# GATE | PSUs



# ELECTRONICS & COMMUNICATION ENGINEERING

### Control Systems

**Text Book :** Theory with worked out Examples and Practice Questions



HYDERABAD | AHMEDABAD | DELHI | BHOPAL | PUNE | BHUBANESWAR | BANGALORE | LUCKNOW PATNA | CHENNAI | VISAKHAPATNAM | VIJAYAWADA | TIRUPATHI | KOLKATA **Basics of Control Systems** 

(Solutions for Text Book Practice Questions)

01. Ans: (c) Open Loop T.F =  $\frac{\text{Closed Loop T.F}}{1 - \text{Closed Loop T.F}}$ **Sol:**  $2\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 4y(t) = r(t) + 2r(t-1)$  $=\frac{\overline{(s+1)^2}}{1-\frac{1}{(s+1)^2}}$ Apply LT on both sides  $2s^{2} Y(s)+3sY(s)+4Y(s) = R(s)+2e^{-s}R(s)$  $Y(s)(2s^2 + 3s+4) = R(s)(1+2e^{-s})$  $=\frac{1}{s^2+2s}$  $\frac{Y(s)}{R(s)} = \frac{1 + 2e^{-s}}{2s^2 + 3s + 4}$ 04. Ans: (a) Sol: G changes by 10% 02. Ans: (b) **Sol:** I.R =  $2.e^{-2t}u(t)$  $\Rightarrow \frac{\Delta G}{C} \times 100 = 10\%$ Output response  $c(t) = (1-e^{-2t}) u(t)$  $C_1 = 10\%$ Input response r(t) = ?[: open loop] whose sensitivity is 100%]  $T.F = \frac{C(s)}{R(s)}$ %G change = 10% $\frac{\% \text{ of change in } M}{\% \text{ of change in } G} = \frac{1}{1 + GH}$  $T.F = L(I.R) = \frac{2}{s+2}$ % of change in M =  $\frac{10\%}{1+(10)1} = 1\%$  $R(s) = \frac{C(s)}{T.F} = \frac{\frac{1}{s} - \frac{1}{s+2}}{\frac{2}{s}} = \frac{1}{s}$ % change in C<sub>2</sub> by 1% Since  $R(s) = \frac{1}{s}$ 05. Sol: M = C/Rr(t) = u(t) $\frac{C}{R} = M = \frac{GK}{1+GH}$ 03. Ans: (b)  $S_{K}^{M} = \frac{\partial M}{\partial K} \times \frac{K}{M} = 1$ Sol: Unit impulse response of unit-feedback control system is given [:K is not in the loop  $\Rightarrow$  sensitivity is  $c(t) = t.e^{-t}$ T.F = L(I.R)100%]  $S_{H}^{M} = \frac{\partial M}{\partial H} \times \frac{H}{M} = \frac{\partial}{\partial H} \left(\frac{GK}{1+GH}\right) \frac{H}{M}$  $=\frac{1}{(s+1)^2}$ ACE Engincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Chapter

#### Postal Coaching Solutions



3



### **Signal Flow Graph & Block Diagram**

### 01. Ans: (d) Sol: No. of loops = 3 Loop1: $-G_1G_3G_4H_1H_2H_3$ Loop2: $-G_3G_4H_1H_2$ Loop3: $-G_4H_1$ No. of Forward paths = 3 Forward Path1: $G_1G_3G_4$ Forward Path 2: $G_2G_3G_4$ Forward Path 3: $G_2G_4$ $= \frac{G_1G_3G_4 + G_2G_3G_4 + G_2G_4}{1 + G_1G_3G_4H_1H_2H_3 + G_3G_4H_1H_2 + G_4H_1}$ 02. Ans: (a)

**Sol:** Number of forward paths = 2 Number of loops = 3

$$\frac{Y(s)}{R(s)} = \frac{\frac{1}{s} \cdot \frac{1}{s} \cdot \frac{1}{s} [1-0] + \frac{1}{s}}{1 - \left[\frac{1}{s} \times (-1)\left(\frac{1}{s}\right)(-1) + \frac{1}{s} \cdot \frac{1}{s}(-1) + \left(\frac{1}{s} \cdot \frac{1}{s}(-1)\right)\right]}$$
$$= \frac{\frac{1}{s^3} + \frac{1}{s}}{1 - \left[\frac{1}{s^2} - \frac{1}{s^2} - \frac{1}{s^2}\right]} = \frac{\frac{1+s^2}{s^3}}{1 + \frac{1}{s^2}} = \frac{\frac{1+s^2}{s^3}}{\frac{1+s^2}{s^2}}$$
$$= \frac{1+s^2}{s} \times \frac{1}{s^2+1} = \frac{1}{s}$$

03.

**Sol:** Number of forward paths = 2 Number of loops = 5, Two non touching loops = 4

$$TF = \frac{24[1 - (-0.5)] + 10[1 - (-3)]}{1 - [-24 - 3 - 4 + (5 \times 2 \times (-1) + (-0.5))] + [30 + 1.5 + 2] + \left(\left(\frac{-1}{2}\right) \times (-24)\right)}$$
$$= \frac{76}{88} = \frac{19}{22}$$

04.

Sol: Number of forward paths = 2 Number of loops = 5  $T.F = \frac{G_1G_2G_3 + G_1G_4}{1 + G_2G_3H_2 + G_1G_2H_1 + G_1G_2G_3 + G_4H_2 + G_1G_4}$ 

05. Ans: (c)

**Sol:** From the network

From SFG  

$$V_o(s) = x I(s)$$
 .....(3)  
 $I(s) = \frac{1}{R} V_i(s) + y V_o(s)$  .....(4)

From equ(1) and (3)

$$x = \frac{1}{sC}$$

y = -

From equ(2) and (4)

ACE Engineering Publications



| <b>ACE</b><br>Engineering Publications     |                                                                                                  | 6 | Control Systems |
|--------------------------------------------|--------------------------------------------------------------------------------------------------|---|-----------------|
| Non touching                               | loops = 4                                                                                        |   |                 |
| Loop gains                                 | $\rightarrow$ G <sub>2</sub> H <sub>2</sub> G <sub>6</sub> H <sub>6</sub>                        |   |                 |
|                                            | $\rightarrow$ G <sub>2</sub> H <sub>2</sub> G <sub>7</sub> H <sub>7</sub>                        |   |                 |
|                                            | $\rightarrow$ G <sub>6</sub> H <sub>6</sub> G <sub>7</sub> H <sub>7</sub>                        |   |                 |
|                                            | $\rightarrow$ G <sub>2</sub> H <sub>2</sub> G <sub>3</sub> H <sub>3</sub>                        |   |                 |
| Transfer funct                             | ion =                                                                                            |   |                 |
| $G_1G_2G_3G_4(1+\epsilon)$                 | $G_6H_6 + G_7H_7 + G_5G_6G_7G_8$<br>(1 + G_H + G_H)                                              |   |                 |
| $\overline{1 + G_2H_2 + G_3H_3}$ $G_2H_2G$ | $\frac{(1+O_2H_2+O_3H_3)}{I_3+G_6H_6+G_7H_7+G_2H_2G_6H_6+}$<br>$_7H_7+G_3H_3G_6H_6+G_3H_3G_7H_7$ | - |                 |
|                                            | Ct ENGINE                                                                                        |   |                 |

Time Response Analysis

Chapter

01. Ans: (a)  $T.F = \frac{V_o(s)}{V_o(s)} = \frac{1}{RCs + LCs^2 + 1}$ **Sol:**  $\frac{C(s)}{R(s)} = \frac{1}{1+sT}$ ,  $R(s) = \frac{8}{s}$  $=\frac{\frac{1}{LC}}{s^2 + \frac{R}{L}s + \frac{1}{LC}}$  $C(s) = \frac{8}{s(1+sT)} \Longrightarrow c(t) = 8\left(1 - e^{-t/T}\right)$  $3.6 = 8 \left( 1 - e^{\frac{-0.32}{T}} \right)$  $s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0$  $s^2 + 2\xi\omega_n s + \omega_n^2 = 0$  $0.45 = 1 - e^{\frac{-0.32}{T}}$  $EEFING \omega_n = \frac{1}{\sqrt{LC}} \quad 2\xi\omega_n = \frac{R}{L}$  $0.55 = e^{\frac{-0.32}{T}}$  $-0.59 = \frac{-0.32}{T}$  $\xi = \frac{R}{2} \sqrt{\frac{C}{L}}$ T = 0.535 sec $\xi = \frac{10}{2} \sqrt{\frac{10 \times 10^{-6}}{1 \times 10^{-3}}} = 0.5$ 02. Ans: (c)  $M.P = e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}}$ **Sol:**  $\cos \phi = \xi$  $\cos 60 = 0.5$  $\cos 45 = 0.707$  $= 16.3\% \approx 16\%$ Poles left side  $0.5 \le \xi \le 0.707$ Poles right side  $-0.707 \le \xi \le -0.5$ 04. Ans: (b) Sol: TF =  $\frac{8/s(s+2)}{1-(\frac{-8 \text{ as}}{s(s+2)}-\frac{8}{s(s+2)})}$ Since  $\therefore 0.5 \le \left| \xi \right| \le 0.707$  $3 \text{ rad/s} \le \omega_n \le 5 \text{ rad/s}$ 03. Ans: (c)  $=\frac{8}{s(s+2)+8as+8}$ Sol: For R-L-C circuit:  $T.F = \frac{V_o(s)}{V(s)}$  $=\frac{8}{s^2+2s+8as+8}$  $V_{o}(s) = \frac{1}{Cs}I(s)$  $=\frac{8}{s^2+(2+8a)s+8}$  $=\frac{1}{\mathrm{Cs}}\frac{\mathrm{V_{i}(s)}}{\mathrm{R}+\mathrm{Ls}+\frac{1}{\mathrm{Ts}}}$  $\omega_n^2 = 8 \implies \omega_n = 2 \sqrt{2}$  $2\xi\omega_{n} = 2 + 8a$ ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad



$$\xi = \frac{1+4a}{2\sqrt{2}}$$
$$\frac{1}{\sqrt{2}} = \frac{1+4a}{2\sqrt{2}} \implies a = 0.25$$

#### 05. Ans: 4 sec

Sol: T.F = 
$$\frac{100}{(s+1)(s+100)}$$
  
=  $\frac{100}{s^2 + 101s + 100}$   
 $\omega_n^2 = 100$   
 $\omega_n = 10$   
 $2\xi\omega_n = 101$   
 $\xi = \frac{101}{20}$ 

 $\xi > 1 \rightarrow$ system is over damped i.e., roots are real & unequal.

Using dominate pole concept,

T.F = 
$$\frac{100}{100(s+1)} = \frac{1}{s+1}$$
, Here  $\tau = 1$  sec

 $\therefore$  Setting time for 2% criterion =  $4\tau$ 

 $=4 \sec$ 

Since

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

06.

Sol: 
$$M_p = \frac{C(t_p) - C(\infty)}{C(\infty)}$$
  
=  $\frac{1.254 - 1.04}{1.04} = 0.2$   
 $\xi = \sqrt{\frac{(\ln M_p)^2}{(\ln M_p)^2 + \pi^2}}$   
 $M_p = 0.2$ ;  $\xi = 0.46$ 

#### 07. Ans: (d)

**Sol:** Given data:  $\omega_n = 2$ ,  $\zeta = 0.5$ 

Steady state gain = 1OLTF =  $\frac{K_1}{s^2 + as + 2}$  and  $H(s) = K_2$  $CLTF = \frac{G(s)}{1 + G(s)}$  $\frac{C(s)}{R(s)} = \frac{K_1}{s^2 + as + 2 + K_1 K_2}$ DC or steady state gain from the TF  $\frac{K_1}{2+K_1K_2} = 1$  $K_1(1 - K_2) = 2$  .....(1) CE is s<sup>2</sup> + as + 2 + K<sub>1</sub>K<sub>2</sub> = 0  $\omega_n = \sqrt{2 + K_1 K_2} = 2$  $4 = (2 + K_1 K_2)$  $K_1K_2 = 2$ .....(2) Solving equations (1) & (2) we get  $K_1 = 4$ ,  $K_2 = 0.5$  $2\zeta \omega_n = a$  $2 \times \frac{1}{2} \times 2 = a$ a = 2

#### 08. Ans: A – T, B – S, C- P, D – R, E – Q Sol:

- (A) If the poles are real & left side of splane, the step response approaches a steady state value without oscillations.
- (B) If the poles are complex & left side of splane, the step response approaches a steady state value with the damped oscillations.
- (C) If poles are non-repeated on the  $j\omega$  axis, the step response will have fixed amplitude oscillations.

|             | ACE<br>Engineering Publications                                                                                                     | 9          | Postal Coaching Solutions                                                                                                     |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------|
|             | <ul> <li>(D) If the poles are complex &amp; right side o s-plane, response goes to '∞' with damped oscillations.</li> </ul>         | f<br>n     | Parabolic $\Rightarrow k_a = 10$<br>$e_{ss} = \frac{1}{10} = 0.1$                                                             |
|             | (E) If the poles are real & right side of s<br>plane, the step response goes to '∞<br>without any oscillations.                     | 2          | <ul> <li>11.</li> <li>Sol: G(s) = 10/s<sup>2</sup> (marginally stable system)</li> <li>∴ Error can't be determined</li> </ul> |
| 09.         | Ans: (c)                                                                                                                            |            | 12.                                                                                                                           |
| Sol:        | If $R \uparrow damping \uparrow$                                                                                                    |            | <b>Sol:</b> $e_{ss} = \frac{1}{11}$ , $R(s) = \frac{1}{2}$                                                                    |
|             | $\Rightarrow \xi = \frac{R}{2} \sqrt{\frac{C}{L}}$                                                                                  |            | $e_{ss} = \frac{A}{1+k_{s}} = \frac{1}{1+k_{s}} = \frac{1}{11} = \frac{1}{1+10}$                                              |
|             | (i) If R↑, steady state voltage across C will be reduced (wrong)                                                                    |            | $k_p = \underset{s \to 0}{\text{Lt}} G(s)$                                                                                    |
|             | (Since steady state value does no                                                                                                   | t          | 10 = Lt G(s)                                                                                                                  |
|             | depend on $\xi$ )                                                                                                                   |            | k = 10                                                                                                                        |
|             | If $\xi \uparrow$ , C ( $\infty$ ) = remain same                                                                                    |            |                                                                                                                               |
|             | (ii) If $\xi \uparrow \alpha \downarrow (\alpha - \alpha \sqrt{1 - \xi^2})$                                                         |            | $R(s) = \frac{1}{s^2}$ (ramp)                                                                                                 |
|             | (ii) If $\xi \downarrow$ , $t_s \uparrow \Rightarrow 3^{rd}$                                                                        |            | $e_{ss} = \frac{A}{k_{y}} = \frac{1}{k_{y}} = \frac{1}{10}$                                                                   |
|             | Statement is false                                                                                                                  |            | (System is increased by 1)                                                                                                    |
|             | (iv) If $\xi = 0$                                                                                                                   |            | $\Rightarrow e_{ss} = 0.1$                                                                                                    |
|             | $\Rightarrow$ 2 and 4 are correct                                                                                                   |            | 13. Ans: (a)                                                                                                                  |
| 10.<br>Sol: | (i) Unstable system                                                                                                                 |            | Sol: T(s) = $\frac{(s-2)}{(s-1)(s+2)^2}$ (unstable system)                                                                    |
|             | $\therefore$ error = $\infty$                                                                                                       |            | 14. Ans: (b)                                                                                                                  |
|             | (ii) $G(s) = \frac{10(s+1)}{s}$                                                                                                     |            | <b>Sol:</b> Given data: $r(t) = 400tu(t) rad/sec$                                                                             |
|             | $(1) O(3) - \frac{1}{s^2}$                                                                                                          |            | Steady state error $=10^{\circ}$                                                                                              |
|             | Step $\rightarrow$ R (s) = $\frac{1}{s}$                                                                                            |            | i.e., $e_{ss} = \frac{\pi}{180^\circ} (10^\circ)$ radians                                                                     |
|             | $k_p = \infty$                                                                                                                      |            | $G(s) = \frac{20K}{r(1+0.1s)}$ and $H(s) = 1$                                                                                 |
|             | $e_{ss} = \frac{A}{1+k} = \frac{1}{1+\infty} = 0$                                                                                   |            | $S(1 + 0.1S)$ $r(t) = 400 t_0 (t) \implies 400 t_0^2$                                                                         |
| ACE E       | $\mathbf{r} \neq \mathbf{k}_{p}$ $\mathbf{r} \neq \infty$<br>ngincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa | r • Luckno | 1(1) — 4001u(1) → 400/S<br>ow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad             |

#### ACE Engineering Publications



|                    | ACEE<br>Engineering Publications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11         | Postal Coaching Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18.<br>Sol:<br>19. | Ans: (c)<br>$f(t) = \frac{Md^{2}x}{dt^{2}} + B\frac{dx}{dt} + Kx(t)$ Applying Laplace transform on both sides<br>with zero initial conditions<br>$F(s) = Ms^{2}X(s) + BsX(s) + KX(s)$ $\frac{X(s)}{F(s)} = \frac{1}{Ms^{2} + Bs + K}$ Characteristic equation is $Ms^{2} + Bs + K = 0$<br>$s^{2} + \frac{B}{M}s + \frac{K}{M} = 0$ Compare with $s^{2} + 2\zeta \omega_{n}s + \omega_{n}^{2} = 0$<br>$2\zeta\omega_{n} = \frac{B}{M}$<br>$\xi = \frac{B}{2\sqrt{MK}}$ $\omega_{n} = \sqrt{\frac{K}{M}}$<br>Time constant $T = \frac{1}{\zeta\omega_{n}}$<br>$= \frac{1}{B} \times 2M$<br>$T = \frac{2M}{B}$<br>Hence, statements 2 & 3 are correct<br>Ans: (c) | s,<br>ER// | $k_{p} = \lim_{s \to 0} \frac{1}{s(1+s)(s+2)}$ $= \infty$ Steady state error due to step input $= \frac{1}{1+k_{p}} = 0$ 21. Sol: Open loop T/F G(s) = $\frac{A}{S(S+P)}$ C.L. T/F = $\frac{A}{S^{2}+SP+A}$ $\omega_{n} = \sqrt{A}$ Setting time = $4/\xi\omega_{n} = 4$ $2\xi\omega_{n} = P$ $\therefore \frac{4}{P/2} = 4$ $\xi\omega_{n} = P/2$ $\Rightarrow P = \frac{8}{4} = 2$ $e^{\frac{-\pi\xi}{\sqrt{1+\xi^{2}}}} = 0.1 \Rightarrow \frac{\pi\xi}{\sqrt{1-\xi^{2}}} = \ell n 10$ $= 2.3$ $\Rightarrow \frac{\xi^{2}}{1-\xi^{2}} = 0.5373$ $\Rightarrow 1.5373 \xi^{2} = 0.5373$ $\xi = 0.59$ |
| Sol:               | type 1 system has a infinite positional erro<br>constant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r          | $\xi \omega_n = 1$<br>$\Rightarrow \omega_n = 1.694 \Rightarrow A = \omega_n^2 = 2.87$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20.<br>Sol:        | Ans: (a)<br>Given G(s) = $\frac{1}{s(1+s)(s+2)}$ , H(s) = 1.<br>It is type-I system<br>Positional error constant $k_p = \underset{s \to 0}{\text{Lt}} G(s) H(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 22.<br>Sol:<br>$\overset{R(s)}{\longrightarrow} \underbrace{10}_{S+0.8+10K} \underbrace{\frac{1}{S}}_{S} \underbrace{C(s)}_{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ACE F              | ngineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r • Luckno | ow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Engineering Publications                                                                                      | 12  | Control Systems                                                                                   |
|---------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------|
| $\frac{C(s)}{R(s)} = \frac{10}{s(s+0.8+10K)+10}$                                                              |     | $t_p = \frac{\pi}{\omega_d} = 1.1 \text{sec}$                                                     |
| $=\frac{10}{s^2 + s(0.8 + 10K)l0}$                                                                            |     | %Mp = $e^{-\frac{\pi\xi}{\sqrt{1-\xi^2}}} = 0.163 \times 100 = 16.3\%$                            |
| $\omega_n = \sqrt{10} \qquad 2\xi \omega_n = 0.8 + 10 \text{ K}$                                              |     | $t_{s}$ (for 2%) = $\frac{4}{\xi \omega_{n}} = \frac{4}{0.5 \times \sqrt{10}} = 2.53 \text{ sec}$ |
| $\Rightarrow 2 \times \frac{1}{2} \times \sqrt{10} = 0.8 + 10 \mathrm{K}$                                     |     |                                                                                                   |
| $\Rightarrow$ K = 0.236                                                                                       |     |                                                                                                   |
| $t_{\rm r} = \frac{\pi - \phi}{\omega_{\rm d}} = \frac{\pi - \cos^{-1}(\xi)}{\omega_{\rm n}\sqrt{1 - \xi^2}}$ |     |                                                                                                   |
| $= \frac{\pi - \pi/3}{2.88} = 0.74 \sec(100)$                                                                 | EDI |                                                                                                   |
| Ct ENGINE<br>V                                                                                                |     |                                                                                                   |



# Stability

| 01.<br>Sol: CE = s                                      | $s^{5} + 4s^{4} +$                                                | $+8s^3+8$  | $3s^2 + 7s + 4 = 0$                                                                                                                                                   | <b>02. Sol:</b> (i) s <sup>5</sup> +                                                             | $s^{4} + s^{3} +$                                                     | $-s^{2} + s$       | +1 = 0                                                                                        |                                                                                 |       |
|---------------------------------------------------------|-------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------|
| s <sup>5</sup>                                          | 1                                                                 | 8          | 7                                                                                                                                                                     | _                                                                                                | $+s^{5}$<br>$+s^{4}$                                                  | 1                  | 1 1<br>1 1                                                                                    |                                                                                 |       |
| s <sup>4</sup>                                          | 4(1)                                                              | 8(2)       | 4(1)                                                                                                                                                                  |                                                                                                  | $+s^3$                                                                | 0(2)               | 0(1) 0                                                                                        |                                                                                 |       |
| s <sup>3</sup>                                          | 6(1)                                                              | 6(1)       | 0                                                                                                                                                                     |                                                                                                  | $+s^{2}$<br>(1) - s <sup>1</sup>                                      | $\frac{1}{2}$ - 3  | 1<br>0                                                                                        |                                                                                 |       |
| s <sup>2</sup>                                          | 1                                                                 | 1          | $0 \rightarrow \text{Row of AE}$                                                                                                                                      | INGAE                                                                                            | $(2) + s^0$<br>$(2) = s^4 + s^4$                                      | 1<br>$x^{2} + 1 =$ | = 0                                                                                           |                                                                                 |       |
| $s^1$                                                   | 0(2)                                                              | 0          | $0 \rightarrow \text{Row of zero}$                                                                                                                                    | $\frac{d(A)}{ds}$                                                                                | $\frac{E}{S} = 4s^3$                                                  | +2s =              | = 0                                                                                           |                                                                                 |       |
| s <sup>0</sup>                                          | 1                                                                 |            | Y                                                                                                                                                                     | $\Rightarrow 2$                                                                                  | $2s^3 + s =$                                                          | 0                  |                                                                                               |                                                                                 |       |
| No. of<br>No. of<br>Below<br>No. of<br>No. of<br>No. of | AE roots<br>sign chan<br>AE = 0<br>RHP = 0<br>LHP = 0<br>joop = 2 | = 2<br>ges | No. of CE roots = 5<br>No. of sign changes<br>in 1 <sup>st</sup> column = 0<br>$\therefore$ No .of RHP = 0<br>No. of j $\omega$ p = 2<br>$\Rightarrow$ No .of LHP = 3 | AH<br>No. of sign<br>AE = 2<br>No. of AE ro<br>No .of RHP<br>No .of LHP<br>No. of j $\omega$ p = | E changes I<br>boots = $4$<br>= $2$<br>= $2$<br>= $2$<br>= $0$<br>Sys | below<br>tem is u  | No. of s<br>1 <sup>st</sup> colur<br>No. of C<br>No. of F<br>No. of J<br>No. of j<br>unstable | CE<br>ign chang<br>mn = 2<br>CE roots =<br>RHP = 2<br>LHP = 3<br>$\omega p = 0$ | es in |
|                                                         | System                                                            | ı is marg  | inally stable.                                                                                                                                                        | (ii) $s^6 + 2s^5 + \frac{1}{6}$                                                                  | $+2s^4+0$                                                             | $)s^{3}-s^{2}$     | - 2s - 2 =                                                                                    | = 0                                                                             |       |
|                                                         | . 1 0                                                             |            |                                                                                                                                                                       | s <sup>6</sup>                                                                                   | 1 2(1)                                                                | 2                  | -1<br>-2(-1)                                                                                  | -2                                                                              |       |
| (11) S <sup>-</sup>                                     | +1 = 0                                                            |            |                                                                                                                                                                       | $s^4$                                                                                            | $\frac{2(1)}{2(1)}$                                                   | +0                 | -2(-1)<br>-2(-1)                                                                              |                                                                                 |       |
| S =                                                     | = ± 1 j =                                                         | ±jωn       |                                                                                                                                                                       | $s^3$                                                                                            | 2(1)<br>0(4)                                                          | 0                  | 0                                                                                             | 0                                                                               |       |
| ω <sub>n</sub>                                          | = 1  rad/                                                         | ' sec      |                                                                                                                                                                       | $s^2$                                                                                            | 0(ε)                                                                  | -1                 | 0                                                                                             | 0                                                                               |       |
| Os                                                      | scillating                                                        | frequer    | ncy $\omega_n = 1 \text{ rad/sec}$                                                                                                                                    | $s^1$<br>$-s^0$                                                                                  | 4/ε<br>-1                                                             |                    |                                                                                               |                                                                                 |       |
|                                                         |                                                                   |            |                                                                                                                                                                       |                                                                                                  | Ι                                                                     |                    |                                                                                               |                                                                                 |       |

| ACE<br>Engineering Publications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14          | Control Systems                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $AE = s4 - 1 = 0$ $\frac{dAE}{ds} = 4s3 + 0 = 0$ $AE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | $\Rightarrow s = \pm j4$<br>$\omega_n = 4 \text{ rad/sec}$ 04.                                                                                                                                                                                                                                                                                                                                                                               |
| No. of CE roots = 6No. of AE roots = 4No. of sign changesNo. of sign changesin the 1 <sup>st</sup> column= 1below AE = 1No. of RHP = 1No. of RHP = 1No. of LHP = 3No. of j $\omega$ p = 2No. of j $\omega$ p = 2No. of LHP = 1                                                                                                                                                                                                                                                                                                                          | S           | Sol: $CE = 1 + \frac{K(s+1)}{s^3 + as^2 + 2s + 1} = 0$<br>$s^3 + as^2 + (K+2)s + K + 1 = 0$<br>$s^3 + as^2 + (K+2)s + (K+1) = 0$                                                                                                                                                                                                                                                                                                             |
| 03.<br>Sol: CE = s <sup>3</sup> + 20 s <sup>2</sup> + 16s + 16 K = 0<br>$\begin{vmatrix} s^{3} \\ 20 \\ 20 \\ 16K \end{vmatrix}$ (i) For stability $\frac{20(16) - 16K}{20} = 0$<br>⇒ 20 (16) - 16 K > 0<br>⇒ K < 20 and 16 K > 0 ⇒ K > 0<br>Range of K for stability 0 < K < 20<br>(ii) For the system to oscillate with ω <sub>n</sub> i<br>must be marginally stable<br>i.e., s <sup>1</sup> row should be 0<br>s <sup>2</sup> row should be AE<br>$\therefore$ A.E roots = ± jω <sub>n</sub><br>$\therefore$ s <sup>1</sup> row ⇒ 20 (16) - 16 K =0 | ERI/        | $\overrightarrow{s^{3}} \qquad 1 \qquad K+2$ $s^{2} \qquad a \qquad K+1$ $s^{1} \qquad \frac{a(K+2)-(K+1)}{a} \qquad 0$ $s^{0} \qquad K+1$ Given, $\omega_{n} = 2$ $\Rightarrow s^{1} \operatorname{row} = 0$ $s^{2} \operatorname{row} \operatorname{is} A.E$ $a (K+2) - (K+1) = 0$ $a = \frac{K+1}{K+2}$ $AE = as^{2} + K + 1 = 0$ $= \frac{K+1}{K+2}s^{2} + K + 1 = 0$ $(k+1) \left(\frac{s^{2}}{k+2} + 1\right) = 0$ $s^{2} + k + 2 = 0$ |
| $\Rightarrow \mathbf{K} - 20$ AE is $20s^2 + 16$ K = 0<br>$20s^2 + 16$ (20) = 0<br>ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa                                                                                                                                                                                                                                                                                                                                                                                          | r • Lucknov | $\begin{split} s &= \pm j \sqrt{(k+2)} \\ \omega_n &= \sqrt{k+2} = 2 \\ \\ \text{w} \cdot \text{Patna} \cdot \text{Bengaluru} \cdot \text{Chennai} \cdot \text{Vijayawada} \cdot \text{Vizag} \cdot \text{Tirupati} \cdot \text{Kolkata} \cdot \text{Ahmedabad} \end{split}$                                                                                                                                                                 |

#### ACE Engineering Publications

k = 2 $a = \frac{k+1}{k+2} = \frac{3}{4} = 0.75$ 

05.

**Sol:**  $s^3 + ks^2 + 9s + 18$ 

Given that system is marginally stable,

Hence

 $s^{1}$  row = 0  $\frac{9K - 18}{K} = 0$   $9K = 18 \Rightarrow K = 2$ A.E is  $9s^{2} + 18 = 0$   $Ks^{2} + 18 = 0$ ,  $2s^{2} + 18 = 0$ ,  $2s^{2} = -18$   $s = \pm j3$ ∴  $ω_{n} = 3$  rad/sec.

#### 06. Ans: (d)

Sol: Given transfer function  $G(s) = \frac{k}{(s^2 + 1)^2}$ Characteristic equation  $1 - G(s) \cdot H(s) = 0$ 

 $1 - \frac{k}{(s^2 + 1)^2} = 0$ 

$$s^4 + 2s^2 + 1 - k = 0 \dots (1)$$

RH criteria

| $s^4$          | 1   | 2   | 1-K |
|----------------|-----|-----|-----|
| s <sup>3</sup> | 4   | 4   | -   |
| $s^2$          | 1   | 1-K |     |
| $s^1$          | 4K  |     |     |
| s <sup>o</sup> | 1-K |     |     |

$$AE = s^4 + 2s^2 + 1 - k$$

$$\frac{d}{ds}(AE) = 4s^3 + 4s$$

1-K > 0 no poles are on RHS plane and LHS plane.

All poles are on jo- axis

 $\therefore 0 < K < 1$  system marginally stable

#### 07. Ans: (d)

Sol: Assertion: FALSE

Let the TF = s. "s" is the differentiator Impulse response  $L^{-1}[TF] = L^{-1}[s] = \delta'(t)$ Lt  $\delta'(t) = 0$ 

. It is BIBO stable

**Reason: True** x(t) = t sint



 $\lim_{t\to\infty} x(t) = \lim_{t\to\infty} t \text{ sint is unbounded}$ 

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

Since

|      |                                                                     | 16     | Control Systems |
|------|---------------------------------------------------------------------|--------|-----------------|
| 08.  | Ans: (a)                                                            |        |                 |
| Sol: | Assertion: TRUE                                                     |        |                 |
|      | If feedback is not properly utilized the                            | e      |                 |
|      | closed loop system may become unstable.                             |        |                 |
|      | Reason: True                                                        |        |                 |
|      | Feedback changes the location of poles                              |        |                 |
|      | Let $G(s) = \frac{-2}{s+1}$ $H(s) = 1$                              |        |                 |
|      | Open loop pole $s = -1$ (stable)                                    |        |                 |
|      | -2                                                                  |        |                 |
|      | $CLTF = \frac{\overline{s+1}}{1 + \frac{-2}{s+1}} = \frac{-2}{s-1}$ | = R // |                 |
|      | Closed loop pole is at $s = 1$ (unstable)                           |        | AC              |
|      | :After applying the feedback no more                                | e      | 40              |
|      | system is open loop. It becomes closed loop                         | 5      | 3               |
|      | system. Hence poles are affected.                                   |        |                 |
|      |                                                                     | ce 1   |                 |



# **Root Locus Diagram**

01. Ans: (a) (c)  $k > 4 \Rightarrow$  roots are complex **Sol:**  $s_1 = -1 + i\sqrt{3}$  $0 < \xi < 1 \Rightarrow$  under damped  $s_2 = -3 - i\sqrt{3}$ 03. Ans: (a)  $G(s).H(s) = \frac{K}{(s+2)^3}$ Sol: Asymptotes meeting point is nothing but centroid  $s_1 = -1 + j\sqrt{3}$ centroid  $\sigma = \frac{\sum \text{poles} - \sum \text{zeros}}{p - z}$ G(s).H(s) =  $\frac{K}{(-1+j\sqrt{3}+2)^3}$  $=\frac{-3-0}{3-0}=-1$  $=\frac{K}{\left(1+j\sqrt{3}\right)^3}$ centroid = (-1, 0)04. Ans: (b)  $= -3 \tan^{-1}(\sqrt{3})$ **Sol:** break point =  $\frac{dK}{ds} = 0$  $= -180^{\circ}$ It is odd multiples of  $180^\circ$ , Hence s<sub>1</sub> lies on  $\frac{\mathrm{d}}{\mathrm{d}s} \big( \mathrm{G}_1(s) \cdot \mathrm{H}_1(s) \big) = 0$ Root locus  $s_2 = -3 - j\sqrt{3}$  $\frac{\mathrm{d}}{\mathrm{d}s}[s(s+1)(s+2)] = 0$ G(s).H(s) =  $\frac{K}{(-3 - j\sqrt{3} + 2)^3}$  $3s^2 + 6s + 2 = 0$ s = -0.422, -1.57 $=\frac{K}{\left(-1-i\sqrt{3}\right)^3}$ Since 199 But s = -1.57 do not lie on root locus  $= -3 [180^{\circ} + 60^{\circ}] = -720^{\circ}$ So, s = -0.422 is valid break point. It is not odd multiples of  $180^\circ$ , Hence s<sub>2</sub> is Point of intersection wrt jo axis not lies on Root locus.  $s^{3} + 3s^{2} + 2s + k = 0$ 02. Ans: (a) 2 Sol: Over damped - roots are real & unequal  $\begin{vmatrix} s^2 \\ s^2 \\ s^1 \\ 0 \end{vmatrix} = \frac{3}{6-k}$ k  $\Rightarrow 0 < k < 4$ 0 (b) k = 4 roots are real & equal  $\Rightarrow$  Critically damped  $\xi = 1$ ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ACE Engineering Publications

> As s<sup>1</sup> Row = 0 k = 6  $3s^2 + 6 = 0$   $s^2 = -2$  $s = \pm i\sqrt{2}$

point of inter section:  $s = \pm j\sqrt{2}$ 

05. Ans: (b)

Sol:

break  
point  
$$k = 6$$
  
 $k = 0.384$   
 $-2$   $-1$   
 $s = 0.423$   
 $k$ 

 $\overline{s(s+1)(s+2)}$ 

substitute s = -0.423 and apply the magnitude criteria.

$$\frac{K}{(-0.423)(-0.423+1)(-0.423+2)} = 1$$

K = 0.354

when the roots are complex conjugate then the system response is under damped. From K > 0.384 to K < 6 roots are complex conjugate then system to be under damped the values of k is 0.384 < K < 6.

#### 06. Ans: (c)

Sol: If the roots are lies on the real axis then system exhibits the non-oscillatory response. from  $K \ge 0$  to  $K \le 0.384$  roots lies on the real axis. Hence for  $0 \le K \le 0.384$  system exhibits the non-oscillatory response.

**Control Systems** 07. Ans: (a) Sol: 0 -3  $\frac{d}{ds}[G(s).H(s)] = \frac{d}{ds} \left| \frac{k(s+3)}{s(s+2)} \right|$  $s^2 + 6s + 6 = 0$ break points - 1.27, - 4.73 radius =  $\frac{4.73 - 1.27}{2} = 1.73$ center = (-3, 0)08. Ans: (c) **Sol:**  $G(s).H(s) = \frac{K(s+3)}{s(s+2)}$  $|\mathbf{k}|_{s=-4} = \frac{(-4)(-4+2)}{(-4+3)}$  $=\left|\frac{(-4)(-2)}{(-1)}\right|=8$ 09. Ans: (a) **Sol:**  $s^2-4s+8=0 \Rightarrow s=2\pm 2j$  are two zeroes  $s^{2}+4s+8=0 \Rightarrow s=-2\pm 2i$  are two poles  $\phi_{A} = 180 - \angle GH|_{S^{-3+2+1}}$ GH =  $\frac{k[s - (2 + 2j)[s - (2 - 2j)]]}{[s - (-2 + 2j)[s - (-2 - 2j)]]}$  $\angle GH \Big|_{s=2+2j} = \frac{\angle k \angle 4j}{\angle 4 \angle 4 + 4j}$ 

$$= 90^{\circ} - 45^{\circ} = 45^{\circ}$$
  
$$\phi_{A} = 180^{\circ} - 45^{\circ} = \pm 135^{\circ}$$

ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

| Engineering Publications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19   | Postal Coaching Solutions                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------|
| <b>10.</b> Ans: (b)<br>Sol: $s^2-4s+8 = 0 \implies s = 2\pm 2i$ are two zeroes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | <b>11.</b> Ans: (d)<br>Sol: Poles $s = -2, -5$ ; Zero $s = -10$ |
| $s^{2}+4s+8 = 0 \Rightarrow s = -2\pm 2j$ are two poles<br>$\phi_{d} = 180^{\circ} + \angle GH _{s=-2\pm 2j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | jω                                                              |
| $\angle GH _{S=-2\pm 2j} = \angle \frac{k[s - (2 + 2j)][s - (2 - 2j)]}{[s - (-2 + 2j)][s - (-2 - 2j)]} _{S=-2\pm 2j}$ $= \frac{\angle k(-4)(-4 + 4j)}{\angle 4j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | $-10$ $-5$ $-2$ $\sigma$                                        |
| $= 180^{\circ} + 180^{\circ} - 45^{\circ} - 90^{\circ} = 225^{\circ}$<br>$\phi_{4} = 180^{\circ} + 225^{\circ} = 405^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | $\therefore$ Breakaway point exist between -2 and -5            |
| $\therefore \phi_d = \pm 45^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EBI  | <b>12.</b><br>Sol: Refer Pg No: 77, Vol-1 Ex: 8                 |
| Ctrining of the second se | ce 1 |                                                                 |

Chapter 6

## **Frequency Response Analysis**



| ACC | Engineering Publications |
|-----|--------------------------|
|-----|--------------------------|

 $A = \frac{1}{\sqrt{\omega^2 + 4}} = \frac{1}{\sqrt{4 + 4}} = \frac{1}{\sqrt{8}} = \frac{1}{2\sqrt{2}}$  $\phi = -\tan^{-1}\omega/2$  $= -\tan^{-1}2/2$  $\Rightarrow \phi = -\tan^{-1}(1) = -45^{\circ}$ output  $= \frac{1}{2\sqrt{2}}\cos(2t + 20^{\circ} - 45^{\circ})$  $= \frac{1}{2\sqrt{2}}\cos(2t - 25^{\circ})$ 

07. Ans: (c) Sol: Initial slope = -40 dB/dec Two integral terms  $\left(\frac{1}{s^2}\right)$ 

 $\therefore$  Part of TF = G(s)H(s) =  $\frac{K}{s^2}$ 

at  $\omega = 0.1$ Change in slope = -20 - (-40)=  $20^{\circ}$ 

Part of TF = G(s) H(s) = 
$$\frac{K\left(1 + \frac{s}{0.1}\right)}{s^2}$$

At  $\omega = 10$  slope changed to -60 dB/dec Change in slope = -60-(-20)

= -40 dB/dec

$$\text{TF} (G(s)H(s)) = \frac{K\left(1 + \frac{s}{0.1}\right)}{s^2 \left(\frac{s}{10} + 1\right)^2}$$

 $20 \log K - 2 (20 \log 0.1) = 20 dB$  $20 \log K = 20-40$  $20 \log K = -20$ 

$$K = 0.1$$

$$G(s)H(s) = \frac{\left(0.1\right)\left(1 + \frac{s}{0.1}\right)}{s^2\left(1 + \frac{s}{10}\right)^2}$$

$$= \frac{\left(0.1\right) \times 10^2 (s + 0.1)}{\left(0.1\right)s^2 (s + 10)^2}$$

$$G(s)H(s) = \frac{100(s + 0.1)}{s^2 (s + 10)^2}$$
**08. Ans: (b) Sol:**  $G(s)H(s) = \frac{Ks}{\left(1 + \frac{s}{2}\right)\left(1 + \frac{s}{10}\right)}$ 

21

 $12 = 20 \log K + 20 \log 0.5$   $12 = 20 \log K + (-6)$   $20 \log K = 18 \text{ dB} = 20 \log 2^3$  K = 8  $G(s)H(s) = \frac{8s \times 2 \times 10}{(2+s)(10+s)}$  $G(s)H(s) = \frac{160s}{100}$ 

G(s)H(s) = 
$$\frac{1003}{(2+s)(10+s)}$$
  
Ans: (b)

**09.** 

Sol:  

$$x_1 \quad x_2$$
  
 $y_1$   
 $y_1$   
 $y_2=20 \text{ dB}$   
 $y_2=20 \text{ dB}$   
 $y_1$   
 $y_2=20 \text{ dB}$   
 $y_2=20 \text{ dB}$   
 $y_1$   
 $y_2=20 \text{ dB}$   
 $y_2=20 \text{ dB}$   
 $y_2=20 \text{ dB}$   
 $y_1$   
 $y_2=20 \text{ dB}$   
 $y_2=20 \text{ dB}$   

$$G(s)H(s) = \frac{K\left(1 + \frac{s}{10}\right)^2 \left(1 + \frac{s}{20}\right)}{(1+s)^2}$$

ACE Engincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

d • Deini • Bnopai • Pune • Bnubaneswar • Lucknow • Patha • Bengaluru • (

10. Ans: (d)

20

-20

Sol:

**Control Systems** 22  $\frac{y_2 - y_1}{x_2 - x_1} = -40 \, \text{dB} \, / \, \text{dec}$  $G(s)H(s) = \frac{K\left(1 + \frac{s}{0.1}\right)}{s^2\left(1 + \frac{s}{10}\right)}$  $\frac{20 - y_1}{\log 10 - \log 1} = -40$  $20\log K - 2 (20 \log 0.1) = 20$  $y_1 = +60 \, dB \Big|_{m < 1}$  $20 \log K = 20 - 40$  $\Rightarrow 20 \log K = 60$ K = 0.1 $G(s)H(s) = \frac{0.1 \times \frac{1}{0.1} (0.1 + s)}{s^2 \frac{1}{10} (10 + s)}$  $K = 10^{3}$  $G(s)H(s) = \frac{10^{3}(s+10)^{2}(s+20)}{10^{2} \times 20 \times (s+1)^{2}}$  $=\frac{10(0.1+s)}{s^2(10+s)}$  $=\frac{(s+10)^2(s+20)}{2(s+1)^2}$ 11. 100 200 |G(s)H(s)|Sol:  $\overline{s(s+2)}$  $s\left(1+\frac{s}{2}\right)$ 40 dB/dec  $x = -KT \implies -(100) \times \frac{1}{2} = x = -50$ 20 dB/dec • ω  $\omega_1$  $\omega_2$ 12. Ans: (c) 40 dB/dec Sol: For stability (-1, j0) should not be enclosed 199 by the polar plot.  $\omega_1$  calculation: For stability 1 > 0.01 K

0 - 20 $\log 1 - \log \omega_1$  $\Rightarrow K < 100$ = -20 dB/dec $\omega_1 = 0.1$ 13. ω<sub>2</sub> calculation: Sol: GM = -40 dB-20 - 0 $\log \omega_2 - \log 1$  $20\log\frac{1}{a} = -40 \implies a = 10^2$ = -20 dB/decPOI = 100 $\omega_2 = 10$ 

| Engineering Publications                                                   | 23           | Postal Coaching Solutions                                                             |
|----------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------|
| 14.                                                                        |              | N = -2, P = 0 (Given)                                                                 |
| <b>Sol: (i)</b> $GM = \frac{1}{2} = +10 = 20  dB$                          |              | $\therefore$ N = P - Z                                                                |
| 0.1                                                                        |              | -2 = 0 - Z                                                                            |
| $PM = 180^{\circ} - 140^{\circ} = 40^{\circ}$                              |              | Z = 2                                                                                 |
| (*) $\mathbf{D}\mathbf{M} = 190, 1500 = 200$                               |              | Two closed loop poles are lies on RH of                                               |
| (II) $PM = 180 - 150^2 - 30^2$                                             |              | s-plane and hence the closed loop system is                                           |
| $GM = \frac{1}{0} = \infty$ $POI = 0$                                      |              | unstable.                                                                             |
| (iii) $\omega_{PC}$ does not exist                                         | 1            | 17. Ans: (c)                                                                          |
| $GM = \frac{1}{2} = \infty PM = 180^{\circ} + 0^{\circ} = 180^{\circ}$     | 8            | Sol:                                                                                  |
| 0                                                                          |              | GH plane                                                                              |
| (iv) $\omega_{gc}$ not exist                                               |              | $\omega = \infty$                                                                     |
| $\omega_{\rm pc} = \infty$                                                 | ERII         |                                                                                       |
| $GM = \frac{1}{0} = \infty$                                                |              |                                                                                       |
| $PM = \infty$                                                              |              | $\omega = 0$                                                                          |
| (a) $CM = \frac{1}{2}$                                                     |              | $\frac{K_c}{K_c} = 0.4$ When $K = 1$                                                  |
| (v) $GM - \frac{1}{0.5} = 2$                                               |              | K With K I                                                                            |
| PM = 180 - 90                                                              |              | Now, K double, $\frac{K_c}{K} = 0.4$                                                  |
| $=90^{0}$                                                                  |              | $K = 0.4 \cdot 2 = 0.8$                                                               |
|                                                                            |              | $K_c = 0.4 \times 2 = 0.8$                                                            |
| 15. Ans: (d)                                                               |              | GH plane                                                                              |
| Sol: For stability $(-1, j0)$ should not be enclose                        | ed           | $\omega = \infty$                                                                     |
| by the polar plot. In figures (1) $\approx$ (2) (-1, just is not enclosed  |              | (-1,0)                                                                                |
| : Systems represented by $(1) & (2)$ at                                    | re           |                                                                                       |
| stable.                                                                    |              | 0-0                                                                                   |
|                                                                            |              | Even though the value of K is double, the                                             |
| 16 Ans. (b)                                                                |              | system is stable (negative real axis                                                  |
| Sol: Open loop system is stable since the open                             | 'n           | magnitude is less than one)                                                           |
| loop poles are lies in the left half of s-plar                             | ne           | Oscillations depends on ' ξ'                                                          |
| $\therefore P = 0.$                                                        |              | Ex as K is increased Eraduced then                                                    |
| From the plot $N = -2$ .                                                   |              | $\zeta \sim \frac{1}{\sqrt{K}}$ as is increased $\zeta$ reduced, then                 |
| No. of encirclements $N = P - Z$                                           |              | more oscillations.                                                                    |
| ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubanesw | ar • Lucknov | w • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad |

#### ACE Engineering Publications

#### **Control Systems**

#### 18. Ans: (a)

**Sol:** Given system  $G(s) = \frac{10(s-12)}{s(s+2)(s+3)}$ 

It is a non minimum phase system since s = 12 is a zero on the right half of s-plane

#### 19.

Sol: Given that  $G(s)H(s) = \frac{10(s+3)}{s(s-1)}$ s-plane Nyquist Contour  $\omega = +\infty$   $\omega = 0^+$   $C_1$   $C_2$   $\varepsilon \to 0$  $R \to \infty$ 



• The Nyquist contour in the s-plane enclosing the entire right half of S-plane is shown figure.

The Nyquist Contour has four sections  $C_1$ ,  $C_2$ ,  $C_3$  and  $C_4$ . These sections are mapped into G(s)H(s) plane

**Mapping of section C**<sub>1</sub>: It is the positive imaginary axis, therefore sub  $s = j\omega$ ,  $(0 \le \omega \le \infty)$  in the TF G(s) H(s), which gives the polar plot

$$G(s)H(s) = \frac{10(s+3)}{s(s-1)}$$

Let  $s = j\omega$ 

$$G(j\omega)H(j\omega) = \frac{10(j\omega+3)}{j\omega(j\omega-1)}$$
$$G(j\omega)H(j\omega) = \frac{10\sqrt{\omega^2+9}}{\omega\sqrt{\omega^2+1}} \angle \{\tan^{-1}\left(\frac{\omega}{3}\right) - [90^0 + 180^0 - \tan^{-1}(\omega)]\}$$

At 
$$\omega = 0 \implies \infty \angle -270^{\circ}$$
  
At  $\omega = \omega_{pc} = \sqrt{3} \implies 10 \angle -180^{\circ}$   
At  $\omega = \infty \implies 0 \angle -90^{\circ}$ 

point of intersection of the Nyquist plot with respect to negative real axis is calculated below

ArgG(j
$$\omega$$
)H(j $\omega$ ) = arg $\frac{10(j\omega+3)}{j\omega(j\omega-1)}$   
= -180<sup>°</sup> will give the ' $\omega_{nc}$ 

Magnitude of  $G(j\omega)H(j\omega)$  gives the point of intersection

$$\angle \tan^{-1}(\frac{\omega}{3}) - [90^{\circ} + 180^{\circ} - \tan^{-1}(\omega))$$

$$=-180^{\circ}|\omega=\omega_{\rm pc}$$

$$\angle \tan^{-1}(\frac{\omega_{\rm pc}}{3}) - [90^0 + 180^0 - \tan^{-1}(\omega_{\rm pc})) = -180^0$$

$$\tan^{-1}(\frac{\omega_{\rm pc}}{3}) + \tan^{-1}(\omega_{\rm pc}) = 90^{\circ}$$

Taking "tan" both the sides

$$\frac{\frac{\omega_{pc}}{3} + \omega_{pc}}{1 - \frac{(\omega_{pc})^2}{3}} = \tan 90^\circ = \infty$$
$$1 - \frac{(\omega_{pc})^2}{3} = 0$$
$$\omega_{pc} = \sqrt{3} \text{ rad/sec}$$

ACE Engineering Publications Hyde



imaginary axis, therefore sub  $s = j\omega$ ,

 $(-\infty \le \omega \le 0)$  in the TF G(s)H(s), which gives the mirror image of the polar plot and is symmetrical with respect to the real axis, The plot is shown in figure.



**Mapping of section C<sub>4</sub>:** It is the radius ' $\varepsilon$ ' semicircle, therefore sub s =  $\lim_{\epsilon \to 0} \varepsilon e^{j\theta}$ 

 $(-90^{\circ} \le \theta \le 90^{\circ})$  in the TF G(s)H(s), which gives clockwise infinite radius semicircle in G(s)H(s) plane.

The plot is shown below

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

$$G(\epsilon e^{j\theta})H(\epsilon e^{j\theta}) = \frac{10(\epsilon e^{j\theta} + 3)}{\epsilon e^{j\theta}(\epsilon e^{j\theta} - 1)}$$

$$G(\epsilon e^{j\theta})H(\epsilon e^{j\theta}) \approx \frac{10 \times 3}{-\epsilon e^{j\theta}} = \infty \angle 180^{0} - \theta$$
When,  $\theta = -90^{0} \quad \infty \angle 270^{0}$   
 $\theta = -40^{0} \quad \infty \angle 220^{0}$   
 $\theta = 0^{0} \quad \infty \angle 0^{0}$   
 $\theta = 40^{0} \quad \infty \angle 140^{0}$   
 $\theta = 90^{0} \quad \infty \angle 90^{0}$ 

It is clear that the plot is clockwise ' $\infty$ ' radius semicircle centred at the origin

|                                                                                                                                                                                                                                                                                                          | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Engineering Publications                                                                                                                                                                                                                                                                                 | 26         | Control Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\int_{-10}^{100} \frac{1}{G(s)H(s) \text{ plane}}{G(s)H(s) \text{ plane}}$ Combining all the above four sections, the Nyquist plot of $G(s)H(s) = \frac{10(s+3)}{s(s-1)}$ is shown in figure below<br>From the plot N=1<br>Given that P=1<br>N=P-Z<br>Z = P - N = 1 - 1 = 0, therefore system is stable | e<br>S     | i.e., there is one pole at origin (or) one integral term.<br>portion of transfer function<br>$G(s) = \frac{K}{s}$ At $\omega = 2$ rad/sec, slope is changed to 0dB/<br>octave.<br>$\therefore$ change in slope = present slope –<br>previous slope<br>= 0 - (-6) = 6 dB/octave<br>$\therefore$ There is a real zero at corner frequency<br>$\omega_1 = 2$ .<br>$(1 + sT_1) = (1 + \frac{s}{\omega_1}) = (1 + \frac{s}{Z})$<br>At $\omega = 10$ rad/sec, slope is changed to<br>-6dB/octave.<br>$\therefore$ change in slope = $-6 - 0$<br>= -6 dB/octave.<br>$\therefore$ There is a real pole at corner frequency<br>$\omega_2 = 2$ .<br>$\frac{1}{1 + sT_2} = \frac{1}{(1 + \frac{s}{\omega_2})} = \frac{1}{(1 + \frac{s}{10})}$ |
| Sol: The given bode plot is shown below.<br>-6  dB/octave -6  dB/octave<br>Gain in dB<br>1 2 10 50100 W(log scale)                                                                                                                                                                                       | C          | At $\omega = 50$ rad/sec, slope is changed to<br>-12dB/octave.<br>$\therefore$ change in slope = -12 - (-6)<br>= -6 dB/octave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -20 dB                                                                                                                                                                                                                                                                                                   |            | $\therefore \text{ There is a real pole at corner frequency} \\ \omega_3 = 50 \text{ rad/sec.} \\ \frac{1}{1+ST_2} = \frac{1}{(1-S_1)} = \frac{1}{(1-S_2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Initial slope = $-6 \text{ db/octave}$ .                                                                                                                                                                                                                                                                 |            | $\left(1+\frac{5}{\omega_3}\right)  \left(1+\frac{5}{50}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar                                                                                                                                                                                                                             | r • Luckno | w • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Engineering Publications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27        | Postal Coaching Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| At $\omega = 100$ rad/sec, the slope changed to -6<br>dB/octave.<br>$\therefore$ change in slope = $-6 - (-12) = 6$<br>dB/octave.<br>$\therefore$ There is a real zero at corner frequency $\omega_4 = 100$ rad/sec.<br>$\therefore (1 + sT_4) = \left(1 + \frac{s}{\omega_4}\right) = \left(1 + \frac{s}{100}\right)$<br>$\therefore$ Transfer function $= \frac{K\left(1 + \frac{s}{2}\right)\left(1 + \frac{s}{100}\right)}{s\left(1 + \frac{s}{50}\right)\left(1 + \frac{s}{10}\right)}$<br>$= \frac{K(s+2)(s+100)}{s(s+50)(s+10)} \frac{\frac{1}{2} \cdot \frac{1}{100}}{\frac{1}{50} \cdot \frac{1}{10}}$<br>$= \frac{2.5K(s+2)(s+100)}{s(s+10)(s+50)}$ | 5<br>ER// | In the given bode plot,<br>at $\omega = 1 \operatorname{rad/sec}$ , Magnitude = -20dB.<br>$-20 \operatorname{dB} = 20 \log K - 20 \log \omega + 20 \sqrt{1 + \left(\frac{\omega}{2}\right)^2} + 20 \sqrt{1 + \left(\frac{\omega}{100}\right)^2}$<br>$-20 \log \sqrt{1 + \left(\frac{\omega}{50}\right)^2} - 20 \log \sqrt{1 + \left(\frac{\omega}{10}\right)^2}$<br>At $\omega = 1 \operatorname{rad/sec}$ ,<br>$-20 = 20 \log K - 20 \log \omega = 1 \operatorname{rad/sec}$<br>[: Remaining values eliminated]<br>$-20 = 20 \log K$<br>$\Rightarrow K = 0.1$<br>: Transfer function<br>$\frac{C(s)}{R(s)} = \frac{0.25(s+2)(s+100)}{s(s+10)(s+50)}$ |
| Sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ce 1      | 1995<br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Chapter

### **Controllers & Compensators**

01. Ans: (a)  $\frac{R_1 + R_2}{R_2} = 1.764$ **Sol:**  $G_{C}(s) = (-1)\left(-\frac{Z_{2}}{Z_{*}}\right)$  $aT = R_1 C$  $R_1 = \frac{aT}{C} = \frac{0.3}{C} = (0.3)(10^6)$  $= (-1)(-1)\left(\frac{R_2 + \frac{1}{sC}}{R_1}\right)$  $= 300 \text{ k}\Omega$ G<sub>c</sub>(s) =  $\frac{(100 \times 10^3) + \frac{1}{s \times 10^{-6}}}{10^6}$ Bv  $300 \text{ k} + \text{R}_2 - 1.76 \text{ R}_2 = 0$  $R_2 = \frac{300}{0.70} = 394.736$  $G_{c}(s) = \frac{1+0.1s}{s}$  $= 400 \text{ k}\Omega$ 02. Ans: (c) 04. Ans: (d) **Sol:** CE  $\Rightarrow$  1+ G<sub>c</sub> (s) G<sub>p</sub> (s) = 0 Sol: PD controller improves transient stability  $=1+\frac{1+0.1s}{s}\times\frac{1}{(s+1)(1+0.1s)}$ and PI controller improves steady state stability. PID controller combines the  $= 1 + \frac{1 + 0.1s}{s(s+1)(1+0.1s)} = 0$ advantages of the above two controllers. 05.  $\Rightarrow$  s<sup>2</sup> + s+ 1 = 0  $\Rightarrow \omega_n = 1$ , **Sol:** For  $K_I = 0 \Rightarrow$  $e^{\left\lfloor \frac{-\xi\pi}{\sqrt{1-\xi^2}} \right\rfloor_{\xi=0.5}} = 0.163$  $\frac{C(s)}{R(s)} = \frac{(K_{P} + K_{D}s)}{s(s+1) + (K_{P} + K_{D}s)}$  $M_p = 16.3\%$ Since  $=\frac{K_{P}+K_{D}s}{s^{2}+(1+K_{D})s+K_{D}}$ 03. Ans: (b) **Sol:** T.F =  $\frac{k(1+0.3s)}{1+0.17s}$  $\omega_n = \sqrt{K_p}$  $2\xi\omega_{\rm p} = 1 + K_{\rm D}$  $T = 0.17, aT = 0.3 \implies a = \frac{0.3}{0.17}$  $\Rightarrow 2(0.9) \sqrt{K_{\rm p}} = 1 + K_{\rm p}$  $\Rightarrow 1.8 \sqrt{K_{p}} = 1 + K_{p}$ .....(1)  $C = 1 \mu F$  $T = \frac{R_1 R_2}{R_1 + R_2} C$ ,  $a = \frac{R_1 + R_2}{R_2}$ Dominant time constant  $\frac{1}{\xi_{\infty}} = 1$  $\frac{R_1R_2}{R_1 + R_2} = \frac{0.17}{1 \times 10^{-6}} = 170000$  $\Rightarrow \omega_n = \frac{1}{0.9} = 1.111$ ACE Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

| Ragineering Publications                               | 29 | Postal Coaching Solutions |
|--------------------------------------------------------|----|---------------------------|
| $K_{\rm P} = \omega_{\rm p}^2 = 1.11^2$                |    |                           |
| = 1.234                                                |    |                           |
| From eq. (1),                                          |    |                           |
| $\Rightarrow 1.8 \times \frac{1}{0.9} = 1 + K_{\rm D}$ |    |                           |
| $\Rightarrow K_D = 1$                                  |    |                           |





# ) State Space Analysis

01. Ans: (a)  
Sol: TF = 
$$\frac{1}{s^2 + 5s + 6}$$
  
=  $\frac{1}{(s+2)(s+3)}$   
=  $\frac{1}{s+2} + \frac{-1}{s+3}$   
 $\therefore A = \begin{bmatrix} -2 & 0 \\ 0 & -3 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$   
C =  $\begin{bmatrix} 1 & 1 \end{bmatrix}$ 

#### 02. Ans: (c)

Sol: Given problem is Controllable canonical form.

(or)

$$TF = C[sI - A]^{-1}B + D$$
  
= [6 5 1]  $\begin{bmatrix} s & 1 & 0 \\ 0 & s & 1 \\ -5 & -3 & s+6 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$   
=  $\frac{3s^2 + 15s + 18}{s^3 + 6s^2 + 3s + 5}$ 

#### 03. Ans: (d)

**Sol:**  $\frac{d^2y}{dt^2} + \frac{3dy}{dt} + 2y = u(t)$ 2<sup>nd</sup> order system hence two state variables are chosen Let  $x_1$  (t),  $x_2$  (t) are the state variables CCF - SSR Let  $x_1(t) = y(t) \dots (1)$ 

Differentiating (1)  $\dot{x}_1(t) = \dot{y}(t) = x_2(t)$  .....(3)  $\dot{x}_{2}(t) = \ddot{y}(t) = u(t) - 3y^{1}(t) - 2y(t)$  $= u(t) - 3x_2(t) - 2x_1(t) \dots (4)$  $\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}(\mathbf{t})$ 

From equation 1. The output equation in matrix form

$$\mathbf{y}(\mathbf{t}) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{bmatrix}, \mathbf{D} = \mathbf{0}$$

04. Ans: (b)  
Sol: OCF - SSR  
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

05. Ans: (c) Sol: Normal form - SSR

S

Since

$$\Gamma F = \frac{Y(s)}{G(s)} = \frac{1}{s^2 + 3s + 2} = \frac{1}{(s+1)(s+2)}$$

 $\Rightarrow$  Diagonal canonical form

The eigen values are distinct i.e., -1 & -2.

: Corresponding normal form is called as diagonal canonical form

DCF – SSR

$$\frac{Y(s)}{U(s)} = \frac{b_1}{s+1} + \frac{b_2}{s+2}$$
  
b\_1 = 1, b\_2 = -1

ACE Engineering Publications

|       |                                                                                                                                                                                                                                                     | 31         | Postal Coaching Solutions                                                                                                                                                       |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | $Y(s) = \frac{b_1}{\underbrace{s+1}_{x_1}}U(s) + \frac{b_2}{\underbrace{s+2}_{x_2}}U(s)$                                                                                                                                                            |            | $\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \mathbf{R}_2 \end{bmatrix}$                                                                                                  |
|       | Let $Y(s) = X_1(s) + X_2(s)$<br>Where $y(t) = y_1(t) + y_2(t)$ (1)                                                                                                                                                                                  |            | 07. Ans: (a)                                                                                                                                                                    |
|       | Where <b>X</b> (c) = $\frac{b_1}{U(c)}$ (1)                                                                                                                                                                                                         | ,<br>,     | <b>Sol:</b> $T.F = C[sI-A]^{-1}B + D$                                                                                                                                           |
|       | where $X_1(s) = \frac{1}{s+1} U(s)$                                                                                                                                                                                                                 |            | $=\begin{bmatrix} 1 & 0 \end{bmatrix} s + 4 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \end{bmatrix}$                                                                             |
|       | Take Laplace Inverse $X_1(s) + X_1(s) = b_1 O(s)$                                                                                                                                                                                                   |            | $\begin{bmatrix} 1 & 0 \\ 3 & s+1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$                                                                                                |
|       | $\dot{x}_1 + x_1 = b_1 u(t)$ (2)                                                                                                                                                                                                                    |            | $= \begin{bmatrix} 1 & 0 \end{bmatrix} \frac{1}{s^2 + 5s + 1} \begin{bmatrix} s+1 & -1 \\ -3 & s+4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$                          |
|       | $X_2(s) = \frac{b_2}{s+2}U(s)$                                                                                                                                                                                                                      |            | $= \frac{1}{a^2 + 5a + 1} \begin{bmatrix} 1 & 0 \end{bmatrix}_{1 \times 2} \begin{bmatrix} s+1 & -1 \\ -3 & s+4 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$            |
|       | $s X_2(s) + 2 X_2(s) = b_2 U(s)$<br>Laplace Inverse                                                                                                                                                                                                 | ERII       | $VG = \begin{bmatrix} -3 & 3+4 \end{bmatrix}_{2\times 2} \begin{bmatrix} 1 \end{bmatrix}$                                                                                       |
|       | $\dot{\mathbf{x}}_2 + 2\mathbf{x}_2 = \mathbf{b}_2 \mathbf{u}(\mathbf{t})$                                                                                                                                                                          |            | $= \frac{1}{\mathbf{s}^2 + 5\mathbf{s} + 1} \begin{bmatrix} \mathbf{s} + 1 & -1 \end{bmatrix}_{\mathbf{l} \times 2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}_{2 \times \mathbf{l}}$ |
|       | $\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} \mathbf{u}(\mathbf{t})$ |            | $=\frac{1}{s^2+5s+1}[s+1-1]$                                                                                                                                                    |
|       | From (1) output equation.                                                                                                                                                                                                                           |            | $=$ $\frac{s}{s}$                                                                                                                                                               |
|       | $\mathbf{y}(\mathbf{t}) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{vmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{vmatrix}$                                                                                                                           |            | $s^2 + 5s + 1$                                                                                                                                                                  |
|       |                                                                                                                                                                                                                                                     |            | 08. Ans: (c)                                                                                                                                                                    |
| 06.   | Ans: (c)                                                                                                                                                                                                                                            |            | <b>Sol:</b> State transition matrix $\phi(t) = L^{-1}[(sI - A)^{-1}]$                                                                                                           |
| Sol:  | $R_1 \qquad L_1 \qquad i_2(t) \qquad Sin$                                                                                                                                                                                                           | ce 1       | $\begin{bmatrix} 995\\ sI - A \end{bmatrix} = \begin{bmatrix} s+3 & -1 \end{bmatrix}$                                                                                           |
|       |                                                                                                                                                                                                                                                     |            | $\begin{bmatrix} 0 & s+2 \end{bmatrix}$                                                                                                                                         |
| Vi    | $ = V_c = O/P_1 $                                                                                                                                                                                                                                   | 2          | $[sI - A]^{-1} = \frac{1}{(s+2)(s+3)} \begin{bmatrix} s+2 & 1\\ 0 & s+3 \end{bmatrix}$                                                                                          |
|       | $O/P_1 \Rightarrow y_1 = V_c$                                                                                                                                                                                                                       |            | $\begin{bmatrix} \frac{1}{s+3} & \frac{1}{(s+2)(s+3)} \end{bmatrix}$                                                                                                            |
|       | $O/P_2 \Rightarrow y_2 = R_2 i_2$                                                                                                                                                                                                                   |            | $= \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & \frac{1}{s+2} \end{bmatrix}$                                                                                                            |
|       | $\mathbf{y} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \mathbf{R}_2 \end{bmatrix} \begin{bmatrix} \mathbf{V}_c \\ \mathbf{i}_1 \\ \mathbf{i}_2 \end{bmatrix}$                                  |            | $L^{-1}[[sI - A]^{-1}] = \begin{bmatrix} e^{-3t} & e^{-2t} - e^{-3t} \\ 0 & e^{-2t} \end{bmatrix}$                                                                              |
|       | y = C X                                                                                                                                                                                                                                             |            |                                                                                                                                                                                 |
| ACE E | ngineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubanesway                                                                                                                                                                             | r • Luckno | w • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad                                                                                           |

|             |                                                                                                                                                                                                                              | 32         | Control Systems                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09.<br>Sol: | Ans: (b)<br>Controllability<br>$[M] = \begin{bmatrix} B & AB & A^2B & A^{n-1}B \end{bmatrix}$                                                                                                                                |            | $\therefore \mathbf{A} = \begin{bmatrix} -\mathbf{a}_1 & -\mathbf{a}_2 & -\mathbf{a}_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                     |
|             | $AB = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ $M = \begin{bmatrix} 0 & 1 \\ 1 & -3 \end{bmatrix}$                                       |            | 12.<br>Sol: The given state space equations:<br>$\dot{X} = X_2$                                                                                                                                                                                                                                                                                                                                                                     |
|             | $ \mathbf{M}  = -1 \neq 0$ (Controllable)                                                                                                                                                                                    |            | $\dot{\mathbf{X}}_2 = \mathbf{X}_3 - \mathbf{u}_1$                                                                                                                                                                                                                                                                                                                                                                                  |
|             | Observability                                                                                                                                                                                                                |            | $\dot{X}_3 = -2X_2 - 3X_3 + u_2$                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | $[N] = [C^T A^T C^T \dots (A^T)^{n-1} C^T]$                                                                                                                                                                                  |            | and output equations are :                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | $\mathbf{A}^{\mathrm{T}}\mathbf{C}^{\mathrm{T}} = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$                                              | ERI        | $Y_1 = X_1 + 3X_2 + 2u_1$<br>$Y_2 = X_2$                                                                                                                                                                                                                                                                                                                                                                                            |
|             | $\mathbf{N} = \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix}$                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10.         | N  = 0 (Not observable)<br>Ans: (c)                                                                                                                                                                                          |            | $\begin{array}{c} -2 \\ \dot{X}_{3} \\ 1/S \\ -3 \\ -3 \\ -1 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                        |
| Sol:        | According to Gilberts test the system i controllable and observable.                                                                                                                                                         | S          | 1<br>$u_2$ $1$<br>$u_1$                                                                                                                                                                                                                                                                                                                                                                                                             |
| 11.         | Ans: (c) Sin                                                                                                                                                                                                                 | ce 1       | The given state space equations in matrix                                                                                                                                                                                                                                                                                                                                                                                           |
| Sol:        | $\frac{Y(s)}{U(s)} = \frac{b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3}$                                                                                                                                              | Ċ          | $\begin{bmatrix} \dot{\mathbf{X}}_{1} \\ \dot{\mathbf{X}}_{2} \\ \dot{\mathbf{X}}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}_{3\times 3} \begin{bmatrix} \mathbf{X}_{1} \\ \mathbf{X}_{2} \\ \mathbf{X}_{3} \end{bmatrix}_{3\times 1} + \begin{bmatrix} 0 & 0 \\ -1 & 0 \\ 0 & 1 \end{bmatrix}_{3\times 2} \begin{bmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \end{bmatrix}_{2\times 1}$ |
|             | at node $\dot{x}_1$                                                                                                                                                                                                          |            | $\begin{bmatrix} Y_1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} u_1 \end{bmatrix}$                                                                                                                                                                                                                                      |
|             | $\dot{x}_1 = -a_1 x_1 - a_2 x_2 - a_3 x_3$                                                                                                                                                                                   |            | $\begin{bmatrix} \mathbf{Y}_2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}_{2\times 3} \begin{bmatrix} \mathbf{X}_2 \\ \mathbf{X}_3 \end{bmatrix}_{3\times 1} \begin{bmatrix} 0 & 0 \end{bmatrix}_{2\times 2} \begin{bmatrix} \mathbf{u}_2 \end{bmatrix}_{2\times 1}$                                                                                                                                                      |
|             | at $\dot{x}_2 = x_1 \& \dot{x}_3 = x_2$                                                                                                                                                                                      |            | Where A: State matrix                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | $\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} -\mathbf{a}_1 & -\mathbf{a}_2 & -\mathbf{a}_3 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x} \end{bmatrix}$ |            | B: Input matrix                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | $ \begin{vmatrix} x_2 \\ \dot{x}_3 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} = \begin{vmatrix} x_2 \\ x_3 \end{vmatrix} $                                                                         |            | C: Output matrix                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |                                                                                                                                                                                                                              |            | D: Transition matrix                                                                                                                                                                                                                                                                                                                                                                                                                |
| ACE I       | Engineering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswa                                                                                                                                                      | r • Luckno | ow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad                                                                                                                                                                                                                                                                                                                                              |

| Engineering Publications                                                                                                                  | 33           | Postal Coaching Solutions |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------|
| Characteristic equation                                                                                                                   |              |                           |
| $ \mathbf{s}\mathbf{I} - \mathbf{A}  = 0$                                                                                                 |              |                           |
| $\begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix}$ |              |                           |
| $\Rightarrow \begin{vmatrix} S & -1 & 0 \\ 0 & S & -1 = 0 \\ 0 & 2 & S+3 \end{vmatrix}$                                                   |              |                           |
| $\Rightarrow s[s(s+3)+2]+1(0) = 0$                                                                                                        |              |                           |
| $\Rightarrow s(s^2 + 3s + 2) = 0$                                                                                                         |              |                           |
| $\Rightarrow s(s+1)(s+2) = 0$                                                                                                             | ER <i>li</i> | NGA                       |
| The roots are 0, -1, -2.                                                                                                                  |              |                           |
|                                                                                                                                           |              |                           |
|                                                                                                                                           |              |                           |