

 	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

01. Ans: (c)

Sol: Switch statement case A matches initially

and all other cases are executed from there

on as the there ‘break’ in cases.

  Output (c)  Choice A

 Choice B No Choice

 There is no break in between the case

statements.

02. Ans: (a)

Sol: Initially matrix ‘A’ is empty, and after

performing the operations defined in the

program then again matrix ‘A’ itself will be

printed.

03. Ans: (b)

Sol: while loop will be terminated if r < y

 By the time, when it reaches the condition

r < y

 The content in ‘r’ is x – qy

  r = x –qy  x = qy + r

  x = (qy+r)  r < y

04. Ans: 10

Sol: j = ((((2 * 3) / 4) + (2.0/5)) + (8/5))

 After evaluating above expression we have

j = 2

 k = – 1

 When

i = 0, i + k = –1 → 1 time printf statement

executed

i = 1, i + k = 0 → 1 time printf statement

executed

i = 2, i + k = 1 → 3 times printf statement
executed
i = 3, i + k = 2 → 3 times printf statement
executed
i = 4, i + k = 3 → 2 times printf statement
executed

 Total 10 times printf statement executed.

05. Ans: (c)

Sol: In this, we are comparing (a>=b) && (c<b),

if both are true then only we return b, that

means we are finding middle number of

a,b,c. Again by calling Trial function with

different parameters, we are finding middle

number of a, b, c.

06. Ans: (b)

Sol: When p = 1, i = 1

 p = p *
i

x
  p = 1 * x ;

 p = x ;

 s = s + p ;

 = 1 + x ;

 When p = 1, i = 2

 p = x *
2

x
 =

2

x 2

 s = 1 + x +
2

x 2

 If we continue we get

 s = 1 +
!3

x

2

x

1

x 32

 ……….

 = ex

Programming	Languages	
(Solutions	for	Text	Book		Practice	Questions)	

Programming	Languages	2

	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

07. Ans: (d)
Sol: Function defined later to the call and not

defined in the program requires prototype.

08. Ans: 9
Sol:

 The expression num>>=1; interprets that
the content in variable num is shifted one
bit right for every while loop. [Note that a
bitwise right shift operator is same as
integer division by 2.] So after “9” times of
while loop, the content in num is zero.

09. Ans: (d)
Sol: Since function prototype is void f(int, short)

i.e., f is accepting, arguments int, short and
its return type is void. So f(i, *p) is correct
answer.

10. Ans: (d)
Sol: If b! = a we get maximum element of an

integer

11. Ans: (c)
Sol: XY = res * ab

12. Ans: 3
Sol:

13. Ans: (c)

Sol: Parameter is passed by reference

14. Ans: (c)

15. Ans: (b)

Sol: When the function call occurs, then the

statements followed by function calls will

be stored into stack in the form of activation

record. So number of activation records

depends on number of function calls.

16. Ans: (d)

Sol: The function foo is recursive function when

we call foo (a, sum) = foo(2048, 0)

 k = 2048% 10 = foo(204, 8)

 foo (204,8)

 k = 204% 10 = 4

 foo (20, 4)

 k = 20% 10 = 0
 foo (2, 0)
 k = 2% 10 = 2
 j = 2048/10
 10 = 204
 j = 204/10
 10 = 20
 j = 2/10 = 0

sum = 0 + 8 = 8
 sum = 8 + 4 =12
 sum = 12 + 2= 14
 foo (0,14) function will be terminated and

value of k will print in stack way i.e.2, 0, 4
8 and sum = 0

 Since sum is local variable in the main

function so the print sequence is

 2, 0, 4, 8, 0.

 435 00000001 10110011

101 100 Address 101 100

num num

GET (3,2)

GET (2,2) GET (2,1)

GET (1,1) GET (1,0) GET (1,2) GET (1,1)

GET (0,1) GET (0,0)

1

2 1

0
1

0 1

1

CSIT‐Postal	Coaching	Solutions	3

	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

17. Ans: (d)

Sol: Here we are using the ‘=’ operator which

has high priority than ‘=’ operator.

 So (c = getchar()) has to be in brackets and

after reversing the string we use function

putchar(c) for printing the character.

18. Ans: (b)

Sol: foo(345, 10)

 = 345 % 10 = 5, 345/10 = 34

foo(34,10)

 = 34%10 = 4, 34/10 = 3

foo(3,10)

 = 3%10 = 0, 3/10 = 0

foo(0,10)

19. Ans: (d)

Sol: foo (513, 2)

 = 513 % 2 = 1, 513/2 = 256

foo(256,2)

 = 256%2 = 0, 256/2 = 128

foo(128,2)

 = 128%2 = 0, 128/2 =64

foo(64,2)

 = 64%2 = 0, 64/2 = 32

foo(32,2)

 = 32%2 = 0, 32/2 = 16

foo(16,2)

 = 16%2 = 0, 16/2 = 8

foo(8,2)

 = 8%2 = 0, 8/2 = 4

foo(4,2)

 = 4%2 = 0, 4/2 = 2

foo(2,2)

 = 2%2 = 0, 2/2 = 1

foo(1,2)

 = 1%2 = 1, 1/2 = 0

foo(0,2)

20. Ans: 51

Sol:    



4

1K

k5fkfxx

 f(1) = 1, f(2) = 2, f(3) = 5, f(4) = 15

  x = x+ [f(1) * f(4) + f(2) * f(3) + f(3) *

 f(2) + f(4) * f(1)]

  x = 51

21. Ans: (a)

Sol:

i 0 1 2 3 4

j 0 1 3 6 10

5+(7)

4+(3)

3+(0) 3+0 = 3

4+3 = 7

5+7 = 12  therefore output is 12

1+(1)

1+(0)

1+(0)

1+(0)

1+(0)

1+(0)

1+(0)

1+(0)

1+(0)

1+(0)
therefore output is 2 →

Programming	Languages	4

	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

22. Ans: (c)

Sol: n is incremented by one in each iteration.

23. Ans: (d)

Sol:

 return f(n-2)+2 = 5-2+2 = 5

 return f(n-2)+r = 5 – 2 + 0 = 3

 return f(n-1)+r = 3 – 1 + 0 = 2

 return f(n-1)+r = 2 – 1 + 0 = 1

24. Ans: (c)

Sol: If the variables are static then, it is

persisting previous state value from the

destruction of various function calls.

The variable ‘a’ in prtFun() is static, i.e its

life time is global and hence retains its

value always, meaning history sensitive.

25. Ans: (d)

Sol: If the variables are auto, these variables will

be reinitialized in every function call.

 Now the variables are all auto storage class.

Their lifetime is local.

26. Ans: (d)
Sol: For every function call, the auto variable j is

recreated and reinitialized. If we take j = 50,

then every time, if condition is true, so we

have to call f(i) every time in that case the

statements reference are stored into the

stack, and stack continuously growing, so

after some extent, stack overflow error

occurs.

27. Ans: 230

Sol: x = x + f1 () + f2 () + f3() + f2 ()

 f1 () returns 26

 f2 () returns 51

 f3 () returns 100

 f2 () returns 52

 x = 1 + 26 + 51 + 100 + 52 = 230

28. Ans: (a)

Sol:

 Output = 3, 1, 2, 2, 1, 3, 4, 4, 4

5

n

0

r

()+2

 r = n = 5

(16)+2

(11)+5

(6)+5

(1)+5 1+5 = 6
6+5 = 11

11+5 = 16

16+2 = 18  therefore output is 18

main()

Count(3)

 Pf n

3
  Pf d

4
  Pf d

1

Count(2)

 Pf n

2
  Pf d

2

 Pf d

4
 Count(1)

 Pf d

4
  Pf d

3
  Pf n

1
 Count(0)

n
3 2

n

CSIT‐Postal	Coaching	Solutions	5

	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

29. Ans: (d)

30. Ans: (a)

Sol: It is an array of pointers and each pointer is

pointing to structure

31. Ans: (c)

Sol: ‘P1’creates dangling pointer problem.

 ‘P2’creates uninitialized pointer problem

32.
Sol: (a) 332 332 1

(b) (2n – 1)

33. Ans: (a)

Sol: In main () function, we are passing address

of x = 5, to the function P(), and in P(), we

are passing x = 7 to Q(). So print(z)

displays output as 12, and print (x) in P(),

will print 7, and print (x) in main will print 6.

34. Ans: (a)

Sol: Since B[10][10] represents two-dimensional

array so, B[1] represents address we can not

write it as left hand side of assignment

operators, however, remaining I, II, IV are

representing values, so we can write them

left hand side of assignment operators

35. Ans: (d)

Sol: Since first character in the array p[20],

contains null character, so while compiler

executing the array p[20], it reads first

character (i.e null character) and assumes

that it is the end of the string, so no output

printed.

36. Ans: (c)

Sol: int(*f)(int*) ;

 Syntax pointer to function is for declaration

of

 return_type (*ptr variable)

(List of arguments);

37. Ans: (b)

Sol:

 f(c, b, a)

 
 int f(int x, int *py, int **ppz)

 
 (4, 100, 200)

return x+y+z

  x + y + z = 7+7+5 = 19.

 Output is (b)

38. Ans: (d)
Sol: In this function int *p, int *q these two are

pointer variables (global function) and

f(&i,&j) are the local values of the pointer

variables. First, p is storing 200 address and

q is storing 300 address (we are assuming

4 7 5

z y x

7

*ppz

100

*a

200

b

20
0

20
1

a

ppz

*b

*py

**a

100

c

10
0

10
1

py

457

Programming	Languages	6

	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

the address). &i is pointed to p address and

&j is pointed to q address.

  p = q then address of p&q both are

storing at same address then i = 0, j = 2 and

*p = 2. after *p, *q are both storing at same

location that’s why the values are same as

printed. First *p = 0 after *p = 2.

 Therefore output is 0 2.

39. Ans: (c)

Sol: The ASCII values of p[3],which is E & p[1]

which is ‘A’ gets subtracted i.e the

difference from ‘A’ to ‘E’ is 4

 Therefore p+4 is ‘2004’ assuming ‘p’ to be

2000;

 Therefore o/p is 2011

 ASCII value of A = 65

 ASCII value of C = 69

printf (“%s”, p + p[3]  p[1])

 printf(“%s”, 200 + 69  65)

 printf(“%s”, 204)

 Output = 2011

40. Ans: (d)

Sol: Scanf function reads input from the user and

stores it in variable ‘i’. On execution, the

value printed is ‘5’ more than the integer

value entered.

41. Ans: –5

Sol:

 printf(“%d”, c –b –a) prints output is –5.

42. Ans: (a)

Sol:

200 201 202 203 204 205 206 207 208 p

200

G A T E 2 0 1 1 \0 200

c

main()

f2(200, 300)

a
4

101 100

b
5

201 200

c
6

301 300

a
200

b
300

c

5

0 1 2 0 1 2 0 1 2 0 1 2
1 2 3 4 5 6 7 8 9 10 11 12

2000 2004 2008 2012 2016 2020 2024 2028 2032 2036 2040 2044

x 0 1 2 3
 2000 2012 2024 2036

CSIT‐Postal	Coaching	Solutions	7

	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

 x+3 = 2000 + (3+size of each one dimensional array)

 = 2000 + (3  12) = 2036

  printf(“%d%u%u”, x+3, *(x+3), *(x+2)+3);

 = 2036, 2036, 2036

43. Ans: (d)

Sol: Assume that base address of string constant

“ABCD EFGH” is 100.

 Output: DCBA

44. Ans: 15

Sol: When we call stkFunc(–1, 10), the variable

size is initialized to 10.

 When we call stkFunc(0,5) the array

contains element 5.

 When we call stkFunc(0, 10) the array

contains elements 5, 10

 The function stkFunc(1, 0) returns 10 and

 the function stkFunc(1, 0) returns 5

  Print statement will print result 15

45. Ans: (c)

Sol: By using pointer ‘p’ the content of array is

updated to 1204. i.e p = s1 + 2, will point to

the location of 3rd element of array s1 and

that element is replaced by ‘0’.

46. Ans: 1, 40

Sol:

 ptr – p = 202 – 200 = 2 (i.e., 1 element)

 ptr = * 106 = 40

  Output = 1, 40

47. Ans: 2016

Sol: Whatever modifications are performed in

mystery () function, those modifications are

not reflected in main () function so it will

print 2016.

foo (100)

foo (101) putchar (A)

putchar (B) foo (102)

putchar (C)foo (103)

putchar (D) foo (104)

100 106 108 102 104
200 202 204 206 208

10 20 30 40 50

4 3 2 1 0 a

100

200
P

202
ptr

100 102 104 106 108

Programming	Languages	8

	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

“Raipur”

s2.c

“Kanpur”

s2.ssl.ch

“Jaipur”

s2.ssl.str

48. Ans: 30

Sol: m = m + 5; // m = 15

 *p = *p + m; // * p = 5 + 15

 * p = 20 (i.e., i = 20)

 i + j = 20 + 10 = 30

49. Ans: 3

Sol:

50. Ans: (a)

Sol: Char ***p = ptr

 It prints “cone”, “ase”, “reen”

51. Ans: (b)

Sol:

1st printf prints Raipur Jaipur

 2nd printf prints aipur aipur

 because s2.c begins from R

 ++s2.c begins from a

52. Ans: (b)

Sol: a[0] = {“Nagpur”, 1, a + 1}

 a[1]= {“Raipur”, 2, a + 2}

 a[2] = {“Kanpur”,3, a}

 a[0].z  prints Nagpur

 ptr.z  prints Nagpur

 a[2].p  a[2].p = a

 a[2].p z  a  z prints Nagpur

53. Ans: (d)

Sol:  ptr  z points to a[0].z

 ++(ptr z) points to a[1].z which prints

 agpur.

 a[(++ptr)  i].z = a[a[1].i].z

 = a[2].z which prints kanpur.

 Because *ptr = a

 ++ptr becomes a[1]

 ptr  p  a + 1

 Ptr  p i  a[1]  i = 2

 – – (ptr  p  i) =1

 a[1].z is Kanpur

10 100

10

101 100 201 200

j i
5*p

m p

main ()

f(100, 5)

max(f(102, 4), –2)

max(f(104, 3), 3)

max(f(106, 2), -4)

max(f(108, 1), 2)

0

3

3

3

2

2

0

100
P

100
a

3 5 2 6 4
100 102 104 106 108

0 1 2 3 4

2000

“ice”
s

2004

“green”
s+1

2010

“cone”
s+2

2014

“Please”
s+3

value
address

4000

2014

ptr[0]

4020

2010

ptr[1]

4040

2004

ptr[2]

4060

2000

ptr[3]

5000

2014

p

CSIT‐Postal	Coaching	Solutions	9

	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

1000
3000

x
2000
4000

y

100
1000

i

1000
10
i

54. Ans: (b)

Sol: Struct test *p = st

 p = p +1

 p points to st[0]

 p = p + 1 points to st[1]

 printf(“%s”, ++p  c) prints “etter”

 p  c points to better

 ++ p  c points to etter
 *++p  c  prints second character of

Jungle, ‘u’

 p[0]. i  prints 6 because p points to st[2].

 p  c  prints ungle.

55. Ans: (a)
Sol: * X[0] = a1

 * X [1] = a2
 * X[2] = a3
 Print (int *a[]) implies *a[0] = *X[0]
 *a[1] = *X[1]
 *a[2] = *X[2]
 a[0][2] = a1[2] = 8
 *a[2] = a3[0] = – 12
 *++a[0] = a[0][1] = a1[1] = 7
 *(++a)[0] = *a[1] = a2[0] = 23
 a[–1][+1] = a1[2] = 8

56. Ans: (a)

57. Ans: (b)

Sol: x = 15

 fun(5, &x)  fun(n, *fp)

 t = fun(4, fp), f = t + * fp, *fp =t

 fun(4,fp)  t = fun(3, fp),

 f = t + *fp, *fp = t

 fun(3, fp)  t = fun(2, fp),

 f = t + *fp, *fp = t

 fun(2, fp)  t = fun(1, fp),

 f = t + *fp, *fp = t

 fun(1, fp)  *fp = 1

  x =1 return 1  t =1

 fun(2, fp)  t =1,

 f = 1 + * fp = 1 + 1 = 2,
 *fp =1 return f(2)

 fun(3, fp)  t = 2,

 f = 2 + * fp = 2 + 1 = 3,
 *fp = 2 return 3

 fun(4, fp)  t = 3,

 f = 3 +2 = 5, *fp = 3,
 return 5

 fun(5, fp)  t = 5,

 f = 5 + 3 = 8, *fp = 5 ,
 return 8

58. Ans: (d)
Sol: Call by value: No change in j value
 There is a change in i value because i is

global.
 Call by reference:
 i = 50, j = 60

 f(&i, &j) 

 In procedure f () i = 100 

 x =10 

 y = y + i = 60 + 10 = 70

50
1000

i
60

2000

j
value

address

Programming	Languages	10

	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

59. Ans: (d)
Sol: If we call swap(x, y) then there is no

interchange in the value of x and y because
the parameters are passed by value. There
is interchange in formal parameters a and b
but not interchange in actual parameters x
and y because the scope of ‘a’ and ‘b’ lie
within the function but not in the main
program.

60. Ans: (b)
Sol: 9 * 9 * 9 * 9 * 1 = 6561

61.
Sol: (i).Call-by-value: 1,100
 (ii).Call-by-Reference: 2, 7

because ‘a’ refers to ‘x’, and ‘c’ refers to ‘z’

62.
Sol: (a). (i). Call-by value prints 30
 (ii) 5 times

(b) Call-by-Reference prints 110

63.
Sol: (i). Call-by Value: 2
 (ii). Call-by-Reference: 10

64. Ans: (b)
Sol: In called function func1, x refer to the value

3, y and z refers to 10 so the output is 31, 3.

65. Ans: (a)
Sol: Under static scoping the reference to free

variable is in the environment of the
immediate next outer Block (statically/
lexically) therefore the answer is (3, 6)

66. Ans: (b)
Sol: Under Dynamic scoping, the reference to

free variable is at point of invocation in
reverse order, therefore the answer is (6, 7)

67.
Sol: The referencing environment in procedure

‘s’ is that of ‘s’ and ‘P’
 The referencing environment in procedure

‘q’ is that of ‘q’, ‘s’ and ‘P’
 The referencing environment in procedure

‘r’ is that of ‘r’ , q, s, and P.

68.
Sol: (i). Static Scoping : 5, 10
 (ii). Dynamic Scoping : 1, 2

69.
Sol: i) 2, 2, 2
 In static scope the referencing environment

of free variable is in the next immediate
outer block
ii) 2, 5, 2
In dynamic scope the referencing
environment of free variable is at point of
invocation.

70. Ans: (c)
Sol: In dynamic scope, the reference to the free

variable is at a point of invocation in
reverse order.

71.
Sol: (a) 12, 7, 10, 5 with static scoping and call-

 by-value
(b) 14, 14, 10, 10 with Dynamic scope and

call-by-reference

CSIT‐Postal	Coaching	Solutions	11

	

			Hyderabad	•	Delhi	•	Bhopal	•	Pune	•	Bhubaneswar	•	Lucknow	•	Patna	•	Bengaluru	•	Chennai	•	Vijayawada	•	Vizag	•	Tirupati	•	Kolkata	•	Ahmedabad	 ACE Engineering Publications

72. Ans: (d)
Sol: Output is 4, as ‘x’ refer to n.

73. Ans : (d)
Sol: Static logical scoping used a clean links are

shown to statistically (Textually) enclosing
blocks.

 Lexical scoping refers to static scoping.

The referencing environments of the

statements are local scope plus parental

scopes.

74. Ans: (d)
Sol:

75. Ans: (b)
Sol: Recursion requires stack, where as dynamic

data structure required heap.

76. Ans: (c)
Sol: Data structures that are allocated space

during run-time is done from the Heap
portion.

 
  




21A2A

1A
Main

Main

A1

A2

A21

A1 FRAME
POINTER

ACCESS
LINKS

Call activates

G.V main m n print(4)

3
a

101 100

100 6

a x y

print(a)

 4

	Programming Languages - 12.0
	Page 1

	04_Programming Languages

