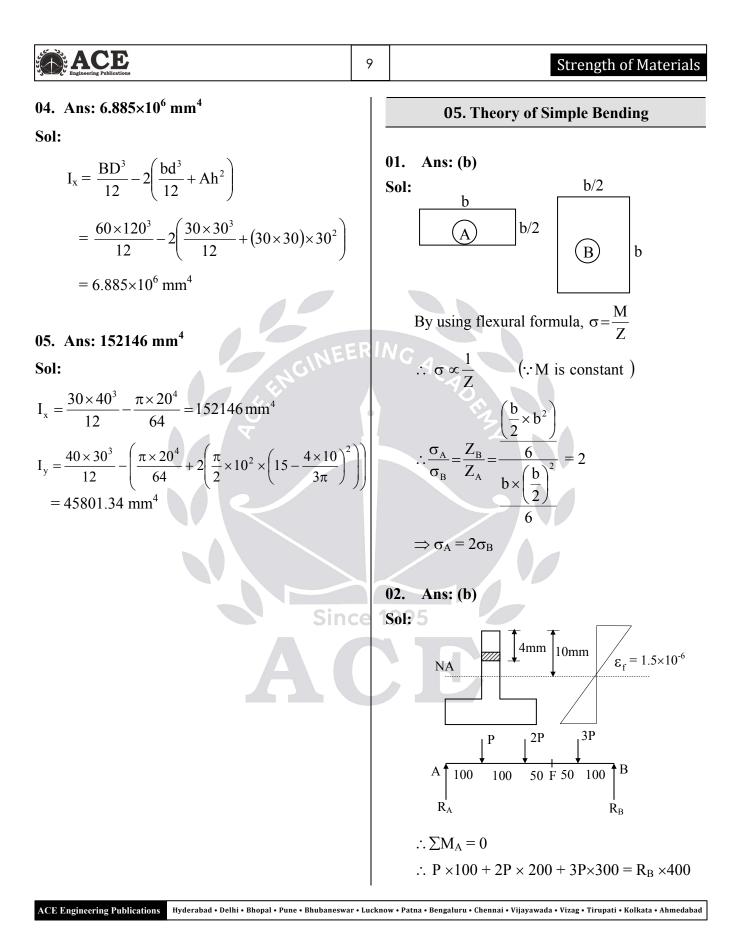
3


ACE Engineering Publications

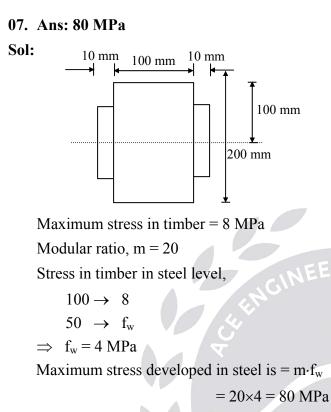
Strength of Materials



5


Engineering Publications	6 CIVIL-Postal Coaching Solutions
02. Complex Stresses and Strains	04. Ans: (b) Sol: τ
01. Ans: (b) Sol: Maximum principal stress $\sigma_1 = 18$ Minimum principal stress $\sigma_2 = -8$ Maximum shear stress $= \frac{\sigma_1 - \sigma_2}{2} = 13$ Normal stress on Maximum shear stress plane	From the bove, we can say that Mohr's circle is a point located at 175 MPa or
$=\frac{\sigma_{1}+\sigma_{2}}{2}=\frac{18+(-8)}{2}=5$	
02. Ans: (b) Sol: Radius of Mohr's circle, $\tau_{max} = \frac{\sigma_1 - \sigma_2}{2}$ $\therefore 20 = \frac{\sigma_1 - 10}{2}$ $\Rightarrow \sigma_1 = 50 \text{ N/mm}^2$	05. Ans: (c) Sol: Given that, $\sigma_2 = 0$ $\therefore \sigma_2 = \frac{\sigma_x + \sigma_y}{2} - \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau^2_{xy}}$ $\therefore \frac{\sigma_x + \sigma_y}{2} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau^2_{xy}}$
03. Ans: (b) Sol: Given data, $\sigma_x = 150 \text{ MPa}, \sigma_y = -300 \text{ MPa}, \mu = 0.3$ Long dam \rightarrow plane strain member $\varepsilon_z = 0 = \frac{\sigma_z}{E} - \frac{\mu \sigma_x}{E} - \frac{\mu \sigma_y}{E}$ $\therefore 0 = \sigma_z - 0.3 \times 150 + 0.3 \times 300$ $\Rightarrow \sigma_z = 45 \text{ MPa}$	$2 \sqrt{(2)}$ $1995 \qquad \qquad \left(\frac{\sigma_x + \sigma_y}{2}\right)^2 = \left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau^2_{xy}$ $\therefore \tau^2_{xy} = \left(\frac{\sigma_x + \sigma_y}{2}\right)^2 - \left(\frac{\sigma_x - \sigma_y}{2}\right)^2$ $\therefore \tau^2_{xy} = \sigma_x \cdot \sigma_y$ $\Rightarrow \tau_{xy} = \sqrt{\sigma_x \cdot \sigma_y}$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad


ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	10 CIVIL-Postal Coaching Solutions
$\therefore R_{B} = 3.5P, R_{A} = 2.5P$ Take moments about F and moment at F $M_{F} = R_{B} \times 150 - 3P \times 50 = 375P$ Also, $\frac{M_{F}}{I} = \frac{\sigma_{b}}{y_{F}}$ $\therefore \frac{375P}{2176} = \frac{(1.5 \times 10^{-6} \times 200 \times 10^{3})}{6}$ $\Rightarrow P = 0.29 \text{ N}$ 03. Ans: (b) Sol: By using Flexural formula, $\frac{E}{R} = \frac{\sigma_{b}}{y_{max}} \Rightarrow \frac{2 \times 10^{5}}{250} = \frac{\sigma_{b}}{(0.5/2)}$ $\Rightarrow \sigma_{b} = 200 \text{ N/mm}^{2}$	05. Ans: (b) Sol: By using flexural formula, $\frac{f_{Tensile}}{y_{top}} = \frac{M}{I}$ $\Rightarrow f_{Tensile} = \frac{0.3 \times 3 \times 10^6}{3 \times 10^6} \times 70$ (maximum bending stress will be at top fibre so $y_1 = 70$ mm) $\Rightarrow f_{Tensile} = 21 \text{ N/mm}^2 = 21 \text{ MN/m}^2$ 06. Ans: (c) Sol: Given data: $P = 200 \text{ N}, \qquad M = 200 \text{ N.m}$ $A = 0.1 \text{ m}^2, \qquad I = 1.33 \times 10^{-3} \text{ m}^4$ y = 20 mm Due to direct tensile force P,
$\frac{125}{50}$ By using flexural formula, $\frac{M}{I} = \frac{f}{y}$	$= \frac{200}{1.33 \times 10^{-3}} \times 20 \times 10^{-3}$ $= 3007.52 \text{ N/m}^2 \text{ (Compressive)}$ $\sigma_{\text{net}} = \sigma_d - \sigma_b$
$\therefore \frac{16 \times 10^6}{100 \times 150^3} = \frac{f}{25} \implies f = 14.22 \text{ MPa}$ Now, Force on hatched area $= \text{Average stress} \times \text{Hatched area}$ $= \left(\frac{0 + 14.22}{2}\right)(25 \times 50) = 8.9 \text{ kN}$	= 2000 - 3007.52 = - 1007.52 N/m ² Negative sign indicates compressive stress. $\sigma_{net} = 1007.52 \text{ N/m}^2$

Strength of Materials

ACE Engineering Publications

Convert whole structure as a steel structure by using modular ratio.

08. Ans: 2.43 mm

Sol: From figure $A_1B_1 = l = 3$ m (given)

AB =
$$\left(R - \frac{h}{2}\right)\alpha = l - l\alpha t_1 - \dots$$
 (1)
A₂B₂ = $\left(R + \frac{h}{2}\right)\alpha = l + l\alpha t_2 - \dots$ (2)

Subtracting above two equations (2) - (1)

h (
$$\alpha$$
) = $l\alpha$ (t₂-t₁)
but A₁B₁ = l = R α
 $\Rightarrow \alpha = \frac{l}{R}$
h A B
A₂

$$\therefore h\left(\frac{l}{R}\right) = l\alpha (\Delta T)$$

$$R = \frac{h}{\alpha (\Delta T)}$$

$$= \frac{250}{(1.5 \times 10^{-5})(72 - 36)}$$

$$R = 462.9 \text{ m}$$
From geometry of circles
$$(2R - \delta)\delta = \frac{L}{2} \cdot \frac{L}{2} \quad \{\text{ref. figure in Q.No.02}\}$$

$$2R \cdot \delta - \delta^2 = \frac{L^2}{4} (\text{neglect } \delta^2)$$

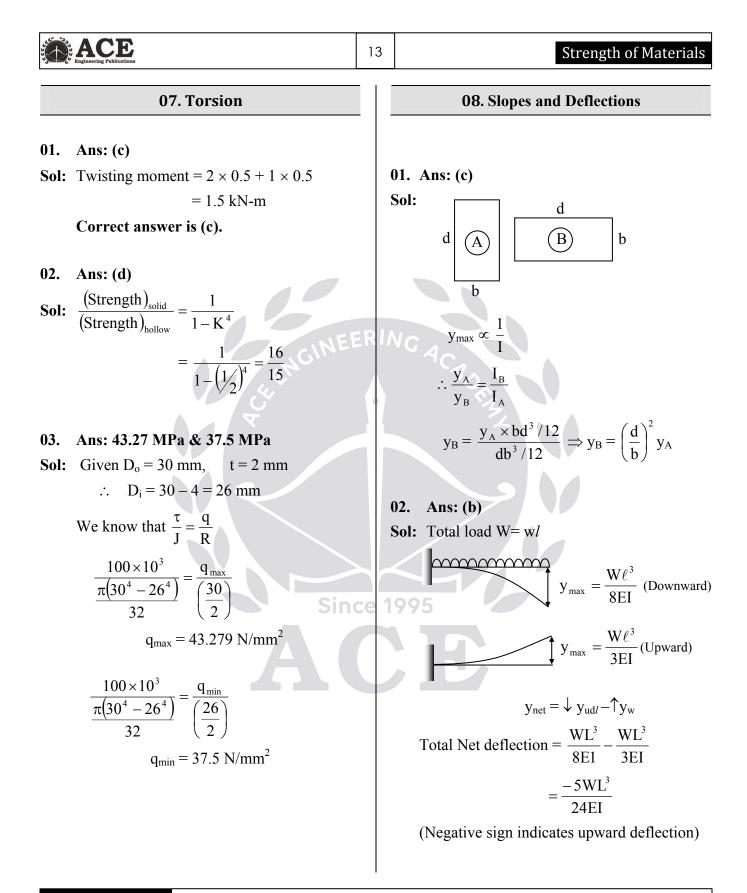
$$\delta = \frac{L^2}{4} = \frac{3^2}{4} = 2.43 \text{ mm}$$

8R 8×462.9

Shortcut:

1995

11

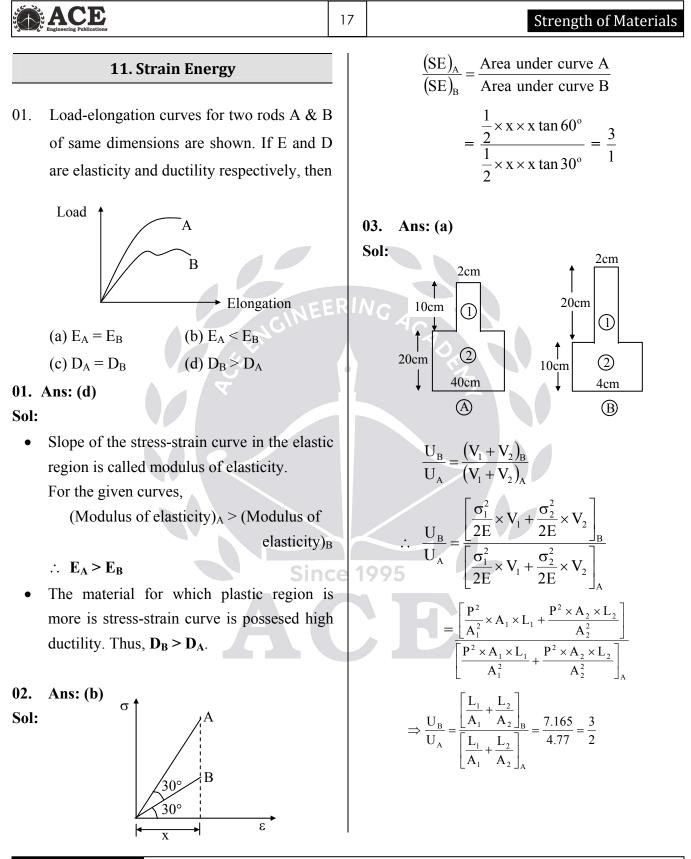

Deflection is due to differential temperature of bottom and top ($\Delta T = 72^{\circ} - 36^{\circ} = 36^{\circ}$). Bottom temperature being more, the beam deflects down.

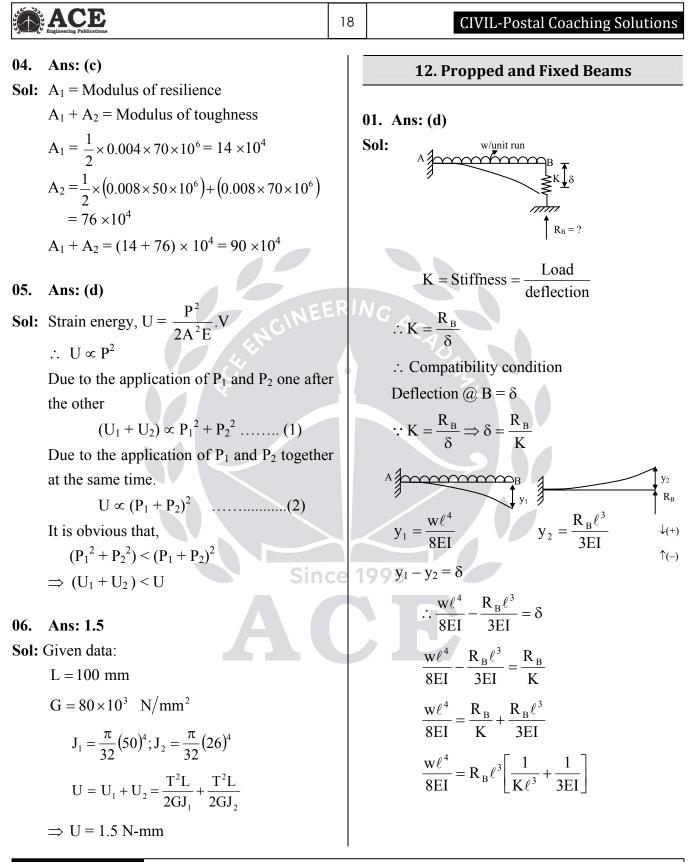
$$\delta = \frac{\alpha(\Delta T)\ell^2}{8h} = \frac{1.5 \times 10^{-5} \times 36 \times 3000^2}{8 \times 250}$$

= 2.43 mm (downward)

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

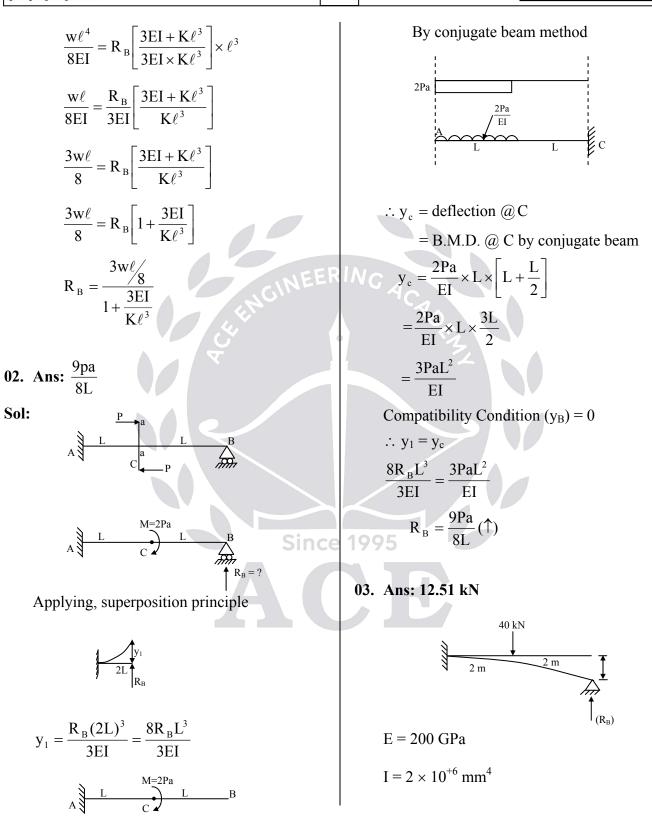
 B_2




ACC
14
CIVIL-Postal Coaching Solutions
03. Ans: (c)
Sol:

$$\begin{array}{c}
0.3. \text{ Ans: (c)}\\
\text{Sol:}\\
\hline
0.5. \text{ Ans: (a)}\\
\hline
0.6. \text{ Ans: (a)}\\
\hline
0.6. \text{ Ans: (a)}\\
\hline
0.6. \text{ Ans: (c)}\\
\hline
0.7. \text{ B}\\
\hline
0.7. \text{$$

ACE Strength of Materials 15 $y_{\rm A} = y_{\rm B} \Rightarrow \left(\frac{wL^3}{3EI}\right)_{\rm c} = \left(\frac{wL^3}{48EI}\right)_{\rm c}$ **09.** Thin Pressure Vessels 01. Ans: (b) \therefore L_B = 400 mm Sol: $\tau_{\text{max}} = \sigma_{\text{l}} = \frac{\sigma_{\text{h}} - 0}{2} = \frac{PD}{At}$ 07. Ans: 0.05 $\therefore \tau_{max} = \frac{1.6 \times 900}{4 \times 12} = 30 \text{ MPa}$ Sol: 02. Ans: 2.5 MPa & 2.5 MPa 10 m **Sol:** Given data: R = 0.5 m, D = 1m, t = 1 mm \therefore Curvature, $\frac{d^2 y}{dx^2} = 0.004$ H = 1 m, $\gamma = 10 kN/m^3$, h = 0.5 mAt mid-depth of cylindrical wall (h = 0.5m): Integrating with respect to x, Circumferential (hoop) stress, We get, $\frac{dy}{dx} = 0.004x$ $\sigma_{c} = \frac{P_{at h=0.5m} \times D}{4t} = \frac{\gamma h \times D}{4t}$ $y = \frac{0.004x^2}{2}$ $=\frac{10\times10^{3}\times(2\times0.5)}{4\times1\times10^{-3}}$ $y = 0.002x^2$ $= 2.5 \times 10^6 \text{ N/m}^2 = 2.5 \text{ MPa}$ At mid span, x = 5 mLongitudinal stress at mid-height, $\therefore y = 0.002 x^2$ $\sigma_{\ell} = \frac{\text{Net weight of the water}}{\text{Cross-section area}}$ Since 1995 y = 0.05 m $= \frac{\gamma \times \text{Volume}}{\pi D \times t}$ $=\frac{\gamma \times \frac{\pi}{4} D^2 L}{\pi D \times t} = \frac{\gamma \times DL}{4t}$ $=\frac{10\times10^{3}\times1\times1}{4\times10^{-3}}$ $= 2.5 \times 10^6 \text{ N/m}^2 = 2.5 \text{ MPa}$


ACE Engineering Publications	I6 CIVIL-Postal Coaching Solutions
10. Columns	04. Ans: (c) Sol: Euler's theory is applicable for axially
01. Ans: (c) Sol: By using Euler's formula, $P_e = \frac{\pi^2 \times EI}{l_e^2}$	loaded columns. Force in member AB, $P_{AB} = \frac{F}{\cos 45^{\circ}} = \sqrt{2}F$
For a given system, $l_e = \frac{l}{2}$ $\therefore \qquad P_e = \frac{4\pi^2 \times EI}{l^2}$	$P_{AB} = \frac{\pi^2 EI}{L_e^2}$ $\therefore \sqrt{2} F = \frac{\pi^2 EI}{L_e^2}$ $\pi^2 EI$
02. Ans: (b) Sol: We know that, $P_{cr} = \frac{\pi^2 EI}{\ell_c^2}$	F = $\frac{\pi^2 \text{ EI}}{\sqrt{2} \text{ L}^2}$ Correct answer is (c). 05. Ans: (a)
$\therefore P_{cr} \propto \frac{1}{\ell_e^2}$ $\therefore \frac{P_1}{P_2} = \frac{l_{2e}^2}{l_{1e}^2}$ $\therefore \frac{P_1}{P_2} = \frac{l^2}{(2l)^2} \implies P_1: P_2 = 1: 4$	Sol: Given data: $L_e = L = 3 m,$ $\alpha = 12 \times 10^{-6} / {^{\circ}C},$ $d = 50 mm = 0.05 m$ Buckling load, $P_e = \frac{\pi^2 EI}{L_C^2}$
03. Ans: 4 Sol: Euler's crippling load,	$\therefore \frac{\pi^2 EI \times L}{L^2 \times AE} = L \alpha \Delta T$
$P = \frac{\pi^2}{l^2} EI$ $\therefore P \propto I$ $\Rightarrow \frac{P}{P_o} = \frac{I_{bonded}}{I_{loose}} = \frac{\left[\frac{b(2t)^3}{12}\right]}{2\left[\frac{bt^3}{12}\right]} = 4$	$\therefore \qquad \frac{\pi^2 \times E \times \frac{\pi}{64} \times d^4 \times L}{L^2 \times \frac{\pi}{4} d^2 \times E} = L\alpha\Delta T$ $\therefore \qquad \Delta T = \frac{\pi^2 \times d^2}{16 \times L^2 \times \alpha} = \frac{\pi^2 \times (0.05)^2}{16 \times 3^2 \times 12 \times 10^{-6}}$ $\Rightarrow \Delta T = 14.3^{\circ}C$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

. C		
7 + 8	AL H.	
\ll		
	Engineering Publications	s

19

Engineering Publications	20	CIVIL-Postal Coaching Solutions
As per compatablity		14. Theories of Failure
$\frac{(R_B)(4000)^3}{3EI} = \frac{(40 \times 10^3)(2000)^3}{3 \times EI} + \frac{40 \times 10^3 \times (2000)^2}{2EI} \times 2000 + 1$		01. Ans: (d)
$\frac{R_{B}(2\ell)^{3}}{3EI} = \frac{Pa^{3}}{3EI} + \frac{Pa^{2}}{2EI}(b) + 1mm \left[usea = b = \frac{L}{2} = 2000 mm \right]$		Sol: $\sigma = \sigma_y = 2500 \text{ kg/cm}^2$ $\sigma_1 = 2000 \text{ kg/cm}^2$ $\sigma_3 = ?$
where EI = $4 \times 10^{11} \text{ N/mm}^2$ $\therefore \frac{R_B}{3 \times 4 \times 10^{11}} = \frac{40 \times 10^3 \times (2000)^3}{3 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 4 \times 10^{11}} + \frac{40 \times 10^3 \times (2000)^3}{2 \times 10^3} + 40 \times 10^3 \times$	1 ER//	Maximum shear stress theory $\tau_{\text{max}} = \frac{(\sigma_1 - \sigma_3)}{2} \gg \frac{\sigma_y}{2}$
R _B = 12.51 kN		$= \frac{2000 - \sigma_3}{2} = \frac{2500}{2}$ $\sigma_3 = -500 \text{ (comp)}$
13. Shear Centre		02. Ans: (b)
 01. Ans: (a) Sol: Shear centre is related to torsion On principal plane shear stress is zero At fixed end slope is zero. Middle third rule is to avoid tension it columns. 	ce 1	Sol: D = 100 cm P = 10 kg/cm ² $\sigma = \sigma_y = 2000 \text{ kg/cm}^2$ FOS = 4 t = ? Maximum Principal stress theory $\sigma_1 = \sigma_h = \frac{PD}{2t} \neq \sigma_y$ $\frac{10 \times 100}{2 \times t} = 2000$
02. Ans: (b)Sol: If the resultant force is acting through shear centre torsion developed in the c/s is zero.	ır	t = 2.5 mm Safe thickness of plate = $2.5 \times F.O.S$ = 2.5×4 = 10 mm

Engineering Publications	21	Strength of Materials
03. Ans: (b)		04. Ans: (c)
Sol: $\sigma_1 = 1.5$ (T)		Sol: $\sigma_1 = 800 \text{ kg/cm}^2$
$\sigma_2 = \sigma (T)$		$\sigma_2 = 400 \text{ kg/cm}^2$
$\sigma_3 = -\sigma/2$ (C)		$\mu = 0.25$
$\sigma_y = 2000 \text{ kg/cm}^2$		$\varepsilon_1 \leq \frac{\sigma_y}{F}$
$\mu = 0.3$		$E_1 \subseteq E$
In which theory of failure $\sigma = 1000 \text{ kg/cm}^2$ Check (a) Maximum principal stress theory $\sigma_1 = \sigma_y$ $1.5\sigma_1 = 2000$ $\sigma_1 = 1333 \text{ kg/cm}^2$ (b) Maximum shear stress theory $\left(\frac{\sigma_1 - \sigma_3}{2}\right) = \frac{\sigma_y}{2}$	ERI	$\frac{\sigma_1}{E} - \mu \frac{\sigma_2}{E} - \frac{\mu \sigma_3}{E} = \frac{\sigma_y}{E}$ $\frac{800}{E} - 0.25 \frac{(400)}{E} = \frac{\sigma_y}{E}$ $\sigma_y = 800 - 100 = 700 \text{ kg/cm}^2$
$\begin{pmatrix} 2 \\ 2 \end{pmatrix} 2$ $\begin{pmatrix} \frac{1.5\sigma + \frac{\sigma}{2}}{2} \\ \frac{4}{2}\sigma = 2000 \\ \sigma = 1000 \text{ kg/cm}^2 \end{pmatrix}$		1005

ACE