GATE | PSUs

ELECTRICAL ENGINEERING

Digital Electronics and Microprocessors

Text Book : Theory with worked out Examples and Practice Questions

HYDERABAD | AHMEDABAD | DELHI | BHOPAL | PUNE | BHUBANESWAR | BANGALORE | LUCKNOW PATNA | CHENNAI | VISAKHAPATNAM | VIJAYAWADA | TIRUPATHI | KOLKATA

Digital Electronics & Microprocessors

(Solutions for Volume-1 Class Room Practice Questions)

1. Number Systems

01. Ans: (d)

Sol: $135_x + 144_x = 323_x$ $(1 \times x^2 + 3 \times x^1 + 5 \times x^0) + (1 \times x^2 + 4 \times x^1 + 4 \times x^0)$ $= 3x^2 + 2x^1 + 3x^0$ $\Rightarrow x^2 + 3x + 5 + x^2 + 4x + 4 = 3x^2 + 2x + 3$ $x^2 - 5x - 6 = 0$ (x-6) (x+1) = 0 (Base cannot be negative) Hence x = 6. (OR)

As per the given number x must be greater than 5. Let consider x = 6 $(135)_6 = (59)_{10}$ $(144)_6 = (64)_{10}$ $(323)_6 = (123)_{10}$ $(59)_{10} + (64)_{10} = (123)_{10}$ So that x = 6

02. Ans: (a)

Sol: 8-bit representation of

- $+127_{10} = 01111111_{(2)}$
 - 1's complement representation of -127 = 10000000. 2's complement representation of -127 = 10000001. No. of 1's in 2's complement of -127 = m = 2No. of 1's in 1's complement of -127 = n = 1
 - \therefore m: n = 2:1

03. Ans: (c)

Sol: In 2's complement representation the sign bit can be extended towards left any number of times without changing the value. In given number the sign bit is 'X₃', hence it can be extended left any number of times.

04. Ans: (c)

2 539

16

-0

<u>-0</u> -0

2|8

 $\frac{24}{22}$

Sol: Binary representation of $+(539)_{10}$:

 $(+539)_{10} = (10000 \ 11 \ 0 \ 11)_2 = (00100 \ 0011011)_2$ 2's complement $\rightarrow 110111100101$ Hexadecimal equivalent $\rightarrow (DE5)_H$

05. Ans: 5

Sol: Symbols used in this equation are 0,1,2,3 Hence base or radix can be 4 or higher $(312)_x = (20)_x (13.1)_x$ $3x^2 + 1x + 2x^0 = (2x+0) (x+3x^0+x^{-1})$ $3x^2+x+2 = (2x) \left(x+3+\frac{1}{x}\right)$ $3x^2 + x + 2 = 2x^2 + 6x + 2$ $x^2 - 5x = 0$ x(x-5) = 0

Engineering Publications	3	Postal Coaching Solutions
x = 0(or) x = 5 x must be x > 3, So x = 5		Examples 1. $A = +7$ 0111 B = +7 0111
06. Ans: 3 Sol: $123_5 = x8_y$ $1 \times 5^2 + 2 \times 5^1 + 3 \times 5^0 = x.y^1 + 8 \times y^0$ 25 + 10 + 3 = xy + 8 ∴ $xy = 30$ Possible solutions: i. $x = 1, y = 30$ ii. $x = 2, y = 15$ iii. $x = 3, y = 10$ ∴ 3 possible solutions exists.	ER //	$ \begin{array}{rcl} 14 & 1110 \Rightarrow \overline{x} \overline{y} z \\ 2. A = +7 & 0111 \\ B = +5 & 0101 \\ 12 & 1100 \Rightarrow \overline{x} \overline{y} z \\ 3. A = -7 & 1001 \\ B = -7 & 1001 \\ -14 & 10010 \Rightarrow x y \overline{z} \\ 4. A = -7 & 1001 \\ B = -5 & 1011 \\ -12 & 10100 \Rightarrow x y \overline{z} \end{array} $
07. Ans: 1 Sol: The range (or) distinct values For 2's complement $\Rightarrow -(2^{n-1})$ to $+(2^{n-1}-1)$ For sign magnitude $\Rightarrow -(2^{n-1}-1)$ to $+(2^{n-1}-1)$ Let $n = 2 \Rightarrow$ in 2's complement $-(2^{2-1})$ to $+(2^{2-1}-1)$ -2 to $+1 \Rightarrow -2$, -1 , 0 , $+1 \Rightarrow X = 4$ $n = 2$ in sign magnitude $\Rightarrow -1$ to $+1 \Rightarrow Y = 3$ X - Y = 1) ce 1	02. Ans: (b) Sol: Truth table of XOR $ \frac{A B o/p}{0 0 0} \\ 0 1 1 \\ 1 0 1 \\ 1 1 0 $ Stage 1: Given one i/p = 1 Always. 1 X o/p
 2. Logic Gates & Boolean Algebra 01. Ans: (c) Sol: Given 2's complement numbers of sign bit are x & y. z is the sign bit obtained b adding above two numbers. ∴ Overflow is indicated by = x yz+x yz 	у	$1 1 0 = \overline{X}$ For First XOR gate $o/p = \overline{X}$ Stage 2: $\overline{X} X o/p$ $ 0 1 1$ $1 0 1$ For second XOR gate $o/p = 1$.

Initially all the output values are '0', at t = 0, the inputs to the 4-bit adder are changed to $X_3X_2X_1X_0 = 1100$, $Y_3Y_2Y_1Y_0 = 0100$

---- indicates critical path delay to get the output

i.e. critical time (or) maximum time is taken for Z_4 to get final output as '1'

Signals & Systems

03. Ans: (a)

Sol: The given circuit is binary parallel adder/subtractor circuit. It performs A+B, A–B but not A + 1 operations.

K	C ₀	Operation
0	0	A+B (addition)
0	1	A+B+1(addition with carry)
1	0	$A+\overline{B}$ (1's complement addition)
1	1	$A + \overline{B} + 1$ (2's complement subtraction)

04. Ans: (d)

Sol: It is expansion of 2:4 decoders to 1:8 demultiplexer A₁, A₀ must be connected to S₁, S₀ i.e.., $R = S_0, S = S_1$ Q must be connected to S₂ i.e., $Q = S_2$ P is serial input must be connected to D_{in}

05. Ans: 6

Sol: $T = 0 \rightarrow NOR \rightarrow MUX \ 1 \rightarrow MUX \ 2$ 2ns 1.5ns 1.5ns Delay = 2ns + 1.5ns + 1.5ns = 5ns $T = 1 \rightarrow NOT \rightarrow MUX \ 1 \rightarrow NOR \rightarrow MUX \ 2$ 1ns 1.5ns 2ns 1.5ns Delay = 1ns + 1.5ns + 2ns + 1.5ns = 6nsHence, the maximum delay of the circuit is 6ns

06. Ans: -1

- **Sol:** When all bits in 'B' register is '1', then only it gives highest delay.
- ∴ '-1' in 8 bit notation of 2's complement is 1111 1111

5. Sequential Circuits

01. Ans: (c)

Sol: Given Clk, X₁, X₂ Output of First D-FF is Q₁ Output of Second D-FF is Q₂

02. Ans: 4

Sol: In the given first loop of states, zero has repeated 3 times. So, minimum 4 number of Flip-flops are needed.

03. Ans: 7

Sol: The counter is cleared when

$$Q_D Q_C Q_B Q_A = 0110$$

Clk	QD	Qc	QB	QA
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1

ACE Engineering Publications

8

Postal Coaching Solutions

4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	0	0	0

As the clear input is given to be synchronous so it waits upto the next clock pulse to clear the counter & hence the counter get's cleared during the 7th clock pulse.

 \therefore mod of counter = 7

04. Ans: (b)

Sol: The given circuit is a mod 4 ripple down counter. Q_1 is coming to 1 after the delay of $2\Delta t$.

Q 1	\mathbf{Q}_{0}	
0	0	
1	12	
1	02	
0	12	
0	0	
	0 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

05. Ans: (c)

Sol: Assume n = 2

Outputs of counter is connected to inputs of decoder

Cou	Counter Decoder Decoder						
	output			outputs			ts
	S	а	inputs b	d_3	Ċ	\mathbf{l}_2	d_1
\mathbf{Q}_1	Q_0	a	U		d	0	
0	0	0	0	0	0	0	1
0	1	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	1	1	1	1	0	0	0

The overall circuit acts as 4-bit ring counter n = 2

$$\therefore$$
 k = 2² = 4, k-bit ring counter

06. Ans: (b)

9

... After 7 clock pulses content of shift register become 1010 again.

07. Ans: (b)

Sol:

Since

J	Κ	0	\overline{Q}_n	T = (J + O)	Q_{n+1}
			<n< th=""><th>$T = (J + Q_n) (K + \overline{Q}_n)$</th><th>CII+1</th></n<>	$T = (J + Q_n) (K + \overline{Q}_n)$	C II+1
0	0	0	1	0.1 = 0	ر 0
0	0	1	0	1.0 = 0	$1 Q_n$
0	1	0	1	0.1 = 0	0 J
0	1	1	0	1.1 = 1	0 0

ACE Engineering Publications

ACE Engineering Publications

$=\frac{1\times10^{-3}}{16}=62.5\mu\mathrm{A}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
03. Ans: (c) Sol: Net current at inverting terminal, $I_i = \frac{I}{4} + \frac{I}{16} = \frac{5I}{16}$	When $V_{DAC} = 6.5$ V, the o/p of comparator is '0'. At this instant, the clock pulses to the counter are stopped and the counter remains in 1101 state.
$V_0 = -I_i R = -\frac{5I}{16} \times 10k \Omega$ $= \frac{-5 \times 1 \times 10^{-3} \times 10 \times 10^3}{16} = -3.125 V_0$	∴ The stable reading of the LED display is 13.
16	NEER 05. Ans: (b)
04 Ans: (d)	
	= 0.3 V
n=0	
$V_{DAC} = 2^{-1}b_0 + 2^0b_1 + 2^1b_2$	3
$\Rightarrow V_{DAC} = 0.5b_0 + b_1 + 2b_2 + 4b_3$	
Initially counter is in 0000 state	
Up V _{DAC} (V) o/p of	$\Rightarrow V_{in} = \frac{V_R I_2}{T_1}$
counter o/p comparat	$100 \mathrm{mV} \times 370.2 \mathrm{ms}$
	Since 1995 $= \frac{100 \text{ m} \cdot 100 \text{ ms}}{300 \text{ ms}}$
	DVM indicates = 123.4
	07. Ans: (d)
	Sol: Ex: $f_{in} = 1 \text{ kHz} \rightarrow f_s = 2 \text{ kHz}$
0 1 0 1 2.5 1	$f_{in} = 25 \text{ kHz} \leftarrow f_s = 50 \text{ kHz}$
0 1 1 0 3 1	1. Max conversion time = $2^{N+1}T = 2^{11}.1 \ \mu s$
0 1 1 1 3.5 1	$= 2048 \ \mu s$
1 0 0 0 4 1	2. Sampling period = $T_s \ge$ maximum
1 0 0 1 4.5 1	conversion time
	T = 1 0 1 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$T_s \ge 2048 \ \mu s$
Up VDAC(V) o/p of $b_3 b_2 b_1 b_0$ $o 0 0 0$ 1 $0 0 0 0 0$ 0 1 $0 0 0 1 0$ 0.5 1 $0 0 1 0$ 1 1 $0 0 1 0$ 1 1 $0 0 1 1$ 1.5 1 $0 1 0 1$ 2.5 1 $0 1 0 1$ 2.5 1 $0 1 1 1 0$ 3 1 $0 1 0 1$ 4.5 1	Sol: The magnitude of error between $V_{DAC} & V_{at}$ at steady state is $ V_{DAC} - V_{in} = 6.5 - 6.2 $ = 0.3 V 06. Ans: (a) Sol: In Dual slope $ADC \Rightarrow V_{in} T_1 = V_R \cdot T_2$ $\Rightarrow V_{in} = \frac{V_R T_2}{T_1}$ $= \frac{100 \text{ mV} \times 370.2 \text{ ms}}{300 \text{ ms}}$ DVM indicates = 123.4 07. Ans: (d) Sol: Ex: $f_{in} = 1 \text{ kHz} \rightarrow f_s = 2 \text{ kHz}$ $f_{in} = 25 \text{ kHz} \leftarrow f_s = 50 \text{ kHz}$ 1. Max conversion time $= 2^{N+1}T = 2^{11}.1 \mu$ $= 2048 \mu s$ 2. Sampling period $= T_s \ge \text{maximus}$ conversion time

12

3. Sampling rate $f_s = \frac{1}{T_s} \le \frac{1}{2048 \times 10^{-6}}$ $f_s \le 488$ $f_s \le 500$ Hz 4. $f_{in} = \frac{f_s}{2} = 250$ Hz

08. Ans: (d)

ACE

Sol: In an ADC along with S-H circuit (sample and hold) circuit, to avoid error at output, voltage across capacitor should not drop by more than $\pm \Delta/2$, where Δ is step size.

Here,
$$\Delta = \frac{10 - 0}{(2^{10} - 1)} = 9.775 \times 10^{-3} \text{ V}$$

Hence $\frac{\Delta}{2} = 4.8875 \times 10^{-3} \text{ V}$

So conversion time (maximum) should be such that the drop across capacitor voltage must reach maximum value $\Delta/2$. Hence, time taken for this

$$t = \frac{\Delta/2}{\text{drop rate}} = \frac{4.8875 \times 10^{-3}}{10^{-4} \text{ V/m sec}}$$
$$t \cong 49 \text{ m sec}$$

7. Architecture, Pin Details 8085 & Interfacing with 8085

01. Ans: (a)

Sol: chip select is an active low signal for $\overline{\text{chipselect}} = 0$; the inputs for NAND gate must be let us see all possible cases for $\overline{\text{chipselect}} = 0$ condition

	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0
0		0	0	0	0	0	Х	Х
0		0	1	1	0	0	Х	Х

					Sign	als &	Systems
0	1	0	1	0	0	Х	Х
0	1	1	0	0	0	Х	$X \rightarrow 60 \text{H} (A_1 A_0 = 00)$
1	0	0	1	0	0	Х	X
1	0	1	0	0	0	Х	Х
0	0	0	0	1	1	Х	Х
0	0	1	1	1	1	Х	X
0	1	0	1	0	0	Х	$X \xrightarrow{\rightarrow 63H(A_1A_0=11)} X$
0	1	1	0	0	0	Х	Х
1	0	0	1	0	0	Х	X
1	0	0	0	0	0	Х	Х

The only option that suits hare is option(a)
A₀ & A₁ are used for line selection
A₂ to A₇ are used for chip selection

 \therefore Address space is 60H to 63H A_o to A₁₁ are used for line selection A₁₂ to A₁₅ are used for chip selection

A	5 A ₁₄	A ₁₃	A ₁₂	A_{11} A_0	
1	1	1	0	0 0	=E000H
1	1	1	0	1 1	=EFFFH

ACE Engineering Publications

Engineering Publications	13	Postal Coaching Solution
 02. Ans: (d) Sol: • Both the chips have active high chi select inputs. • Chip 1 is selected when A₈ = 1, A₉ = 0 Chip 2 is selected when A₈ = 0, A₉ = 1 • Chips are not selected for combinatio of 00 & 11 of A₈ & A₉ • Upon observing A₈ & A₉ of give address Ranges, F800 to F9FF is no represented 03. Ans: (d) Sol: The I/O device is interfaced using "Memor Mapped I/O" technique. The address of the Input device is 	p n n ot	Sol: Out put 2 of 3×8 Decoder is used for selecting the output port. \therefore Select code i 010 $A_{15} A_{14} A_{13} A_{12} A_{11} A_{10} - A_0$ 0 1 0 1 0 0 0 $\Rightarrow 5000$ H This mapping is memory mapped I/O OS. Ans: (d) Sol: $A_{15} A_{14} A_{13} A_{12} A_{11} A_{10} A_{9} A_0$ 0 0 0 0 1 0 0 0 =0800H 1 1 1 1 0 0 0 =0800H 1 1 1 1 0 0 0 =1800H 1 1 1 0 0 0 =1800H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 0 0 1 1 0 11 =1BFFH
The Instruction for correct data transfer i = LDA F8F8H 04. Ans: (b)	s	0 0 1 0 1 0 0 00 =2800H 0 0 1 0 1 0 1 0 11 =2BFFH 0 0 1 1 1 0 00 =3800H 1 1 1 0 11 =3BFFH
06. Ans: (a) Sol: Address Range given is (3) $A_{12} - A_0$ (3) $B \ kB \ ROM$ (3) $A_{12} - A_0$ (3) $B \ kB \ ROM$		
$\begin{array}{c} A_{15} A_{14} A_{13} A_{12} & A_{11} A_{10} $	0 0 1 1	$\frac{\begin{array}{c cccccccccccccccccccccccccccccccccc$

Engineering Publications	14 Signals & System
To provide cs as low, The condition is $A_{15} = A_{14} = 0$ and $A_{13} A_{12} = 01$ (or) (10) i.e $A_{15} = A_{14} = 0$ and $A_{13} A_{12}$ shouldn't b 00, 11.	$; (A) = 0000 \ 0011$ $; (A) = 0000 \ 0000$ $; (A) = 0000 \ 0000$
Thus it is $A_{15} + A_{14} + [A_{13}A_{12} + \overline{A_{13}} \overline{A_{12}}]$ 07. Ans: (a) Sol:	; (A) = 69H 6016H : MOV H,A ; (H) \leftarrow (A) =69H 6017H : PCHL ; (PC) \leftarrow (HL) = 6979H
A_{13} A_{13} A_{12} A_{12} A_{11} A_{12} A_{11} A_{12} A_{11} A_{12} A_{14} A_{15} A_{14} A_{12} A_{11} A_{12} A_{11} A_{10} A	0103H : LXI H, 0107 H ; (HL) = 0107H 0106H : MVI A, 20H ; (A) = 20H 0108H : SUB M ; (A)←(A)-(0107) ; (0107) = 20H ; (A) = 00H The contents of Accumulator is 00H 03. Ans: (c)
Size of each memory block = $2^{11} = 2K$ 8. Instruction set of 8085 & Programming with 8085 01. Ans: (c) Sol: 6010H : LXI H,8A79H ; (HL) = 8A79H 6013H : MOV A, L ; (A) (-(L) = 79) 6014H : ADD H ; (A) = 0111 1001 + ; (H) = 1000 1010	 RET → returned to the main program ∴ The contents of Accumulator after execution of the above SUB2 is 02H. 04. Ans: (c) Sol: The loop will be executed until the value is register equals to zero, then, Execution time

ACE Engineering Publications

=9(7T+4T+4T+10T)+(7T+4T+4T+7T)+7T= 254T

05. Ans: (d)

- Sol: H=255 : L = 255, 254, 253, ----0 H=254 : L = 0, 255, 254, -----0 | H=1 : L = 0,255,254,253,---0 H=0 : ----
- → In first iteration (with H=255), the value in L is decremented from 255 to 0 i.e., 255 times

→ In further remaining 254 iterations, the value in L is decremented from 0 to 0 i.e., 256 times

> :. 'DCRL' instruction gets executed for \Rightarrow [255+(254×256)]

 \Rightarrow 65279 times

06. Ans: (a)

Sol: "STA 1234H" is a 3-Byte Instruction and it requires 4 Machine cycles (Opcode fetch, Operand1 Read, Operand2 Read, Memory write). The Higher order Address (A₁₅ – A₈) sent in 4 machine cycles is as follows Given "STA 1234" is stored at 1FFEH i.e.

e., Address Instruction

1FFE, 1FFF, 2000 : STA 1234H

Machine cycle	Address (A ₁₅ -A ₀)	Higher order address (A ₁₅ -A ₈)
1. Opcode fetch	1FFEH	1FH

2. Operand1	1FFFH	1FH
Read		
3. Operand2	2000H	20Н
Read		
4. Memory	1234H	12H
Write		

Postal Coaching Solutions

i.e. Higher order Address sent on A₁₅-A₈ for4 Machine Cycles are 1FH, 1FH, 20H, 12H.

07. Ans: (d)

15

Sol: The operation SBI BE_H indicates A-BE \rightarrow A where A indicates accumulator Thus the result of the subtraction operation is stored in the accumulator and the contents of accumulator are changed.

08. Ans: (c)

1995

Sol: If the content in register B is to be multiplied with the content in register C, the contents of register B is added to the accumulator (initial value of accumulator is 0) for C times.