GATE | PSUs

MECHANICAL ENGINEERING

Strength of Materials

Text Book : Theory with worked out Examples and Practice Questions

HYDERABAD | AHMEDABAD | DELHI | BHOPAL | PUNE | BHUBANESWAR | BANGALORE | LUCKNOW PATNA | CHENNAI | VISAKHAPATNAM | VIJAYAWADA | TIRUPATHI | KOLKATA

Strength of Materials

Solutions for Text Book Practice Questions

Simple Stresses and Strains

Fundamental, Mechanical Properties of Materials, Stress Strain Diagram

01. Ans: (b)

Sol:

• **Ductility:** The property of materials to allow large deformations or large extensions without failure (large plastic zone) is termed as ductility.

Chapter

1

- **Brittleness:** A brittle material is one which exhibits a relatively small extensions or deformations prior to fracture. Failure without warning (No plastic zone) i.e. no plastic deformation.
- **Tenacity**: High tensile strength.
- **Creep:** Creep is the gradual increase of plastic strain in a material with time at constant load.
- **Plasticity:** The property by which material undergoes permanent deformation even after removal of load.
- Endurance limit: The stress level below which a specimen can withstand cyclic stress indefinitely without failure.
- **Fatigue:** Decreased Resistance of material to repeated reversal of stresses.

02. Ans: (a)

Sol:

- When the material is subjected to stresses, it undergoes to strains. After removal of stress, if the strain is not restored/recovered, then it is called inelastic material.
- For rigid plastic material:

- Any material that can be subjected to large strains before it fractures is called a ductile material. Thus, it has large plastic zone.
- Materials that exhibit little or no yielding before failure are referred as brittle materials. Thus, they have no plastic zone.

03. Ans: (a)

Sol: *Refer to the solution of Q. No. (01).*

04. Ans: (b)

Sol: The stress-strain diagram for ductile material is shown below.

GATE – Text Book Solutions

- σ_{p} P = Proportionality limit Q = Elastic limit R = Upper yield point S = Lower yield point T = Ultimate tensile strength U = FailureFrom above,
 - $OP \rightarrow Stage I$
 - $PS \rightarrow Stage II$
 - $ST \rightarrow Stage III$
 - $TU \rightarrow Stage IV$

05. Ans: (b)

Sol:

• If the response of the material is independent of the orientation of the load axis of the sample, then we say that the material is **isotropic** or in other words we can say the isotropy of a material is its characteristics, which gives us the information that the properties are same in the three orthogonal directions x, y and z. • A material is **homogeneous** if it has the same composition throughout the body. Hence, the elastic properties are the same at every point in the body in a given direction. However, the properties need not to be the same in all the directions for the material. Thus, both A and B are false.

06. Ans: (a)

Sol: Strain hardening increase in strength after plastic zone by rearrangement of molecules in material.

• Visco-elastic material exhibits a mixture of creep as well as elastic after effects at room temperature. Thus their behavior is time dependant

07. Ans: (a)

Sol: *Refer to the solution of Q. No. (01).*

08. Ans: (a)

Sol: Modulus of elasticity (Young's modulus) of some common materials are as follow:

Material	Young's Modulus (E)
Steel	200 GPa
Cast iron	100 GPa
Aluminum	60 to 70 GPa
Timber	10 GPa
Rubber	0.01 to 0.1 GPa

09. Ans: (a)

Sol: Addition of carbon will increase strength, thereby ductility will decrease.

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

Strength of Materials

Elastic Constants and Their Relationships

3

ACE Engineering Publications

Strength of Materials

Thermal/Temperature Stresses

01. Ans: (b)

 \Rightarrow

Sol: Free expansion = Expansion prevented

$$\begin{bmatrix} \ell \alpha t \end{bmatrix}_{s} + \begin{bmatrix} \ell \alpha t \end{bmatrix}_{A1} = \begin{bmatrix} \frac{P\ell}{AE} \end{bmatrix}_{s} + \begin{bmatrix} \frac{P\ell}{AE} \end{bmatrix}_{AL}$$

$$11 \times 10^{-6} \times 20 + 24 \times 10^{-6} \times 20$$

$$P$$

$$P$$

$$= \frac{100 \times 10^{3} \times 200}{100 \times 10^{3} \times 200} + \frac{100 \times 10^{3} \times 70}{200 \times 10^{3} \times 70}$$

$$P = 5.76 \text{ kN}$$

$$\sigma_{s} = \frac{P}{A_{s}} = \frac{5.76 \times 10^{3}}{100} = 57.65 \text{ MPa}$$

 $\sigma_{Al} = \frac{P}{A_{al}} = \frac{5.76 \times 10^{3}}{200} = 28.82 \text{ MPa}$

02. Ans: (a) Sol:

Strain in X-direction due to temperature,

$$\varepsilon_t = \alpha (\Delta T)$$

Strain in X-direction due to volumetric stress,

$$\varepsilon_{\rm x} = \frac{\sigma_{\rm x}}{E} - \mu \frac{\sigma_{\rm y}}{E} - \mu \frac{\sigma_{\rm z}}{E}$$

$$\therefore \quad \varepsilon_{x} = \frac{-\sigma}{E} (1 - 2\mu)$$
$$\therefore \quad -\sigma = \frac{(\varepsilon_{x})(E)}{1 - 2\mu}$$
$$\therefore \quad -\sigma = \frac{\alpha(\Delta T)E}{(1 - 2\mu)}$$
$$\Rightarrow \quad \sigma = \frac{-\alpha(\Delta T)E}{1 - 2\mu}$$

5

- Free expansion in x direction is $a\alpha t$.
- Free expansion in y direction is $a\alpha t$.
- Since there is restriction in y direction expansion doesn't take place. So in lateral direction, increase in expansion due to restriction is $\mu a \alpha t$.

Thus, total expansion in x direction is,

 $= a \alpha t + \mu a \alpha t$ $= a \alpha t (1 + \mu)$

ACE Engineering Publications

ChapterShear Force3and Bending Moment

01. Ans: (b)

Sol: Contra flexure is the point where BM is becoming zero.

Strength of Materials

7

	9 Strength of Materials
M.I about CG = I _{CG} = $\frac{2b(3d)^3}{12} = \frac{9}{2}bd^3$ M.I about X - X _{at d/distance} = I _G + Ay ²	5 Theory of Simple Bending
$= \frac{9}{2}bd^{3} + 6bd\left(\frac{5}{4}\right)^{2}d^{2}$ $= \frac{111}{8}bd^{3} = 13.875bd^{3}$	01. Ans: (b) Sol: $b/2$ A $b/2$ B b
04. Ans: 6.885×10 ⁶ mm ⁴	RINC
Sol:	By using flexural formula, $\sigma = \frac{M}{Z}$
$I_x = \frac{BD^3}{12} - 2\left(\frac{bd^3}{12} + Ah^2\right)$	$\therefore \sigma \propto \frac{1}{Z} \qquad (:: M \text{ is constant })$
$= \frac{60 \times 120^{3}}{12} - 2\left(\frac{30 \times 30^{3}}{12} + (30 \times 30) \times 30^{2}\right)$ $= 6.885 \times 10^{6} \text{ mm}^{4}$	$\therefore \frac{\sigma_{A}}{\sigma_{B}} = \frac{Z_{B}}{Z_{A}} = \frac{\frac{\left(\frac{b}{2} \times b^{2}\right)}{6}}{\frac{b \times \left(\frac{b}{2}\right)^{2}}{6}} = 2$
05. Ans: 152146 mm	$\Rightarrow \sigma_{\rm A} = 2\sigma_{\rm B}$
Sol: $I_x = \frac{30 \times 40^3}{12} - \frac{\pi \times 20^4}{64} = 152146 \text{ mm}^4$ $I_y = \frac{40 \times 30^3}{12} - \left(\frac{\pi \times 20^4}{64} + 2\left(\frac{\pi}{2} \times 10^2 \times \left(15 - \frac{4 \times 10}{3\pi}\right)^2\right) = 45801.34 \text{ mm}^4$	(e) 1995 (c) 02. Ans: (b) Sol: NA $\downarrow 4mm 10mm$ $\epsilon_f = 1.5 \times 10^{-6}$ $\downarrow P$ $\downarrow 2P$ $\downarrow 3P$ $\downarrow 4mm$ R_A R_B
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	r • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications	10	GATE – Text Book Solutions
$\therefore \sum M_A = 0$ $\therefore P \times 100 + 2P \times 200 + 3P \times 300 = R_B \times 400$ $\therefore R_B = 3.5P, R_A = 2.5P$		$= \left(\frac{0+14.22}{2}\right)(25 \times 50) = 8.9 \text{ kN}$
Take moments about F and moment at F	(05. Ans: (b)
$M_F = R_B \times 150 - 3P \times 50 = 375P$	5	Sol: By using flexural formula, $\frac{f_{\text{Tensile}}}{T} = \frac{M}{T}$
Also, $\frac{M_F}{L} = \frac{\sigma_b}{\Delta}$		y _{top} I
$1 y_F$		$\Rightarrow f_{\text{Tensile}} = \frac{0.3 \times 3 \times 10^{\circ}}{3 \times 10^{\circ}} \times 70$
$\therefore \frac{375P}{2176} = \frac{(1.5 \times 10^{-6} \times 200 \times 10^{-6})}{6}$		(maximum bending stress will be at top
\Rightarrow P = 0.29 N		fibre so $y_1 = 70 \text{ mm}$)
IGINE	ERIA	$G \Rightarrow f_{\text{Tensile}} = 21 \text{ N/mm}^2 = 21 \text{ MN/m}^2$
03. Ans: (b)		06. Ans: (c)
Sol: By using Flexural formula,	•	Sol: Given data:
E $\sigma_{\rm b} = 2 \times 10^5 \sigma_{\rm b}$		$P = 200 \text{ N}, \qquad M = 200 \text{ N.m}$
$\frac{1}{R} = \frac{1}{y_{max}} \implies \frac{1}{250} = \frac{1}{(0.5/2)}$		A = 0.1 m ² , I = 1.33×10^{-3} m ⁴
$\Rightarrow \sigma_{\rm b} = 200 \text{ N/mm}^2$		y = 20 mm
		Due to direct tensile force P,
04. Ans: (c)		$\sigma_{\rm d} = \frac{P}{\Lambda} = \frac{200}{0.1}$
Sol:		$= 2000 \text{ N/m}^2$ (Tensile)
75		Due to the moment M
	ce 1	M
50		$\sigma_{\rm b} = \frac{W}{I} \times y$
By using flexural formula,	4	$= \frac{200}{1.33 \times 10^{-3}} \times 20 \times 10^{-3}$
$\frac{M}{M} = \frac{f}{M}$		= 3007.52 N/m ² (Compressive)
I у		$\sigma_{net} = \sigma_d - \sigma_b$
$\cdot \frac{16 \times 10^6}{10} - \frac{f}{10} \rightarrow f = 14.22 \text{ MPa}$		= 2000 - 3007.52
$\frac{100 \times 150^3}{25} = 25$		$= -1007.52 \text{ N/m}^2$
12 New Force or batched area		Negative sign indicates compressive stress.
now, Force on natched area		
= Average stress \times Hatched area		$\sigma_{\rm net} = 1007.52 \text{ N/m}^2$
ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	r • Lucknov	w • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications

Strength of Materials

Convert whole structure as a steel structure by using modular ratio.

08. Ans: 2.43 mm

Sol: From figure $A_1B_1 = l = 3$ m (given)

$$AB = \left(R - \frac{h}{2}\right)\alpha = l - l\alpha t_1 - \dots (1)$$

$$A_2B_2 = \left(R + \frac{h}{2}\right)\alpha = l + l\alpha t_2 - \dots (2)$$

Subtracting above two equations (2) - (1)

$$R = \frac{h}{\alpha(\Delta T)}$$
$$= \frac{250}{(1.5 \times 10^{-5})(72 - 36)}$$
$$R = 462.9 \text{ m}$$
From geometry of circles
$$(2R - \delta)\delta = \frac{L}{2} \cdot \frac{L}{2} \quad \{\text{ref. figure in Q.No.02}\}$$
$$2R \cdot \delta - \delta^2 = \frac{L^2}{4} \text{ (neglect } \delta^2\text{)}$$
$$\delta = \frac{L^2}{8R} = \frac{3^2}{8 \times 462.9} = 2.43 \text{ mm}$$

Shortcut:

11

Deflection is due to differential temperature of bottom and top ($\Delta T = 72^{\circ} - 36^{\circ} = 36^{\circ}$). Bottom temperature being more, the beam deflects down.

$$\delta = \frac{\alpha(\Delta T)\ell^2}{8h}$$

$$5 = \frac{1.5 \times 10^{-5} \times 36 \times 3000^2}{8 \times 250}$$

$$= 2.43 \text{ mm} \text{ (downward)}$$

Engineering Publications	15	Strength of Materials
07. Ans: 0.05		
Sol: $\begin{array}{c c} A & 5m & C & 5m & B \\ \hline \hline$		9 Thin Pressure Vessels
I 0 m		01. Ans: (b)
$d^2 y$	\$	Sol: $\tau_{max} = \sigma_l = \frac{\sigma_h - 0}{2} = \frac{PD}{4t}$
$\therefore \text{ Curvature, } \frac{dx^2}{dx^2} = 0.004$ Integrating with respect to x,		$\therefore \tau_{\text{max}} = \frac{1.6 \times 900}{4 \times 12} = 30 \text{ MPa}$
We get, $\frac{dy}{dx} = 0.004x$	ERI/	02. Ans: 2.5 MPa & 2.5 MPa
$0.004x^2$	5	Sol: Given data:
$y = \frac{0.00 \text{ m}}{2}$		R = 0.5 m, D = 1 m, t = 1 mm, $H = 1 \text{ m}, v = 10 \text{ kN/m}^3 \text{ h} = 0.5 \text{ m}$
$y = 0.002x^2$		At mid-depth of cylindrical wall $(h = 0.5 m)$
At mid span, $x = 5 m$		Circumferential (hoop) stress,
$\therefore y = 0.002 x^2$ $y = 0.05 m$		$\sigma_{\rm c} = \frac{P_{\rm at \ h=0.5m} \times D}{4t} = \frac{\gamma h \times D}{4t}$
y 0.05 m		$= \frac{10 \times 10^{3} \times (2 \times 0.5)}{4 \times 10^{-3}}$
		$4 \times 1 \times 10^{6}$ N/m ² = 2.5 MPa
Sin	ce 1	2.5 × 10 10 m 2.5 km a
		$\sigma_{\ell} = \frac{\text{Net weight of the water}}{\text{Cross-section area}}$
		$= \frac{\gamma \times \text{Volume}}{\pi D \times t}$
		$=\frac{\gamma \times \frac{\pi}{4}D^{2}L}{\pi D \times t}=\frac{\gamma \times DL}{4t}$
		$=\frac{10\times10^3\times1\times1}{4\times10^{-3}}$
		$= 2.5 \times 10^6 \text{ N/m}^2 = 2.5 \text{ MPa}$

	Engineering Publications	16		GATE – Text Book Solutions
Clear			04. Sol:	Ans: (c)
1	0 Columns		501.	loaded columns.
01.	Ans: (c)			Force in member AB, $P_{AB} = \frac{F}{\cos 45^{\circ}} = \sqrt{2}F$
Sol:	By using Euler's formula, $P_e = \frac{\pi^2 \times EI}{l_e^2}$			$P_{AB} = \frac{\pi^2 EI}{L_e^2}$
	For a given system, $l_{\rm e} = \frac{l}{2}$			$\therefore \sqrt{2} F = \frac{\pi^2 EI}{L_e^2}$
	$\therefore \qquad \mathbf{P}_{\mathbf{e}} = \frac{4\pi^2 \times EI}{l^2}$	RI	NG	$\Rightarrow F = \frac{\pi^2 EI}{\sqrt{2} L^2}$
02.	Ans: (b)		05.	Ans: (a)
Sol:	We know that, $P_{cr} = \frac{\pi^2 EI}{\ell^2}$		Sol: (Given data:
	<i>e</i> e			$L_e = L = 3 m ,$
	$\therefore P_{\rm cr} \propto \frac{1}{\ell_{\rm e}^2}$			$\alpha = 12 \times 10^{-6} / ^{\circ}\mathrm{C},$
	$P_1 = l_{2e}^2$			d = 50 mm = 0.05 m
	$\therefore \frac{1}{P_2} = \frac{1}{l_{1e}^2}$		<	Buckling load, $P_e = \frac{\pi^2 EI}{L_c^2}$
	$\therefore \frac{P_1}{P_2} = \frac{l^2}{(2l)^2} \Rightarrow P_1: P_2 = 1:4$ Since	ce 1	99	$\therefore \frac{P_e L}{r} = L\alpha \Delta T$
		T		AE
03.	Ans: 4			$\therefore \qquad \frac{\pi^2 EI \times L}{2} = L \alpha \Delta T$
Sol:	Euler's crippling load,	Y		$L^2 \times AE$
	$\mathbf{P} = \frac{\pi^2}{l^2} \mathbf{E}\mathbf{I}$			$\frac{\pi^2 \times E \times \frac{\pi}{64} \times d^4 \times L}{1 - L \alpha \Lambda T}$
	$\therefore P \propto I$			$L^2 \times \frac{\pi}{d} d^2 \times E$
	$\Rightarrow \frac{P}{P_o} = \frac{I_{bonded}}{I_{loose}} = \frac{\left[\frac{b(2t)^3}{12}\right]}{2\left[\frac{bt^3}{12}\right]} = 4$			$\Delta T = \frac{\pi^2 \times d^2}{16 \times L^2 \times \alpha} = \frac{\pi^2 \times (0.05)^2}{16 \times 3^2 \times 12 \times 10^{-6}}$ $\Rightarrow \Delta T = 14.3^{\circ}C$
ACE E	ngineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa	r • Luckno	ow • Patna	a • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

	ACE Engineering Publications	18		GATE – Text Book Solutions
05.	Ans: (d))6.	Ans: 1.5
Sol:	Strain energy, $U = \frac{P^2}{2A^2E}$.V	;	Sol:	Given data: L = 100 mm
	$\therefore U \propto P^2$			$G = 80 \times 10^3 \text{ N/mm}^2$
	Due to the application of P_1 and P_2 one after the other	r		$J_1 = \frac{\pi}{32} (50)^4; J_2 = \frac{\pi}{32} (26)^4$
	$(U_1 + U_2) \propto {P_1}^2 + {P_2}^2 \dots \dots (1)$ Due to the application of P ₁ and P ₂ togethe	er		$U = U_1 + U_2 = \frac{T^2 L}{2GJ_1} + \frac{T^2 L}{2GJ_2}$
	at the same time.			\Rightarrow U = 1.5 N-mm
	$U \propto (P_1 + P_2)^2$ (2)	2011		
	It is obvious that,	SNU		Ac
	$(P_1^2 + P_2^2) < (P_1 + P_2)^2$			A Or
	$\Rightarrow (U_1 + U_2) < U$			3
		4		
	Ň			
			<	
	A		77	E