

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	• Kolkata	•	Ahmedabad ACE Engineering Publications

01. Ans: (a)

Sol: f3 < f2 < f4 < f1

02. Ans: (b)

Sol: nloglog.cnlog  for all n2 from the Big

Oh definition nlog O(log log n)

(a) 100 nlogn  c.
100

nlogn
 for n  1

(c) 0
n

n
Lt

y

x

n



 Because 0 < x < y

(d) 2n > c. nk for n  1 if
c

1
k 

03. Ans: (b)

Sol: n(logn)10  C. n2 logn for n  252

04. Ans:(a)

Sol: I      mm
0

mm n.Cknandnnforn.Ckn 

 for n ≥ n0

    mm nkn 

II  for2.32 n1n  n ≥ 1

  n1n 2O2 

III  n22 ≰ nC 2. for n ≥ 1

05. Ans: (c)

Sol: When k = 6

10n. 60000000logn
10 

 0.0001n2 = 1000000

06. Ans: (a)

Sol: g1(n)  C. g2(n) for n  101

when n > 100, g1(n) = n3 up to n  10,000

and g1(n) = n2 , n  10,000

when n > 100, g2(n) = n3

 g2(n) is always greater than or equal to g1(n).

07. Ans: (d)

Sol: !n.cn3 n  for n  5 from Big oh notation

)!n(On3 n 

→ 5nforn3!n n 

h(n) is not O(f(n))

→ 4nfor2.c!n nlogn 2 

→ 4nforn3.c2 nnlogn 2 

08. Ans: (d)

Sol: (a) 2n  n!  n  1 but

 n! ≰ C. nlogn  n  no (false)

(b) 2n ≱ 2n!  n 1 (false)

(c) n! ≰ C. 2n  n  5 (false)

(d) nlogn  C. 2n  n  no and

n!  C. 2n for n  1 (true)

	Algorithms	
(Solutions	For	Text	Book	Practice	Questions)	

1. Algorithm	Analysis	&
Asymptotic	Notations

2 Algorithms	

 	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

09. Ans: (b)

Sol: The upper bound cannot be more than n

and lower bound will be Ω (1) when the

loop terminates with the condition n % i = 0

for the first time.

Big O notation describes the tight upper

bound and Big Omega notation describes the

tight lower bound for a algorithm. The for

loop in the question is run maximum n

times and minimum 1 time. Therefore,

       .1nTandnOnT 

10. Ans: (c)

Sol: Average case running time always less than

(or) equal to worst case Time.

  A(n) = O(W(n))

 By definition of asymptotic notations.

Average lies always between the best and

the worst case inclusive.

11. Ans: (c)

Sol: 1..
8

n

4

n

2

n

1

n
j 

   1On
n

1
...

8

1

4

1

2

1

1

1
n 






 

  (n) [∵ Polynomial of degree 1]

12. Ans: (d)

Sol: j is multiplied by 2 for every iteration

 it runs k times + 1 for condition fail.

 n = 2k  log n = k

 It uses   1nlog2  comparisons

13. Ans: (b)

14. Ans: (c)

Sol: T(n) = 1, n  2

     2n,KnTnT 

 2n
K2 



 2log2 n
K 

 nloglogKnlog2 22
K 

15. Ans: (c)

Sol: In all cases, when A[i] =1 for all i = 1,n

 A[i] = 0; for all i = 1,n

 A [i] =1; for i =1,n/2

 = 0; for n,...1
2

n
i 

 The order of magnitude is (n).

16. Ans: (d)

Sol:     11nT2nT 

 Because recursive calls (n –1) two times.

 Now,

     12nT21nT 

       112nT22nT 

   122nT22 

 Continue this we get

 12...22 2n1n   12n 

  1nfor2.112 nn  =  n2O

CSIT‐Postal	Coaching	Solutions	3

 	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

17. Ans: (a)
Sol: T(n) = 2T(n – 1) + n

Let an = T(n)

an = 2an–1 + n ………(1)

an – 2an–1 = n

replace ‘n’ by n + 1

an+1 – 2an = n

E(an) – 2an = n

(E – 2) an = n

Characteristic equation (E) = 0

  E – 2 = 0

 characteristic root = 2

 Complementary function = C1 2
n

 Let an = An + B

Substitute ‘an’ in equation (1)

An + B = 2{A(n–1) + B} + n

 An = 2An + n B = –2A + 2B

 –An = n By substituting ‘A’

 A = – 1 B = 2

 The solution is T(n) = C1.2
n – n – 2

By applying initial condition we get C1 = 2

  T(n) = 2n+1 – n – 2

18. Ans: (d)

Sol:  n22 loglog

19.

Sol: T(n) = O(n2)

 T(n) = n+(n–1) + (n–2) + ………..+ T (1)

 

2

1nn 


 (or)

 T(n) – T(n–1) = n, T(1) = 1

 T(n) – T(1) = 2+3+….n

 T(n) = 1+2+3+….n
 

2

1nn 


20. Ans: (b)

Sol:         12nT31nT2nTrequiresn1f 

  n2

  becausenrequiresn2f i runs n times

  (n)

21. Ans: (c)

Sol:       16406f*37f*28f 11 

       5475f*36f*27f 111 

       1824f*35f*26f 111 

       613f*34f*25f 111 

       202f*33f*24f 111 

       71f*32f*23f 111 

       20f*31f*22f 111 

 f2(8) = 1640

 f1(n) and f2(n) are same

 Recursive Iteration

4 Algorithms	

 	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

01. Ans: (a)

Sol: Divide and conquer strategy.

02. Ans: (c)

Sol: To make two sorted arrays as single sorted

array it requires m + n comparisons.

03. Ans: (b)

Sol:

04. Ans: (b)
Sol: In merge-sort algorithm number of splits are

proportional to height and in each level

work done is n2

  Total Time Complexity O(n2 log n)

The Complexity of Merge Sort for n

elements is O(n log n).

05. Ans: (a)

Sol: In the worst case the selected pivot element

will be placed in either first (or) last position

Then the required recurrence equation is

T(n) = T(n – 1) +  (n)

By solving using substitution method we get

T(n) = O(n2)

06. Ans: (c)

Sol: Quick sort takes worst time when elements

are in sorted order.

 [1 2 3 4] takes O(n2) where n = 4

 [5 4 3 2 1] takes O(n2) where n = 5

 clearly number of elements are different in

both cases.

 So, t1 < t2 as t1 = O(n2) for n = 4

 and t2 = O(n2) for n = 5

07. Ans: (b)

Sol: By applying divide and conquer concept one

list would have 1/5 elements and the other

would have 4/5 of the no. of elements ‘n’

comparisons are required for fixing up the

pivot.

08. Ans: (c)

Sol: If we choose pivot randomly, Randomized

quick sort still may have worst case time of

O(n2).

 It can be O(n log n) if pivot always divides

the array into two equal sub parts.

09. Ans: (c)

Sol: Binary search takes time of O(log n) for a

set of n-elements. Total time for n-elements

= O(n log n)

[20] [47] [15] [8] [9] [4] [40] [30] [12] [17]

[20 47] [8 15] [4 9] [30 40] [12 17] Pass 1:

[8 15 20 47] [4 9 30 40] [12 17] Pass 2:

2.	Divide	&	Conquer	

CSIT‐Postal	Coaching	Solutions	5

 	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

10. Ans: (d)

Sol: If we subtract each number by 1 then we get

the range [0,n3 -1]. Considering all number

as 3-digit base n: each digit ranges from 0 to

n3 – 1. Sort this using radix sort. This uses

only three calls to counting sort. Finally, add

1 to all the numbers. Since there are 3 calls,

the complexity is O(3n)  O(n).

11. Ans: (b)

Sol: Using Divide and Conquer method not more

than 





 2

2

n3
 comparisons are required in

all cases of input.

12. Ans: 148

Sol: Minimum number of comparisons required

to find the minimum and maximum of 100

numbers = 1.5 (100) – 2 = 148

13. Ans: (a)

Sol: After comparing the key with the middle

element, the search is made either in the left

or right sublist with n/2 elements.

  T(n) = T(n/2)+k, where ‘k’ is constant.

14. Ans: (b)

Sol: T (2k) = 3 T (2k-1) + 1

 Let n = 2k

 T(n) = 3 T(n/2) +1

 Solve it using back substitution.

 (or)

 T(2k) = 3T(2k1)+1

 ak = 3ak1+1

 (E3)ak = 1

 ak = C13
k

 ak = c3k
2

1

31

1
a k







2

1
3ca k

k 
2

3
c1

2

1
ca o 

 






 




2

13

2

1
3

2

3
a

1k
k

k

15.

Sol: T(n) = T(n/2) + n, T(1) = 1

 Master Theorem

 a = 1, b = 2, k = 1, p = 0

 Since a<bK, so it is case (3) of master

theorem.

  T(n) = O(n)

Case 3: 1 < 21

16. Ans: (a)

Sol: T(n) = 2T (n/2) + log n

 By using Master Theorem, a = 2, b = 2,

 k = 0, p =1

 As a > bk, so it is case(i) of Master Theorem

 T (n) = (
a
blogn)

 = (n)

6 Algorithms	

 	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

E D

4

C

3
B 2 A

3

Cost=12

E D

4 C

3
B 2 A

3

17. Ans: (a)

Sol: Applying Master Theorem; case ‘3’ holds

and hence T(n) is O(n);

 a = 3, b = 4, K = 1

 Since a<bK so it is Case 3 of master

theorem.

  T(n) = O(n)

 Master Theorem:

 a = 3, b = 4, k = 0, p = 0

 3 > 4.  3lognO 4

18. Ans: (b)

Sol:   2n,n
2

n
T2nT 








T(1) = 1

 Master Theorem:

 a = 2, b = 2, k = 1/2, p = 0

 2 > 21/2 O(nlog22) = O(n)

19. Ans: (c)

Sol: It is  (n log n) is also O (n2) &

O(n log n) is not Ω (n2).

 If we use binary search then there will be

!nlog2 comparisons in the worst case,

which is (n log n). But the algorithm as a

whole will still have a running time of (n2)

on average because of the series of swaps

required for each insertion.

 (or)

 T(n) = 2T(n/2)+n, T(0) = T(1) = 1

 T(2k) = 2T(2k-1)+n

 ak – 2k-1 = 2k

 (-2)ak = 22k

 ak = c2k

2

2.2
ak

k


 = 2c(k,1) 2k-1

 = 2k2k-1

 a1 = c1

 ak = 2k+k2k

 T(2k) = 9k = n+nlog2 n  O(n log n)

20. Ans: (a)

Sol: Applying master-theorem Case-III holds.

 T(n) = T(n/3)+n/2

 T(n) = (n) (Master Theorem Case 3.a)

01.

Sol: Apply Kruskal’s Algorithm

Another possibility

3.	Greedy	Method	

CSIT‐Postal	Coaching	Solutions	7

 	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

10

6

3

4

8

2

4

6

3

5

1

02. Ans: (c)

Sol: There can be multiple minimum cost

spanning trees under the presence of non-

distinct edge costs.

03. Ans: (b)

Sol:

04. Ans: (b)

Sol: When vi is connected to vi+1, the edge cost is

2 there will be (n-1) such edges with a cost

of ‘2’.

 Therefore total cost = 2(n–1)

 = 2n-2

 (or)

 
 


n

1i

n

1i
ii 2n2|1n|2|1|2|1|2

05. Ans: (d)

Sol: If there are multiple edges in the graph with

the minimum weight ‘w’, then it is not

necessary that the specific edge with cost

‘w’ must be present in all spanning trees.

Rest all options are correct.

 There may be many edges of weight w in

the graph and e.

06. Ans: (b)

Sol: cost of MST with ‘4’ vertices is 3+4+6

 Cost of MST with ‘5’ vertices is 3+4+6+8

 In general cost for ‘n’ vertices we have

 = 3+4+6+8+…………+2n2

 = n2n+1

07. Ans: (c)

Sol:

 10 + 6 + 3 + 4 + 8 = 31

08. Ans: 8
Sol: In the given graph V = 9, E = 13

 MST, must contains V – 1 number of edges

= 8 edges.

09. Ans: (d)
Sol: Kruskal’s Algorithm uses min Heap to keep

the list of edges (m log m)

 With the Union-Find data structure

implemented this way, Kruskal’s algorithm

can be analyzed. The sorting of the edges

can be done in O(mlogn) which is O(mlogn)

for any graph (why?). For each edge (u,v)

we check whether u and v are in the same

tree, this is done with two calls to Find

which is O(logn), and we union the two if

necessary which is O(1). Therefore the loop

is O(mlogn). Hence the total time

complexity is O(mlogn).

b
2 g j

i
h

f

e

a

d
c

1

2

3 8

4
2

4

5

Weight =1+2+3+2+8+4+5+4+2=31

1
1

1

1 1

2

8 Algorithms	

 	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

b d f c a e

0.13

0.40 0.19 0.17 0.11 0.08 0.05

f c a c

b d

0.24

0.11 0.13 0.17 0.19 0.40

0.08 0.5

10. Ans: (d)

Sol: (a) (a1b), (d1f), (b2f), (d2c), (d3e) valid

 (b) (a1b), (d1f), (d2f), (b2f), (d3e) valid

 (c) (d1f), (a1b), (d2c)., (b2f),(d3e) valid

 (d) (d1f),(a1b),(bf2),(de3), (d2c) invalid

11. Ans: (a)

Sol: Number of edges in the shortest path can be

determined as a result of Dijkstra’s single

source shortest path algorithm.

12. Ans: (b)

Sol:

13. Ans: (c)

Sol: Edges and vertices of the graph can be

maintained in the form of a heap data

structure to have a linear time complexity

algorithm.

14. Ans: (d)

Sol: In Dijkstra’s Shortest Path Algorithm, we

always consider the vertex which are

reachable from the source with last cost, and

update cost label of the vertex, if the present

cost is minimum than the previous cost.

 Apply Greedy based Dijkstra’s Algorithm.

 A B C D E F G T

S 4 ③  7    

B ④  7    

A ⑤ 7    

C 7 ⑥   

E 7  8 ⑩  SACET

  The shortest path from S → T is SACET.

15.

Sol:

2
Q P

1
R U

3 4
T S

4

-Valid (b)

2
Q P

1
R S

4 3
U T

7
-Invalid (not in
increasing order)

(a)

2
Q P

1
R U

3 4
S T

7
(c) -Invalid

7
Q P

1
T R

2 4
S U

3
(d) -Invalid

CSIT‐Postal	Coaching	Solutions	9

 	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

e

c a
0.17 0.19

0.36

f

b d

0.24

0.13

0.08 0.05

0.11

0.40

 Prefix codes:

 a  111 ; b  1010 ;

 c  110 ; d  1011 ; e  0

16. Ans: (a)

Sol: Obtain the Huffman Encode tree by

applying optimal merge pattern algorithm.

Assign ‘0’ to the left branch and ‘1’ to the

right branch in the encode tree. Collect the

stream of binary bits to get the codes of the

message.

17. Ans: (d)

Sol: The average Number of bits /message is

obtained by using the formula




n

1i
ii q*d

 di= distance from root to message i

 qi = probability of message i

1
2

1
 ; 2

4

1
 ; 3

8

1
 ; 4

16

1
 ; 5

32

1


 =
32

5

32

5

16

4

8

3
2

4

1
1

2

1


32

108121616 


 =
32

3032 

32

62
 9375.1

0.40

c a

0.3

0.17 0.19

e

f

b d

0.24

0.11 0.13

0.05 0.08

e

f

0.6

0.36 0.24

0.13 0.11 0.17 0.19

0.08 0.05

0.40

a c 0

0 0

0

0

1

1

.

1

1

1

d b

e

f

1.0

0.6 0.40

0.24

0.11 0.13

0.05 0.08

0.17 0.19

0.36

32

1

1

1

1

1

1

32

1

1

2

1

4

1

8

1

16

1

16

1
8

1
2

1
4

1

0

0

0

0

0

a b c d e f

10 Algorithms	

 	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

01. Ans: (b)

02. Ans: (b)

Sol: Binary search – O(log n)

 Insertion sort – O(n)

 Merge sort  O(n log n)

Selection sort – O(n2)

03. Ans: (d)
Sol: Nodes 2, 3, 5 are the Articulation points.

04. Ans: (b)
Sol: In the array representation of Binary Tree,

the parent is at location i/2, where as left

child is at 2i and right child at 2i + 1.

05. Ans: (d)

Sol: a, b, f, e, h, g is not possible as one cannot

visit ‘e’ after ‘f’.

06. Ans: (c)

Sol: In order to find 7th smallest element, we

have to perform ‘7’ deletion operations so it

takes O(7logn) = Θ(logn).

07. Ans: (c)

08. Ans: (a)

Sol: Smallest element lie at the leaf level. Which

has roughly n/2 elements. Which would

require number of comparisons and number

of elements.

09. Ans: (c)

Sol: In selection sort, each iteration takes one

swap in the worst case. Hence it required

O(n) swaps in the worst case.

10. Ans: (b)

Sol: Algorithm to determine leaders in an array:

 int max = a[n]

 for i  n – 1 to 1 by –1

 {

 if (a[i] > max)

 {

 print a[i];

 max = a[i];

 }

 }

 While scanning the array from right to left

remember the greatest element seen so far

and compare it with the current element to

test for leadership.

11. Ans: (a)

Sol: Merge sort takes a time of O(n log n) in all

cases of input. Whereas other sorting

techniques have complexity of O(n2) in

worst case.

12. Ans: (c)

Sol: This is the case when the graph is

represented by cost Adjacency matrix.

4.	Graph	Techniques,	Components,	Heaps	

CSIT‐Postal	Coaching	Solutions	11

 	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

13. Ans: (c)

Sol: The remaining choices violates the FIFO

discipline of the queue and hence are not

valid BFS traversals.

14. Ans: (a)

Sol: To sort ‘n’ elements using selection sort it

requires O(n) swaps.

15. Ans: (c)

Sol: In option (a) (13) cannot be the child of (12)

in max-Heap.

In option (b) (16) cannot be the child of

(14).

In option (d) (16) cannot be the child of

smaller value node.

 In (a), s[3] which is the left child of a[1] is

greater than the parent (13>12). In (b), also

a[3]>a[1] (16>14). In (d), a[6] which is right

child of a[2] is greater than a[2] (16>12).

16. Ans: (d)

Sol:

The height of a Max Heap is (logn). While

insertion, we need to traverse from leaf

element to root (in worst). If we perform

binary search for finding the correct position

then we need to do (loglogn) comparisons.

In reality, it is not possible to perform binary

search on elements from leaf to root as they

are not in sequence.

17. Ans: (b)

Sol: Trees in option (d) violate the property of

Max-Heap. Tree (a) satisfies the property of

Max-Heap, but it is not a complete Binary

Tree. In (c) and (d), heap property is not

satisfied between 5 and 8.

  Tree (b) is the correct answer.

18. Ans: a-r, b-p, c-s, d-q

19. Ans: a-q, b-r, c-s, d-p

20. Ans: (d)

Sol: If we subtract each number by 1 then we get

the range [0,n3 -1]. Considering all number

as 3-digit base n: each digit ranges from 0 to

n3 – 1. Sort this using radix sort. This uses

only three calls to counting sort. Finally, add

1 to all the numbers. Since there are 3 calls,

the complexity is O(3n)  O(n).

25

16

12 8

14

10 13

16

14

8

12

13 10

After deleting (16)

After deleting (25)

10

14

12 13

8

12 Algorithms	

 	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

(G)

A

B C

D E F G

G

v

v

u

r

(B.T.T)

A

B C

D E

H

F G

21. Ans: (c)
Sol: Tree Representation of the array is

22. Ans: (d)

Sol: If x is found at loc ‘1’

 1 comparison

 x is found at loc ‘2’

  2 comparisons

 x is found at loc ‘3’

  3 comparisons

 x is found at loc ‘n’

  ‘n’ comparisons

 Total comparisons = n(n+1)/2

 Therefore average =
n
2

1)n(n



23. Ans: (c)

Sol: (c) is always true but (b) & (d) are true in

only few cases. (a) is never true.

24. Ans: (c)

Sol: If ‘u’ is visited before ‘v’, then the distance

from ‘r’ to ‘u’ will be less than or equal to

the distance from ‘r’ to ‘v’ as demonstrated

in the example given below

25. Ans: (d)

Sol: Based on Kirchoffs Theorem

26. Ans: (a)

Sol:

27. Ans: (d)

Sol: Since the degree of u & v in ‘G’ is at least 2.

28. Ans: (d)

Sol:

89

40

2 10 12 17

19

7 5 6 11 70 9

32

25

16 20 12 15

30

Tree for option (a) ‘1’ in at top but not
possible

1

3 5 6

8 9

Tree for option (b) ‘8’ is greater than ‘6’ not possible

9

6 3 1

8 5

CSIT‐Postal	Coaching	Solutions	13

 	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

29. Ans: (a)
Sol:

 (a) Original tree

In the array it is :10,7,9,8,3,1,5,2,6,4

30. Ans: (b)

Sol: Consider the sample tree given below.

 Binary search to be applied along the path

which has log n elements.

 The height of a Max Heap is (logn). While

insertion, we need to traverse from leaf

element to root (in worst). If we perform

binary search for finding the correct position

then we need to do (loglogn) comparisons.

In reality, it is not possible to perform binary

search on elements from leaf to root as they

are not in sequence.

31. Ans: (b)

Sol: Procedure Heapify with adjust would

require time of O(n) for n-elements, now

with addition n-elements, total being ‘2n’

would still be order of O(n).

 We can reduce the problem to building Heap

for 2n elements. Time complexity for

building heap is O(n).

Tree for option (c) ‘5’ is greater than ‘3’
and hence not Possible

9

3 6 8

5 1

Tree for option (d) is max Heap

9

5 6 8

3 1

9

5 6 8

3 1

9

7 6 8

3 1

Inserting 7

5

Inserting 2 9

7 6 8

3 1 5 2

log n

1000

90

35 20 10

80

65

x

Inserting ‘10’

4 6 2 5 1 3

7
9

8

10

14 Algorithms	

 	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

01. Ans: (a)

02.

Sol: for i  1 to n

 for j  1 to n

 if (A[i ,j] = 0) then P [i, j] = 0;

 else P[i ,j] =1;

 for i  1 to n

 for j  1 to n

 for k  1 to n

 P[i ,j] = min{P[i,k]+P[k,j], P[i,j]}

 Time complexity is O (n3).

03. Ans: (c)

Sol: Using LCS algorithm, in Dynamic

programming we can write

 expr1 = 1+l(i1,j1); and

 expr2 = max (l(i1, j), l(i,j1))

04. Ans: (b)

Sol: We can compute using either CMO (or)

RMO of L(M,N).

05. Ans: 34

Sol:

LCS = pqrr

and length of longest common subsequence

 = x = 4

 Similarly remaining LCS are qsqr, qprr

 y = 3

 x + 10y = 4 + 10(3) = 34.

06. Ans: (b)

Sol: Apply Principle of optimality

07. Ans: (c)

08. Ans: (c)

Sol: It is based on Dynamic programming.

Use the recurrence that arises in this

problem and multiply as

(M1 (M2  M3))  M4 = 19,000

 See the recurrence of Matrix Chain Product.

0 0 0 0 0 0
0 0 1 1 1 1
0 1 1 2 2 2
0 1 2 2 2 2
0 1 2 2 3 3
0 1 2 3 3 3
0 1 2 3 4 4
0 1 2 3 4 4

p

q

p
r
q

r
p

q p q r r
0

i

i

1 2 3 4 5

p

q

r

r

A

5.	Dynamic	Programming		

	Algorithms - 12.0
	Page 1

	09_Algorithms Postal Solution

