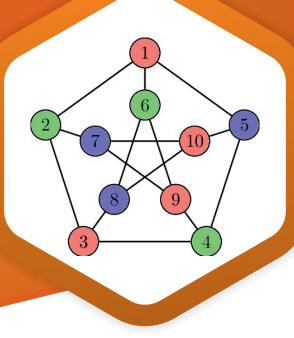
GATE | PSUs

COMPUTER SCIENCE & INFORMATION TECHNOLOGY

Discrete Mathematics

Text Book : Theory with worked out Examples and Practice Questions



HYDERABAD | AHMEDABAD | DELHI | BHOPAL | PUNE | BHUBANESWAR | BANGALORE | LUCKNOW PATNA | CHENNAI | VISAKHAPATNAM | VIJAYAWADA | TIRUPATHI | KOLKATA

Discrete Mathematics

(Solutions for Text Book Practice Questions)

1. Mathematical Logic

01. Ans: (d)

Sol: The contrapositive of $(A \rightarrow B)$ is $(\sim B \rightarrow \sim A)$. and $(A \rightarrow B) \equiv (\sim B \rightarrow \sim A)$.

> The statement given in option(d) is contrapositive of p.

> \therefore The statement given in option(d) is equivalent to p.

02. Ans: (a)

Sol: S_1 : The given argument is

1. $r \rightarrow (q \rightarrow p)$

- $\frac{2. \sim p}{\therefore (\sim r \lor \sim q)}$ 3. $(r \land q) \rightarrow p$ (1), equivalence 4. \sim (r \wedge q) (3) and (2), modus tollens 5. ($\sim r \lor \sim q$) (4), demorgan's law \therefore S₁ is valid
- S_2 : When p has truth value false, q has truth value false and r has truth value true; we have, all the primeses are true but conclusion is false.
 - \therefore S₂ is not valid.

03. Ans: (b)

Sol: Quine's method:

Case1:

When a has truth value true, the given formula becomes

 $c \wedge (\sim b \wedge \sim c)$

$$\Leftrightarrow (\mathbf{c} \land \sim \mathbf{c}) \land \sim \mathbf{b}$$
$$\Leftrightarrow \mathbf{F} \land \sim \mathbf{b}$$
$$\Leftrightarrow \mathbf{F}$$

Case2:

When a has truth value false, the given formula becomes

$$b \land \sim (b \lor c)$$
$$\Leftrightarrow (b \land \sim b) \land \sim c$$
$$\Leftrightarrow F \land \sim c$$
$$\Leftrightarrow F$$

: The given formula is a contradiction.

04. Ans: (a) **Sol:** Let $S_1 = (P \rightarrow Q)$ where, $P = ((a \lor b) \rightarrow c)$ and $Q = (a \land b) \rightarrow c$ Here, Q is false only when a is true, b is true and c is false. For these truth values P is also false. \therefore S₁ is valid Let $S_2 = (R \rightarrow S)$ where, $R = (a \land b) \rightarrow c$ and $S = (a \lor b) \rightarrow c$ Here, when a is true, b is false and c is false; we have, R is true and S is false. i.e., $(R \rightarrow S)$ is false.

 \therefore S₂ is not valid

ACE Engineering Publications

C ACE Engineering Fublications	2	Discrete Mathematics
 05. Ans: (c) Sol: S₁: The given formula is equivalent to the following argument. ¬p → (q → ¬w) premise (¬s → q) premise (¬s → q) premise (¬w → s) conclusion We can derive the conclusion from the premises as follows. ¬p (3), (4), Disjunctive syllogism (q → ¬w) (1), (5), Modues ponens (¬s → ¬w) (2), (6), Transitivity (w → s) (7), Contra positive equivalence The given formula can be written as {(q → t) ∧ (s → r) ∧ (q ∨ s)} → (t ∨ r which is valid by the rule of constructive dilemma. 06. Ans: (c) Sol: (a) When p has truth value false and r has truth value true, then all the premises an true and conclusion is false. The argument is not valid. (b) When p has truth value false, q is true and conclusion is false. ∴ The argument is not valid. (c) The given argument is written as 1. {p → (q → r) 2. (p ∧ q)} 	e e s e e	3. $(p \land q) \rightarrow r$ (1), equivalence 4. r (2) and (3), modus ponens \therefore The argument is valid (d) When p has truth value <i>false</i> and q has truth value <i>false</i> , then both the premises are true and conclusion is false. \therefore The argument is not valid. 07. Ans: (d) Sol: S ₁ : The contra-positive of $(P \rightarrow Q)$ is $(\neg Q \rightarrow \neg P)$ The contra-positive of $\{(\neg r) \lor (\neg s)\} \rightarrow q$ is $\neg q \rightarrow \neg \{(\neg r) \lor (\neg s)\}$ $\Leftrightarrow \neg q \rightarrow (r \land s)$ Demorgan's Law $\Leftrightarrow q \lor (r \land s)$ ($\because (P \rightarrow Q) \cong (\neg P \lor Q)$) Similarly, we can verify other statements. 08. Ans: (b) Sol: From the truth table $(p * q) \Leftrightarrow (p \land \neg q)$ $\Leftrightarrow \neg (p \land \neg q)$ $\Leftrightarrow \neg (p \land q)$ $\Leftrightarrow \neg (p \land q)$ 09. Ans: (d) Sol: The given formula can be written as $(\overline{p} \cdot q) + (p, \overline{q}) + (p, q)$ $= (\overline{p} \cdot q) + p$ ($\because \overline{q} + q = 1$) $= (p + \overline{p}) \cdot (p + q)$ (By distributive law) $= (p + \overline{p}) \cdot (p + q)$ (By distributive law) = p + q

Engineering Publications	3 CSIT-Postal Coaching Solutions		
10. Ans: (c)	6. $d \wedge e$ (2), (5), modus pones		
Sol: Quine's Method:	7. d(6), simplification		
Case 1: When p is true, given formula	\therefore S ₁ is valid		
$\{T \land (F \lor \neg q) \land (F \lor q \lor r) \land \neg r\}$	S ₂ : Indirect proof:		
$\Leftrightarrow \sim q \land (q \lor r) \land \sim r$	1. $(p \rightarrow q)$ premise		
$\Leftrightarrow \sim (q \lor r) \land (q \lor r)$	2. \sim (p \land q) =premise		
\Leftrightarrow F	3. p new premise to apply indirect		
	proof		
Case 2: When p is false, the given formula	1 ()/()// 1		
is also false	5. $\sim p$ (2), (4), conjunctive syllogism		
\therefore The given formula is not satisfiable.	6. F (3) , (5) , contradiction		
	\therefore S ₂ is valid		
	ERINGA		
Sol: $S_1 = ((P \rightarrow Q) \rightarrow P) \rightarrow Q$	13. Ans: (c)		
$\Leftrightarrow \sim \{\sim (\sim P \lor Q) \lor P\} \lor Q \checkmark$	Sol: Quine's method:		
$\Leftrightarrow \{(\sim P \lor Q) \land \sim P\} \lor Q =$	Case 1: When P is true, the given formul		
$\Leftrightarrow (\sim P \lor Q \lor Q) \land (\sim P \lor Q)$	has truth value <i>true</i> .		
$\Leftrightarrow (\sim P \lor Q) \land (\sim P \lor Q)$	Case 2: When P is false, the given formula has truth value <i>true;</i> whether Q is false or Q		
$\Leftrightarrow (\sim \mathbf{P} \lor \mathbf{Q})$	is true.		
$\Leftrightarrow (P \to Q)$	∴ The given formula is a tautology.		
$S_2 = P \to (Q \to (P \to Q))$	The given formula is a fautology.		
$\Leftrightarrow \mathbf{P} \to \mathbf{T} \qquad [\because \mathbf{Q} \to (\mathbf{P} \to \mathbf{Q}) \text{ is a tautology}]$	14. Ans: (d)		
⇔T Sin			
\therefore S ₁ \Rightarrow S ₂	$B = p \rightarrow (q \rightarrow r)$		
	Here, B is false only when p is true, q is true		
12. Ans: (c)	and r is false.		
Sol: S ₁ : Condition proof:	For this set of truth values, A is also false.		
1. $(a \lor b) \rightarrow c$ premise	$\therefore A \rightarrow B$ is a tautology.		
$\underline{2. c \rightarrow (d \land e)} \qquad \text{premise}$			
$(a \rightarrow d)$ conclusion	(b) Let $A = p \rightarrow (r \lor q)$ and		
3. a new premise to			
apply conditional proof	f Here, B is false only when p is true, q is		
4. $a \lor b$ (3), addition	false and r is false.		
5. c (1), (4), modus pone	s		

Engineering Publications	4 Discrete Mathematics
For this set of truth values, A is also false. $\therefore A \rightarrow B$ is a tautology. (c) Let $A = p \rightarrow (r \land q)$ and $B = (p \rightarrow r) \lor (p \rightarrow q)$ Here, B is false only when p is true, q is false and r is false. For this set of truth values, A is also false. $\therefore A \rightarrow B$ is a tautology. (d) Let $A = p \rightarrow (q \rightarrow r)$ and $B = (p \rightarrow q) \rightarrow r$ When p is false, q is true and r is false; ther A is true and B is false. $\therefore A \rightarrow B$ is not a tautology. 15. Ans: (c) Sol: S1: $\sim (p \lor q) \rightarrow (p \rightarrow q)$ Let us represent this as $A \rightarrow B$, where $A = \sim (p \lor q)$ and $B = (p \rightarrow q)$ Here, B is false only when p is true and q is false. For this set of truth values, A is also false. \therefore S1 is a tautology S2: $\sim (q \rightarrow -p) \rightarrow (p \rightarrow -q)$ Let us represent this as $A \rightarrow B$. where $A = \sim (q \rightarrow -p)$ and $B = (p \rightarrow -q)$ Here, B is false only when p is true and $q = (q \rightarrow -p) \rightarrow (p \rightarrow -q)$ Let us represent this as $A \rightarrow B$. where $A = \sim (q \rightarrow -p)$ and $B = (p \rightarrow -q)$ Here, B is false only when p is true and c is true. For this set of truth values, A is true. \therefore S2 is not a tautology S3: $\sim (p \rightarrow q) \rightarrow (p \lor q)$ Let us represent this as $A \rightarrow B$.	Here, A is true only when p is true and q is false. In this case, B is false. \therefore S4 is not a tautology 16. Ans: (b) Sol: The truth table of a propositional function in n variables contain 2 ⁿ rows. In each row the function can be true or false. By product rule, number of non equivalent propositional functions (different truth tables) possible = 2 ^(2ⁿ) . If we put n = 3, we get 256. 17. Ans: (b) Sol: In the given formula, if we replace (c $\rightarrow \sim$ d) with (\sim c $\vee \sim$ d), then the given formula is a substitution instance of destructive dilemma. \therefore The given formula is valid. re 18. Ans: (c) Sol: If (p \rightarrow q) is false then p is true and q is
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar	ar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE Engineering Publications		6		Discrete Mathematics
	q: travelling wa r: they arrived of The given argun 1. $p \rightarrow q$ 2. $r \rightarrow \sim q$ 3. $r \rightarrow \sim q$ Proof: 4. $\sim q$ 5. $\sim p$ \therefore The argum	on time ment in symbolic form is premise premise conclusion (2), (3), modus pones (1), (4), modus tollens	S 2	E 6. A 501: (j ← 7. A 501: (j	(8) and (9) contradict each other. (8) and (9) contradict each other. The premises are inconsistent. Hence, the argument is valid. (a) $p \wedge (\sim r \lor q \lor \sim q)) \lor ((r \lor t \lor \sim r) \land \sim q)$ $\Rightarrow (p \land T) \lor (T \land \sim q)$ $\Rightarrow p \lor \sim q$ Ans: (a) $p \lor (p \land q) \lor (p \land q \land \sim r)) \land ((p \land r \land t) \lor t)$ in boolean algebra notation $(p + (p,q) + (p,q,\sim r)).((p.r.t) + t)$
	illness q: he fails high r: he is uneduca s: jack reads a le t: jack is smart	ted. ot of books nent in symbolic form is premise	s	501: T fo 1 992 3 4	$= p.(1 + q + \bar{r}).t (p.r + 1)$ $= p.t$ $= p \wedge t$ Ans: (a) The given formula is equivalent to the following argument p premise $p (p \rightarrow q)$ premise $p (s \lor r)$ premise $p (s \lor r)$ premise $p (s \lor t)$ conclusion Proof:
ACEI	Proof: 5. $p \rightarrow r$ 6. p 7. s 8. r 9. $\sim r$ Engineering Publications	 (1), (2), transitivity (4), simplification (4), simplification (5), (6), modus ponens (3), (7), modus ponens 	ucknow	6 7 8 T	$f. q$ $(1), (2), modus pones$ $f. \sim r$ $(4), (5), modus tollens$ $f. s$ $(3), (6), disjunctive syllogism$ $f. s \lor t$ $(7), addition$ $f. he argument is valid.$ $f. The given formula is valid.$ • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	Engineering Publications	7	CSIT-Postal Coaching Solutions
29.	Ans: (a)		Proof:
Sol:	The given formula is equivalent to the	e	4. ~q (2), (3), modus tollens
	following argument		5. $(\sim p \rightarrow q)$ (1), simplification
	1. $((\sim p \lor q) \rightarrow r)$		6. p (4), (5), modus tollens
	premise		The argument is valid.
	2. $(r \rightarrow (s \lor t))$ premise		∴ The given formula is valid.
	3. $(\sim s \land \sim u)$ premise		
	$4. (\sim u \rightarrow \sim t) \}$ premise		22 Ans. (a)
	∴ p conclusion Proof:		32. Ans: (c) Sol: $S : (a, b) > (a)$
	5. ~s (3), simplification	•	Sol: $S_1: (a \land b) \lor c$
	5. ~s(3), simplification6. ~u(3), simplification		= (a.b) + c = $(a + c).(b + c)$
	7. ~t (4), (6), modus ponens	E D I	$V_{C} = \{(a + c) + (b, \overline{b})\}. \{(a, \overline{a}) + (b + c)\}$
	8. \sim s $\wedge \sim$ t (5), (7), conjunction		$= \{(a + c) + (b, b)\}, \{(a, a) + (b + c)\}$ $= (a + b + c).(a + \overline{b} + c).(\overline{a} + b + c)\}$
	9. \sim (s \vee t) (8), equivalence		$= (a \lor b \lor c) \land (a \lor b \lor c) \land (a \lor b \lor c) \land$ $= (a \lor b \lor c) \land (a \lor b \lor c) \land (a \lor b \lor c) \land$
	10. $\sim r$ (2), (9), modus tollens		which is the required conjunctive normal
	11. ~(~ $p \lor q$) (1), (10), modus tollens		form.
	12. $p \land \neg q$ (11), equivalence		$S_2: a \land (b \leftrightarrow c)$
	13. p (12), simplification		$= a \land \{(b \land c) \lor (\sim b \land \sim c)\}$
	The argument is valid.		$= (a \land b \land c) \lor (a \land \neg b \land \neg c)$
	∴ The given formula is valid.		Which is the required disjunctive normal
20			form.
	Ans: (a)	f o 1	1995
501:	The argument is valid by the rule o constructive dilemma.		33. Ans: (c)
			Sol: (I). p: It is not raining
31.	Ans: (a)		q: Rita has her umbrella.
Sol:	The given formula is equivalent to the	e	r: Rita does not get wet.
	following argument		The given argument in symbolic form is
	1. $(\sim p \leftrightarrow q)$ premise		1. $p \lor q$ premise
	2. $(q \rightarrow r)$ premise		2. $\sim q \lor r$ premise
	$\frac{3.(-r)}{2}$ premise		$3. \sim p \lor r$ premise
			\therefore r conclusion The argument is valid by the rule of
	∴ p conclusion		The argument is valid, by the rule of dilemma.
ACE E	ngincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar	• Luckno	w • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Engineering Publications	8 Discrete Mathematics
(II). p: Superman were able to prevent evil q: Superman were willing to prevent evil r: Superman would prevent evil s: Superman would be impotent. t: Superman would be malevolent. u: Superman exist. The given argument in symbolic form is $1. (p \land q) \rightarrow r$ premise $2. \sim p \rightarrow s$ premise $3. \sim q \rightarrow t$ premise $4. \sim r$ premise	35. Ans: (b) Sol: $P(x, y) = (x \lor y) \rightarrow z$ $\sim P(x, y) = (x \lor y) \land \sim z$ The negation of $\forall x \exists y P(x, y)$ is $\exists x \forall y$ $((x \lor y) \land \sim z)$ 36. Ans: (d) Sol: 1. If we choose $y = 17 - x$ then ϕ is true. 2. When $x = 17$, there is no positive integer y which satisfies ϕ 3. When $x = 17$, there is no positive integer
$5. u \rightarrow (~s \land ~t)$ premise ∴ ~u conclusion	y which satisfies ϕ 4. If we choose $y = 17 - x$ then ϕ is true.
Proof: $6. \sim (p \land q)$ (1), (4), modus tollens $7. \sim p \lor \sim q$ (6), demorgan's law $8. (s \lor t)$ (2), (3), (7)constructive dilemma $9. \sim u$ (5), (8), modus tollens \therefore The argument is valid.	 37. Ans: (a) Sol: In general, the universal quantifier take the connective → and the existential quantifier take the connective ∧. The given formula in symbolic form, can be written as ∀n [(n > 1) → ∃x {p(x) ∧ (n < x < 2n)}]
First Order Logic Sin 34. Ans: (c) Sol: A statement is a predicate if we can replace	Sol: The given statement can be expressed as $\forall n \ [(n \ge 1) \rightarrow \exists x \ \{p(x) \land (n \le x \le 2n)\}]$ Its negation is
 every variable in the statement by any instance in its domain to form a proposition. S₁ is false for any real number. ∴ S₁ is a predicate S₂ is true for some real numbers which are odd integers. ∴ S₂ is a predicate 	$\Rightarrow \exists n [(n \ge 1) \land \forall \exists x \{p(x) \land (n \le x \le 2n)\}]$ $\Rightarrow \exists n [(n \ge 1) \land \forall \exists x \{p(x) \land (n \le x \le 2n)\}]$ $\Rightarrow \exists n [(n \ge 1) \land \forall \exists x \{p(x) \land (n \le x \le 2n)\}]$ $\Rightarrow \exists n [(n \ge 1) \land \forall x \land \{p(x) \land (n \le x \le 2n)\}]$

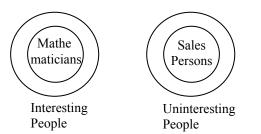
Engineering Publications	9 CSIT-Postal Coaching Solutions
9. Ans: (d)	40. Ans: (c)
ol: I) Let D (x) : x is a doctor	Sol: S ₁ : L.H.S = $\exists x [P(x) \lor Q(x)]$
C(x): x is a college graduate	\Rightarrow P(a) \lor Q(a) [Existential specification]
G(x): x is a golfer	$\Rightarrow \exists x P(x) \lor Q(a)$ [Existential Generalization]
The given argument can be written as	$\Rightarrow (\exists x P(x) \lor \exists x Q(x))$ [Existential Generalization]
1) $\forall_{x} \{ D(x) \rightarrow C(x) \}$	\therefore L.H.S. \Rightarrow R.H.S
$\underline{2} \exists_x \{ D(x) \land \sim G(x) \}$	Now, R.H.S = $(\exists x P(x) \lor \exists x Q(x))$
$\therefore \exists_{x} \{ G(x) \land \sim C(x) \}$	\Rightarrow P(a) $\lor \exists x Q(x)$ [Existential Specification]
3) $\{D(a) \land \neg G(a)\}$ 2), Existential	\Rightarrow P(a) \lor Q(b) [Existential Specification]
Specification	$\Rightarrow P(a) \lor Q(b) \lor P(b) \lor Q(a) [Addition]$
4) $\{D(a)\rightarrow C(a)\}$ 1), Universal	$\Rightarrow [P(a) \lor Q(a)] \lor [P(b) \lor Q(b)]$
Specification	[By commutative and associative laws
5) D (a) 3), Simplification	$\Rightarrow \exists x [P(x) \lor Q(x)] \lor \exists x [P(x) \lor Q(x)]$
6) ~ G (a) 3), Simplification	[By Existential Generalization
7) C (a) 4), 5), Modus ponens	$\Rightarrow \exists x [P(x) \lor Q(x)] $ [By Idempotent law
8) {C (a) $\land \sim$ G (a)} 7), 6), Conjunction	$\therefore \text{ R.H.S.} \Longrightarrow \text{L.H.S.}$
9) $\exists_x \{G(x) \land \sim C(x)\}$ 8), Existential	Hence, L.H.S. \Leftrightarrow R.H.S.
Generalization	S_2 : Try your self (Similar to S_1)
The argument is not valid	41. Ans: (a)
II) Let M (x) x is a mother	Sol: S_1 : Proof by contradiction
N (x) x is a male	1. $(\forall x P(x) \lor \forall x Q(x))$ Premise
P(x): x is a politician	2. ~{ $\forall x[P(x) \lor Q(x)]$ } New premis
The given argument is	for indirect proof
1) $\forall (\mathbf{M}(\mathbf{y}) \rightarrow \mathbf{N}(\mathbf{y}))$	3 $\exists \mathbf{y} [\mathbf{p} \mathbf{P}(\mathbf{y}) \land \mathbf{p} \mathbf{O}(\mathbf{y})]$ (2) equivalence
$2) \exists_x \{N(x) \land P(x)\}$	$4. [~P(a) \land ~Q(a)] $ (2), equivalence (2), equivalence (2), equivalence (3), existential
$\therefore \exists_{x} \{ P(x) \land \sim M(x) \}$	generalization
3) N (a) \wedge P (a) 2), Existential Specification	5. \sim P(a) (4), simplificatio
4) M (a) $\rightarrow N$ (a) 1), Universal Specification	6. \sim Q(a) (4), simplificatio
5) N (a) 3), Simplification	7. $\exists x \sim P(x)$ (5), existential
6) P (a) 3), Simplification	generalization 8 $\neg u$ $O(u)$ (6) substantial
7) ~ M (a) 4), 5), Modus tollens	8. $\exists x \sim Q(x)$ (6), existential generalization
8) {P (a)∧~ M (a)} 6), 7), Conjunction	9. $\exists x \sim P(x) \land \exists x \sim Q(x)$ (7),(8),conjunction
9) $\exists_{x} \{ P(x) \land \sim M(x) \}$ 8), Existential	$10. \sim (\forall x P(x) \lor \forall x Q(x)) (7), (8), conjunction 10.$
Generalization	(1) and (10), contradict each other.
\therefore The argument is valid.	\therefore S ₁ is valid

Engineering Publications	10		Discrete Mathematics
$\mathbf{S_2:} \forall \mathbf{x}[\mathbf{P}(\mathbf{x}) \lor \mathbf{Q}(\mathbf{x})] \Longrightarrow (\forall \mathbf{x} \ \mathbf{P}(\mathbf{x}) \lor \forall \mathbf{x} \ \mathbf{Q}(\mathbf{x})$		4. Ans: (c)	
We can disprove the above statement b	y S	Sol: I. The premises are	
counter example:	、	1. $\forall x[P(x) \rightarrow {Q(x)}]$	$\{\mathbf{x}\} \wedge \mathbf{S}(\mathbf{x})\}$]
Let the universe be $\{a, b\}$. Suppose P(a is true, P(b) is false, Q(a) is false an	·	2. $\forall x \{ P(x) \land R(x) \}$;)}
Q(b) is true.	u	3. $P(a) \rightarrow \{Q(a) \land S(a)\}$	// 、 、
For these values the given statement i false.	s	4. $P(a) \wedge R(a)$	specification (2) universal
\therefore S ₂ is not valid			specification
		5. P(a)	(4), simplification
42. Ans: (a)		6. $Q(a) \wedge S(a)$	(3),(5) modus ponens
Sol: The given statement can be written as		7. S(a)	(6), simplification
$\exists x \{ S(x) \land M(x) \land \neg H(x) \}$	ERIA	8. R(a)	(4), simplification
It's negation is		9. $R(a) \wedge S(a)$	(8), (7), Conjunction
$\forall x \ \{\sim S(x) \lor \sim \sim M(x) \lor H(x)$	}	10. $\forall x \{R(x) \land S(x)\}$	{9) U.G
(By demorgan's law)		: Argument I is va	alid.
$\Leftrightarrow \forall x \{\{S(x) \land M(x)\} \rightarrow H(x)\}$	}		
$(:: (\mathbf{P} \lor \mathbf{Q}) = (\sim \mathbf{P} \to \mathbf{Q}))$		II. The given a	rgument contains only
43. Ans: (d)		universal quantifie	er. We can drop the
Sol: I. Let $U = \{a, b\}$ be the universe of	f	quantifiers in the	argument.
discourse, such that		Now the premis	es are
P(a) is true, P(b) is false		$1. \{ P(x) \lor Q(x) \}$	
Q(a) is false, and Q(b) is true	co 1	995 2. $\{\sim P(x) \land Q(x)\}$	
Now, L.H.S of I is true	ce i		on is $\{\sim R(x) \rightarrow P(x)\}$.
And R.H.S of I is false			
\therefore The statement I is not valid.			conditional proof
II. Let $U = \{a, b\}$ be the universe of discourse	,	$3. \sim R(x)$	new premise
such that			(2),(3), modus tollens
P(a) is true and P(b) is false		5. $\{P(x) \lor Q(x)\}$	
Q(a) is false and Q(b) is true			(2, (4), conjunction
Now,		6. $P(x) \vee \{Q(x) \land$	$\sim Q(x)$ } (5), Dist. Law
The antecedent of II is true and consequer	t	7. $P(x) \vee F$	(6)
is false		8. P(x)	(7)
\therefore The statement II is not valid.		∴ Argument II	is valid.

Đ	11	CSIT-Postal Coaching Solutions
ations		

45. Ans: (b)

Sol: The given statements can be represented by the following venn diagram



From venn diagram, option(c) does not follow.

46. Ans: (a)

Sol: The given statements can be expressed as

 $\exists x \{ D(x) \land \neg S(x) \}$

It's negation is

 $\forall x \{ (D(x) \to S(x)) \}$

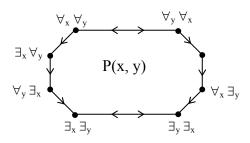
47. Ans: (c)

Sol: S₁**:** $\exists x \{ P(x) \rightarrow Q(x) \}$ $\exists x \{ \sim P(x) \lor R(x) \}$ \Leftrightarrow $\{\exists x \sim P(x) \lor \exists x R(x)\}$ \Leftrightarrow $\{\forall x P(x) \rightarrow \exists x Q(x)\}\$ \Leftrightarrow S_1 is true *.*.. **S**₂: $\exists x \forall y P(x, y)$ $\forall y P(a, y)$ for some a \Rightarrow P(a, b) is true for all b \Rightarrow $\exists x P(x, b)$ is true for all b \Rightarrow $\forall y \exists x P(x, y)$ is true \Rightarrow S₂ is true ... 48. Ans: (c) **Sol:** $\exists_{v} \forall_{x} P(y, x) \rightarrow \forall_{v} \exists_{x} P(x, y)$

$$\Leftrightarrow \exists_x \forall_y P(x, y) \to \forall_y \exists_x P(x, y)$$

(:: x and y are dummy variables)

Which is valid as per the relationship diagram shown below



The remaining options are not true as per the diagram.

49. Ans: (d)

Sol: S₁ is true

Once we select any integer n, the integer m = 5 - n does exist and

n + m = n + (5 - n) = 5

 S_2 is true, because if we choose n=1 the statement nm = m is true for any integer m.

 S_3 is false, for example, when m = 0 the statement is false for all n

 S_4 is false, here we cannot choose n = -m, because m is fixed.

50. Ans: (a)

Since

Sol: S₁: L.H.S
$$\Leftrightarrow \exists x (A (x) \rightarrow B(x))$$

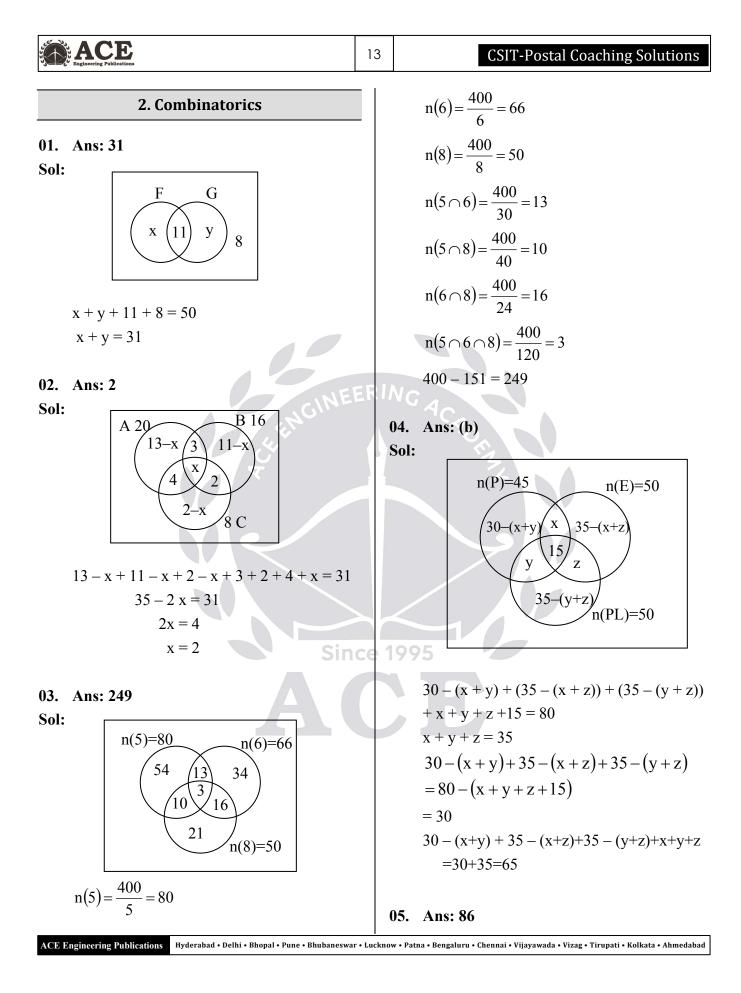
 $\Leftrightarrow \exists x (\sim A(x) \lor B(x)), E_{16}$
 $\Leftrightarrow \exists x (\sim A(x) \lor B(x)), E_{16}$

$$\Leftrightarrow \exists x \sim A(x) \lor \exists x B(x), E_{23}$$
$$\Leftrightarrow \forall x A(x) \rightarrow \exists x B(x), E_{16}$$
$$= R.H.S$$
$$\mathbf{S_2:} L.H.S \Leftrightarrow \{\forall x \sim A(x) \lor \forall x B(x))$$
$$\Rightarrow \forall x (\sim A(x) \lor B(x))$$
$$\Rightarrow \forall x (A(x) \rightarrow B(x)) = R.H.S$$

But converse is not true

$$\therefore$$
 S₂ is false

Engineering Publications	12		Discrete Mathematics
S ₃ valid equivalence		3) $\exists_x \sim P(x) \land \forall_x \sim Q$	Q(x)
S ₄ is not valid (converse is not true)			(2), Demorgan's law
51. Ans: (b)		4) $\exists_x \sim P(x)$ 5) $\forall = O(x)$	(3), Simplification(3), Simplification
Sol: (a) The given formula is valid by conditional proof, if the following argument is valid. (1) $\forall_x \{ P(x) \rightarrow Q(x) \}$ (2) $\forall_x P(x)$ new premise to apply C.P $\therefore \forall_x Q(x)$ Proof: (3) $P(a) \rightarrow Q(a)$ (1), U.S (4) $P(a)$ (2), U.S (5) $Q(a)$ (3), (4), M.P (6) $\forall_x Q(x)$ (5), U.S \therefore The given formula is valid (C.P) (b) The statement need not be true. Let c and d are two elements in the universe of discourse, such that $P(c)$ is true and P(d) is false and Q(c) is false and Q(d) is false. Now, the L.H.S of the given statement is true but R.H.S is false. \therefore The given statement is not valid. (c) $\forall_x (P(x) \lor Q(x)) \Rightarrow (\forall_x P(x) \lor \exists_x Q(x))$		statement is true for	(8), Demorgan's law (1), U.S (9), (10), Conjunction proof) $\rightarrow W(x, y))$ } follows from (x)) tement is valid. 0. There is no integer y sor of y' hoose, x = 1, then the
Indirect proof: 1) $\forall_x (P(x) \lor Q(x))$ Premise 2) ~ ($\forall_x P(x) \lor \exists_x Q(x)$) New premise to apply Indirect proof		statement is true for	any integer y e there is no integer



Engineering Publications	14	Discrete Mathematics
6. Ans: (c)	1	0. Ans: 262
sol: If n is even, then number of bit strings of	of S	Sol: The total number of integers 1 through 1000
length n which are palindromes $=2^{\frac{n}{2}}$. If n is odd, then number of bit strings of length n which are palindromes $=2^{\frac{n+1}{2}}$	of	with atleast one repeated digit = $1000 - ({}^{9}C_{1} + {}^{9}C_{1} \times {}^{9}C_{1} + {}^{9}C_{1} \times {}^{9}C_{1} \times {}^{8}C_{1})$ = $1000 - 738$ = 262
\therefore Required number of bit strings $=2^{\left\lceil \frac{n}{2} \right\rceil}$.	1	1. Ans: 2187
	S	ol: Number of 4 digit integers with digit '0
7. Ans: 3439		appearing exactly once
sol: Number of integers between 1 and 10,00	0	$=({}^{9}C_{1} + {}^{9}C_{1} \times {}^{9}C_{1} \times 1) + ({}^{9}C_{1} \times {}^{9}C_{1} \times {}^{9}C_{1} \times 1)$
without digit $7 = (9^4 - 1) + 1$		$+ ({}^{9}C_{1} + {}^{9}C_{1} \times {}^{9}C_{1} \times 1)$
Required number of integers = $10,000 - 9^4$	ERIA	= 729 + 729 + 729
= 3439		= 2187
		40. N
8. Ans: 64	1	2. Ans: 2940
Sol: In a binary matrix of order 3×3 we have '	9' S	col: Consider an integer with 5 digits.
elements each element we can choose '	2'	Digit 3 can appear in 5 ways
ways.		Digit 4 can appear in 4 ways
By using symmetric relations we have	ve	Digit 5 can appear in 3 ways
$2^{\frac{n(n-1)}{2}} \times 2^n$ matrices are possible		Each of the remaining digits we can choose
		in 7 ways.
$\therefore 2^{\frac{3(3-1)}{2}} \times 2^3$		By product rule,
= 64 Sin	ice 1	99 Required number of integers
		= (5)(4)(3)(7)(7) = 2940
9. Ans: 188		
bol: An English movie and a telugu movie can b	e 1	3. Ans: (a)
selected in $(6)(8) = 48$ ways	S	sol: Since it is a single elimination tournamen
A telugu movie and a hindi movie can b selected in $(8).(10) = 80$ ways	be	so we need $(n-1)$ matches to decide winner.
A hindi movie and an English movie can b	e 1	4. Ans: (c)
selected in $(10)(6) = 60$ movies	S	Sol: Let P, Q are subsets of S so that $P \cap Q = \phi$.
Required number of ways = $48 + 80 + 60$		So each element of P, Q are having '3
= 188		possibilities

Engineering Publications	15		CSIT-Postal Coaching Solutions
Case (i) : Elements are in P but not in Q		18.	Ans: 325
Case (ii) : Elements are in Q but not in P		Sol:	Number of signals we can generate using 1
Case (iii): Elements are not in P and not in C	2		flag = 5
\therefore Number of possibilities = 3^n			Number of signals we can generate using two flags = $P(5,2) = 5.4 = 20$ and so on
15. Ans: 151200			two flags = $P(5,2) = 5.4 = 20$ and so on.
Sol: Required number of ways			Required number of signals $5 + P(5, 2) + P(5, 4) + P(5, 5)$
= Number of ways we can map the (6		= 5 + P(5,2) + P(5,3) + P(5,4) + P(5,5)
persons to 6 of the 10 books			= 325
= P(10,6)			
= 151200			Ans: (a)
		Sol:	Each book we can give in 10 ways.
16. Ans: 2880	FRL	No	By product rule, required number of ways
Sol: First girls can sit around a circle in $\angle 4$ ways	5.		$= 10^{6}$
Now there are 5 distinct places among the	e		NO.
girls, for the 4 boys to sit.		20.	Ans: 243
Therefore, the boys can sit in $P(5, 4)$ ways.		Sol:	Each digit of the integer we can choose in 3
By product rule,			ways.
Required number of ways = $\angle 4.P(5, 4)$			By product rule,
= 2880			Required number of integers = 3^5
			= 243
17. Ans: 1152		<	
Sol: Consider 8 positions in a row marked 1, 2	· · ·	21.	Ans: 12600
3,, 8. Sin	ce 1	Sol:	Required number of permutations
Case 1: Boys can sit in odd numbered	d		
positions in $\angle 4$ ways and girls can sit in	n		$=\frac{\angle 10}{\angle 2.\angle 3.\angle 4}=12,600$
even numbered positions in $\angle 4$ ways.			
Case 2: Boys can sit in even numbered	a	22.	Ans: 360
positions in $\angle 4$ ways and girls can sit in odd	d	Sol:	Required number of strings = Number of permutations possible with seven 0's, two 1's
numbered positions in $\angle 4$ ways.			and one 2
Required number of ways			(10
$= \angle 4. \angle 4 + \angle 4. \angle 4 = 1152$			$=\frac{210}{7/2}=360$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar	r • Luckno	ow • Pati	na • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

- Sol: Required number of ways
 - = number of ordered partitions

$$=\frac{\angle 10}{\angle 3.\angle 2.\angle 5}=2520$$

24. Ans: 945

Sol: Required number of ways = Number of unordered partitions of a set into 5 subjects

of same size =
$$\frac{\angle 10}{(\angle 2.\angle 2.\angle 2.\angle 2.\angle 2).\angle 5}$$

= 945

25. Ans: 150

Sol: Required number of ways = Number of onto functions possible from persons to rooms

$$= 3^{5} - C(3, 1) 2^{5} + C(3, 2) .$$

= 243 - 3 (32) + 3
= 150

 1^{5}

26. Ans: 5400

Sol: Suppose we are choosing 4 men from 6 men then ${}^{6}C_{4}$.

And each men pair with women.

First men can choose any one women of 6 women and second men can choose any one women of 5 women by continuing this process,

Total number of ways= ${}^{6}C_{4} \times (6 \times 5 \times 4 \times 3)$ = 5400

27. Ans: 45

Sol: For maximum number of points of intersection, we have to draw 10 lines so that no three lines are concurrent. In that

Discrete Mathematics

case, each point corresponds to a pair of distinct straight lines.

:. Maximum number of points of intersection = number of ways we can choose two straight lines out of 10 straight lines = C (10, 2) = 45

28. Ans: 120

Sol: The 3 zeros can appear in the sequence in C(10,3) ways. The remaining 7 positions of the sequence can be filled with ones in only one way.

Required number of binary sequences

$$= C(10, 3).1$$

29. Ans: 35

Sol: Consider a string of 6 ones in a row. There are 7 positions among the 6 ones for placing 4 zeros. The 4 zeros can be placed in C(7,4) ways.

Required number of binary sequences = C(7, 4) = C(7, 3)= 35

30. Ans: 126

1995

Sol: Number of 5 digit integers are possible so that in each of these integers every digit is less than the digit on its right $= {}^{10}C_5 - {}^9C_4$

31. Ans: (b)

Sol: We have 2n persons.

Number of handshakes possible with 2n persons = C(2n,2)

	ACE
3266	Engineering Publications

32. Sol:

If each person shakes hands with only
his/her spouse, then number of handshakes
possible = n
Required number of handshakes
= C(2n, 2) - n = 2n(n-1)
Ans: 1092
In a chess board, we have 9 horizontal lines
and 9 vertical lines. A rectangle can be
formed with any two horizontal lines and
any two vertical lines.
Number of rectangles possible

= C(9,2). C(9,2) = (36)(36) = 1296

Number of squares in a chess board

 $= 1^2 + 2^2 + 3^2 + \ldots + 8^2 = 204$

Every square is also a rectangle. Required number of rectangles which are not squares = 1296 - 204 = 1092

33. Ans: (A)

- Sol: Let a_1 , a_2 , a_3 , a_4 , a_5 be the dates of the five days of January that the student will spend in the hospital, in increasing order. Note that the requirement that there are no two consecutive numbers among the a_i , and $1 \le$ $a_1 < a_2 - 1 < a_3 - 2 < a_4 - 3 < a_2 - 4 \le 27$. In other words, there is an obvious bijection between the set of 5 element subsets of $\{1, 2,, 31\}$ containing no two consecutive elements and the set of 5 element subsets of $\{1, 2,, 27\}$.
 - \therefore Required number ways = C(27, 5).

34. Ans: 210

- **Sol:** We can choose 6 persons in C(10, 6) ways We can distinct 6 similar books among the 6 persons in only one ways
 - $\therefore \text{ Required number of ways} = C(10, 6). 1$ = C(10, 4) = 210

35. Ans: 14656 No range

Sol: Number of committees with all males = C (12, 5) Number of committees with all females = C(8, 5) Required number of committees

> = C(20, 5) - C(12, 5) - C(8, 5)= 14656

The number of triangles formed by joining the vertices of n – sided polygon ${}^{n}C_{3}$ Number of triangles having one side common with that of the polygon (n - 4) n Number of triangles having two sides common with that of polygon = n The number of triangles having no side common with that polygon = x Total number of triangles = (n - 4)n + n + x

$$\Rightarrow {}^{n}C_{3} - (n-4)n - n = x$$
$$\Rightarrow x = \frac{n(n-1)(n-2)}{6} - n^{2} + 3n$$
$$\Rightarrow x = \frac{n(n-4)(n-5)}{6}$$

37. Ans: 1001

Sol: Required number of ways = V(5,10)

$$V(n,k) = C(n-1+k, k)$$

 $\Rightarrow V(5,10) = C(14,10)$
 $= C(14,4)$
 $= 1001$

38. Ans: 455

Sol: To meet the given condition, let us put 1 ball in each box, The remaining 12 balls we can distribute in V(4,12) ways. Required number of ways = V(4,12).1

= C(15,12) = C(15,3) = 455

39. Ans: 1695

- **Sol:** let $w = x_1 + 12$
 - $x = x_2 + 12$

 $y = x_3 + 12$ $z = x_4 + 12$

where $x_1, x_2, x_3, x_4 \ge 0$

Given $12 \le w + x + y + z \le 14$

Let w + x + y + z + t = 14 where t > 0

w + x + y + z + t = 13

w + x + y + z + t = 12

So, total number of solutions

$$= {}^{18}C_4 + {}^{17}C_4 + {}^{16}C_4$$

= 1695

18

40. Ans: 10 Sol: $x_1 + x_2 + x_3 = 8$ $x_1 \ge 3$ $x_2 \ge -2$ $x_3 \ge 4$ Let $x_1 = P + 3$ $x_2 = Q - 2$ $x_3 = R + 4$ $P \ge 0, Q \ge 0, R \ge 0$ P + 3 + Q - 2 + R + 4 = 8 P + Q + R = 3Number of solutions = ${}^5C_2 = 10$

41. Ans: 63

Sol: Let X_1 = units digit, X_2 = tens digit and X_3 = hundreds digit Number of non negative integer solutions to the equation $X_1 + X_2 + X_3 = 10$ is

V (3, 10) = C (12, 10) = C (12, 2) = 66 We have to exclude the 3 cases where $X_i = 10$ (i = 1, 2, 3) Required number of integers = 66 - 3 = 63

42. Ans: (b)

1995

Sol: We can treat each student and the adjacent empty seat as a single width-2 unit.

Together, these units take up 2k seats, leaving n - 2k extra empty seats to distribute among the students.

The students can sit in alphabetical order in only one way.

Now, there are k + 1 distinct spaces among the students to arrange (n - 2k) empty chairs.

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

The required number of ways = V(k + 1, n - 2k)

= C(k + n - 2k, n - 2k)= C(n - k, k)

43. Ans: 210

Sol: Let x = x' + 1, y = y' + 1, z = z' + 1 and w = w' + 1

Then the given inequality becomes

 $\left(x'+y'+z'+w'\right)\leq 6$

where x', y', z' and w' are non-negative integers.

The number of solutions to the inequality are same as the number of non-negative integer solutions to equation

(x' + y' + z' + w' + v') = 6

The required number of solutions

= C (n - 1 + k, k) Where n = 5 and k = 6 = C(10, 6) = 210

44. Ans: 10800

Sol: The six symbols can be arranged in $\angle 6$ ways. To meet the given condition,

Let us put 2 blanks between every pair of symbols.

The number of ways we can arrange the remaining two blanks = V(5, 2)

$$= C(5 - 1 + 2, 2) = 15$$

:. Required number of ways = $\angle 6$.(15) = (720).(15) = 10,800

45. Ans: (d)

Sol: Average number of letters received by an 410

apartment =
$$A = \frac{410}{50}$$

= 8.2
Here, $[A] = 9$ and $[A] = 8$

By pigeonhole principle, S_1 and S_2 are necessarily true.

 S_5 follows from S_1 and S_6 follows from $S_2.$

 S_3 and S_4 need not be true.

46. Ans: (c)

Sol: Average number of passengers per bus = $\frac{2000}{30} = 66.66$

By Pigeon hole principle, some buses contain atleast 67 passengers and some buses contain atmost 66 passengers.

i.e., some buses contain atleast 14 empty seats.

 \therefore Both S₁ and S₂ are true.

47. Ans: 97

Sol: If we have n pigeon holes, then minimum number of pigeons required to ensure that atleast (k+1) pigeons belong to same pigeonhole = kn + 1 For the present example, n=12 and k+1= 9 Required number of persons = kn + 1 = 8(12) + 1 = 97

48. Ans: 26

Sol: By Pigeonhole principle, Required number of balls = kn + 1= 5(5) + 1 = 26

	ACE Engineering Publications	20		Discrete Mathematics
49.	Ans: 39		52.	Ans: 7
Sol:	The favorable colors to draw 9 balls of same	e	Sol:	If we divide a number by 10 the possible
	color are green, white and yellow.			remainders are 0, 1, 2,, 9.
	We have to include all red balls and all	1		Here, we can apply pigeonhole principle.
	green balls in the selection of minimum	1		The 6 pigeonholes are
	number of balls. For the favorable colors we	e		$\{0\}, \{5\}, \{1, 9\}, \{2, 8\}, \{3, 7\}, \{4, 6\}$
	can apply pigeonhole principle.			In the first two sets both $x + y$ and $x - y$ are
	Required number of balls = $6 + 8 + (kn + 1)$			divisible by 10. In the remaining sets either
	Where $k+1 = 9$			x + y or $x - y$ divisible by 10.
	and $n = 3$			\therefore The minimum number of integers we have
	$6 + 8 + (8 \times 3 + 1) = 39$			to choose randomly is 7.
50.	Ans: 4	ERI	53.	Ans: 20
Sol:	Suppose $x \ge 6$,		Sol:	Let P_i for $1 \le i \le 4$ be the set of printers, and
	Minimum number of balls required = $kn + 1 = 16$			C_j for $1 \le j \le 8$ be the set of computers.
	where $k + 1 = 6$ and $n = 3$.			Connect C_k to P_k for $1 \le k \le 4$. Again,
	$\Rightarrow 5(3) + 1 = 16$			connect C_k for $5 \le k \le 8$ to P_i for $1 \le i \le 4$.
	Which is impossible			Clearly, one requires 20 cables. Assume that
	∴ x < 6			there are fewer than 20 connections between
	Now, minimum number of balls required			computers and printers. Hence, some
	= x + (kn + 1) = 15			printers would be connected to at most
	where $k + 1 = 6$ and $n = 2$			
	\Rightarrow x + 5(2) + 1 = 15			$\left \frac{19}{4}\right = 4$ computers. Thus, the remaining 3
	\Rightarrow x = 4 Sin	ce	199	printers are not enough to allow the other 4
				printers are not enough to allow the other 4
51.	Ans: 7			computers to simultaneously access different
	For sum to be 9, the possible 2-elemen	t		printers.
-	subsets are {0,9}, {1, 8}, {2, 7}, {3, 6}, {4, 5}		Solu	tion for Q54, Q55 and Q56
	If we treat these subsets as pigeon holes		5010	1011 101 QJT, QJJ and QJU

then any subset of S with 6 elements can have at least one of these subsets. Since we need two such subsets, the

required value of k = 7.

Sol: Apply Euler's formula $\phi(n)$

If $\mathbf{n} = \mathbf{P}_1^{\alpha_1} \times \mathbf{P}_2^{\alpha_2} \times \dots \mathbf{P}_n^{\alpha_n}$ Where $\alpha_1, \alpha_2, \ldots, \alpha_n \in N$ $P_1, P_2 \dots P_n$ are distinct prime.

Then

$$\phi(n) = n \left(1 - \frac{1}{P_1}\right) \left(1 - \frac{1}{P_2}\right) \dots \left(1 - \frac{1}{P_n}\right)$$

57. Ans: (D)

Sol: In this case, m is relatively prime to p^k if and only if m is not divisible by p.

Required number of integers = Euler

function of
$$p^{k} = \phi(p^{k}) = \frac{p-1}{p}$$
. $p^{k} = p^{k-1}(p-1)$.

58. Ans: 265

Sol: Required number of 1 - 1 functions

= number of derangements possible with 6 elements

$$= D_{6} = \angle 6 \left(\frac{1}{\angle 2} - \frac{1}{\angle 3} + \frac{1}{\angle 4} - \frac{1}{\angle 5} + \frac{1}{\angle 6} \right)$$

= 265

59. Ans: (A)

Sol: The required number

=The number of derangements with n objects

$$= D_n = \sum_{i=0}^n (-1)^i \frac{n!}{i!}$$

- 60. Ans: (i) 44 (ii) 76 (iii) 20 (iv) 89 (v) 119 (vi) 0
- **Sol:** (i) Number of ways we can put 5 letters, so that no letter is correctly placed

$$= D_5 = \angle 5 \left(\frac{1}{\angle 2} - \frac{1}{\angle 3} + \frac{1}{\angle 4} - \frac{1}{\angle 5} \right)$$
$$= 44$$

- (ii) Number of ways in which we can put 5 letters in 5 envelopes = $\angle 5$ Number of ways we can put the letters so that no letter is correctly placed = D₅ Required number of ways = $\angle 5 - D_5$ = 120 - 44 = 76 (iii) Number of ways we can put the 2 letters correctly = C(5,2) = 10 The remaining 3 letters can be wrongly placed in D₃ ways. Required number of ways = C(5,2) D₃ = (10) 2 = 20
- (iv)Number of ways in which no letter is correctly placed = D_5

Number of ways in which exactly one letter is correctly placed = $C(5,1) D_4$

Required number of ways

$$= D_5 + C(5,1)D_4$$

$$= 44 + 5(9) = 89$$

(v) There is only one way in which we can put all 5 letters in correct envelopes.

5 Required number of ways = $\angle 5 - 1 = 119$

(vi)It is not possible to put only one letter in wrong envelope.

Required number of ways = 0

61. Ans: (i) 1936 (ii) 14400

Sol: (i) The derangements of first 5 letters in first 5 places = D_5 Similarly, the last 5 letters can be deranged in last 5 places in D_5 ways. The required number of derangements

ACE Engineering Publications

Discrete Mathematics

 $= D_5 D_5 = (44) (44)$ = 1936

(ii) Any permutation of the sequence in which the first 5 letters are not in first 5 places is a derangement. The first 5 letters can be arranged in last 5 places in ∠5 ways. Similarly, the last 5 letters of the given sequence can be arranged in first 5 places in ∠5 ways.

Required number of derangements

=∠5.∠5 *=* 14400

62. Ans: 216

Sol: First time, the books can be distributed in $\angle 4$ ways.

Second time, we can distribute the books in D₄ ways.

Required number of ways = $\angle 4.D_4 = 216$

63. Ans: (a)

Sol: Let T(n) = Maximum number of pieces form by 'n' cuts

n	0	1	2	3	4	5	6 S	17 C
P(n)	1	2	4	7	11	16	22	29

Observe that difference between successive outputs of P(n)

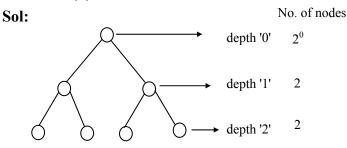
i.e., 1, 2, 4, 7, 11, 16, 22, 29 are

$$1 + 1 + 2 + 3 + 4 + 5 + 6 + 7$$

This pattern can be expressed as giving P(n) in terms of P(n - 1)

$$\therefore P(n) = P(n-1) + n$$

 $n = 1, 2, 3 \dots$



The number of nodes doubles every time the depth increases by 1

At depth 'd' we have maximum number of nodes = 2^d

n(d) = Maximum number of nodes in a binary tree of depth 'd'

 $n(d) = n(d-1) + 2^d$

65. Ans: (c)

```
Sol: Let a_n = number of n-digit quaternary sequences with even number of zeros
```

Case 1: If the first digit is not 0, then we can choose first digit in 3 ways and the remaining digits we can choose in a_{n-1} ways. By product rule, number of quaternary sequences in this case is $3a_{n-1}$.

Case 2: If the first digit is 0, then the remaining digits should contain odd number of zeros.

Number of quaternary sequences in this case is $(a_{n-1} - 4^{n-1})$

 \therefore By sum rule, the recurrence relation is

$$\Rightarrow a_n = 3a_{n-1} + (4^{n-1} - a_{n-1})$$
$$\Rightarrow a_n = 2a_{n-1} + 4^{n-1}$$

CSIT-Postal Coaching Solutions

66. Ans: (a)

Sol: Case 1: If the first digit is 1, then number of bit strings possible with 3 consecutive zeros, is a_{n-1} .

Case 2: If the first bit is 0 and second bit is 1, then the number of bit strings possible with 3 consecutive zeros is a_{n-2} .

Case 3: If the first two bits are zeros and third bit is 1, then number of bit strings with 3 consecutive zeros is a_{n-3}

Case 4: If the first 3 bits are zeros, then each of the remaining n-3 bits we can choose in 2 ways. The number of bit strings with 3 consecutive zeros in this case is 2^{n-3} .

:. The recurrence relation for a_n is $a_n = a_{n-1} + a_{n-2} + a_{n-3} + 2^{n-3}$.

67. Ans: (a)

Sol: Case(i): If the first bit is 1, then the required number of bit strings is a_{n-1} Case(ii): If the first bit is 0, then all the remaining bits should be zero The recurrence relation for a_n is

1

$$a_n = a_{n-1} + a_{n-1}$$

68. Ans: (a)

Sol: The recurrence relation is $a_n - a_{n-1} = 2n - 2$ (1) The characteristic equation is t - 1 = 0Complementary function = C₁ . 1ⁿ Here, 1 is a characteristic root with multiplicity 1. Let particular solution = (c n² + d n) Substituting in (1), (cn² + d n) - {c (n - 1)² + d(n - 1)} = 2n - 2 $n = 1 \Rightarrow c + d = 0$ $n = 0 \Rightarrow -c + d = -2$ $\Rightarrow c = 1 \text{ and } d = -1$ $\therefore P. S = n^{2} - n$ The solution is $a_{n} = C_{1} + n^{2} - n \dots (1)$ Using the initial condition, we get $C_{1} = 1$ Substituting C_{1} value in equation (1), we get $\therefore a_{n} = n^{2} - n + 2$

69. Ans: 8617

Sol:
$$a_n = a_{n-1} + 3(n^2)$$

 $n = 1 \Rightarrow a_1 = a_0 + 3(1^2)$
 $n = 2 \Rightarrow a_2 = a_1 + 3(2^2)$
 $= a_0 + 3(1^2 + 2^2)$
 $n = 3 \Rightarrow a_3 = a_2 + 3(3^2)$
 $= a_0 + 3(1^2 + 2^2 + 3^2)$
 $a_n = a_0 + 3(1^2 + 2^2 + ... + n^2)$
 $= 7 + \frac{1}{2}n(n+1)(2n+1)$
 $a_{20} = 7 + \frac{1}{2}(20)(21)(41) = 8617$

70. Ans: (c) Sol: $a_n = n a_{n-1}$ $n=1, a_1 = 1.a_0 = 1.1$ $n=2, a_2 = 2.a_1 = 2.1$ $n=3, a_3 = 3.a_2 = 3.2.1$ In general, $a_n = n. (n-1) \dots 3.2.1$ $a_n = n!$

71. Ans: (b) Sol: $a_n = a_{n-1} + (2n+1)$ where $a_0 = 1$ $n=1, a_1 = a_0 + 2(1) + 1 = 1 + 2(1) + 1 = (1+1)^2$ $n=2, a_2 = a_1 + 2(2) + 1 = 2^2 + 2(2) + 1 = (2+1)^2$ In general, $a_n = (n+1)^2$

	Engineering Publications	24	Discrete Mathematics
72.	Ans: (a)	,	74. Ans: (b)
Sali		1	Sol: The characteristic equation is $t^2 - t - 1 = 0$
501.	$a_n = a_{n-1} + \frac{1}{n(n+1)} = a_{n-1} + \left\lfloor \frac{1}{n} - \frac{1}{n+1} \right\rfloor$		$\Rightarrow t = \frac{1 \pm \sqrt{5}}{2}$
	$n = 1, a_1 = a_0 + \left[1 - \frac{1}{2}\right] = 1 + \left[1 - \frac{1}{2}\right] [\because a_0 = 1]$		2 The solution is
	n = 2,		$a_{n} = C_{1} \left(\frac{1+\sqrt{5}}{2}\right)^{n} + C_{2} \left(\frac{1-\sqrt{5}}{2}\right)^{n}$
	$a_2 = a_1 + \left[\frac{1}{2} - \frac{1}{3}\right] = 1 + \left[1 - \frac{1}{2}\right] + \left[\frac{1}{2} - \frac{1}{3}\right] = 1 + \left[1 - \frac{1}{3}\right]$		Using the initial conditions, we get $C_1 = \frac{1}{\sqrt{5}}$
	In general $a_n = 1 + \left[1 - \frac{1}{n+1}\right]$		and $C_2 = -\frac{1}{\sqrt{5}}$
	$a_n = 1 + \left[\frac{n}{n+1}\right]$	ERI	No
	2n+1		75. Ans: (a) Sol: $a_n - 2a_{n-1} = 32^n$
	$a_n = \frac{2n+1}{n+1}$		Replace 'n' by n+1
	र र		(E-2) $a_n = 3.2^{n+1}$
73.	Ans: (c)		$C.F = C_1. 2^n$
Sol:	$f(n) = 3f\left(\left\lceil \frac{n}{3} \right\rceil\right)$		$P.S = 6 \left[\frac{1}{(E-2)} 2^n \right]$
	$\left(\left(\left[n \right] \right) \right)$		$=6[{}^{n}C_{1}2^{n-1}]$
	$=3\left(3f\left(\left \frac{n}{3^2}\right \right)\right)$		$= 3n 2^{n-1}$
	Sin		: General solution $a_n = C_1 2^n + 3n 2^{n-1}$
	$=3^2 f\left(\left \frac{n}{3^2}\right \right)$		76. Ans: (a)
			Sol: $a_n - 3 a_{n-1} + 2a_{n-2} = 2^n$
			$a_{n+2} - 3a_{n+1} + 2a_n = 2^{n+2}$
	$=3^{k} f\left(\left \frac{n}{3^{k}}\right \right) Let\left \frac{n}{3^{k}}\right = 1$		$(E^2 - 3 E + 2) a_n = 2^{n+2}$
			$\phi(E) = E^2 - 3E + 2$
	$=3^{\log_3 n} f(1)$ $3^k = n$		$= E^2 - 2E - E + 2$
	$=3^{\lceil \log_3 n \rceil} \qquad \qquad k = \lceil \log_3 n \rceil$		= (E - 2) - 1 (E - 2) $= (E - 2) (E - 1)$
	$\therefore \text{Solution } f(n) = 3^{\lceil \log_3 n \rceil}$		$a_n = C_1 \cdot 2^n + C_1 \cdot 1^n$
			$(E^2 - 3E + 2) a_n = 2^{n+2}$

	CE eering Publications
--	---------------------------

CSIT-Postal Coaching Solutions

$$(E-2) (E-1) a_{n} = 2^{n+2}
C.F (a_{n}) = C_{1} \cdot 2^{n} + C_{2} \cdot 1^{n}
P.S = \frac{1}{(E-2)(E-1)} 2^{n-2}
= 2^{2} \left[\frac{2^{n}}{(E-2)} \right]
= 2^{2} \left({}^{n}C \cdot 2^{n+1} \right)
= 2^{n} \cdot 2^{n}
a_{n} = C_{1} \cdot 2^{n} + C_{2} + 2^{n} 2^{n}
77. Ans: (a)
Sol: a_{n} - 6a_{n} \cdot 1 = 9a_{n-2} = 3^{n}
(E^{2} - 6 E + 9) a_{n} = 3^{n-2}
(E - 3)^{2} a_{n} = 3^{n+2}
(E - 3)^{2} a_{n} = 3^{n}
P.S = 3^{2} \left[\frac{1}{(E-3)^{2}} 3^{n} \right]
= 3^{2} \left[c_{2} \cdot 3^{n-2} \right]
= n^{2} (2 \cdot 3^{n} - 2)
= n^{2} (2 \cdot 3^{n} - 2)
= n^{2} (2 \cdot 2^{n} + 1)
a_{n} = (C_{1} + C_{2}n) 3^{n}
P.S = \frac{2^{n+2}}{(E-1)^{2}} = 4 \left[\frac{2^{n}}{(E-1)^{2}} \right]$$

78. Ans: (d)
Sol: The recurrence relation can be written as
(E^{2} - 2E + 1) a_{n} = 2^{n+2}
The auxiliary equation is
t^{2} - 2t + 1 = 0
t = 1, 1
C.F. = (C_{1} + C_{2}n)
P.S. = \frac{2^{n+2}}{(E-1)^{2}} = 4 \left[\frac{2^{n}}{(E-1)^{2}} \right]

80. Ans: (a)
Sol: a_{n} - 2a_{n+1} + a_{n,2} = 3n + 5
(E - 1)^{2} a_{n} = 3n + 11
C.F. = C_{1} + C_{2}n

$A_{1} = \frac{1}{2}$ $C_{1} + C_{2}n + 4n^{2} + \frac{1}{2}n^{3}$ Substitute 'a_{n}' in equation(*) $\Rightarrow (A_{0} + A_{1}n + A_{2}n^{2}) 2^{n} - 2^{n+2}$ $(A_{0} + A_{1}(n + 1) + A_{2}(n + 1)^{2}) + 2^{n+2}$ $(A_{0} + A_{1}(n + 1) + A_{2}(n + 1)^{2}) + 2^{n+2}$ $(A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow 12A_{2} + 4A_{1} + A_{0} = 0$ $A_{0} - 4A_{0} - 4A_{1} - 4A_{2} + 4A_{0} + 8A_{1} + 16A_{2} = 1$ $\Rightarrow 12A_{2} + 4A_{1} + A_{0} = 0$ $A_{0} - A_{1} + A_{2} - 4A_{0} + 4A_{0} + 4A_{1} + 4A_{2} = 1$ $A_{0} + 3A_{1} + 5A_{2} = 1$ $A_{0} + 3A_{1} + 5A_{2} = 1$ (2) $Put n = -2$	Engineering Publications	26 Discrete Mathematics
we have $2^{n} (c n + d) - 4 2^{n-1} \{c(n-1)+d\} = 3n2^{n}$ $\Rightarrow (c n + d) - 2\{c(n-1)+d\} = 3n$ Equating coefficients of n and constants on both sides, we get $c = -3 \text{ and } d = -6$ $ACE Engineering Publications$ $Hyderabad \cdot Delhi \cdot Bhopal \cdot Pune \cdot Bhubaneswar \cdot Lucknow \cdot Patna \cdot Bengaluru \cdot Chennai \cdot Vijayawada \cdot Vizag \cdot Tirupati \cdot Kolkata \cdot Ahmedab$	A ₀ n ² + A ₁ n ³ - 2(A ₀ (n - 1) ² + A ₁ (n - 1) ³) + A ₀ (n - 2) ² + A ₁ (n - 2) ³ = 3n + 5 Put n = 0 - 2A ₀ + 2A ₁ + 4A ₀ - 8 A ₁ = 5 2A ₀ - 6A ₁ = 5 (*) n = 1 A ₀ + A ₁ + A ₀ - A ₁ = 8 A ₀ = 4 From (*) 6A ₁ = 8 - 5 A ₁ = $\frac{1}{2}$ C ₁ + C ₂ n + 4n ² + $\frac{1}{2}$ n ³ 81. Ans: (a) Sol: Replacing n by n+1, the given relation can be written as a _{n+1} = 4a _n + 3(n + 1) 2 ⁿ⁺¹ \Rightarrow (E - 4) a _n = 6 (n + 1) 2 ⁿ (1) The characteristic equation is t - 4 = 0 \Rightarrow t = 4 complementary function = C ₁ 4 ⁿ Let particular solution is a _n = 2 ⁿ (cn +d) where c and d are undetermined coefficients. Substituting in the given recurrence relation we have 2 ⁿ (c n + d) - 4 2 ⁿ⁻¹ {c(n - 1)+d} = 3n2 ⁿ \Rightarrow (c n + d) - 2{c(n-1)+d} = 3n Equating coefficients of n and constants of both sides, we get c = -3 and d = -6	$\therefore \text{ Particular solution} = 2^{n} (-3n - 6)$ Hence the solution is $a_{n} = C_{1}4^{n} - (3n + 6) 2^{n} \dots (2)$ $x = 0 \Rightarrow 4 = C_{1} - 6 \Rightarrow C_{1} = 10$ $a_{n} = 10(4^{n}) - (3n + 6) 2^{n}$ 82. Ans: (a) 80: $a_{n+2} - 2a_{n+1} + a_{n} = n^{2} 2^{n} \dots (*)$ $(E^{2} - 2E+1) a_{n} = n^{2} 2^{n}$ Characterstic roots $t_{1} = t_{2} = 1$ $\therefore C. F = (C_{1} + C_{2}n)$ here $F(n) = n^{2} 2^{n} = b^{n} n^{k}$ where $b = 2, k = 2$ \therefore Let P. S = $a_{n} = (A_{0} + A_{1}n + A_{2}n^{2})2^{n}$ Substitute 'a_{n}' in equation (*) $\Rightarrow (A_{0} + A_{1}n + A_{2}n^{2}) 2^{n} - 2^{n+2}$ $(A_{0} + A_{1}(n + 1) + A_{2}(n + 1)^{2}) + 2^{n+2}$ $(A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ $\Rightarrow (A_{0} + A_{1}(n + 2) + A_{2}(n + 2)^{2}) = n^{2}2^{n}$ Put $n = 0$ $A_{0} - 4A_{0} - 4A_{1} - 4A_{2} + 4A_{0} + 8A_{1} + 16A_{2} = 0$ $\Rightarrow 12A_{2} + 4A_{1} + A_{0} = 0$ (1) Put $n = 1$ $A_{0} - A_{1} + A_{2} - 4A_{0} + 4A_{1} - 4A_{2} + 4A_{0} = 4$ $2A_{1} + A_{0} = 4$ (2) Put $n = -2$ $A_{0} - 2A_{1} + 4A_{2} - 4A_{0} + 4A_{1} - 4A_{2} + 4A_{0} = 4$ $2A_{1} + A_{0} = 4$ (3) By solving (1), (2), (3) we get $A_{0} = 20, A_{1} = -8, A_{2} = 1$ $\therefore a_{n} = C_{1} + C_{2}n + 2^{n} (n^{2} - 8n + 20)$

Engineering Fublications	28	Discrete Mathematics
87. Ans: (a)	9	91. Ans: (b)
Sol: Generating function of $\langle a_0, a_1, a_2, \dots \rangle$	S	Sol: Required number of ways
$\sum_{n=1}^{\infty}$		= Number of non negative integer solutions
$=\sum_{n=0}a_{n}x^{n}$		to the equation
<u>∞</u>		$x_1 + x_2 + x_3 = 15$ where $1 \le x_1, x_2, x_3 \le 7$
$= \sum_{n=0}^{\infty} (n+1)(n+2) x^{n} [::a_{n} = (n+1)(n+2) x^{n}]$	2)]	= coefficient of x^{15} in the expansion of $f(x)$
n=0		where, $f(x) = (x + x^2 + + x^7)^3$
$=2\sum_{n=1}^{\infty}\frac{(n+1)(n+2)}{2}x^{n}$		$= x^{3} (1 + x + x^{2} + \dots + x^{6})^{3}$
n=0 Z		$= x^{3} \left(\frac{1-x^{7}}{1-x} \right)^{3}$
$=2(1-x)^{-3}$		$= x \left(\frac{1-x}{1-x} \right)$
$\int_{-\infty}^{\infty} (n+1)(n+2) \qquad (1 \qquad n^{-3})$		$= x^{3} (1 - 3x^{7} + 3x^{14} - x^{21}) (1 - x)^{-3}$
$:: \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} = (1-x)^{-3}$	11. A. C.	$(3, 2, 10, 2, 17, 24) \sum_{n=0}^{\infty} (n+1)(n+2)$
c IN	EER11	= $(x^{3}-3x^{10}+3x^{17}-x^{24})\sum_{n=0}^{\infty}\frac{(n+1)(n+2)}{2}x^{n}$
88. Ans: (d)	1	(13)(14) = ((6).(7))
Sol: Required generating function		Coefficient of $x^{15} = \frac{(13)(14)}{2} - 3\left(\frac{(6).(7)}{2}\right)$
$f(x) = 0 + 0 x + 1 x^{2} - 2x^{3} + 3x^{4} - 4x^{5} + .$		= 91 - 63 = 28
$= x^{2} (1 - 2x + 3x^{2} - 4x^{3} + \dots \infty)$		
$= x^{2}(1 + x)^{-2}$ (Binomial theorem)		
	9	92. Ans: 60
89. Ans: (c)	5	Sol: If one person chooses 12 books then second
Sol: The generating function is		person has to take remaining books
$f(x) = 1 + 0.x + 1.x^{2} + 0.x^{3} + 1.x^{4} + \dots$	00	Number of ways we choose 12 books can be
	ince 1	found by solving $x + y + z = 12$
$=(1-x^2)^{-1}$		Where, $0 \le x \le 7$
		$0 \le y \le 8$
90. Ans: (a)		$0 \le z \le 9$
Sol: $(x^4 + 2x^5 + 3x^6 + 4x^7 + \infty)^5$		i. e. coefficient of x^{12} in the following
$= x^{20} (1 + 2x + 3x^2 + 4x^3 + \dots)$	∞) ⁵	= (1 + x + x2 + x3 + x4 + x5 + x6 + x7)
$= \mathbf{x}^{20} \cdot \left[(1 - \mathbf{x})^{-2} \right]^5$		$(1 + x + x^{2} + x^{3} + x^{4} + x^{5} + x^{6} + x^{7} + x^{8})$
$= x^{20} [1 - x]^{-10}$		$(1 + x + x^2 + \dots + x^9)$
$= x^{20} \sum_{n=0}^{\infty} C(n+9,n) x^n$		$= \left(\frac{1-x^{8}}{1-x}\right) \left(\frac{1-x^{9}}{1-x}\right) \left(\frac{1-x^{10}}{1-x}\right)$
Coefficient of $x^{27} = C(16, 7)$		
= C(16, 9)		
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubar	neswar • Luckno	w • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Englacering Publications	29 CSIT-Postal Coaching Solutions
$= (1-x^8) (1-x^9) (1-x^{10}) \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} x^n$	Then, by sum of degrees theorem, v.d = 44
$= (1 - x^9 - x^8 + x^{17}) (1 - x^{10}) \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} x^n$	\Rightarrow v = $\frac{44}{d}$ (d = 1, 2, 4, 11, 22, 44)
$= (1 - x^{10} - x^9 + x^{19} - x^8 + x^{18} + x^{17} - x^{27})$	\Rightarrow v = 44, 22, 11, 4, 2
$\sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} x^n$	As G is simple, the last 3 cases are no possible.
Coefficient of x^{12} in the above expansion	If $v = 44$ then, v is not a connected graph.
=91-6-10-15	A possible number of vertices is 11 or 22.
= 60	
	03. Ans: 19
	Sol: By sum of degrees theorem,
3. Graph Theory	G If degree of each vertex is k, then
EN C	k. $ V = 2. E $
Basic concepts	4 V = 2(38)
01. Ans: (b)	$\therefore \mathbf{V} = 19$
Sol: By sum of degrees theorem,	04. Ans: (c)
$\delta(G) \le \frac{2 E }{ V } \le \Delta(G)$	Sol: By Sum of degrees theorem,
$O(\mathbf{O}) \leq \frac{ \mathbf{V} }{ \mathbf{V} } \leq \Delta(\mathbf{O})$	k. $ V = 2 E $
where $\delta(G)$ is minimum of the degrees of al	$ \mathbf{E} = \frac{\mathbf{k} \cdot \mathbf{V} }{2}$
vertices in G and $\Delta(G)$ is maximum of the	e 2
	ce 1995 Here, E is an integer
$\Rightarrow 3 \le \frac{2 \mathbf{E} }{ \mathbf{V} } \le 5$	$\frac{ V }{2}$ is an integer (:: k is odd)
$\Rightarrow 33 \le 2 \mid E \mid \le 55$	\Rightarrow E = a multiple of k
\Rightarrow 16.5 \leq E \leq 27.5	
$\Rightarrow 17 \le E \le 27 \qquad (\because E \text{ is an integer})$	05. Ans: (e) Sol: (a) $(2, 2, 3, 4, 4, 5)$
	Sol: (a) {2, 3, 3, 4, 4, 5} Here, sum of degrees
02. Ans: (d)	= 21, an odd number.
Sol: Let d be the common degree of the vertice	S The given sequence cannot represent
of G, and let v be the number of vertices o G.	f simple non directed graph
	r

Engineering Publications	31	CSIT-Postal Coaching Solutions
08. Ans: 12		12. Ans: (d)
Sol: G is a tree	:	Sol: (a) Let G be any graph of the required type.
By sum of degrees theorem,		Let p be the number of vertices of degree
n.1 + 2(2) + 4.(3) + 3.(4) = 2 E		3.
:. $n + 28 = 2(v - 1)$		Thus, $(12 - p)$ vertices are of degree 4.
= 2(n+2+4+3-1)		Hence, according to sum of degrees
\Rightarrow n + 28 = 2n + 16		theorem,
\Rightarrow n = 12		3p - 4(12 - p) = 56.
		Thus, $p = -8$ (Which is impossible)
09. Ans: 18		.: Such a graph does not exist.
Sol: A simple graph with 10 vertices and	b	(b) Maximum number of edges possible in
minimum number of edges is a tree.		a simple graph with 10 vertices
A tree with 10 vertices has 9 edges.		C(10, 2) = 45
By Sum of degrees theorem, Sum of degree	5.RI	(c) Maximum number of edges possible in a
of all vertices in $G = 2$		bipartite graph with 9 vertices = $\frac{9^2}{4}$
(Number of edges in G) = $2 \times 9 = 18$		
		= 20
10. Ans: 8		Such a graph does not exist.
		(d) A connected graph with n vertices and
Sol: G has 8 vertices with odd degree.		n-1 edges is a tree. A tree is a simple
For any vertex $v \in G$,		graph.
Degree of v in G + degree of v in G = 8		
If degree of v in G is odd, then degree of v $$		13. Ans: (b)
in G is also odd. If degree of v in G is even	,	Sol: G is a simple graph with 5 vertices.
then degree of v in \overline{G} is also even. Sin	ce 1	For any vertex v in G,
Number of vertices with odd degree in	1	$deg(v)$ in $G + deg(v)$ in $\overline{G} = 4$
$\overline{G} = 8$		\therefore The degree sequence \overline{G} is
		$\{4-3, 4-2, 4-2, 4-1, 4-0\}$
11. Ans: 27		$= \{1, 2, 2, 3, 4\} = \{4, 3, 2, 2, 1\}$
Sol: By sum of degrees theorem, if degree o	f	
each vertex is atmost K,		14. Ans: 455
then $K V \ge 2 E $		Sol: Maximum number of edges possible with 6 vertices is $C(6, 2) = 15$. Out of these edges
\Rightarrow 5 (11) \ge 2 E		vertices is $C(6, 2) = 15$. Out of these edges, we can choose 12 edges in $C(15, 2)$ ways.
\Rightarrow E ≤ 27.5		\therefore Number of simple graphs possible
\Rightarrow $ \mathbf{E} \le 27$		
		$= C(15, 12) = C(15, 3) = \frac{15.14.13}{1.2.3} = 455$
	1	
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar	• Luckno	w • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

15. Ans: (a)

Sol: We know that,

Number of edges in G + Number of edges in

 \overline{G} = Number of edges in the complete graph K_{p} .

$$\Rightarrow$$
 q + Number of edges in $\overline{G} = \frac{p(p-1)}{2}$

$$\Rightarrow$$
 Number of edges in $\overline{G} = \frac{p(p-1)}{2} - q$

16. Ans: (c)

- Sol: Given that, G is a connected graph.
 ⇒ Between every pair of vertices in G, a path exists.
 - ∴ By transitivity, there exists an edge between every pair of vertices in G.
 - \Rightarrow G is a complete graph
 - \therefore Number of edges in G = C(n, 2).

17. Ans: (d)

Sol: The complement of W_n contains an isolated vertex and \overline{C}_{n-1} as components. Number of edges in

$$\overline{C}_{n-1} = \frac{(n-1)(n-2)}{2} - (n-1)(n-4) = \frac{(n-1)(n-4)}{2}$$

18. Ans: (a)

Sol: Let x = Number of vertices with degree 4 & y = Number of vertices with degree 5 By sum of degrees theorem $4x+5y+14 = 2(n-1) - \dots (1)$

Also x+y+14 = n -----(2)

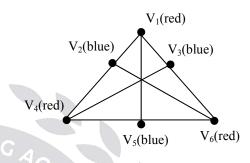
Solving (1) & (2), we get y = (40-2n)

Coloring

19. Ans: 2

Sol: The graph is bipartite,

Therefore, chromatic number = 2 (or apply Welch – powel's algorithm).



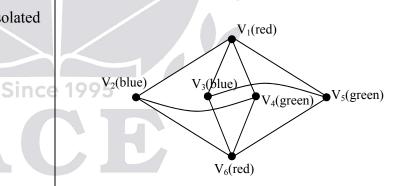
20. Ans: 3

Sol: The graph has cycles of length 3.

$$\chi(G) \ge 3 \dots (1)$$

If we apply Welch-powel's algorithm, then 3- coloring is possible

$$\therefore \chi(G) = 3$$



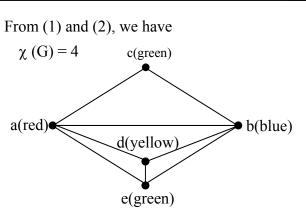
21. Ans: 4

- Sol: The graph is planar,
 - By 4 color theorem

 $\chi(G) \leq 4 \dots (1)$

The graph has 4 mutually adjacent vertices $\{a, b, d, e\}$

 $\therefore \chi(G) \ge 4 \dots (2)$



22. Ans: 4

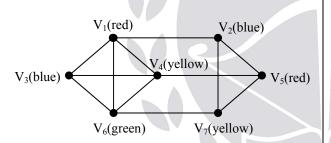
Sol: G is planar graph

By 4 color theorem, $\chi(G) \le 4 \dots (1)$

- G has 4 mutually adjacent vertices
- $\{V_1, V_3, V_4, V_6\}$

$$\therefore \chi(G) \ge 4 \dots (2)$$

Hence, χ (G) = 4

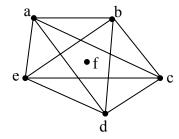


23. Ans: 7

Sol: G is a star graph

 $\therefore \chi(G) = 2$

The graph \overline{G} is shown below



CSIT-Postal Coaching Solutions

Here, the vertices a, b, c, d, e form a complete graph

$$\therefore \chi \left(\overline{G}\right) = 5$$

Now, $\chi (G) + \chi \left(\overline{G}\right) = 7$

24. Ans: 3

33

Sol: Applying welch-powel's algorithm we can see that 3 - colouring is possible

$$\therefore \chi(G) \leq 3 \dots (1)$$

since, G has cycles of odd length, χ (G) \ge 3 (2) From (1) and (2), we have χ (G) = 3.

25. Ans: 2

Sol: In the given graph, all the cycles are of even length.

- :. G is a bipartite graph and every bipartite graph is 2-colorable
- :. Chromatic number of G = 2.

26. Ans: 5

Sol: \overline{G} is a disconnected graph with two components, one component is the complete graph K₅ and the other component is the trivial graph with only an isolated vertex \therefore Chromatic number of $\overline{G} = 5$

27. Ans: (b)

Sol:
$$\alpha = n - 2 \lfloor n/2 \rfloor + 2$$

 $\beta = n - 2 \lceil n/2 \rceil + 4$
 $\alpha + \beta = 2n - 2 \{ \lfloor n/2 \rfloor + \lceil n/2 \rceil \} + 6$
 $= 2n - 2n + 6 = 6$

ACE Engineering Publications

28. Ans: (c)

- Sol: Chromatic number of $K_n = n$ If we delete an edge in K_{10} , then for the two vertices connecting that edge we can assign same color.
 - \therefore Chromatic number = 9

29. Ans: 3

Sol: Here, $G = K_{3,3}$

 \overline{G} has two components where each component is a complete graph K_3 .

 \therefore Chromatic number of $\overline{G} = 3$

30. Ans: (c)

Sol: We know that $\alpha = \left| \frac{n}{2} \right|$

$$\beta = n - 2\left\lfloor \frac{n}{2} \right\rfloor + 2$$
$$2\alpha + \beta = 2\left\lfloor \frac{n}{2} \right\rfloor + n - 2\left\lfloor \frac{n}{2} \right\rfloor + 2 = n + 2$$

31. Ans: (d)

- Sol: The chromatic number of any bipartite graph (with atleast one edge) is 2.
 - \therefore Option (d) is false.
 - (a) K_n has n mutually adjacent vertices.
 - \therefore K_n requires atleast n colours
 - ... The vertex chromatic number of complete graph $K_n = n$
 - (b) The vertex chromatic number of cycle graph $C_n = 2$ if n is even

= 3 if n is odd
=
$$n-2\left|\frac{n}{2}\right|+2$$

(c) The vertex chromatic number of wheel graph $W_n = 3$ if n is odd

$$= 4$$
 if n is even

$$=$$
 n $- 2 \left\lceil \frac{n}{2} \right\rceil + 4$

32. Ans: (d)

- **Sol:** (a) The chromatic number of any bipartite graph (with atleast one edge) is 2.
 - (b) A star graph with n vertices is a bipartite graph $K_{1, n-1}$

 \therefore Chromatic number = 2

- (c) A tree is a bipartite graph
 - \therefore Chromatic number = 2
- (d) If G is a simple graph in which all the cycles are of even length, then G is a bipartite graph
 - \therefore The vertex chromatic number of G = 2 Hence, option (d) is false.

Matchings

33. Ans: (d)

- Sol: (a) In K_{2n} , each vertex is adjacent to remaining 2n 1 vertices.
 - One vertex we can match in 2n 1 ways. Next vertex in 2n - 3 ways.

And another vertex in 2n - 5 ways, and so on.

Number of perfect matchings in

$$K_{2n} = (2n-1).(2n-3).(2n-5)....(5)(3)(1)$$
$$= \frac{2n!}{2^n n!}$$

 (b) In K_{n,n}, we divide the vertices into two groups such that each vertex of a group is adjacent to all the vertices of the other group. One vertex of a group we can metab in 	ip So	5. Ans: (c) bl: S_1 is true (By definition of $K_{m,n}$)
is adjacent to all the vertices of the other group.	- ~ ~	l: S_1 is true (By definition of $K_{m,n}$)
other group.		
• •		S_2 is not true because,
One wanter of a group we can match in		A graph G has a perfect matchin
One vertex of a group we can match in		\Rightarrow Number of vertices in G is even
ways, next vertex in $n - 1$ ways and s	50	
on.		But converse is not true.
\therefore Number of perfect matchings	in	S_3 is not true because,
$K_{n,n} = n(n-1)(n-2) \dots 1$		A bipartite graph G with vertex partition
= n !		$\{V_1, V_2\}$ has a complete matching
(c) If n is even then the possible perfer matchings are	ct	$\Rightarrow \mathbf{V}_1 \leq \mathbf{V}_2 .$
$V_1 - V_2, V_2 - V_3, \dots, V_{n-1} - V_n$	/ _n	But converse is not true.
And $V_2 - V_3, V_3 - V_4, \dots, V_n - V_1$	ERIN	GA
Number of perfect matchings in C	C _n 36	5. Ans: (d)
(n is even) = 2	So	d: (a) If n is even, then K_n has a perfe
(d) In W_{2n} there is a vertex (Hub) which	is	matching. Therefore, matching numb
adjacent to all the other vertices.		is $\frac{n}{2}$. If n is odd number, then we can
This vertex we can match in 2n–1 ways		2
:. Number of perfect matchings i	in	match only $(n-1)$ vertices. Therefore $(n-1)$
$W_{2n} = 2n - 1$		matching number is $\left(\frac{n-1}{2}\right)$.
Hence, option (d) is false.		
. Ans: (d)		Hence, matching number = $\left\lfloor \frac{n}{2} \right\rfloor$
I: (a) A tree can have atmost one perfer	ct	(b) If n is even, then C_n has a perfe
matching.		matching. Therefore, matching numb
: Option (a) is false		is $\frac{n}{2}$. If n is odd number, then we can
(b) In a star graph, perfect matching is no possible if $n > 2$.	ot	match only (n–1) vertices. Therefore
Option (b) is false		matching number is $\left(\frac{n-1}{2}\right)$.
(c) In a complete bipartite graph $K_{m,n}$,	a	
perfect matching exists iff $m = n$ \therefore Option (c) is false		Hence, matching number = $\left\lfloor \frac{n}{2} \right\rfloor$
(d) Number of perfect matchings in $K_{3,3} = 3$	3!	(c) If n is even, then W_n has a perfe
(a)		matching. Therefore, matching numb

ACE Engineering Publications

is $\frac{n}{2}$. If n is odd number, then we can match only (n–1) vertices. Therefore matching number is $\left(\frac{n-1}{2}\right)$.

Hence, matching number = $\left| \frac{n}{2} \right|$

- (d) In a complete bipartite graph, the vertices are partitioned into two groups so that no two vertices in the same group are adjacent.
 - :. Matching number of $K_{m,n}$ = minimum of $\{m, n\}$

Hence, option (d) is false.

37. Ans: (d)

- Sol: (a) Every star Graph with n vertices is a complete bipartite graph of the form $K_{1,n-1}$.
 - \therefore Matching number = 1
 - (b) In a complete bipartite graph, the vertices are partitioned into two groups so that no two vertices in the same group are adjacent.
 - ∴ Matching number of K_{m,n} = minimum of {m, n}

Hence, Matching number of $K_{m,m} = m$

- (c) Refer, option (b)
- (d) Matching number of a tree with n vertices ≥ 1
 - \therefore Option (d) is false.

38. Ans: (a)

- Sol: If G is a complete bipartite graph with n vertices $(n \ge 2)$ and minimum number of edges, then $G = K_{1, n-1}$ (star graph)
 - \therefore Matching number = 1

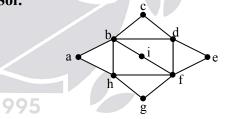
39. Ans: 13

Sol: A disconnected graph with 10 vertices and maximum number of edges has two components K₉ and an isolated vertex.

Matching number of $K_9 = \left| \frac{9}{2} \right| = 4$

:. Matching number of G = 4Chromatic number of G = 9

40. Ans: 4 Sol:



The graph has 9 vertices. The maximum number of vertices we can match is 8.

A matching in which we can match 8 vertices is $\{a-b, c-d, e-f, g-h\}$

 \therefore Matching number of the graph = 4

41. Ans: 2

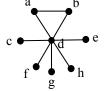
Sol: The given graph is $K_{2,4}$

 \therefore Matching number = 2

Engineering Publications

42. Ans: 2

Sol: The given graph is

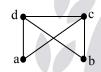


If we delete the edge $\{a,b\}$ then the graph is a star graph. If we match a with b, then in the remaining vertices we can match only two vertices.

 \therefore Matching number = 2

43. Ans: 3

Sol: Let us label the vertices of the graph as shown below

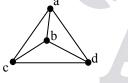


There are 3 maximal matchings as given below

 $\{a-d, b-c\}, \{a-c, b-d\} \text{ and } \{c-d\}$

44. Ans: 3

Sol: The given graph is



The maximal matchings are $\{a-b, c-d\}, \{a-c, b-d\}, \{a-d, b-c\}$

45. Ans: 10

Sol: The graph has 3 maximal matching's 6 matching's with one edge and a matching with no edges.

 \therefore Number of matching's = 10

46. Ans: (a)

Sol: If n is even, then a bipartite graph with maximum number of edges is $k_{n/2,n/2}$

 \therefore Matching number of $G = \frac{n}{2}$

If n is odd, then a bipartite graph with maximum number of edges = $k_{m,n}$

Where $m = \frac{n-1}{2}$ and $n = \frac{n+1}{2}$ \therefore Matching number of G

$$\frac{1}{2}$$
, if n is even
 $\frac{1-1}{2}$, if n is odd

 \therefore Matching number of G = $\left| \frac{n}{2} \right|$

Connectivity

47. Ans: (a)

Sol: If G has n vertices and k components, then

$$(n-k) \le |E| \le \frac{(n-k)(n-k+1)}{2}$$

 $\Rightarrow 7 \le |E| \le 28$

48. Ans: 4

1995

Since

Sol: Here, $G = K_{4,5}$

Vertex connectivity of G = Minimum of $\{4, 5\} = 4$

49. Ans: (c)

Sol: If G is a simple graph with maximum number of edges, then G should have two components K_{n-1} and an isolated vertex.

 \therefore Number of edges in $K_{n-1} = \frac{(n-1)(n-2)}{2}$.

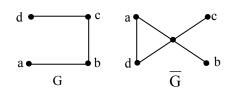
Engineering Publications	38 Discrete Mathematics
50. Ans: 0	54. Ans: 3
Sol: Here, G is a cycle graph.	Sol: d is the cut vertex of G
Every edge of G is part of a cycle in 'G'.	\Rightarrow vertex connectivity of G = 1
∴ 'G' has no cut edge	G has no cut edge.
	$\Rightarrow \lambda(G) \ge 2 \dots \dots (1)$
51. Ans: (b)	By deleting the edges $d - e$ and $d - f$, we can
Sol: In a connected graph G, if all vertices are c	of disconnect G.
even degree then G has Euler circuit.	\therefore Edge connectivity = $\lambda(G) = 2$
\Rightarrow Every edge is part of a cycle in G.	
\Rightarrow G has no cut edge	55. Ans: 105
\therefore S ₂ is true.	Sol: If G is a simple graph with n vertices and k $\binom{n-k}{n-k-1}$
S_1 is false.	components then $ \mathbf{E} \le \frac{(n-k)(n-k+1)}{2}$
We have the following counter example.	EF IN C Here $n = 20$ and $k = 5$
a d	Maximum number of edges possible
	(20-5)(20-6) 105
b	$=\frac{(20-5)(20-6)}{2}=105$
Here, all vertices in the graph are of eve	
degree.	Sol: If G is any graph having p vertices and
But c is a cut vertex of the graph.	$\delta(G) \ge \frac{p-1}{2}$, then G is connected.
	2
52. Ans: (d)	57. Ans: (b)
Sol: If $ E < (n - 1)$, then G is disconnected	Sol: If a component has n vertices, then
If $ \mathbf{E} > \frac{(n-1)(n-2)}{2}$, then G is connected.	maximum number of edges possible in that
$ P ^2 = \frac{1}{2}$, where C is connected.	component = C(n, 2)
then G may or may not be connected.	The maximum number of edges possible
	in $G = C(5,2) + C(6,2) + C(7,2) + C(8,2)$
53. Ans: (d)	= 10 + 15 + 21 + 28
Sol: The given graph is a complete graph K	= 74
with 6 vertices of odd degree.	58. Ans: 9
\therefore G is not traversable	Sol: In a tree, each edge is a cut set.
	Number of edges in a tree with 10 vertices = 9
	\therefore Number of cut sets possible on a tree with
	10 vertices = 9
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	ar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Eagineering Publications	39 CSIT-Postal Coaching Solutions
59. Ans: 1, 2	The vertex d is a cut vertex of G.
Sol: The graph can be labeled as	\therefore K (G) = 1
a e	We have $\lambda(G) \le \delta(G) = 3 \dots (1)$
	G has no cut edge and by deleting any two
	edges of G we cannot disconnect G.
0 -	$\therefore \lambda (G) = 3$
c is a cut vertex of the graph G.	
\therefore vertex connectivity of G = K(G) = 1	62. Ans: (a)
G has no cut edge.	Sol: If G is disconnected then \overline{G} is always
\Rightarrow Edge connectivity = λ (G) ≥ 2 (1)	connected. (Theorem)
We have, $\lambda(G) \le \delta(G) = 2$ (2)	If G is connected then \overline{G} may or may not
From (1) and (2), we have	be connected (we can prove this by counter
λ (G) = 2	EFIN cexamples).
ENCI	\therefore Option (a) is true.
60. Ans: 2, 2	
Sol: The graph G can be labeled as	63. Ans: (c)
^a	Sol: S ₁ : This statement is true.
d e f	Proof:
	Suppose G is not connected G has atleast 2
b	connected components.
G has no cut edge and no cut vertex. By	
deleting the edges $\{d, e\}$ and $\{b, h\}$ we can	
disconnect G.	
$\therefore \lambda (G) = 2$	between u and v in G.
By deleting the vertices b and d, we can	Case1: u and v are in different components
disconnect G.	of G.
\therefore K (G) = 2	Now u and v are not adjacent in G.
	\therefore u and v are adjacent in \overline{G}
61. Ans: 1, 3	Case2: u and v are in same components G_1
Sol: The graph G can be labeled as	of G. Take any vertex $w \in G_2$.
a e e	Now u and v are adjacent to w in G.
(b f	h \therefore There exists a path between u and
c d g	v in G. Hence, \overline{G} is connected.
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar	ar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE
Engineering Publications

S₂: The statement is false.

we can give a counter example.



Here, G is connected and \overline{G} is also connected.

- S₃: Suppose G is not connected
 - Let G_1 and G_2 are two connected components of G.

Let $v \in G_1$

$$\Rightarrow \deg(\mathbf{v}) \ge \frac{n-1}{2} \qquad \left(\because \delta(\mathbf{G}) = \frac{n-1}{2}\right)$$

Now
$$|V(G_1)| \ge \left(\frac{n-1}{2} + 1\right)$$

Similarly, $|V(G_2)| \ge \frac{n+2}{2}$

Now,
$$|V(G)| = |V(G_1)| + |V(G_2)|$$

$$\Rightarrow |V(G)| \ge n+1$$

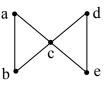
which is a contradiction

- \therefore G is connected.
- S4: If G is connected, then the statement is true. If G is not connected, then the two vertices of odd degree should lie in the same component.

By the sum of degrees of vertices theorem.

:. There exists a path between the 2 vertices.

- 64. Ans: (c)
- Sol: The graph G can be labeled as



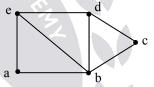
- The number of vertices with odd degree is 0.
- \therefore S₁ and S₂ are true

C is a cut vertex of G.

: Hamiltonian cycle does not exists.

By deleting the edges $\{a, c\}$ and $\{c, e\}$, there exists a Hamiltonian path a-b-c-d-e

65. Ans: (a)Sol: The graph G can be labeled as



The number of vertices with odd degree = 2

... Euler path exists but Euler circuit does not exist.

There exists a cycle passing through all the vertices of G.

a - b - c - d - e - a is the Hamiltonian cycle of G. The Hamiltonian path is a-b-c-d - e.

66. Ans: (b)

Sol: The number of vertices with odd degree = 0 \therefore S₁ and S₂ are true.

To construct Hamiltonian cycle, we have to delete two edges at each of the vertices a and f. Then, we are left with 4 edges and 6 vertices.

... G has neither Hamiltonian cycle nor Hamiltonian path.

Engineering Publications	41 CSIT-Postal Coaching Solutions
 67. Ans: (b) Sol: S₁ is false. We can prove it by giving a counter example. Consider the graph G shown below a o o d o d o d o d o d o d o d o d o d	S ₁ need not be true. For example the complete graph K ₂ has a perfect matching but K ₂ has no cycle. S ₃ need not be true. For example G can have two components where each component is K ₂ . 71. Ans: 36 Sol: The maximum number of edges possible in $G = \frac{(n-k)(n-k+1)}{2}$ Where, n = 12 and k = 4 = 36
a \bullet b The edge {a, b} is a cut edge. But K ₂ has no cut vertex. 68. Ans: 33 Sol: If G has K components, then E = V - K $\Rightarrow 26 = V - 7$ $\Rightarrow V = 33$	 72. Ans: (b) Sol: G has exactly two vertices of odd degree. Therefore, Euler path exists in G but Euler circuit does not exist. In Hamiltonian cycle, degree of each vertex is 2. So, we have to delete 2 edges at vertex 'd' and one edge at each of the vertices 'a' and 'g'. Then we are left with 8 vertices and 6 edges. Therefore, neither Hamiltonian cycle exists nor Hamiltonian path exists.
 69. Ans: (c) Sin Sol: The forest F can be converted into a tree by adding (k – 1) edges to F. ∴ Number of edges in F = (n – 1) – (k – 1) = (n – k) 70. Ans: (b) Sol: A 2-regular graph G has a perfect matching iff every component of G is an even cycle. ∴ S₂ and S₄ are true. 	 Sol: S1 is not true. A triangle is a counter example. A triangle contains Euler circuit and the number of edges is 3 (odd) S2 is true. The some of all degrees is even. ∴ The some degrees is atleast 28. The statement S2 follows by Pigeonhole
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar	• Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications

74. Ans: (d)

Sol: S1 is false. A counter example is shown below.

The above graph has Euler circuit (because all the vertices are of even degree) but the graph has no Hamiltonian cycle (because a cut vertex exists).

S2 is false. A counter example is a complete graph on 2n vertices $(n \ge 2)$.

75. Ans: (b)

- **Sol:** G has cycles of odd length
 - : Chromatic number of

 $G = \chi(G) \ge 3 \dots (1)$ For the vertices c and h we can use same color C₁

The remaining vertices from a cycle of length 6.

A cycle of even length require only two colors for its vertex coloring.

For vertices a, d and f we can apply same color C_2

For the vertices $\{b, e, g\}$ we can use same color C_3

 $\therefore \chi(G) = 3$

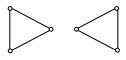
A perfect matching of the graph is

 \therefore Matching number = 4

Hence, Chromatic number of G + Matching number of G = 3 + 4 = 7

76. Ans: (c)

Sol: S_1 need not be true. Consider the graph



Here, we have 6 vertices with degree 2, but the graph is not connected.

 S_2 need not be true. For the graph given above, Euler circuit does not exist, because it is not a connected graph.

A simple graph G with n vertices is

necessarily connected if
$$\delta(G) \ge \frac{\pi}{2}$$

 \therefore S₃ is true.

77. Ans: (a)

Sol: Vertex connectivity of $G = k(G) \le \delta(G)$

 $\Rightarrow \delta(G) \ge 3$ By sum of degrees theorem $3|V| \le 2|E|$ $\Rightarrow |E| \ge 15$

 \therefore Minimum number of edges necessary = 15

78. Ans: (a)

199

Sol: Because, G is connected and every vertex has even degree.

Euler-Circuit exists in G.

Fix some particular circuit and consider a partition of V into two sets S and T.

Engineering Publications	43	CSIT-Postal Coaching Solutions
 There must be atleast one edge between S and T, since G is connected. But if there is only one edge, then euler path can't return to S or T once it leaves. ∴ It follows that there are atleast two edge between S and T. 79. Ans: (d) Sol: In a connected graph, Euler circuit exists if all vertices are of even degree (a) If n odd then all vertices in K_n are o even degree (n – 1 is even) ∴ In a complete graph K_n (n ≥ 3), Euler 	S h s f eF	 The polygon is a Hamiltonian cycle. ∴ In a complete graph K_n (n ≥ 3), Hamiltonian cycle exists for all n (b) If m = n, then we can construct Hamiltonian cycle in K_{m,n}. ∴ In a complete bipartite graph K_{m,r} (m ≥ 2 and n ≥ 2), Hamiltonian cycle exists ⇔ m = n (c) The cycle graph C_n has a Hamiltonian cycle which is C_n itself. ∴ In a cycle graph C_n (n≥3), Hamiltonian cycle exists for all n
 ∴ In a complete graph K_n (n ≥ 3), Eule circuit exists ⇔ n is odd (b) If m and n are even, then all vertices in K_{m,n} are of even degree ∴ In a complete bipartite graph K_m, (m ≥ 2 and n ≥ 2), Euler circuit exist ⇔ m and n are even (c) In cycle graph degree of each vertex is 2 (even) ∴ In a cycle graph C_n (n ≥ 3), Eule circuit exists for all n (d) In wheel graph W_n, we have n - vertices with degree 3 (odd). ∴ In a wheel graph W_n (n ≥ 4), Eule circuit does not exist. 	n s 2 1	 (d) In a wheel graph W_n (n≥4), Hamiltonian cycle exists ⇔ n is even. ∴ All the options are true. 81. Ans: (d) Sol: (a) Number of edge disjoint Hamiltonian cycles in K_n = n-1/2 (Result) (b) If G is a simple graph with n vertices and degree of each vertex is atleast n/2, then Hamiltonian cycle exists in G (Dirac's theorem) (c) Number of Hamiltonian cycles in K_{n,n} = n!(n-1)!/2.
 80. Ans: All options are true Sol: (a) The complete graph K_n can be considered as a polygon with revertices with all internal diagonals. 	n	$K_{n,n} - \frac{1}{2}$. Number of Hamiltonian cycles in $K_{4,4} = \frac{4!(4-1)!}{2} = 72$

ACE Engineering Publications	44 Discrete Mathematics
 (d) The statement is false, for example, Image: A statement is false, for example, for examp	
4. Set Theory 01. Ans: (a) Sol: Let $ X = m$ $\Rightarrow n = 2^m$ Number of elements in $Y = m + 2$ Number of subsets in $Y = 2^{m+2}$ $= 4 \times 2^m$ = 4n	$(A \cup B) - (C - A) = \{1, 2, 3, 4, 5, 6\} - \{6, 7\}$ $= \{1, 2, 3, 4, 5\}$ $\therefore A \cup (B - C) = (A \cup B) - (C - A)$ $S2: A \cap (B - C) = \{1, 2, 4, 5\} \cap \{2, 3\}$ $= \{2\}$ $(A \cap B) - (A \cap C) = \{2, 5\} - \{4, 5\}$ $= \{2\}$ $\therefore A \cap (B - C) = (A \cap B) - (A \cap C)$
02. Ans: (d) Sol: S ₁ : Let A = {1} and B = {A} and C = B Now, A \in B and B \subseteq C But A \notin C \therefore S ₁ is false S ₂ : Let A = {1}, B = {1, 2} and C = {B} Now, A \subseteq B and B \in C But A \notin C \therefore S ₂ is false	04. Ans: (b) Sol: Given that $A \subseteq B \subseteq S$ The venn-diagram is shown here I

Engineering Publications	45	CSIT-Postal Coaching Solutions
Here, each element of S can appear in 3 ways.	3	$RHS = (A \cup B) \cap (A - B)$ $= (A - B)$
i.e., $x \in A$ or $x \in (B - A)$ or $x \in (S - B)$ In all 3 cases, $A \subseteq B \subseteq S$.		\therefore L.H.S \neq R.H.S
By product rule, the n elements of S can appear in 3^n ways.		07. Ans: (c) Sol: (a) Let $A = \{1\}, B = \{2\}, C = \{3\}$
\therefore Required number of ordered pairs = 3^n		Now $(A \cap B) = (B \cap A) = \phi$
 05. Ans: (d) Sol: We can show that each element of X can appear in A and B in two ways. Let x∈X 	n	But $A \neq B$ \therefore (a) is not true (b) Let $A = \{1\}, B = \{2\}, C = \{1, 2\}$ Now $A \cup C = B \cup C = C$ But $A \neq B$
Case 1: If x is even number then it can appear in two ways i.e., either $x \in (A-B)$ or $x \in (B-A)$ Case 2:	EF/	$\therefore (b) \text{ is not true}$ (c) Let $x \in A$. Consider the two cases Case1: $x \in C$ $\Rightarrow x \notin (A \Delta C) (\because x \in (A \Delta C))$
If x is odd number then it can appear in two ways i.e., $x \in (A \cap B)$ or $x \in (\overline{A \cup B})$ \therefore By product rule, required number of subsets = 2^{2n}		$\Rightarrow x \notin (B \Delta C) (:: A \Delta C = B \Delta C)$ $\Rightarrow x \in B \dots \dots \dots (1)$ Case2: $x \notin C$ $\Rightarrow x \in (A \Delta C)$ $\Rightarrow x \in (B \Delta C)$
06. Ans: (d) Sol: (a) Let $A \oplus B = A$ $\Rightarrow A \oplus B = A \oplus \phi$ $\Rightarrow B = \phi$ (Cancellation law) (b) $(A \oplus B) \oplus B$ $= A \oplus (B \oplus B)$ (Associative law)	ce 1	$\Rightarrow x \in (B \sqcup C)$ $\Rightarrow x \in B (\because x \notin C) \dots (2)$ $\therefore A \subseteq B (Form (1) \text{ and } (2))$ Similarly we can show that $B \subseteq A$. $\therefore A = B$ Hence, (c) is true (d) Let $A = \{1, 2\}$
$= A \oplus \phi$ = A (c) A \oplus C = B \oplus C \Rightarrow A = B (Cancellation law)		$B = \{2, 3\}$ $C = \{1, 3\}$ Here, $A - C = \{2\} = B - C$ But, $A \neq B$
(d) LHS = A \oplus B = (A \cup B) – (A \cap B) ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar	r • Luckno	∴ Option (d) is not true

ACE Engineering Publications	46 Discrete Mathematics
08. Ans: (c)Sol: U = {1, 2, n}A = {(x, X) x ∈ X and X ⊆ U}Number of non empty subsets ofU = C(n, 1) + C(n, 2) ++ C(n, n)Number of elements in A = $\sum_{k=1}^{n} k C(n, k)$ Using Binomial Theorem, we have $\sum_{k=1}^{n} k C(n, k) = n. 2^{n-1}$ ∴ Both I and II are true.09. Ans: 3	Sol: Symmetric closure of $R = \{(1, 1), (2, 2), (2, 3), (3, 2), (4, 2), (2, 4), (4, 4)\}$ Transitive symmetric closure of $R = \{(1, 1), (2, 2), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (2, 2), (4, 2), (4, 3), (4, 4)\}.$
Sol: The elements related to 1 are 1 and 5. Hence, equivalence class of $1 = [1] = \{1, 5\}$ We pick an element which does not belong to [1] say 2. The elements related to 2 are 2 3 and 6, hence $[2] = \{2, 3, 6\}$ The only element which does not belong to [1] or [2] is 4. The only element related to 4 is 4. Thus $[4] = \{4\}$ Hence, required number of equivalence classes = 3	Sol: The Hasse diagram is shown below. 4 4 4 4 4 36 12 18 9 36 9
 10. Ans: (d) Sol: We know that, if R is anti-symmetric relation then any subset of R is also anti symmetric. Further (R ∩ S) and (R − S) are subsets of R. Hence, (R ∩ S) and (R − S) are always anti symmetric. If (a, b) ∈ R then only (b, a) ∈ R⁻¹. ∴ R⁻¹ is always anti-symmetric. 	- counter example. $R = \{(1, 2), (2, 1)\}$ The transitive closure of $R = \{(1, 2), (2, 1), ($

	ACE
S-LA"	Engineering Publications

S2 is true. Suppose that $(a, b) \in \mathbb{R}^*$; then there is a path from a to b in (the digraph for) R. Given such a path, if R is symmetric, then the reverse of every edge in the path is also in R; Therefore there is a path from b to a in R (following the given path backwards). This means that (b, a) is in \mathbb{R}^* whenever (a, b) is, exactly what we needed to prove.

14. Ans: (a)

Sol: R is reflexive because |x - x| = 0 < 1whenever $x \in R$.

R is symmetric, for if xRy, where x and y are real numbers, then |x - y| < 1.

 $\Rightarrow |y-x| = |x-y| < 1,$

 \Rightarrow yRx.

However, R is not an equivalence relation because it is not transitive.

```
For example, x = 2.8, y = 1.9, and z = 1.1,
```

Here, $|\mathbf{x} - \mathbf{y}| = |2.8 - 1.9| = 0.9 < 1$,

|y - z| = |1.9 - 1.1| = 0.8 < 1but |x - z| = |2.8 - 1.1| = 1.7 > 1.i.e., 2.8 ^R 1.9, 1.9 ^R 1.1, but 2.8 is not related to 1.1.

15. Ans: (a)

Sol: Let $S = \{1, 2, ..., n\}$

If a relation R on S is symmetric and antisymmetric then R is any subset of the diagonal relation

 $\Delta_{A} = \{(1, 1), (2, 2), \dots, (n, n)\}.$

Any subset of Δ_A is also transitive.

- :. The required number of relations
 - = Number of subset of Δ_A

 $= 2^{n}$

ACE Engineering Publications

Relations

16. Ans: (d)

Sol: R₂ is reflexive because for all

$$a \in N$$
, $\frac{a}{a} = 1 = 2^0$, this $(a, a) \in \mathbb{R}$.

 R_2 is not symmetric because if $(a, b) \in R_2$,

then $\frac{a}{b} = 2^{i}$, where $i \ge 0$. But $\frac{b}{a} = 2^{-i}$, where $-i \le 0$.

17. Ans: (c)

 \therefore (b, a) \in R

Sol: R can be represented by a square matrix of order n with all the diagonal elements as 1. Since, R is symmetric, number of elements above the principal diagonal = number of elements below the principal diagonal. \therefore Number of elements in R = 2k + n where k is number of elements above the diagonal Hence, if n is even then number of elements in R is even and if n is odd then number of elements in R is odd 18. Ans: (a) Sol: S₁: Suppose both R and S are reflexive Let $a \in A$

If $\{(a, a) \in R \text{ and } (a, a) \in S\}$ then $(a, a) \in (R \cup S)$.

 \therefore (R \cup S) is reflexive

Engineering Publications	48 Discrete Mathematics
S ₂ : Suppose both R and S are symmetric Let $(x, y) \in (R \cup S)$ ⇒ $(x, y) \in R$ or $(x, y) \in S$ ⇒ $(y, x) \in R$ or $(y, x) \in S$ ⇒ $(y, x) \in (R \cup S)$ ∴ $(R \cup S)$ is symmetric	 22. Ans: (c) Sol: S₁ is true, by definition of anti-symmetric relation. S₂ is true, by definition of transitive relation. 23. Ans: (b)
S ₃ : Suppose both R and S are transitive Let R = $\{(a, b)\}$ and S = $\{(b, a)\}$ Here, R and S are transitive but (R \cup S is not transitive	$= \{(a, b) \mid a \text{ divides } b \text{ or } b \text{ divides } a\}$
19. Ans: (b) Sol: If S is any set, then a sub division {Si $S_2,,S_n$ } of S is called a partition of S if $S_1 \cup S_2 \cup, \cup S_n = S$ and $S_1, S_2,,S_n$ are non-empty disjoint sub sets of S. P ₂ is the only one that is not a partition of S because in which {7, 4, 3, 8} \cap {1, 5, 10, 3} $\neq \phi$	$S = R \cup S$ = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4), (4, 5), (5, 4), (5, 5)} Here, R \cup S is reflexive, symmetric and transitive. The smallest equivalence relation containing R and S = R \cup S
 20. Ans: (d) Sol: P₄ is a refinement of both P₁ and P₃, becaus P₄ itself is a partition of S and every element of P₄ is a subset of one of the elements in P and P₃. 	t 25 Ans: (d)
 21. Ans: 10 Sol: The number of refinements of a partition I is the number of the ways to further partition cells in P. The cell {1, 2, 3} has 5 ways {4, 5} has 2 ways, and {6} has one way Therefore, the total number of refinement of P is 5 × 2 × 1 = 10. 	and if x is not related to y, then $[x] \cap [y] = \{\}$. 26. Ans: 1 Sol: The only relation on A which is both

ر و ا				
	Engineering Publications	49		CSIT-Postal Coaching Solutions
27.	Ans: (a)		29.	Ans: (c)
Sol:	R is reflexive, because		Sol:	The diagonal relation on A is $\Delta_A = \{(1, 1), \}$
	(x - x) is an even integer			(2, 2), (3, 3).
	$\Rightarrow \qquad x^R x \forall \ x \in Z$			Δ_A is an equivalence relation as well as a
	Let x ^R y			partial order on A.
	\Rightarrow (x – y) is an even integer			The relation is not a total order.
	\Rightarrow (y - x) is an even integer			For example, the elements 2 and 3 are not
	$\Rightarrow y^{R} x \forall x, y \in Z$			comparable.
			20	Amer (h)
	\therefore R is symmetric			Ans: (b) S ₁ need not be true.
	Let x^{R} y and y^{R} z		501.	We can give the following counter example.
	\Rightarrow (x – y) and (y – z) are even integers	: D		Let $A = \{1, 2\}$ and $R = \{(1, 1), (2, 2),$
	Now, $(x - z) = (x - y) + (y - z) = an$ even	r nu	NG	
	integer			and $S = \{(1, 1), (2, 2), (2, 1)\}$
	\Rightarrow R is transitive			Here, R and S are partial orders, but $R \cup S$
	∴ R is an equivalence relation			is not a partial order.
	R is not a partial order, because R is not	t		S_2 is true.
	anti-symmetric.			If R and S are any two reflexive relations on
	For example, $2^{R} 4$ and $4^{R} 2$		a set A, then $(R \cap S)$ is also reflexive.	
				If R and S are any two anti-symmetric
28.	Ans: 48		<	relations on a set A, then $(R \cap S)$ is also
Sol:	If a relation is neither reflexive nor		100	anti-symmetric.
	irreflexive then diagonal pairs can appear in		. 77	If R and S are any two transitive relations on (B, c, S) is also transitive.
	$(2^3 - 2)$ ways.			a set A, then $(R \cap S)$ is also transitive. Hence, If R and S are any two partial orders
	If the relation is symmetric then non			on a set A, then $(R \cap S)$ is also partial order
	diagonal pairs can appear in 2^3 ways.			on a set <i>A</i> , then (<i>R</i> + 5) is also partial order
	By product rule		31.	Ans: 0
	n(n-l)		On a set with 2 elements, if a relation is	
	Required number of relations = $(2^{n}-2)$. $2^{\frac{n}{2}}$.	,		reflexive and symmetric then it is also
	where $n = 3$			transitive.
	= 6.(8)			\therefore There is no relation which is reflexive
	= 48			and symmetric but not transitive.
		•		

Engineering Publications	50 Discrete Mathematic
32. Ans: (b)	34. Ans: (c)
Sol: The Hasse diagram is shown below.	Sol: As per the Hasse diagram given in the abo
12	example,
4 6	The upper bound = $I = 36$
	The lower bound = $O = 1$
	In a lattice, 2 elements a and b a
	complements of each other if
The poset is a bounded lattice with upper	least upper bound (LUB) of a and $b = I$ and
bound 12 and lower bound 1.	greatest lower bound (GLB) of a and $b = C$
The poset is a distributive lattice because i	(A) LUB 01 2 & 18–LUM 01 2 and 18–187
has no sub lattice isomorphic to L_1^* or L_2^*	\therefore Complement of 2 is not 18.
shown below.	(B) The LUB of 3 and $12 = LCM$ of 3 at
	$12 = 12 \neq I$
$\langle + \rangle$	Complement of 3 is not 12.
	(C) The LUB of 4 and $9 = LCM$ of 4 at
	9 = 36 = I
	The GLB of 4 and $9 = GCD$ of 4 at
The poset is not a complemented lattice	9 = 1 = 0
because complements do not exist for the	\therefore Complement of $4 = 9$.
element 2, 4 and 6.	(D) LUB of 6 & 1 = LCM of 6 and $1 = 6 \neq$
	:. Complement of 6 is not 1.
3. Ans: (c)	
Sol: The relation R is reflexive, anti-symmetric	2 35. Ans: (c)
and transitive. Sin	
\therefore R is a partial order.	ordered set and therefore a distributi
The Hasse diagram of the poset $[A \times A; R]$	
is shown below. (3, 3)	The Hasse diagram is shown below.
(2, 3) (3, 2)	
$(1,3) \checkmark (2,2) \diamond (3,1)$	2^1 2^2 2^3 2^4 2^5
(1,2) $(2,1)$	
(1, 1)	The upper bound of the lattice does n
From the Hasse diagram we can see that	
LUB and GLB exist for every pair of	f \therefore Option (C) is true.
ordered pairs.	1 () () () () () () () () () () () () ()
\therefore The poset is a lattice.	

Engineering Publications	51 CSIT-Postal Coaching Solutions
36. Ans: (b)	The poset [A; R] is not a complemented
Sol: In the lattice $[P(A); \subseteq]$,	lattice, because in a totally ordered set
Complement of $X = A - X$ $\forall X \in P(A)$	complements exists only for upper bound
$\mathbf{B} = \{2, 3, 5, 7\}$	and lower bounds.
\therefore Complement of B = A – B	
$= \{1, 4, 6, 8, 9, 10\}$	40. Ans: (d)
	Sol: S_1 is false
37. Ans: (a)	Proof by counter example:
Sol: Let x and y be any two elements of S.	For the lattice shown below
Then, the set $\{x, y\}$ is a subset of S.	For the lattice shown below
So, it has a minimum element z.	
if $z = x$ then x R y	
if $z = y$ then $y R x$	FINC
\therefore x and y are comparable.	Each element has atmost one complement
\Rightarrow S is a totally ordered set.	but the lattice is not distributive.
The maximum element of S may not exist.	\therefore S ₁ is false.
\therefore Other options need not be true.	
	For the lattice shown below.
38. Ans: 11	
Sol: The Hasse diagram is shown below.	e e
	d 🗸 🔹 c
8 • 10	a a
	The lattice is complemented. But the sul
	lattice {a, c, e} is not complemented.
1	
\therefore The number of edges in the diagram = 11.	\therefore S ₂ is false
30 Ans. (a)	41. Ans: (b)
39. Ans: (a) Sol: If $R \cup R^{-1} = A \times A$, then the given relation	Sol: The given expression is an upper bound o
	y, so it is at least y.
R is a total order (linear order).	On the other hand, y is a common uppe
\therefore The poset [A; R] is a totally ordered set.	bound for y and $x \wedge y$, so it is indeed their
Every totally ordered set is a distributive	
lattice.	least upper bound.
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar •	Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications	52 Discrete Mathematics
42. Ans: (d) Sol: S ₁ : L.H.S = $x \lor (y \land z)$ $= x \lor 0$ = x R.H.S = $(x \lor y) \land z$ $= 1 \land z$ = z \therefore L.H.S \neq R.H.S S ₂ : L.H.S = $x \lor (y \land z)$ $= x \lor 0$ = x R.H.S = $(x \lor y) \land (x \lor z)$ $= 1 \land 1$ = 1 \therefore L.H.S \neq R.H.S 43. Ans: (d) Sol: (a) f is not 1-1 and therefore not a bijection. For example, $f(1) = f(-1) = 1$ (b) g(x) is not 1-1 and hence not a bijection. For example, $g(1) = g(-1) = 1$ (c) h(x) is not 1-1 and hence not a bijection. For example, $g(1) = g(-1) = 1$ (d) Let $\phi(a) = \phi(b)$ $\Rightarrow a^3 = b^3$ $\Rightarrow a = b$ $\Rightarrow \phi$ is one-to-one Let $\phi(x) = x^3 = y$ $\Rightarrow x = y^{\frac{1}{3}}$ Ever each real number y, there exists a real sector.	44. Ans: (c) Sol: Let $f(A) = g(B) = h(C) = D$ We can choose D in $C(n, k)$ ways. Now, there are k! injections for each of the sets A, B and C. By productive rule, Required number of triples of functions $= C(n, k). (k!)^3$ 45. Ans: (a) Sol: S ₁ : Let $f(x) = x$ Then $f(x) = f(y)$ $\Rightarrow x = y$ \Rightarrow f is one to one S ₂ : Let $A = \phi$, then there is not function at all from B to A, surjection or not. 46. Ans: (c) Sol: Here, A and B are finite sets and $ A = B $ \therefore Every one-to-one function from A to B is on-to, and hence a bijection. For every bijection f, f ⁻¹ exists. \therefore S ₁ and S ₂ are true 47. Ans: (c) Sol: S1: Let $x \in f^{-1}(S \cup T)$ $\Rightarrow f(x) \in S$ or $f(x) \in T$ $\Rightarrow x \in f^{-1}(S) \cup f^{-1}(T)$ $\Rightarrow x \in \{f^{-1}(S) \cup f^{-1}(T)\}$ By retracing the steps, we can show that $\{f^{-1}(S) \cup f^{-1}(T)\} \subseteq f^{-1}(S \cup T)$
For each real number y, there exists a rea number x such that $x = y^{\frac{1}{3}}$. $\Rightarrow \phi$ is on-to $\therefore \phi$ is a bijection.	By retracing the steps, we can show that $\{f^{-1}(S) \cup f^{-1}(T)\} \subset f^{-1}(S \cup T)$

Ans: (a) : Let $f(a) = f(b)$ $\Rightarrow \frac{a-2}{a-3} = \frac{b-2}{b-3}$ $\Rightarrow (a-2)(b-3) = (a-3)(b-2)$ $\Rightarrow a = b$ \therefore f is $1-1$ Let $f(x) = \frac{x-2}{x-3} = y$ $\Rightarrow x - 2 = (x-3) y$ $\Rightarrow x - xy = 2 - 3y$ $\Rightarrow x = \frac{2-3y}{1-y} \in A$ \therefore For each $y \in B$, there exists an element $x \in A$, such that $f(x) = y$.
$\Rightarrow \frac{a-2}{a-3} = \frac{b-2}{b-3}$ $\Rightarrow (a-2)(b-3) = (a-3)(b-2)$ $\Rightarrow a = b$ $\therefore \text{ f is } 1-1$ Let $f(x) = \frac{x-2}{x-3} = y$ $\Rightarrow x-2 = (x-3) y$ $\Rightarrow x - xy = 2 - 3y$ $\Rightarrow x = \frac{2-3y}{1-y} \in A$ $\therefore \text{ For each } y \in B, \text{ there exists an element } x$
$\Rightarrow (a-2)(b-3) = (a-3)(b-2)$ $\Rightarrow a = b$ $\therefore \text{ f is } 1-1$ Let $f(x) = \frac{x-2}{x-3} = y$ $\Rightarrow x-2 = (x-3) y$ $\Rightarrow x - xy = 2 - 3y$ $\Rightarrow x = \frac{2-3y}{1-y} \in A$ $\therefore \text{ For each } y \in B, \text{ there exists an element } x$
$\Rightarrow (a-2)(b-3) = (a-3)(b-2)$ $\Rightarrow a = b$ $\therefore \text{ f is } 1-1$ Let $f(x) = \frac{x-2}{x-3} = y$ $\Rightarrow x-2 = (x-3) y$ $\Rightarrow x - xy = 2 - 3y$ $\Rightarrow x = \frac{2-3y}{1-y} \in A$ $\therefore \text{ For each } y \in B, \text{ there exists an element } x$
$\therefore \text{ f is } 1 - 1$ Let $f(x) = \frac{x - 2}{x - 3} = y$ $\Rightarrow x - 2 = (x - 3) y$ $\Rightarrow x - xy = 2 - 3y$ $\Rightarrow x = \frac{2 - 3y}{1 - y} \in A$ $\therefore \text{ For each } y \in B, \text{ there exists an element } x$
$\Rightarrow x - 2 = (x - 3) y$ $\Rightarrow x - xy = 2 - 3y$ $\Rightarrow x = \frac{2 - 3y}{1 - y} \in A$ $\therefore \text{ For each } y \in B, \text{ there exists an element } x$
$\Rightarrow x - xy = 2 - 3y$ $\Rightarrow x = \frac{2 - 3y}{1 - y} \in A$ $\therefore \text{ For each } y \in B, \text{ there exists an element } x$
$\Rightarrow x = \frac{2 - 3y}{1 - y} \in A$ $\therefore \text{ For each } y \in B, \text{ there exists an element } x$
$\therefore \text{ For each } y \in B, \text{ there exists an element } x$
∴ f is on -to Hence, f is a bijection. Ans: (a)
: $(fog)x = f\{g(x)\}$
$= f\left(\frac{x}{1-x}\right)$
$\Rightarrow (fog)x = x$ $\left(\frac{x}{1-x}\right) + 1$ $\Rightarrow x$
\Rightarrow (fog) is an identity function
$\Rightarrow (\text{fog})^{-1} \text{ x} = (\text{fog})\text{x} = \text{x}$

Engineering Publications	54 Discrete Mathematics
53. Ans: (d) Sol: (d) $f(x) = \frac{1}{\sqrt{ x - x}}$ Case 1: when $x \ge 0$ x = x $\therefore x - x = 0$ $\therefore f(x)$ is not defined when $x \ge 0$. Case 2: when $x < 0$ x = -x $\therefore x - x = -2x > 0$ \therefore Domain of $f(x) = (-\infty, 0)$ 54. Ans: (a)	56. Ans: (c) Sol: The order of element $a =$ the smallest positive integer n such that $a^n = e$ (identity). (a) The element 1 is identity element of the group \therefore order of $1 = 1$ (b) $2^1 = 2$, $2^2 = 4$, $2^3 = 1$ \therefore order of $2 = 3$ (c) $3^1 = 3$, $3^2 = 2$, $3^3 = 6$, $3^4 = 4$, $3^5 = 5$, $3^6 = 1$ \therefore order of $3 = 6$ Hence, option (C) is not true (d) $4^1 = 4$, $4^2 = 2$, $4^3 = 1$
Sol: (a) If f: $A \rightarrow B$ then $f^{-1}: B \rightarrow A$ fof ⁻¹ : $B \rightarrow B$ \therefore fof ⁻¹ = I _B \therefore Option (a) is false.	We have $(A \oplus B) \oplus C = A \oplus (B \oplus C)$ \therefore * is associative on P(S) we have, $A \oplus \phi = A$, $\forall A \in P(S)$ $\therefore \phi$ is identity element in P(S) w.r.t. *. We have, $A \oplus A = \phi$, $\forall A \in P(S)$
55. Ans: (d) Sol: Let us show that f is injective. Let x, y be elements of A such that $f(x)=f(y)$ Then, $x = I_A(x)=g(f(x)) = g(f(y)) = I_A(y) = y$ ∴ f is one to one function Let us show that g is surjective Let x be any element of A Then, $f(x)$ is an element of B Such that $g(f(x)) = I_A(x) = x$ ⇒ g is a on-to function	 ∴ For each element of P(S), inverse exists, because inverse of A=A, ∀ A∈ P(S). ∴ (P(S), *) is a group.

Engineering Publications	55 CSIT-Postal Coaching Solutions
$a * a^{-1} = e$	61. Ans: (d)
$\Rightarrow \frac{aa^{-1}}{2} = 2$	Sol: (d) $G = \{1, -1, i, -i\}$
2	(i) G is closed with respect to multiplication.
\Rightarrow $a^{-1} = \frac{4}{2}$	(ii) Multiplication is associative on G.
a A	(iii) 1 is identity element in G with respect
Inverse of $4 = \frac{4}{4} = 1$	to multiplication.
	(iv) The inverse elements of 1,-1,i,-i are 1,
59. Ans: (c)	-1, -i, i respectively.
Sol: Let e be the identity element.	\therefore G is group with respect to multiplication.
Now $a * e = a$	
\Rightarrow 2 a e = a	62. Ans: (d)
$\Rightarrow e = \frac{1}{2}$	Sol: (d) The cube roots of unity, $G = \{1, \omega, \omega^2\}$ is
	a group with respect to multiplication.
Let inverse of $\frac{2}{3}$ is x	The inverse of $\omega = \omega^2$
$\frac{2}{3}$ *x = $\frac{1}{2}$	\therefore The statement is false.
$\frac{1}{3} \cdot x = \frac{1}{2}$	The statement is faise.
$\Rightarrow 2\left(\frac{2}{3}\cdot \mathbf{x}\right) = \frac{1}{2}$	63. Ans: (c)
(3) 2	Sol: $5 \oplus_6 2 = 1$
$\Rightarrow x = \frac{3}{8}$	\Rightarrow Inverse of 5 is not 2.
o	
60. Ans: (b) Since	64. Ans: (c)
Sol: Let e be the identity element.	Sol: Order of $(-i) = 4$, because the smallest
\therefore a * e = a	integer n such that $(-i)^n = 1$ is $n = 4$
\Rightarrow a + e + a.e = a	(5. Annu (5))
$\Rightarrow e = 0$	65. Ans: (a)
Let a^{-1} = inverse of a	Sol: (a) $G = \{1, 3, 5, 7\}$ is a group with respect to
$a^*a^{-1} = e$	\otimes_{8} .
$\Rightarrow a+a^{-1}+aa^{-1}=0$ ($\therefore 0$ is identity element)	$H_1 = \{1, 3\}$ and $H_2 = \{1, 5\}$
$\Rightarrow a^{-1} = \frac{-a}{a+1}$	$H_1 \cup H_2 = \{1, 3, 5\}$
a + 1 \therefore Inverse of -1 does not exist.	Here, H_1 and H_2 are subgroups of G,
Hence, option (b) is false.	but $H_1 \cup H_2$ is not a subgroup of G.
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • L	l ucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE Engineering Publications	56	Discrete Mathematics
66.	Ans: (d)		* a b c d
Sol:	(d) Every subgroup of a cyclic group i	S	a b d a c
	cyclic (theorem)		b d c b a
67	Ange (d)		c a b × ×
	Ans: (d) (d) $2^2 = 2 \otimes_7 2 = 4$		d c a × ×
501.	$(a) 2^{3} = 4 \otimes_{7} 2 = 1$		
	2 is not a generator of G, because we can no	ot	In the composition table of a group, one of
	generate 3, 5 and 6 with 2.		the rows of entries should coincide with the top row.
68.	Ans: (c)		\therefore The third row is a b c d
	The identity element of G is 0. In the set	s	Hence, the identity element is c.
	given in options (b) and (d), the identit	1/	Further, we can show that fourth row is c
	element is missing.	,	a d b and
	The set $\{0, 4\}$ is not closed w.r.t \oplus .		$a^{-1} = d$, $b^{-1} = b$, $c^{-1} = c$ and $d^{-1} = a$.
	The set $\{0, 2, 4\}$ is closed w.r.t \oplus .		2
	The set in option (c) is a subgroup of G.		5. Probability and Statistics
	The set in option (c) is a subgroup of G.	-	
69.	Ans: 4	(01. Ans: (a)
	Number of generators in $G = \phi(10) = 4$	Ş	Sol: y
	where ϕ is Euler function.		
	Sin	co 1	(0, 1)
70.	Ans: (d)		
71			
71. Sol·	Ans: (a) Any group with 4 elements is abelian.		$(1, 0) \times (1, 0)$
501.	\Rightarrow The rows and columns of the table ar	e	Let x and y are two numbers in the interval
	identical		(0, 1)
	\Rightarrow First column is [b d a c] ^T and secon	d	We have to choose x and y such that $x^2 + y^2 < 1$.
	column is $\begin{bmatrix} d & c & b & a \end{bmatrix}^{T}$.		
			Required probability = $\frac{\text{Area of the shaded regi}}{\text{Area of the square}}$
	Now, the modified table is		$=\frac{\pi/4}{\pi}$
			1 4

ACE Engineering Publications

02. Ans: (a)

Sol: A non-decreasing sequence can be described by a partition $n = n_0 + n_1 + n_2$

where n_i is number of times the digit i appear in the sequence.

There are (n + 1) choices for n_0 and given n_0 there are $n - n_0 + 1$ choices for n_1 .

So, the total number of possibilities is

$$\sum_{n_0=0}^{n} (n - n_0 + 1) = (n + 1) \cdot (n + 1) - \sum_{n_0=0}^{n} n_0$$

= (n + 1) \cdot (n + 1) - $\frac{n^2 + n}{2}$
= $\frac{(n + 1)(n + 2)}{2}$

Required probability = $\frac{11 + 511 + 12}{2(3^n)}$

03. Ans: (d)

Sol: Number of ways, we can choose R = C(n, 3)We have to count number of ways we can choose R, so that median (R) = median (S). Each such set R contains median S, one of the $\left(\frac{n-1}{2}\right)$ elements of S less than median (S), and one of the $\left(\frac{n-1}{2}\right)$ elements of S greater than median (S). So, there are $\left(\frac{n-1}{2}\right)^2$ choices for R. Required probability = $\frac{\left(\frac{n-1}{2}\right)^2}{C(n,3)}$ $= \frac{3(n-1)}{2n(n-2)}$

04. Ans: (a)

Sol: For each $i \in \{1, 2,, n\}$,

let A_i heads be the event that the coin comes up heads for the first time and continues to come up heads there after.

Then, the desired event is the disjoint union of A_i .

Since, each A_i occurs with probability 2^{-n} . The required probability = n. 2^{-n}

05. Ans: (b)

Sol: Probability of the event that we never get the consecutive heads or tails

= P(HT HT HT) + P(TH TH TH)

$$= \left(\frac{1}{3}\right)^n \left(\frac{2}{3}\right)^n + \left(\frac{1}{3}\right)^n \left(\frac{2}{3}\right)^n$$
$$= 2\left(\frac{1}{3}\right)^n \left(\frac{2}{3}\right)^n$$

The required probability =
$$1 - 2\left(\frac{1}{3}\right)^n \left(\frac{2}{3}\right)^n$$

 $=\frac{3^{n}-2^{n+1}}{3^{2n}}$

06. Ans: (c)

Sol: Number of ways of selecting three integers = ${}^{20}C_3$

We know that, product of three integers is even, if atleast one of the number is even. Number of ways of selecting 3 odd integers $= {}^{10}C_3$

:. Required probability

$$= 1 - \frac{{}^{10}C_3}{{}^{20}C_3} = 1 - \frac{2}{19} = \frac{17}{19}$$

ACE Engineering Publications

97. Ans: (c) Sol: Given that $P(A B) = 1$ $\Rightarrow \frac{P(A \cap B)}{P(B)} = 1$ $\Rightarrow P(A \cap B) = P(B)$ (1) $P(B^{C} A^{C}) = \frac{P(B^{C} \cap A^{C})}{P(A^{C})} = \frac{1 - P(A \cup B)}{1 - P(A)}$ $= \frac{1 - \{P(A) + P(B) - P(A \cap B)\}}{1 - P(A)}$ $= \frac{1 - \{P(A) + P(B) - P(A \cap B)\}}{1 - P(A)}$ $= \frac{1 - \{P(A) + P(B) - P(A \cap B)\}}{1 - P(A)}$ $= \frac{1 - \{P(A) + P(B) - P(A \cap B)\}}{1 - P(A)}$ [from (1)] = 1 08. Ans: (a) Sol: Let A = Getting electric contract and B = Getting plumbing contract $P(A) = \frac{2}{5}; P(\overline{B}) = \frac{4}{7}; P(B) = \frac{3}{7}$ $P(A \cup B) = \frac{2}{3};$ $P(A \cap B) = $	07. Ans: (c) Sol: Given that $P(A B) = 1$ $\Rightarrow \frac{P(A \cap B)}{P(B)} = 1$ $\Rightarrow P(A \cap B) = P(B)$ (1) $P(B^{C} A^{C}) = \frac{P(B^{C} \cap A^{C})}{P(A^{C})} = \frac{1 - P(A \cup B)}{1 - P(A)}$ $= \frac{1 - [P(A) + P(B) - P(A \cap B)]}{1 - P(A)}$ $= \frac{1 - [P(A)]}{1 - P(A)} [from (1)]$ = 1 08. Ans: (a) Sol: Let A = Getting electric contract and B = Getting plumbing contract $P(A \cap B) = \frac{2}{5}; P(B) = \frac{4}{7}; P(B) = \frac{3}{7}$ $P(A \cap B) = \frac{2}{5}; \frac{2}{7} - \frac{2}{3} = \frac{17}{105}$ 10. Ans: 0.2 Sol: To find the number of favourable cases consider the following partition of the given set $\{1, 2,, 100\}$ $S_1 = \{1, 6, 11,, 96\}$ $S_2 = \{2, 7, 12,, 97\}$ $S_3 = \{3, 8, 13,, 98\}$ $S_4 = \{4, 9, 14,, 99\}$ $S_5 = \{5, 10, 15,, 100\}$ Each of the above sets has 20 elements. If one of the two numbers selected from S_1 then the other must be chosen from S_2. If one of the two numbers selected from S_2 then the other must be chosen from S_3. Number of favourable cases $= C(20,1)C(20,1)+C(20,1)-C(20,1)+C(20,2)$ = 400 + 400 + 190 = 990 \therefore Required probability $= \frac{990}{C(100,2)}$ $= \frac{990}{50 \times 99} = 0.2$ 11. Ans: 0.66 Range 0.65 to 0.67 Sol: Let N = the number of families
09. Ans: (d) Sol: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 11. Ans: 0.66 Range 0.65 to 0.67	$P(A \cap B) = \frac{4}{100}$ $(A \cap B) \text{ is not empty set.}$ $(2) (2)$ $= \frac{3N}{2}$

ACE Engineering Publications	59 CSIT-Postal Coaching Solutions
$\therefore \text{The Required Probability} = \frac{\left(\frac{N}{2} \times 2\right)}{\frac{3N}{2}}$	14. Ans: 2.916 range 2.9 to 2.92 Sol: $E(X) = \frac{1}{6}(1+2+3+4+5+6) = 3.5$
$=\frac{2}{3}=0.66$ 12. Ans: 0.125 Sol: Total number of outcomes = 6 ³ Number of outcomes in which sum of the numbers is 10 = Number of non-negative integer solutions to the equation a+b+ c =10 where 1 ≤ a, b, c ≤ 6 = Co-efficient of x ¹⁰ in the function (x + x ² + x ³ + x ⁴ + x ⁵ + x ⁶) ³ (x+x ² +x ³ +x ⁴ +x ⁵ +x ⁶) ³ = x ³ (1+x+x ² +x ³ +x ⁴ +x ⁵) ³	P 15. Ans: (c) Sol: Total number of counters $= 1 + 2 + \dots + n = \frac{n(n+1)}{2}$ Probability of choosing counter k and
$= x^{3}(1 - x^{6})^{3} (1 - x)^{-3}$ = $x^{3}(1 - 3x^{6} + 3x^{12} - x^{18}) \sum_{0}^{\infty} \frac{(n + 1)(n + 2)}{2} x^{n}$ = $(x^{3} - 3x^{9} + 3^{18} - x^{21}) \sum_{0}^{\infty} \frac{(n + 1)(n + 2)}{2} x^{n}$ Co-efficient of $x^{10} = 36 - 3 \times 3 = 27$ ∴ Required probability = $\frac{27}{216} = 0.125$	Expectation $\sum_{k=1}^{2} \binom{k}{n} \cdot \frac{n(n+1)}{n(n+1)}$ = $\frac{2}{n(n+1)} \cdot \frac{n^2(n+1)^2}{4} = \frac{n(n+1)}{2}$ 16. Ans: (b)
13. Ans: (a) Sol: If A and B be disjoint events then $A \cap B = \{ \}$ Probability of $A \cap B = 0$ (1) If A and B are independent then $P(A \cap B) = P(A).P(B)$ (2) From (1) and (2) P(A).P(B) = 0 $\Rightarrow Pr(A) = 0$ or $Pr(B) = 0$ ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar	Sol: The probability that she gives birth between 8 am and 4 pm in a day = $\frac{1}{3}$ By Total theorem of probability, The required probability = $\left(\frac{1}{3} \times \frac{3}{4}\right) + \left(\frac{2}{3} \times \frac{1}{4}\right) = \frac{5}{12}$

ACE Engineering Publications	60					D	iscre	te Ma	athe	matio	CS	
Random Variables			$=\left(\frac{a+1}{2}\right)^n$									
17. Ans: 0.75 (No range)												
Sol: Total probability = $\int_{-\infty}^{\infty} f(x) dx = 1$		 20. Ans: (d) Sol: Given that mean = E(X) = 1 										
-∞												
$\Rightarrow \int_{a}^{b} cx dx = 1$			nd Va			` ´						
0			E((2 + 2))		-			-				
\Rightarrow c = $\frac{1}{2}$		$= E(X^2) + 4 E(X) + 4$										
$P(X > 1) = \int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{2} \frac{1}{2} x(dx) = \frac{3}{4} = 0.75$			Given V(X) = 5 $\Rightarrow E(X^2) - (E(X))^2 = 5$									
$P(X > 1) = \int_{1}^{1} f(X) dX = \int_{1}^{1} \frac{1}{2} x(dX) = -\frac{1}{4} = 0.75$		$\Rightarrow E(X^2) - (E(X))^2 = 5$ $\Rightarrow E(X^2) = 5 + 1 = 6$										
11E				-								
18. Ans: 1.944 range 1.94 to 1.95 0.1. The second se		чо È	E((2 + 2	X) ⁻) =	• 6 + 4	4(1) -	+ 4 =	14				
Sol: The probability distribution for Z is		21. Ans: (a)										
Z 0 1 2 3 4 5				· 7,		×	DAT					
		Sol: 1	Total P	robab	ility =	$= \sum_{x=1}$	P(X =	= x) =	= 1			
$\mathbf{P(Z)} \frac{6}{36} \frac{10}{36} \frac{8}{36} \frac{6}{36} \frac{4}{36} \frac{2}{36}$		_	$\Rightarrow \sum_{n=1}^{\infty} \mathbf{k}$	(1 — f	x^{-1}	-1	1					
		_	$\rightarrow \sum_{x=1}^{r}$			V						
$E(Z) = \Sigma Z \cdot P(Z)$		=	⇒ K(1	+ (1–	β) +	(1 –	β) ² +		∞)) = 1		
$=\frac{1}{36}(0(6)+1(10)+2(8)+3(6)+4(4)+5(2))$		$\langle $	⇒]	X	= 1							
$=\frac{70}{36}=\frac{35}{18}=1.944$ Sin	ce 1	1995	$\Rightarrow \frac{1}{1-()}$ $\Rightarrow K =$	l – β) β								
36 18		-	- X -	þ								
19. Ans: (c)			Ans : 2	09								
Sol: $E(a^{x}) = \sum_{k=0}^{n} a^{k} \cdot P(X = k)$		Sol:										
$=\sum_{k=0}^{n}a^{k}C(n,k)\left(\frac{1}{2}\right)^{k}\cdot\left(\frac{1}{2}\right)^{n-k}$		x 2	2 –3	4	-5	6	-7	8	-9	10	-11	12
K-0 (-) (-)		$\mathbf{P}(\mathbf{x}) = \frac{1}{3}$	$\frac{1}{6}$ $\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{1}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$
$= \frac{1}{2^{n}} \sum_{k=0}^{n} a^{k} C(n,k) a^{k} . (1)^{n-k}$		3	50	50	50	50	36	36	36	36	36	36
	I											

$$E(X) = \sum x P(x) = (-3) \times \frac{1}{6} + 6 \times \frac{1}{2} + 9 \times \frac{1}{3} = \frac{11}{2}$$

$$E(X^{2}) = \sum x^{2} P(x) = 9 \times \frac{1}{6} + 36 \times \frac{1}{2} + 81 \times \frac{1}{3} = \frac{93}{2}$$

$$\therefore E(2X + 1)^{2} = E(4X^{2} + 4X + 1)$$

$$= 4E(X^{2}) + 4E(X) + 1$$

$$= 4 \times \frac{93}{2} + 4 \times \frac{11}{2} + 1$$

$$= 209$$

23. Ans: (d)

Sol: Let X = Amount your win in rupees The probability distribution of X is shown below.

X	1	-2	3	-4	5	-6	
P(X)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	

The required expectation

$$= E(X) = \sum [X. P(X)]$$
$$= \frac{1}{6} (1 - 2 + 3 - 4 + 5 - 6) = \frac{-1}{2}$$

24. Ans: 0.1

Sol: E(W) =
$$\int_0^{10} 0.003 V^2 f(V) dV$$

= $\int_0^{10} 0.003 V^2 \frac{1}{10} dV$
= 0.1 *lb/ft²*
Where f(V)= probability density function of V
25. Ans: (b)
Sol: By Chebyshev inequality

$$\Pr(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

26. Ans: 0

Sol: Let X = Number of rupees you win on each throw. The probability distribution of X is $E(X) = \sum X.P(X) = 0$

27. Ans: (c)

Sol: Let X = Number of rupees you win on each throw.

The probability distribution of X is

	X	0	1	2	3	4	5			
Nc	P(X)	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{8}{36}$	$\frac{6}{36}$	$\frac{4}{36}$	$\frac{2}{36}$			
	$E(X) = \sum X.P(X) = \frac{35}{18}$									

28. Ans: 0.23range 0.22 to 0.24Sol: Let X = number of ones in the sequence

n = 5
p = probability for digit 1 = 0.6
q = 0.4
Required probability = P(X = 2)
= C(5, 2).
$$(0.6)^2$$
. $(0.4)^3$
= 0.23

29. Ans: 0.25

Since

19

range 0.24 to 0.26

Sol: Given that, mean = 2(variance)

 $\Rightarrow np = 2(npq) \dots (1)$ further, np + npq = 3 \ldots (2) Solving, n = 4, p = q = $\frac{1}{2}$

P(X = 3) = C(4, 3).
$$\left(\frac{1}{2}\right)^3 \cdot \left(\frac{1}{2}\right) = \frac{1}{4} = 0.25$$

ACE Engineering Publications

Engineering Publications	62	Discrete
30. Ans: (d)	3	33. Ans: 0.224 range 0.2 to 0.3

Sol: Average calls per minute =
$$\frac{180}{60} = 3$$

Here, we can use poisson distribution with $\lambda=3$.

Required Probability =
$$P(X = 2) = \frac{e^{-3}.3^2}{2!}$$

$$=\frac{e^{-3}.9}{2}=4.5 e^{-3}=0.224$$

34. Ans: 0.168

Sol: λ = average number of cars pass that point

in a 12 min period =
$$\frac{15}{60/12} = 3$$

Using the Poisson distribution,

$$\Pr(\mathbf{k}) = \mathrm{e}^{-\lambda} \frac{\lambda^{k}}{\mathbf{k} \,!}$$

$$\therefore$$
 Required probability $Pr(4) = e^{-3} \frac{3^4}{4!} = 0.168$

35. Ans: 0.7 range 0.65 to 0.75 Sol: The probability density function of

$$X = f(x) = \begin{cases} \frac{1}{10} & \text{for } 0 \le x \le 10 \\ 0 & \text{otherwise} \end{cases}$$
$$P\{\left(X + \frac{10}{X}\right) \ge 7\} = \{P(X^2 + 10 \ge 7X) \\ = P(X^2 - 7X + 10 \ge 0) \\ = P\{(X - 5) \ (X - 2) \ge 0\} \\ = P(X \le 2 \text{ or } X \ge 5) \\ = 1 - P(2 \le X \le 5) \\ = 1 - \int_2^5 f(x) \ dx \\ = 1 - \int_2^5 \frac{1}{10} \ dx$$

 $=1-\frac{3}{10}=0.7$

Required probability =
$$P(X \le 1)$$

values.

= P(X = 0) + P(X = 1) $= {}^{5}C_{0} \times \left(\frac{1}{2}\right)^{5} + {}^{5}C_{1} \times \left(\frac{1}{2}\right)^{4} \left(\frac{1}{2}\right)^{4}$ $=\frac{1+5}{32}=\frac{6}{32}$

Sol: Let X = Number of times we get negative

 $P(X = k) = C(n, k) p^k q^{n-k}$

By using Binomial Distribution,

Where $p = \frac{1}{2}$, $q = \frac{1}{2}$, n = 5

31. Ans: (d)

Sol: We can choose four out of six winning in C(6, 4) different ways and if the probability of winning a game is p, then the probability of winning four out of six games

$$= C(6, 4) p4(1-p)2$$
$$= 15(p4 - 2p5 + p6)$$

32. Ans: 0.5706

Sol: The odds that the program will run is 2:1. Therefore, Pr(a program will run) = $\frac{2}{2}$. Let B denote the event that four or more programs will run and A_i denote that exactly j program will run. Then,

$$Pr(B) = Pr(A_4 \cup A_5 \cup A_6)$$

= Pr(A_4) + Pr(A_5) + Pr(A_6)
= C(6,4) $\left(\frac{2}{3}\right)^4 \left(\frac{1}{3}\right)^2 + C(6,5) \left(\frac{2}{3}\right)^5 \left(\frac{1}{3}\right) + C(6,6) \left(\frac{2}{3}\right)^5$
= 0.5706

ACE Engineering Publications

Engineering Publications		63		CSIT-Postal Coaching Solutions
36. Ans: (a)				Ans: 1.095
Sol: We can use Exp mean $\mu = 5$	oonential Distribution with	n s	Sol:	$\mu = \text{Mean} = \sum_{k=1}^{5} \left\{ x_k \cdot P(X = k) \right\}$
Let X is waiting ti	ime in minutes.			= 1(0.1) + 2(0.2) + 3(0.4) + 4(0.2) + 5(0.1)
•	ty function of X is			= 3
$f(x) = 0.2 e^{-(0.2)}$				$P(X \le 2) = 0.1 + 0.2 = 0.3$
	if $x < 0$ pability = P(0 < X < 1)			$P(X \le 3) = 0.1 + 0.2 + 0.4 = 0.7$
1	$(0.2)^{x} dx = 0.1813$			$\therefore \text{ Median} = \frac{2+3}{2} = 2.5$
0				Mode = The value of X at which $P(X)$ is
37. Ans: (a)				maximum = 3
Sol: $\sum_{r=1}^{\infty} P(X=r) = 1$	ENGINE	ERI	NG	Variance = $\sum_{k=1}^{5} x_k^2 \cdot P(X = k) - \mu^2$
\Rightarrow k(1 + (1- β) + ($(1-\beta)^2 + \dots \infty) = 1$			= 10.2 - 9 = 1.2
$\Rightarrow k \left\{ \frac{1}{1 - (1 - \beta)} \right\} =$	=1			Standard deviation = $\sqrt{1.2} = 1.095$
$\Rightarrow k = \beta$ $\therefore P(X = r) = \beta(1 - \beta)$	$-\beta)^{r-1}$	2	40.	Ans: $k = 6$, Mean $= \frac{1}{2}$, Median $= \frac{1}{2}$,
This function is n	haximum when $r = 1$.			Mode = $\frac{1}{2}$ and S.D = $\frac{1}{2\sqrt{5}}$
\therefore mode = 1				
20 1 14 24	Sin		Sol:	We have $\int_{-\infty} f(x) dx = 1$
38. Ans: Mean = 34 35, 36 & SD = 4	, Median = 35, Modes = .14			$\int_{0}^{1} k(\mathbf{x} - \mathbf{x}^{2}) d\mathbf{x} = 1$
Sol: Mean = $\frac{\sum x_i}{\sum x_i} = 34$				$\int_{0}^{\infty} k(x-x^2) dx = 1$
n n	·			$\rightarrow 1 \left[\left(x^2 \right)^1 \left(x^3 \right)^1 \right]_{-1}$
	ddle most value of the data			$\Rightarrow \mathbf{k} \left[\left(\frac{\mathbf{x}^2}{2} \right)_0^1 - \left(\frac{\mathbf{x}^3}{3} \right)_0^1 \right] = 1$
	data points in increasing	g		$\Rightarrow k\left(\frac{1}{2}-\frac{1}{3}\right)=1$
order or decreasin Mode = 26	ng order.			
Mode = 36 S.D = 4.14				$\Rightarrow k\left(\frac{3-2}{6}\right) = 1 \Rightarrow k = 6$
0.00 1.11				

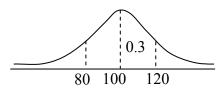
ACE

Mean = $\int_{-\infty}^{\infty} xf(x) dx = \int_{-\infty}^{1} 6(x^2 - x^3) dx$ $= 6\left[\frac{x^{3}}{3} - \frac{x^{4}}{4}\right]_{0}^{1} = 6\left[\frac{1}{3} - \frac{1}{4}\right] = \frac{1}{2}$ Median is that value 'a' for which $P(X \le a) = \frac{1}{2} \int_{0}^{a} 6(x - x^{2}) dx = \frac{1}{2}$ $\Rightarrow 6\left(\frac{a^2}{2}-\frac{a^3}{3}\right)=\frac{1}{2}$ $\Rightarrow 3a^2 - 2a^3 = \frac{1}{2}$ $\Rightarrow a = \frac{1}{2}$ Mode a that value at which f(x) is max/min \therefore f(x) = 6x - 6x² $f^{l}(x) = 6 - 12x$ For max or min $f^{1}(x) = 0 \Rightarrow 6 - 12x = 0$ $\Rightarrow x = \frac{1}{2} f^{11}(x) = -12$ $f^{11}\left(\frac{1}{2}\right) = -12 < 0$ \therefore maximum at x = 1/2 \therefore mode is 1/2 $S.D = \sqrt{E(x^2) - (E(x))^2}$ Since

41. Ans: 0.2

 $=\frac{1}{2\sqrt{5}}$

Sol: The area under normal curve is 1 and the curve is symmetric about mean.



$$\therefore P(100 < X < 120) = P(80 < X < 120)$$
$$= 0.3$$
Now, P(X < 80) = 0.5 - P(80 < X < 120)
$$= 0.5 - 0.3 = 0.2$$

42. Ans: 4

Sol: If n missiles are fired then probability of not hitting the target = $[1 - (0.3)]^n = (0.7)^n$ \Rightarrow Probability of hitting the target atleast once = $1 - (0.7)^n$ We have to fired the smallest +ve integer n so that, $\{1 - (0.7)^n\} > \frac{75}{100}$ $\Rightarrow \{1 - (0.7)^n\} > 0.75$ The smallest +ve integer satisfying this inequality is n = 4

43. Ans: 0.865 range 0.86 to 0.87

Sol: Let X = number of cashew nuts per biscuit. We can use Poisson distribution with mean

$$\lambda = \frac{2000}{1000} = 2$$

$$P(X = k) = \frac{e^{-\lambda} \cdot \lambda^k}{\angle k} \quad (k = 0, 1, 2...)$$

Probability that the biscuit contains no cashew nut = P(X = 0)

$$= e^{-\lambda} = e^{-2} = 0.135$$

Required probability = 1 - 0.135 = 0.865

44. Ans: (b)

19

Sol: Let A = getting red marble both times B = getting both marbles of same color

$$\mathbf{P}(\mathbf{A} \cap \mathbf{B}) = \frac{3}{10} \cdot \frac{2}{10}$$

ACE Engincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

64

CSIT-Postal Coaching Solutions

$$P(B) = \frac{7}{10} \cdot \frac{6}{10} + \frac{3}{10} \cdot \frac{2}{10}$$
Required probability $= \frac{P(A \cap B)}{P(B)} = \frac{6}{48} = \frac{1}{8}$
45. Ans: (d)
Sol: Let E_1 = The item selected is produced machine C and E_2 = Item selected is defective

$$P(E_1 \wedge E_2) = \frac{20}{100} \cdot \frac{5}{100}$$
Required probability

$$= P(E_1 \wedge E_2) = \frac{20}{100} \cdot \frac{3}{100} \left(\frac{4}{100}\right) + \frac{20}{200} \left(\frac{5}{100}\right)$$
Required probability

$$= P(E_1 / E_2) = \frac{P(E_1 \wedge E_2)}{P(E_2)} = \frac{100}{370} = \frac{10}{37}$$
6. Linear Algebra
01. Ans: 3
Sol: If rank of A is 1, then A has only one independent row.
The elements in R₁ and R₂ are proportional

$$\Rightarrow \frac{3}{P} = \frac{P}{P} = \frac{P}{P}$$

$$\Rightarrow P = 3$$
02. Ans: 25
Sol: Let $A = \left(\frac{x}{y} + \frac{y}{y}\right)$
Det $A = x(10 - x) - y^2$
Event the theoret builty endependent row. The elements is R_1 and R_2 are proportional

$$\Rightarrow \frac{3}{P} = \frac{P}{P} = \frac{P}{P}$$

$$\Rightarrow P = 3$$
02. Ans: 25
Sol: Let $A = \left(\frac{x}{y} + \frac{y}{y}\right)$
Det $A = x(10 - x) - y^2$
Event the theoret builty endependent row. The element is R_1 and R_2 are proportional

$$\Rightarrow \frac{3}{P} = \frac{P}{P} = \frac{P}{P}$$

$$\Rightarrow P = 3$$
D2. Ans: 25
Sol: Let $A = \left(\frac{x}{y} + \frac{y}{y}\right)$
Det $A = x(10 - x) - y^2$
Event the theoret builty endependent row.
The element is R_1 and R_2 are proportional

$$\Rightarrow \frac{3}{P} = \frac{P}{P} = \frac{P}{P}$$

$$\Rightarrow P = 3$$
D2. Ans: 25
Sol: Let $A = \left(\frac{x}{y} + \frac{y}{y}\right)$
Det $A = x(10 - x) - y^2$
Event the theoret builty endependent row.
The element is R_1 and R_2 are the mean theoret the theoret the transition R_1 and R_2 are the product the theoret the transition R_1 and R_2 are the product the theoret the transition R_1 and R_2 are the product the theoret theoret theoret theoret theoret the transition R_1 and R_2 are the theoret theo

ACE Engineering Publications

06. Ans: (b)

Sol: S₁) If A and B are symmetric then AB need not be equal to BA

for example, if
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

and $B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

then A and B are symmetric but AB is not equal to BA.

- \therefore S₁ is false.
- S_2) If A and B are symmetric then AB BA
 - is a skew-symmetric matrix of order 3.

 $\therefore |AB - BA| = 0$

(:: determinant of a skew-symmetric matrix of odd order is 0) Hence, S_2 is true.

07. Ans: (a)

Sol: Each element of the matrix in the principal diagonal and above the diagonal, we can choose in q ways.

Number of elements in the principal diagonal = n

Number of elements above the principal

diagonal =
$$n\left(\frac{n}{2}\right)$$

By product rule,

number of ways we can choose these

elements =
$$q^n \cdot q^{n\left(\frac{n-1}{2}\right)}$$

Required number of symmetric

matrices= $q^{n\left(\frac{n+1}{2}\right)}$

08. Ans: (b)

Sol: A =
$$\begin{bmatrix} n-1 & -1 & \dots & -1 \\ -1 & n-1 & \dots & -1 \\ \dots & \dots & \dots & \dots \\ -1 & -1 & \dots & n-1 \\ R_1 \to R_1 + R_2 + \dots + R_n - R_n - R_n + R_n - 1 \\ A = \begin{bmatrix} 1 & 1 & \dots & 1 \\ -1 & n-1 & \dots & -1 \\ \dots & \dots & \dots \\ -1 & -1 & \dots & n-1 \end{bmatrix}$$

 $R_2 {\rightarrow} R_2 {+} R_1, R_3 {\rightarrow} R_3 {+} R_1, \ldots, R_{n-1} {\rightarrow} R_{n-1} {+} R_1,$

09. Ans: (a)

Sol: S1 is true because, any subset of four linearly independent sequence of vectors is always linearly independent.

S2 is not necessarily true,

For example, x_1 , x_2 and x_3 can be linearly independent and x_4 is linear combination of x_1 , x_2 and x_3 .

10. Ans: (c)

19

Sol: The given matrix is skew-symmetric. Determinant of a skew symmetric matrix of odd order is 0.
∴ Rank of A < 3. Determinant of a non-zero skew symmetric matrix is ≥ 2

$$\therefore$$
 Rank of A = 2

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Discrete Mathematics

1

66

11. Ans: (a)	
Sol: Let $A = \begin{bmatrix} 1 & -2 & 1 \\ 2 & 0 & \alpha \\ -2 & 2 & \alpha \end{bmatrix}$ For the system of linear equations to have a unique solution, det(A) $\neq 0$. $\Rightarrow (0 - 2\alpha) + 2(2\alpha + 2\alpha) + (4 - 0) \neq 0$ $\Rightarrow -2\alpha + 8\alpha + 4 \neq 0$ $\Rightarrow 6\alpha + 4 \neq 0$ $\Rightarrow 6\alpha \neq -4$ $\Rightarrow \alpha \neq \frac{-2}{3}$ \therefore Option (a) is correct. 12. Ans: (c) Sol: $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 4 & 3 & 10 \end{bmatrix}$ Applying $R_2 - 2R_1, R_3 - 4R_1$ $\sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & -2 \\ 0 & -5 & -2 \end{bmatrix}$ Applying $R_3 - R_1$ Since 1	If rank of A is less than number of variables, then the system AX = B cannot have unique solution. Hence, option (c) is not true. If rank of A is less than order of A, then the matrix A is singular. $\therefore A^{-1} \text{ does not exist}$ 13. Ans: (b) Sol: $D = \begin{vmatrix} k & 1 & 1 \\ 1 & k & 1 \\ 1 & 1 & k \end{vmatrix}$ $= k^3 + 1 + 1 - k - k - k$ $= (k-1)^2 (k+2)$ Thus, the system has a unique solution when $(k-1)^2 (k+2) \neq 0$ $\Rightarrow k \neq 1$ and $k \neq -2$ 14. Ans: (c) Sol: The augmented matrix is $(A \mid B) = \begin{bmatrix} 4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 1 \end{bmatrix}$ $R_2 \Rightarrow 2R_2 - 3R_1 \begin{bmatrix} 4 & 2 & 1 & 3 \\ 0 & 0 & 5 & 5 \\ 0 & 0 & -1 & -1 \end{bmatrix}$ $R_3 \rightarrow 5R_3 + R_2 \begin{bmatrix} 4 & 2 & 1 & 3 \\ 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ $\rho(A) = \rho(A \mid B) = 2 (< number of variables).$ \therefore The system has infinitely many solutions.

$R_4 - R$	3				
	(1	1	1	3	
	0	-1	-3	-8	
~	0	0	15	21	
	0	0	1 -3 15 0	0)	
$\therefore \rho(A) = \rho(AB) = 3$					
				0	

= no. of variables

Hence, there exists only one solution.

19. Ans: (d)

Sol: If A _{n×n} has n distinct eigen values, then A has n linearly independent eigen vectors. If zero is one of the eigen values of A, then A is singular and A⁻¹ does not exist. If A is singular then rank of A < 3 and A cannot have 3 linearly independent rows.
∴ Only option (d) is correct.

20. Ans: (b)

Sol: A = $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$

The characteristic equations is $d^3 - 18d^2 + 45d = 0$ $\Rightarrow d = 0, 3, 15$ are eigen values of A.

21. Ans: (a)

Sol: Since, A is singular, $\lambda = 0$ is an eigen value. Also, rank of A = 1.

The root $\lambda = 0$ is repeated n - 1 times.

trace of A = n = 0 + 0 + +
$$\lambda_n$$

$$\Rightarrow \lambda_n = n$$

 \therefore The distinct eigen values are 0 and n.

22. Ans: (c)

- Sol: The characteristic equation is
 - $(\lambda 1) (\lambda 2) (\lambda 3) = 0$ $\lambda^{3} - 6\lambda^{2} + 11\lambda - 6 = 0$ By Caley Hamilton's theorem, $A^{3} - 6A^{2} + 11A - 6I = 0$ Multiplying by A^{-1} , $(A^{2} - 6A + 11I) = 6A^{-1}$
- 23. Ans: (b)

Sol: Let
$$A = \begin{bmatrix} 10 & -4 \\ 18 & -12 \end{bmatrix}$$

Consider $|A - \lambda I| = 0$
 $\Rightarrow \lambda^2 - (-2)\lambda + (-120 + 72) = 0$
 $\Rightarrow \lambda^2 + 2\lambda - 48 = 0$
 $\therefore \lambda = 6, -8$ are eigen values of A.
For $\lambda = 6$, the eigen vectors are given by
 $[A - 6I] X = O$
 $\Rightarrow \begin{bmatrix} 4 & -4 \\ 18 & -18 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\Rightarrow x - y = 0$
 $\Rightarrow x = y$
The eigen vectors are of the form
 $X_1 = k_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
For $\lambda = -8$, the eigen vectors are given by
 $[A+8I] X = O$
 $\Rightarrow \begin{bmatrix} 18 & -4 \\ 18 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $\Rightarrow 18x - 4y = 0$

The eigen vectors are of the form

9x - 2y = 0

$$\mathbf{X}_1 = \mathbf{k}_2 \begin{bmatrix} 2\\ 9 \end{bmatrix}$$

ACE Engineering Publications

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

 \Rightarrow

Since

	ACE Engineering Publications	70		Discrete Mathematics
	Ans: (c) The given matrix is upper triangular. The eigen values are same as the diagona			Ans: 7 : Given A = $\begin{bmatrix} 8 & -6 & 2 \\ -6 & x & -4 \\ 2 & -4 & 3 \end{bmatrix}$
	elements 1, 2, -1 and 0. The smallest eigen value is $\lambda = -1$. The eigen vectors for $\lambda = -1$ is given by $(A - \lambda I) X = 0$ $\Rightarrow (A + I)X = 0$			$\begin{bmatrix} 2 & -4 & 3 \end{bmatrix}$ eigen vector X = $\begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$
	$\Rightarrow \begin{bmatrix} 2 & 1 & -1 & 2 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = 0$			We know that $AX = \lambda X$ $\begin{bmatrix} 8 & -6 & 2 \\ -6 & x & -4 \\ 2 & -4 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} = \lambda \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$
	$\Rightarrow w = 0, y = 0, 2x - z = 0$ $\Rightarrow X = k[1 \ 0 \ 2 \ 0]^{T}$	ERI	N	$\begin{bmatrix} 30\\-16-2x\\15 \end{bmatrix} = \begin{bmatrix} 2\lambda\\-2\lambda\\\lambda \end{bmatrix}$
25.	Ans: (b)			Clearly eigen value $\lambda = 15$
Sol:	Let λ be the third eigen value.			$\Rightarrow -16 - 2x = -30$
	Sum of the eigen values of $A = Trace(A)$			$\therefore -2x = -14$
	$\Rightarrow (-3) + (-3) + \lambda = -2 + 1 + 0$			x = 7
	$\Rightarrow \lambda = 5$,	77	Ans: 2
	The eigen vector for $\lambda = 5$ is given by			: If λ is an Eigen values of A, then
	[A-5I]X = O $\Rightarrow \begin{bmatrix} -7 & 2 & -3 \\ 2 & -4 & -6 \\ -1 & -2 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ Sin	ce 1	9	$\lambda^4 - 3\lambda^3$ is an Eigen value of $(A^4 - 3A^3)$ Putting $\lambda = 1, -1$ and 3 in $(\lambda^4 - 3\lambda^3)$, we get the eigen values of $(A^4 - 3A^3)$ are -2, 4, 0
	$\Rightarrow \frac{x}{-24} = \frac{y}{-48} = \frac{z}{24}$ $\Rightarrow \frac{x}{1} = \frac{y}{2} = \frac{z}{-1}$			Trace of $(A^4 - 3A^3) = $ Sum of eigen values of $(A^4 - 3A^3) = 2$
	$\therefore \text{ The third eigen vector} = \mathbf{k} \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$		28. Sol	Ans: 8 : Given A = $\begin{bmatrix} 1 & 0 & -1 \\ -1 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$
				The characteristic equation is $\lambda^3 - \lambda^2 - 4\lambda + 4 = 0$

Engineering Publications	71 CSIT-Postal Coaching Solutions
By Caley-Hamilton's theorem, $A^3 - A^2 - 4A + 4I = O$ adding 2I on both sides $A^3 - A^2 - 4A + 6I = 2I$ Let $B = A^3 - A^2 - 4A + 6I$ Now $B = 2I$ $\therefore B = 2I = 8$	$(I + A) = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$ $ I + A = 1$ $\therefore I + A \text{ is non-singular and hence invertible.}$
29. Ans: 2 Sol: $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$	32. Ans: 8 Sol: The characteristic equation of M is $\lambda^3 - 12\lambda^2 + a \lambda - 32 = 0 \dots (1)$ Substituting $\lambda = 2$ in (1), we get $a = 36$ Now, the characteristic equation is $\lambda^3 - 12\lambda^2 + 36\lambda - 32 = 0$
$\begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$ Clearly $\lambda = 2$ 30. Ans: (d) Sol: We have, $A^{T} = -A$ (:: A is skew-	$\Rightarrow (\lambda - 2) (\lambda^2 - 10\lambda + 16) = 0$ $\Rightarrow \lambda = 2, 2, 8$ $\therefore \text{ The largest among the absolute values of the eigen values of M = 8.}$
symmetric) $\Rightarrow A + A^{T} = (A - A) = O$ Rank of $(A + A^{T}) = 0$ Since \therefore Number of linearly independent eigenvectors = n - rank of $(A + A^{T}) = n$	33. Ans: (b) Sol: $A = \begin{bmatrix} 1 & 2 & -3 \\ -3 & -4 & 13 \\ 2 & 1 & -5 \end{bmatrix}$ Applying $R_2 + 3R_1, R_3 - 2R_1$
31. Ans: (a) Sol: For upper triangular matrix the eigen values are same as the elements in the principal diagonal. $A = \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix}$	3

ACE

$$\therefore U = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 2 & 4 \\ 0 & 0 & 7 \end{bmatrix} \text{ and } L = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 2 & \frac{-3}{2} & 1 \end{bmatrix}$$

[The corresponding coefficients in the elementary operations]

7. Calculus

01. Ans: 0.8165 range 0.81 to 0.82 **Sol:** Let $f(x) = \frac{1+x}{2+x}$ and $g(x) = \frac{1 - \sqrt{x}}{1 - x}$ $\lim_{x\to 1} f(x) = \frac{2}{3}$ (finite) $\lim_{x \to 1} g(x) = \frac{1}{2}$ (finite) Since, both the limits are finite. The given limit = $\left(\frac{2}{3}\right)^{\frac{1}{2}} = \sqrt{\frac{2}{3}} = 0.8165$ Since 02. Ans: (a) **Sol:** Require formula = $\underset{R \to 0}{\text{Lt}} \frac{E}{R} (1 - e^{-Rt/L})$ $= \operatorname{Lt}_{R \to 0} \frac{E(e^{-Rt/L})\frac{t}{L}}{1}$ (By L.Hospital's Rule) $=\frac{\mathrm{Et}}{\mathrm{L}}$

- 03. Ans: (c)
- **Sol:** f(x) is in $\frac{0}{0}$ form

By L-Hospital's rule

$$\lim_{x \to a} f(x) = \lim_{x \to a} \left[\frac{\sqrt{2a^3 x - x^4} - a(a^2 x)^{\frac{1}{3}}}{a - (ax^3)^{\frac{1}{4}}} \right]$$

By L-Hospital's rule

$$= \operatorname{Lt}_{x \to a} \left[\frac{\frac{2a^{3} - 4x^{3}}{2\sqrt{2a^{3}x - x^{4}}} - \frac{1}{3}a^{\frac{5}{3}}x^{\frac{7}{4}}}{-a^{\frac{1}{4}}\frac{3}{4}x^{\frac{-1}{4}}} \right]$$
$$= \frac{\left(\frac{-4a}{3}\right)}{\left(\frac{-3}{4}\right)} = \frac{16a}{9}$$

04. Ans: (c)
Sol: (a) f(x) =|x| is not differentiable at x = 0
(b) f(x) = cot x is neither continuous nor differentiable at x = 0
(c) f(x) = sec x is differentiable in the interval (-π/2, π/2) and hence in the interval [-1, 1]
(d) f(x) = cosec x is neither continuous nor differentiable at x = 0
05. Ans: (a)
Sol: we have Lt f(x)=Lt f(x)=f(1)

$$\therefore f(x) \text{ is continuous at } x = 1$$
$$f^{1}(1-) = \underset{h \to 0-}{\text{Lt}} \left[\frac{f(1+h) - f(1)}{h} \right]$$

$$= \lim_{h \to 0^{-}} \left[\frac{(1+h)-1}{h} \right] = 1$$

$$f^{1}(1+) = \lim_{h \to 0^{+}} \left[\frac{f(1+h)-f(1)}{h} \right]$$

$$= \lim_{h \to 0^{+}} \left[\frac{\{2(1+h)-1\}-1}{h} \right] = 2$$

 $\therefore f^{l}(1-) \neq f^{l}(1+)$ Hence, f(x) is not differentiable at x = 1.

06. Ans: (a)

Sol: Since, f is differentiable at x = 2, f'(2-) = f'(2+) $\Rightarrow (2x)_{x=2} = m$ \Rightarrow m = 4 Since, f is continuous at x = 2 $(x^{2})_{x=2} = (mx + b)_{x=2}$ $\Rightarrow 4 = 2m + b$ $\Rightarrow b = -4$ Hence, option (a) is correct.

07. Ans: (c)

Sol: By Lagrange's theorem,

$$f'(C) = \frac{f(8) - f(1)}{8 - 1}$$
$$1 - \frac{4}{C^2} = \frac{8.5 - 5}{7}$$
$$C = \pm 2\sqrt{2}$$
But only, $C = 2\sqrt{2} \in (1, 8)$

c(1)

08. Ans: (a) **Sol:** Given $f(x) = 3x^2 + 4x - 5$ f'(x) = 6x + 4

CSIT-Postal Coaching Solutions

By Lagrange's Mean Value Theorem, there exist a value $c \in (1, 3)$ such that

$$f'(c) = \frac{f(3) - f(1)}{3 - 1}$$

= $\frac{32}{2} = 16$

09. Ans: 2.5 range 2.49 to 2.51

Sol: By Cauchy's mean value theorem,

$$\frac{f'(c)}{g'(c)} = \frac{f(3) - f(2)}{g(3) - g(2)}$$
$$\Rightarrow -e^{2c} = \frac{e^3 - e^2}{e^{-3} - e^{-2}}$$
$$\Rightarrow c = 2.5$$

10. Ans: (a)

Sol: The conditions of Cauchy's theorem hold good for f(x) and g(x).

> By Cauchy's theorem, there exists a value c such that

$$\frac{f'(c)}{g'(c)} = \frac{f(3) - f(2)}{g(3) - g(2)}$$
$$\frac{\left(\frac{-1}{c^2}\right)}{\left(\frac{-2}{c^3}\right)} = \frac{\left(\frac{1}{3} - \frac{1}{2}\right)}{\left(\frac{1}{9} - \frac{1}{4}\right)}$$
$$\Rightarrow c = 2.4$$

11. Ans: (a)

Since

Sol:
$$f(x) = \cosh x + \cos x$$

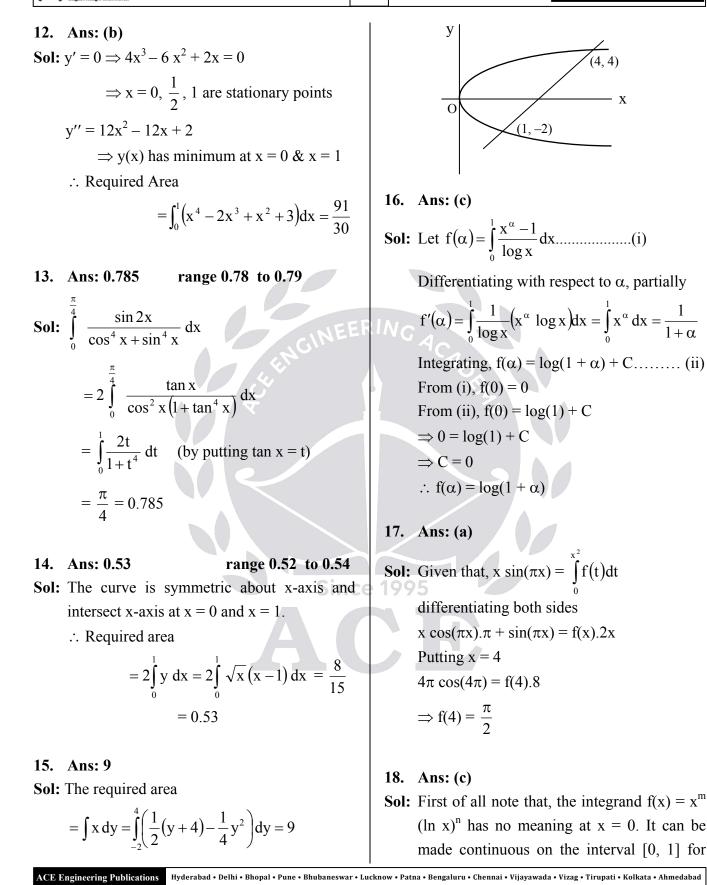
 $f'(x) = \sinh x - \sin x \implies f'(0) = 0$
 $f''(x) = \cosh x - \cos x \implies f''(0) = 0$
 $f'''(x) = \sinh x + \sin x \implies f'''(0) = 0$
 $f'''(x) = \cosh x + \cos x \implies f'''(0) = 2 > 0$
 $\therefore f(x)$ has a minimum at $x = 0$

ACE Engineering Publications

ACE Engineering Publications

74

Discrete Mathematics



EXAMPLE 75
EXIT-Postal Coaching Solutions
any m > 0 and n > 0, by putting f(0) = 0.
Indeed
$$\lim_{x \to +\infty} x^m (\ln x)^n = \lim_{x \to +\infty} \left\{ x^m \ln x \right\}^n = 0$$

Hence, in particular, it follows that the integral I_n exists at m > 0, n > 0. To compute it we integrate by parts, putting
 $u = (\ln x)^n$ $dv = x^m dx$, $du = \frac{n(\ln x)^{n-1}}{x} dx$, $v = \frac{x^{m-1}}{x+1}$.
Hence,
 $\int_0^1 x^m (\ln x)^n dx = \frac{x^{m-1}}{x} dx$, $v = \frac{x^{m-1}}{m+1}$.
Hence,
 $\int_0^1 x^m (\ln x)^n dx = \frac{x^{m-1}}{x} dx$, $v = \frac{x^{m-1}}{m+1}$.
Hence,
 $\int_0^1 x^m (\ln x)^n dx = \frac{x^{m-1}}{x} \int_0^1 \frac{n}{m+1} \int_0^1 \frac{n}{m+1} \int_0^1 x^m (\ln x)^{p-1} dx$
 $= -\frac{n}{m} + 1$.
The formula obtained reduces I, to I_{n-1}. In particular, with a natural n, taking into account that
 $I_0 = \int_0^1 x^m dx = \frac{1}{m+1}$
we get,
 $I_n = (-1)^n \frac{n!}{(m+1)^{n-1}}$.
19. Ans: (c)
Soi: $\int_0^1 \frac{dx}{\sqrt{(1+a^2 + x^2)^2}}$
 $= 2\int_0^2 \frac{dx}{(1+a^2 + x^2)^2}$.
 $[:: Integrand is seven function]$
 $= 2\int_0^2 \frac{dx}{(b^2 + x^2)^2}$. Put x = b tanθ
20. Ans: (b)
Subsci $\int_0^{\pi} \frac{1}{\sqrt{(1+a^2 + x^2)^2}}$. Put x = b tanθ
21. Construction of the set of the set

r

ACE Engineering Publications	76	Discrete Mathematics
22. Ans: (a) Sol: Given $(f \circ g)(x) = f[g(x)]$ In $(-\infty, 0), g(x) = -x$ $\Rightarrow f[g(x)] = f(-x)$ $\Rightarrow f[g(x)] = x^2$ $\therefore f[g(x)]$ has no points of discontinuities in $(-\infty, 0).$		$\Rightarrow 3c^{2} - 6c + 2 = 0$ $\Rightarrow c = \frac{6 \pm \sqrt{36 - 24}}{6} = 1 \pm \frac{1}{\sqrt{3}}$ $\therefore c = (1 + \frac{1}{\sqrt{3}}) \in (1, 2)$ = 1.577 Ans: (b)
23. Ans: (c) Sol: $y = \underset{x \to \infty}{\text{Lt}} (1 + x^2)^{e^{-x}}$ (∞^0 form) Taking logarithms $\log y = \underset{x \to \infty}{\text{Lt}} e^{-x} .\log(1 + x^2)$ (0. ∞ form) $= \underset{x \to \infty}{\text{Lt}} \frac{\log(1 + x^2)}{e^x}$ (By L Hospital's rule) $= \underset{x \to \infty}{\text{Lt}} \left[\frac{2x}{(1 + x^2)} e^x \right]$ (By L Hospital's rule) $= \underset{x \to \infty}{\text{Lt}} \left[\frac{2x}{(1 + x^2)e^x} \right]$ ($\frac{\infty}{\infty}$ form) $= \underset{x \to \infty}{\text{Lt}} \left[\frac{2}{(1 + x^2e^x + 2xe^x)} \right]$ [\because By L Hospital's rule] = 0 \therefore $y = e^0 = 1$ 24. Ans: (a) Sol: $f(x) = x(x - 1)(x - 2)$ $= x^3 - 3x^2 + 2x$ $f'(x) = 3x^2 - 6x + 2$	26. Sol:	Lt $\int_{x\to 0}^{x^2} \frac{\sin \sqrt{x} dx}{x^3}$ $\left(\frac{0}{0} \text{ form}\right)$ Applying L-Hospital rule, $= \int_{x\to 0} \frac{\sin x (2x)}{3x^2}$ $= \int_{x\to 0} \frac{2\sin x}{3x} = \frac{2}{3}$ Ans: (b) Given $f(x) = x^3 - 3x^2 - 24x + 100 \text{ in } [-3, 3]$ $\Rightarrow f'(x) = 3x^2 - 6x - 24, f''(x) = 6x - 6$ Consider $f'(x) = 0$ $\Rightarrow 3x^2 - 6x - 24 = 0$ $\Rightarrow x = -2, 4$ are stationary points At $x = -2$, $f''(-2) < 0$ $\Rightarrow f(x)$ has a maximum at $x = -2$ At $x = 4$, $f''(4) > 0$ $\Rightarrow f(x)$ has a minimum at $x = 4$ But $x = 4 \notin [-3, 3]$ \therefore Global minimum of $f(x) = \min\{f(-3), f(3)\}$ $= \min\{118, 28\}=28$
Consider $f'(c) = 0$ ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	Lucknow • Patn	a • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	CSIT-Postal Coaching Solutions
Sol: Let $f(x) = x^2 - x^4$ Then $f'(x) = 2x - 4x^3$ and $f''(x) = 2 - 12x^2$ For maximum, we have f'(x) = 0 $\Rightarrow 2x(1 - 2x^2) = 0$ $\Rightarrow x = 0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$ Here $f''(0) > 0, f''(\frac{1}{\sqrt{2}}) < 0$ \therefore Area $A = 4xy = 4x \times \frac{\sqrt{1 - x^2}}{2}$ $= 2x\sqrt{1 - x^2}$ $= 2x\sqrt{1 - x^2}$ $= 2 \times \frac{1}{\sqrt{2}} \times \sqrt{1 - \frac{1}{2}} = 1$ 28. Ans: -13 Sol: Given $f(x) = 2x^3 - x^4 - 10$	Consider $f'(x) = 0$ $\Rightarrow 6x^2 - 4x^3 = 0$ $\Rightarrow x = 0, 1.5$ are stationary points But $x = 1.5$ lies outside of $[-1, 1]$ At $x = 0, f''(0) = 0$ and $f'''(0) = 12 > 0$ $\Rightarrow f(x)$ has a minimum $T x = 0$ \therefore The minimum value of $f(x)$ in $[-1, 1] = \min\{f(-1), f(1), f(0)\}$ $= \min\{-13, -9, -10\}$ = -13 Ans: (c) Given $f(x) = (k^2 - 4)x^2 + 6x^3 + 8x^4$ $\Rightarrow f'(x) = 32x^3 + 18x^2 + 2(k^2 - 4)x$ and $f''(x) = 96x^2 + 36x + 2(k^2 - 4)x$ f(x) has local maxima at $x = 0\Rightarrow f''(0) < 0\Rightarrow 2(k^2 - 4) < 0\Rightarrow k^2 - 4 < 0 (or) (k - 2)(k + 2) < 0\therefore -2 < k < 2Ans: (c)f(x) = \int_0^x \frac{\sin t}{t} dtf'(x) = 0 \Rightarrow x = n\piwhere n = 1, 2, 3, \dotsf''(x) = \frac{x \cos x - \sin x}{x^2}Here f''(x) is negative when n is odd.f(x) has a maximum at x = n\pi, where n is odd.$

Engineering Publications	78	Discrete Mathematics
31. Ans: (c) Sol: $f(x) = \frac{50}{3x^4 + 8x^3 - 18x^2 + 60}$ Let F(x) = $3x^4 + 8x^3 - 18x^2 + 60$ F'(x) = $12x^3 + 24x^2 - 36x$ F'(x) = 0 ⇒ x = 0, 1, -3 F''(x) = $36x^2 + 48x - 36$ F''(1) = $48 > 0$ \therefore F(x) has a local minimum at x = 1 ⇒ f(x) has a local maximum at x = 1		$I = \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} \sin^{4} x \cos^{6} x dx$ = $\frac{\pi}{2} \frac{(3 \times 1)(5 \times 3 \times 1)}{10 \times 8 \times 6 \times 4 \times 2} \frac{\pi}{2}$ = $3\pi^{2}/512$ 33. Ans: 4 Sol: $\int_{0}^{2\pi} x \sin x dx = k\pi$ $\Rightarrow \int_{0}^{\pi} x \sin x dx + \int_{\pi}^{2\pi} x \sin x dx = k\pi$
32. Ans: (a) Sol: $I = \int_{0}^{\pi} x \sin^{4} x \cos^{6} x dx \dots (1)^{4}$ $= \int_{0}^{\pi} (\pi - x) \sin^{4} (\pi - x) \cos^{6} (\pi - x) dx$ $I = \int_{0}^{\pi} (\pi - x) \sin^{4} x \cos^{6} x dx \dots (2)$ Adding (1) and (2) $2I = \int_{0}^{\pi} \pi \sin^{4} x \cos^{6} x dx$	ce 1	$\Rightarrow \int_{0}^{\pi} x \sin x dx - \int_{\pi}^{2\pi} x \sin x dx = k\pi$ $\Rightarrow \left[x(-\cos x) + \sin x \right]_{0}^{\pi} + \left[x(\cos x) + \sin x \right]_{\pi}^{2\pi}$ $= k\pi$ $\Rightarrow \pi + 3\pi = k\pi$ $\therefore k = 4$
A		

Г