

ESE – 2019 MAINS OFFLINE TEST SERIES

ELECTRONICS & TELECOMMUNICATION ENGINEERING (E&T)

TEST -10 SOLUTIONS

All Queries related to **ESE – 2019 MAINS Test Series** Solutions are to be sent to the following email address testseries@aceenggacademy.com | Contact Us: 040 – 48539866 / 040 – 40136222

ACE Engineering Academy

01. (a)

- Sol:
 - (i) The power spectral density consists of 2 components
 - (1) A delta function $\delta(t)$ at the origin, whose inverse Fourier transform is one.
 - (2) A triangular component of unit amplitude and width $2f_0$, centered at the origin:

the inverse Fourier transform of this component is $f_0\,\text{sinc}^2\,(f_0\,\tau)$

 $R_X(\tau) = 1 + f_0 \sin c^2(f_0 \tau)$

- (ii) Since $R_X(\tau)$ contains a constant component of amplitude 1, it follows that the dc power contained in X(t) is 1.
- (iii) The mean-square value of X(t) is given by $E[X^{2}(t)]$ or total power = $R_{X}(0)$

 $= 1 + f_0$

AC power = Total power – DC power = $E[X^{2}(t)] - 1 = 1 + f_{0} - 1 = f_{0}$

The AC power contained in X(f) is therefore equal to f_0 .

01. (b)

Sol:

(i) Assume that the set $\{\psi_n(t)\}$ is sufficient to represent the waveform.

$$\int_{a}^{b} w(t)\psi_{m}^{*}(t)dt = \int_{a}^{b} \left[\sum_{n} a_{n}\psi_{n}(t)\right]\psi_{m}^{*}(t)dt$$
$$= \sum_{n} a_{n}\int_{a}^{b}\psi_{n}(t)\psi_{m}^{*}(t)dt$$
$$= \sum_{n} a_{n}K_{n}\delta_{mn}$$
$$= a_{n}K_{n}$$
$$\therefore a_{n} = \frac{1}{K_{n}}\int_{a}^{b}w(t)\psi_{n}^{*}(t)dt$$

(ii)
$$m(t) = \frac{0.8}{2j} \left(e^{j2\pi(1000t)} - e^{-j2\pi(1000t)} \right)$$

$$M(f) = -0.4j\delta(f - 1000) + j0.4\delta(f + 1000)$$

Voltage spectrum of the AM signal:

$$S(f) = 250 \ \delta(f - f_c) - j100\delta(f - f_c - 1000) + j100\delta(f - f_c + 1000)$$

$$+ 250\delta(f + f_c) - j100\delta(f + f_c - 1000) + j100\delta(f + f_c + 1000)$$

ACE Engineering Academy Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata | Ahmedabad

:2:

The tangential component in region I is $\overline{E}_{1t} = 3\hat{a}_x + 5\hat{a}_y$

The normal component in region I is $\overline{E}_{1n} = 2\hat{a}_z$

The tangential component of the second region is $\overline{E}_{2t} = \overline{E}_{1t} = 3\hat{a}_x + 5\hat{a}_y$ For free of charge $\overline{D}_{2n} = \overline{D}_{1n}$ $\varepsilon_{r_2}\overline{E}_{2n} = \varepsilon_{r_1}\overline{E}_{1n}$ $\overline{E}_{2n} = \frac{\varepsilon_{r_1}}{\varepsilon_{r_2}}\overline{E}_{1n}$ $= \frac{2}{4} \times 2\hat{a}_z$ $\therefore \hat{E}_{2n} = 1\hat{a}_z$ $\tan \theta_2 = \frac{E_{2t}}{E_{2n}} = \frac{\sqrt{3^2 + 5^2}}{1} = \sqrt{34}$ $\therefore \theta_2 = \tan^{-1}(\sqrt{34}) = 80.27^{\circ}$ $\therefore \alpha_2 = 90 - \theta_2 = 9.73^{\circ}$ $\tan \alpha_1 = \frac{E_{1n}}{E_{1t}} = \frac{2}{\sqrt{3^2 + 5^2}} = \frac{2}{\sqrt{34}} = 0.343$ $\therefore \alpha_1 = \tan^{-1}(0.343) = 18.93^{\circ}$ $\therefore \alpha_1 = 18.93^{\circ}, \alpha_2 = 9.73^{\circ}$

01. (d)

Sol: The reflection coefficient at the load is

$$\Gamma_{\rm L} = \frac{Z_{\rm L} - Z_{\rm 0}}{Z_{\rm L} + Z_{\rm 0}} = \frac{-50 - j50}{150 - j50} = \frac{-1 - j1}{3 - j1}$$
$$= \frac{-1 - j2}{5} = \frac{1}{\sqrt{5}} e^{-j0.3524\pi}$$

The total amplitude at the load is

$$V_{L} = V^{+}(1+\Gamma_{L})$$

$$V^{+} = \frac{V_{L}}{1+\Gamma_{L}} = \frac{50}{1+\left(\frac{-1-j2}{5}\right)} = \frac{125}{2-j1}$$

$$V^{+} = 25(2+j)$$

$$|V^{+}| = |25(2+j)| = 25\sqrt{5} = 55.9V$$

Thus, the maximum and minimum voltages are

$$V_{\text{max}} = \left| \mathbf{V}^{+} \left| \left[\mathbf{1} + \left| \Gamma_{\text{L}} \right| \right] \right|$$
$$= (55.9) \left(\mathbf{1} + \frac{1}{\sqrt{5}} \right)$$
$$= 80.9 \text{ V}$$
$$V_{\text{min}} = \left| \mathbf{V}^{+} \left| \left[\mathbf{1} - \left| \Gamma_{\text{L}} \right| \right] \right|$$
$$= (55.9) \left(\mathbf{1} - \frac{1}{\sqrt{5}} \right)$$
$$= 30.9 \text{ V}$$

01. (e)

Sol: (i) Number of forward (uplink) channels = 125 Number of reverse (downlink) channels = 125 Total number of channels = 125 + 125 = 250Bandwidth of each channel allocated = 200 kHzBandwidth of uplink = number of uplink channels × Bandwidth of each channel = $125 \times 200 \text{K}$ = 25 MHzBand width of downlink = $125 \times 200 \text{K} = 25 \text{MHz}$

(ii) Number of time slots in each channel = 16

Sub channel spacing $= \frac{\text{channel space}}{\text{time slot in each channel}}$

$$=\frac{200\mathrm{K}}{16}$$
$$= 12.5\mathrm{kHz}$$

Total number of users per cell = 125×16

= 2000 users.

:4:

ACE Engineering Academy

02. (a) Sol:

:5:

02. (b)

Sol: Given $\overline{E} = \left(-\hat{i} - 2\sqrt{3}\,\hat{j} + 3\hat{k} \right) e^{-j0.04\pi \left(\sqrt{3}x - 2y - 3z\right)}$ (i) Vertical direction of propagation $\overline{E} = \left(-\hat{i} - 2\sqrt{3}\hat{j} + 3\hat{k} \right) \hat{e}^{-j(0.2176 x - 0.2513 y - 0.377 z)}$ In the above equation $= 0.2176 \\= 0.2513 \\= 0.377$ $\beta_x = \beta \cos \phi_x$ $\beta_v = \beta \cos \phi_v$ $\beta_z = \beta \cos \phi_z$ $\beta_x^2 + \beta_y^2 + \beta_z^2 = \beta^2 \left(\underbrace{\cos^2 \phi_x + \cos^2 \phi_y + \cos^2 \phi_z}_{1} \right)$ $= 0.2176^{2} + 0.2513^{2} + 0.377^{2}$ $\therefore \beta^2 = 0.2526$ $\therefore \beta \approx 0.5 \text{ rad/m}$ $\beta \cos \phi_x = 0.2176$ $\therefore \cos \phi_{x} = \frac{0.2176}{0.5}$ = 0.4352 $\beta \cos \phi_{\rm y} = 0.2513$ $\cos\phi_{y} = \frac{0.2513}{0.5}$ = 0.5026 $\beta \cos \phi_z = 0.377$ $\cos\phi_z = \frac{0.377}{0.5}$ = 0.754

: The vertical direction of propagation is $\cos \phi_x \hat{a}_x + \cos \phi_y \hat{a}_y + \cos \phi_z \hat{a}_z$

 $= 0.4352\,\hat{a}_{\rm x}\,+ 0.5026\,\hat{a}_{\rm y}\,+ 0.754\,\hat{a}_{\rm z}$

(ii) The wave length of the propagating wave

$$\beta = \frac{2\pi}{\lambda}$$
$$\lambda = \frac{2\pi}{\beta}$$
$$= \frac{2\pi}{0.5} = 4\pi = 12.56 \text{m}$$

(iii) The wave is travelling in free space

$$\lambda f = c = 3 \times 10^8 \text{m/sec}$$

$$\therefore f = \frac{3 \times 10^8}{\lambda}$$
$$= \frac{3 \times 10^8}{12.56} = 0.2388 \times 10^8 \text{Hz}$$
$$= 23.88 \text{MHz}$$

(iv) Phase velocity

v

$$\int_{p}^{p} = \frac{\omega}{\beta}$$
$$= \frac{2\pi f}{2\pi/\lambda} = \lambda f = 3 \times 10^{8} \,\mathrm{m/sec}$$

Phase velocity vector

$$\begin{split} \bar{\mathbf{v}}_{p} &= \mathbf{v}_{px} \hat{\mathbf{a}}_{x} + \mathbf{v}_{py} \hat{\mathbf{a}}_{y} + \mathbf{v}_{pz} \hat{\mathbf{a}}_{z} \\ &= \frac{\omega}{\beta_{x}} \hat{\mathbf{a}}_{x} + \frac{\omega}{\beta_{y}} \hat{\mathbf{a}}_{y} + \frac{\omega}{\beta_{z}} \hat{\mathbf{a}}_{z} \\ &= 2\pi \times 23.88 \times 10^{6} \left(\frac{1}{0.2176} \hat{\mathbf{a}}_{x} + \frac{1}{0.2513} \hat{\mathbf{a}}_{y} + \frac{1}{0.377} \hat{\mathbf{a}}_{z} \right) \\ &= 150 \times 10^{6} \left(4.595 \hat{\mathbf{a}}_{x} + 3.98 \hat{\mathbf{a}}_{z} + 2.65 \hat{\mathbf{a}}_{z} \right) \end{split}$$

Now,

 $\overline{v}_{p} = (689.25\hat{a}_{x} + 597\hat{a}_{y} + 397.5\hat{a}_{z}) \times 10^{6} \,\mathrm{m/sec}$ Apparent velocities & wave lengths

Along x is
$$v_{p_x} = 6.89 \times 10^8 \text{ m/sec}$$

 $\lambda_x f = v_{px}$
 $\therefore \lambda_x = \frac{v_{p_x}}{f}$
 $= \frac{6.89 \times 10^8}{23.88 \times 10^6} = 0.2885 \times 10^2$
 $\lambda_x = 28.85 \text{ m}$
Along 'y' is
 $v_{p_y} = 5.97 \times 10^8 \text{ m/sec}$
 $\therefore \lambda_y = \frac{v_{p_y}}{f} = \frac{5.95 \times 10^8}{23.88 \times 10^6}$
 $\therefore \lambda_y = 0.249 \times 10^2 = 24.91 \text{ m}$
Along 'z' is'
 $v_{p_z} = 3.98 \times 10^8 \text{ m/sec}$
 $\therefore \lambda_z = \frac{v_{p_z}}{f}$
 $= \frac{3.98 \times 10^8}{23.88 \times 10^6}$
 $= 0.1666 \times 10^2$
 $\therefore \lambda_z = 16.66 \text{ m}$

:8:

02. (c)

Sol: ←	16 bits					16 bits				
	Version (4 bits) Header Length (4 bits)			Type of Service (8 bits)	Total length (16 bits)					
	Identification (16 bits)					0 D M Fragment Offset (13 bits)				
	Time to live (8 bits) Protoco			otocol (8 bits)	Header Checksum (16 bits)					
	Source IP Address (32 bits) Destination IP Address (32 bits)									
	Options (0 – 40 bytes)									
	Data									

Version(4 bits): Indicates the format of the internet header, for version 4 it should be 0100.

Header length (4 bits): Header length in words of 32 bits. Min. header size is 5 words (20 bytes) and max. header size is 15 words (60 bytes).

Total length (16 bits): IP packet size in bytes

Identification No. (16 bits): Used to identify fragments of same segment.

3 flag bits:

- 1. Unused (must be zero)
- 2. Don't Fragment (DF)

3. More Fragment (MF) - Used to identify last fragment.

Fragmentation offset (13 bits):

Used to identify sequence of fragments of same segment while integration.

Time to Live(TTL) (8 bits): Used to avoid indefinite traversing of packets over network.

Protocol Type (8 bits): Used to define higher layer protocol.

Header checksum (16 bits): Used to detect error in IPv4 packet header only Source IP: 32 bits

Destination IP: 32 bits

03. (a)

Sol: Given a = 2.286, b = 1.016 $E_{max} = 3 \times 10^6 V/m$ f = 9GHz

For TE₁₀ mode

Cut off frequency
$$(f_c)$$

$$= \frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$
$$= \frac{c}{2} \sqrt{\left(\frac{1}{a}\right)^2 + 0}$$
$$= \frac{c}{2a} = \frac{3 \times 10^8}{2 \times 2.286 \times 10^{-2}}$$
$$= 6.56 \text{GHz}$$

Wave impedance
$$(Z_{TE}) = \frac{\eta}{\sqrt{1 - \left(\frac{f_c}{f}\right)^2}}$$

$$= \frac{120\pi}{\sqrt{1 - \left(\frac{6.56}{9}\right)^2}} = \frac{120\pi}{0.684}$$
$$= 551.15\Omega$$

Maximum power
$$(P_{max}) = \frac{1}{4Z_{TE}} (E_{max})^2 ab$$

= $\frac{1}{4 \times 551.15} (3 \times 10^6)^2 2.286 \times 10^{-2} \times 1.016 \times 10^{-2}$
= $9.4816 \times 10^{-3} \times 10^{-2} \times 10^{-2} \times 10^{12}$
= 9.4816×10^5
= $948.16KW$

Derivation of necessary equation Cut off frequency

We have
$$\gamma^2 + \omega^2 \mu \in = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2$$

 $\Rightarrow \gamma^2 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 - \omega^2 \mu \in$

The frequency at which $\gamma = 0$ is known as cutoff frequency.

So,
$$0 = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2 - \omega_c^2 \mu \in$$

 $\Rightarrow \omega_c^2 \mu \in = \left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2$

$$\Rightarrow \omega_{c} = \frac{1}{\sqrt{\mu\epsilon}} \left[\left(\frac{m\pi}{a} \right)^{2} + \left(\frac{n\pi}{b} \right)^{2} \right]^{1/2}$$
$$\Rightarrow f_{c} = \frac{c}{2\pi} \left[\left(\frac{m\pi}{a} \right)^{2} + \left(\frac{n\pi}{b} \right)^{2} \right]^{1/2}$$
$$= \frac{c}{2} \left[\left(\frac{m}{a} \right)^{2} + \left(\frac{n}{b} \right)^{2} \right]^{1/2}$$

Wave impedance

$$Z_{TE} = \frac{E_x}{H_y} = \frac{\frac{-\gamma}{h^2}}{\frac{\partial E_z}{\partial x}} - \frac{j\omega\mu}{h^2} \frac{\partial H_z}{\partial y}}{\frac{-\gamma}{h^2}} \frac{\frac{\partial H_z}{\partial y}}{\frac{\partial y}{\partial y}} - \frac{j\omega\epsilon}{h^2} \frac{\partial E_z}{\partial x}}$$
For TE wave, $E_z = 0$ and $\gamma = j\beta$
Then $Z_{TE} = \frac{0 - \frac{j\omega\mu}{h^2}}{\frac{-\gamma}{h^2}} \frac{\partial H_z}{\partial y} - 0 = \frac{\frac{j\omega\mu}{h^2}}{\frac{\gamma}{h^2}}$
 $= \frac{j\omega\mu}{h^2} \times \frac{h^2}{\gamma} = \frac{j\omega\mu}{\gamma} = \frac{j\omega\mu}{j\beta} = \frac{\omega\mu}{\beta}$
As we know
 $\beta = \sqrt{\omega^2 \mu \epsilon - \omega_c^2 \mu \epsilon}$
So $Z_{TE} = \frac{\omega\mu}{\sqrt{\mu \epsilon} \sqrt{\omega^2 - \omega_c^2}} = \sqrt{\frac{\mu}{\epsilon}} \frac{\omega}{\sqrt{\omega^2 - \omega_c^2}}$
 $= \frac{\eta}{\sqrt{\frac{\omega^2 - \omega_c^2}{\omega^2}}} = \frac{\eta}{\sqrt{1 - \frac{\omega_c^2}{\omega^2}}}$

$$= \frac{f_{\rm c}}{\sqrt{1 - \left(\frac{f_{\rm c}}{f}\right)^2}}$$

Power flow

For TE_{10} mode m = 1, n = 0

So
$$E_x = 0$$
. $H_x = \frac{E_{oy}}{Z_g} \sin\left(\frac{\pi x}{a}\right) e^{-j\beta_g z}$
 $E_y = E_{0y} \sin\left(\frac{\pi x}{a}\right) e^{-j\beta_g z}$ $H_y = 0$
Where $Z_g = \frac{\omega \mu_0}{\beta_g}$

The power delivered in Z- direction by the guide is

$$\begin{split} \mathbf{P} &= \mathbf{Re} \left[\frac{1}{2} \int_{0}^{b} \int_{0}^{a} (\mathbf{E} \times \mathbf{H}^{*}) \right] d\mathbf{x} d\mathbf{y} \mathbf{a}_{z} = \frac{1}{2} \int_{0}^{b} \int_{0}^{a} \left[\left(\mathbf{E}_{0y} \sin\left(\frac{\pi x}{a}\right) e^{-j\beta_{g}z} \mathbf{a}_{y}\right) \times \left(\frac{-\beta_{g}}{\omega \mu_{0}} \mathbf{E}_{0y} \sin\left(\frac{\pi x}{a}\right) e^{+j\beta_{g}z} \mathbf{a}_{x}\right) \right] d\mathbf{x} d\mathbf{y} \mathbf{a}_{z} \\ &= \frac{1}{2} \int_{0}^{b} \int_{0}^{a} \left[\left(\mathbf{E}^{2}_{0y} \sin^{2}\left(\frac{\pi x}{a}\right) \left(\frac{-\beta_{g}}{\omega \mu_{0}}\right) (-\mathbf{a}_{z}\right) \right] d\mathbf{x} d\mathbf{y} \mathbf{a}_{z} = \frac{1}{2} \int_{0}^{b} \int_{0}^{a} \mathbf{E}^{2}_{0y} \sin^{2}\left(\frac{\pi x}{a}\right) \left(\frac{\beta_{g}}{\omega \mu_{0}}\right) d\mathbf{x} d\mathbf{y} \\ &= \frac{1}{2} \left(\frac{\beta_{g}}{\omega \mu_{0}}\right) \mathbf{E}^{2}_{0y} \int_{0}^{b} d\mathbf{y} \int_{0}^{a} \sin^{2}\left(\frac{\pi x}{a}\right) d\mathbf{x} = \frac{1}{2} \left(\frac{\beta_{g}}{\omega \mu_{0}}\right) \mathbf{E}^{2}_{0y} \left[\mathbf{b} - \mathbf{0} \right]_{0}^{a} \frac{1 - \cos\frac{2\pi x}{a}}{2} d\mathbf{x} \\ &= \frac{1}{2} \left(\frac{\beta_{g}}{\omega \mu_{0}}\right) \mathbf{E}^{2}_{0y} \mathbf{b} \left[\frac{1}{2} \int_{0}^{a} d\mathbf{x} - \frac{1}{2} \int_{0}^{a} \cos\frac{2\pi x}{a} d\mathbf{x} \right] \\ &= \frac{1}{2} \left(\frac{\beta_{g}}{\omega \mu_{0}}\right) \mathbf{E}^{2}_{0y} \mathbf{b} \left[\frac{a}{2} - \mathbf{0}\right] \\ &= \frac{1}{4} \left(\frac{\beta_{g}}{\omega \mu_{0}}\right) \mathbf{E}^{2}_{0y} \mathbf{a} \mathbf{b} \\ &= \frac{1}{4} \frac{\mathbf{E}^{2}_{0y}}{\mathbf{Z}_{\text{TE}}} \mathbf{a} \mathbf{b} \end{split}$$

As
$$Z_{TE} = \frac{\omega \mu_0}{\beta_g}$$

For maximum power, electric field intensity is also be maximum

So,
$$P_{\text{max}} = \frac{1}{4} \frac{E_{\text{max}}^2}{Z_{\text{TE}}} ab$$

03. (b) Sol:

The Huffman code is therefore

- $S_0 = 10$
- **S**₁ 11
- S₂ 001
- S_{3}^{2} 010
- S₄ 011
- S₅ 0000
- S₆ 0001

The average code word length is

$$L = \sum_{K=0}^{6} P_{K} \ell_{K}$$

$$L = (0.25 \times 2) + (0.25 \times 2) + (0.125 \times 3) + (0.125 \times 3) + (0.125 \times 3) + (0.0625 \times 4) + (0.0625 \times 4)$$

$$= 2.625$$

The entropy of the source is

$$H(S) = \sum_{K=0}^{6} P_{K} \log_{2} \left(\frac{1}{P_{K}} \right)$$

= -[0.25 log₂ 0.25 + 0.25 log₂ 0.25 + 0.125 log₂ 0.125 + 0.125 log₂ 0.125 + 0.125 log₂ 0.125 + 0.125 log₂ 0.125 + 0.0625 log₂ 0.0625]
= + [(0.5 × 2) + (0.375 × 3) + (0.25 × 2)]
= 2.625
H(S) = 2.625

The efficiency of the code is $\eta = \frac{H(S)}{L} = \frac{2.625}{2.625} = 1$

 \therefore Efficiency of the code is 100%

- **03.** (c)
- Sol:

Category	Symmetric key Cryptography	Asymmetric key Cryptography							
1. Key	 Private key cryptography Same (common/secret) key is used for encryption and decryption 	 Public key cryptography Different (public & private) keys are used for encryption and Decryption 							
2. Speed	 Block cipher Block by block encryption and Decryption Relatively Faster 	Byte by Byte encryption and decryptionRelatively slower							
3. Number of keys	 If N no. of hosts then	 If N no. of hosts then 2N keys required Two key set per host (public and private key) 							
4. Algorithm	 Decryption is reverse process of encryption Separate algorithm for encryption and decryption DES & AES are types of method 	 Encryption and Decryption are performed by same algorithm Decryption is same as encryption RSA is mostly used method 							
E Engineering Academy									

:12:

04. (a)

Sol:

(i) The selectivity of a super heterodyne receiver is mainly decided by IF amplifier The tuned circuit associated with the IF amplifier operates at a fixed frequency and a fixed Bandwidth.

The value of centre frequency and bandwidth are chosen such that we get a value of Q which is reasonable and easy to design in a circuit. This leads to better selectivity.

(ii) F_{IF} : intermediate frequency = 0.455 MHz

 $f_m: \mbox{centre frequency of incoming signal.} \label{eq:fm}$

 f_{LO} : local oscillator freq.

Now, $f_{LO} = f_{If} + f_m$

When $f_m = 0.535$ MHz & $f_{IF} = 0.455$ MHz

 $f_{LO} = 0.990 \text{ MHz}$

when f_m = 1.605 MHz & f_{IF} = 0.455 MHz

$$f_{LO} = 2.06 \text{ MHz}$$

: Tuning range of oscillator: 0.99 MHz to 2.06 MHz

(iv) For AM with envelope detection and assuming 100% sinusoidal modulation, the output SNR is given by.

$$(S/N)_{0_{AM}} = \frac{1}{3}\gamma$$
 [where γ is $(S/N)_{i}$]

For FM with sinusoidal modulation, the output SNR is given by,

$$(S/N)_{0_{FM}} = \frac{3}{2}\beta^2\gamma$$
 [β :mod ulation index of FM]

Hence, we see that use of FM offers the possibility of improved SNR over AM, when

 $3/2\beta^2 > 1/3$

Or
$$\beta > 0.47$$

However, a value of $\beta < 0.2$ is considered to define FM signal to be narrow band.

Hence we can conclude that narrow band FM offers no improvement in SNR over AM.

04. (b)

Sol:
$$V_{AB} = -\frac{\rho_L}{2\pi\epsilon_o} \left[\ln d_A - \ln d_B \right]$$

If the line charge ρ_L lies on the x axis, then the equations of the line charge are y = 0 and z = 0. Coordinates of point A are (1,2,3). Coordinates of the foot of perpendicular dropped from point A on the line charge are (1,0,0)

$$\therefore d_{\rm A} = \sqrt{(1-1)^2 + (2-0)^2 + (3-0)^2} = \sqrt{13}$$

Coordinates of point B are (6,8,10). Coordinates of the foot of perpendicular dropped from point B on the line charge are (6,0,0).

$$\therefore d_{\rm B} = \sqrt{(6-6)^2 + (8-0)^2 + (10-0)^2} = \sqrt{164}$$
$$\therefore V_{\rm AB} = -\frac{20 \times 10^{-9}}{2\Pi\epsilon_{\rm o}} \left[\ln \sqrt{13} - \ln \sqrt{164} \right] = 455.664 \, \text{V}$$

If the line charge lies on the y-axis, then the equations of the line charge are x = 0 and z = 0. Coordinates of point A are (1,2,3). Coordinates of the foot of perpendicular dropped from point A on the line charge are (0,2,0).

$$\therefore d_{\rm A} = \sqrt{(1-0)^2 + (2-2)^2 + (3-0)^2} = \sqrt{10}$$

Coordinates of point B are (6,8,10). Coordinates of the foot of perpendicular dropped from point B on the line charge are (0,8,0).

d_B =
$$\sqrt{(6-0)^2 + (8-8)^2 + (10-0)^2} = \sqrt{136}$$

∴ V_{AB} = $-\frac{20 \times 10^{-9}}{2\pi ε_0} [\ln \sqrt{10} - \ln \sqrt{136}] = 469.173$ V

If the line charge lies on the z axis, then the equations of the line charge are x = 0 and y = 0. Coordinates of point A are (1,2,3). Coordinates of the foot of perpendicular dropped from point A on the line charge are (0,0,3).

$$d_A = \sqrt{(1-0)^2 + (2-0)^2 + (3-3)^2} = \sqrt{5}$$

Coordinates of point B are (6,8,10). Coordinates of the foot of perpendicular dropped from point B on the line charge are (0,0,10)

$$\therefore d_{B} = \sqrt{(1-0)^{2} + (8-0)^{2} + (10-10)^{2}} = \sqrt{100}$$
$$V_{AB} = -\frac{20 \times 10^{-9}}{2\pi\epsilon_{o}} \left[\ln \sqrt{5} - \ln \sqrt{100} \right] = 538.497 \text{ V}$$
$$\therefore V_{AB} = 455.664 + 469.173 + 538.497 = 1463.334 \text{ V}$$

04. (c) Sol: HTTP:

Sol: H11P:

- Hyper-text transfer protocol
- Application layer protocol which uses TCP as transport protocol
- Stateless protocol (Server never maintain state information of clients)
- Used to transfer resources between HTTP client and HTTP server (resources can be HTML, XML or user files)

ACE Engineering Academy Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata | Ahmedabad

:14:

FTP:

- File Transfer Protocol
- Application protocol which uses TCP
- State full protocol (Server maintain state information of clients)
- Used to transfer user files between FTP client and server

SMTP:

- Simple mail transfer protocol
- Application protocol which uses TCP
- State full protocol
- Used to transfer electronic mail(e-mail) from mail client to mail server

POP:

- Post-office protocol
- State full protocol
- Application protocol which uses TCP
- Used to download e-mail from mail server to mail client

DNS:

- Domain name server
- Application protocol which uses UDP
- Used to map web server name into web server IP address from DNS directory

05. (a)

Sol:

- (i) (A) For a unity rolloff, raised cosine pulse spectrum, the bandwidth B equals 1/T, where T is the pulse length. Therefore, T in this case 1/12kHz. Quarternary PAM ensures 2 bits per pulse, so the rate of information is $\frac{2 \text{ bits}}{T} = 24$ kilobits per second.
 - (B) For 128 quantizing levels, 7 bits are required to transmit an amplitude. The additional bit for synchronization makes each code word 8 bits. The signal is transmitted at 24 kilobits/s, so it must be sampled at

 $\frac{24 \text{ kbits / s}}{8 \text{ bits / sample}} = 3 \text{ kHz} .$

The maximum possible value for the signal's highest frequency component is 1.5 kHz, in order to avoid aliasing.

(ii)
$$B = \frac{R}{2}(1+\alpha)$$
$$B = 75 \text{ kHz}$$
$$R = \frac{1}{10\mu} = 100 \text{ kHz}$$
$$\frac{75 \times 2}{100} = 1+\alpha$$
$$\alpha = 0.5$$

05. (b)

Sol: $R_L C = 400 \times 10^3 \times 100 \times 10^{-12} = 4 \times 10^{-5} s$ To avoid diagonal clipping

$$R_{L}C \leq \frac{1}{2\pi f_{m}} \frac{\sqrt{1-\mu^{2}}}{\mu}$$

Given that $\mu = 0.75$
 $f_{m} \leq \frac{1}{2\pi R_{L}C} \frac{\sqrt{1-\mu^{2}}}{\mu}$
 $f_{m} \leq \frac{1}{2\pi \times 10^{-5} \times 4} \frac{\sqrt{1-(0.75)^{2}}}{0.75}$
 $f_{m} \leq 3510.8$ Hz
∴ maximum frequency = 3510.8 Hz

05. (c)

Sol: Cryptographic Hash Function:

- Used to generate Hash (known as message digest)
- Hash generation is one way process, reverse is not possible
- Hash function generate fixed size Hash from any size file

- Various hash functions are: MD4, MD5, SHA and SHA-1
- It will divide the file into blocks

05. (d)

Sol:

(i) We know that the bit rate for QPSK:

$$\begin{split} R_{b} &= \frac{2}{1+\rho} \times B & \text{where } \rho \text{ - roll off factor} = 0.2(\text{given}) \\ &= \frac{2}{1+0.2} \times 36M & \text{B - transponder BW} = 36\text{MHz (given}) \\ R_{b} &= 60\text{Mbps} \\ R_{b}(dB) &= 10\log(60 \times 10^{6}) \\ R_{b}(dB) &= 77.78 \text{ dBbps} \end{split}$$

(ii)
$$\left(\frac{C}{N_o}\right) = \left(\frac{E_b}{N_o}\right) + R_b$$

 $\frac{E_b}{N_o} = 9.6 dB (given)$
 $\left(\frac{C}{N_o}\right) = 9.6 + 77.78$
 $\frac{C}{N_o} = 87.38 dBHz$
 $EIRP = \left(\frac{C}{N_o}\right) - \left(\frac{G}{T}\right) + loss - [K] dB$
 $= 87.38 - 32 + 200 - 2286$ (k = 228.6dB)
 $EIRP = 26.8 dBW$

Sol: Given frequency = 9.2 GHz dimensions = 2cm×1cm

ACE Engineering Academy

(i) Cutoff frequency
$$f_{C|_{TE_{mn}}} = \frac{1}{2\sqrt{\mu \in \pi}} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}$$

 $f_{C|_{TE_{10}}} = \text{dominant mode} = \frac{1}{2\sqrt{\mu \in \pi}} \frac{1}{a}$
 $= \frac{3 \times 10^8}{2} \times \frac{1}{2 \times 10^{-2}} = 7.5 \text{ GHz}$
(ii) Guide wavelength $= \lambda_g = \frac{\lambda}{\sqrt{1 - \left(\frac{f_C}{f}\right)^2}}$
 $(2 \times 10^8 / 0.2 \times 10^9)$

$$= \frac{(3 \times 10^8 / 9.2 \times 10^9)}{\sqrt{1 - \left(\frac{7.5}{9.2}\right)^2}} = 5.6 \text{ cm}$$

(iii) Phasevelocity
$$V_p = \frac{v}{\sqrt{1 - \left(\frac{f_C}{f}\right)^2}}$$

= $\frac{3 \times 10^8}{\sqrt{1 - \left(\frac{7.5}{9.2}\right)^2}} = 5.179 \times 10^8 \text{ m/s}$

(iv) Characteristic impedance

$$\eta_{\text{TE}} = \frac{\eta}{\sqrt{1 - \left(\frac{f_{\text{C}}}{f}\right)^2}} = \frac{120 \ \pi}{\sqrt{1 - \left(\frac{7.5}{9.2}\right)^2}} = 650.94 \ \Omega$$

05. (f)

Sol: Return loss = $-20 \log \left[\left| \Gamma(\ell) \right| \right]$ For l = 0 $\Gamma(0) = \frac{Z_{\rm L} - Z_0}{Z_{\rm L} + Z_0} = \frac{75 - 50}{75 + 50} = 0.2$ For $\ell = \frac{\lambda}{\lambda}$ $\Gamma\left(\frac{\lambda}{4}\right) = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} e^{-j2} \frac{2\pi}{\lambda} \frac{\lambda}{4}$ $\Gamma\left(\frac{\lambda}{4}\right) = \frac{75 - 50}{75 + 50} e^{-j\pi}$ $= 0.2 e^{-j\pi} = -0.2$ For l = 0 \therefore Return loss = -20 log $[[\Gamma(0)]]$ $= -20 \log (0.2)$ = 13.98 dBFor $\ell = \frac{\lambda}{\Delta}$ Return loss = $-20\log \left| \left| \Gamma\left(\frac{\lambda}{4}\right) \right| \right|$ $= -20\log(0.2)$ = 13.98 dB

06.(a) Sol:

> (i) Probability of error $Pe = Q\left(\sqrt{\frac{E_b}{\eta}}\right)$ $E_b = A^2T$ $\Rightarrow \sqrt{\frac{E_b}{n}} = 3$ $\frac{E_b}{n} = 9$ $\frac{A^2T}{n} = 9$ $T = \frac{9\eta}{A^2} = \frac{9 \times 10^{-4}}{9} = 10^{-4}$ T = 0.1 ms

Maximum time-slot duration = 0.1ms

(ii)
$$P_{e} = Q_{\sqrt{\frac{E_{b}}{\eta}}}$$
$$E_{b} = \frac{A^{2}T}{2}$$
$$\sqrt{\frac{E_{b}}{\eta}} = 3$$
$$E_{b} = 9\eta$$
$$\frac{A^{2}T}{2} = 9\eta$$
$$T = \frac{9 \times \eta \times 2}{A^{2}} = \frac{18 \times 10^{-4}}{9} = 2 \times 10^{-4}$$
$$T = 0.2 \text{ ms}$$

06. (b)

Sol: Poynting theorem states that the net power flowing out of a given volume 'v' is equal to the time rate of decrease in the energy stored within v minus the conduction loss.

From Maxwell's equation

$$\nabla \times \overline{\mathbf{E}} = -\mu \frac{\partial \mathbf{H}}{\partial t} \qquad (1)$$

And $\nabla \times \overline{\mathbf{H}} = \sigma \overline{\mathbf{E}} + \varepsilon \frac{\partial \overline{\mathbf{D}}}{\partial t} \qquad (2)$

Dotting both sides of equation (2) with \overline{E} , gives

From vector identity, we know, $\nabla . (\overline{A} \times \overline{B}) = \overline{B} . (\nabla \times \overline{A}) - \overline{A} . (\nabla \times \overline{B})$

If $\overline{A} = \overline{H}$ and $\overline{B} = \overline{E}$, Applying this above vector identify in (3), we get

$$\nabla . (\overline{H} \times \overline{E}) + \overline{H} . (\nabla \times \overline{E}) = \sigma E^{2} + \overline{E} . \varepsilon \frac{\partial E}{\partial t}$$
$$= \sigma E^{2} + \frac{1}{2} \varepsilon \frac{\partial E^{2}}{\partial t} \quad \dots \dots \dots (4)$$

Now dotting both sides of equation (1) with \overline{H}

Now putting equation (5) in (4)

$$-\frac{\mu}{2}\frac{\partial H^{2}}{\partial t} - \nabla \cdot \left(\overline{E} \times \overline{H}\right) = \sigma E^{2} + \frac{1}{2}\varepsilon \frac{\partial E^{2}}{\partial t}$$
$$\Rightarrow \nabla \cdot \left(\overline{E} \times \overline{H}\right) = -\sigma E^{2} - \frac{\partial}{\partial t} \left[\frac{1}{2}\varepsilon E^{2} + \frac{1}{2}\mu H^{2}\right]$$

Now taking volume integral on both side, we get

$$\int_{s} \nabla \cdot \left(\overline{E} \times \overline{H}\right) dv = -\frac{\partial}{\partial t} \int_{v} \left[\frac{1}{2} \varepsilon E^{2} + \frac{1}{2} \mu H^{2} \right] dv - \int_{v} \sigma E^{2} dv$$

Now applying divergence theorem to the left hand side of above equation, we have

 $\int \left(\overline{\mathbf{E}} \times \overline{\mathbf{H}}\right) d\mathbf{s}$

totoal power leaving the volume \downarrow

$$= -\frac{\partial}{\partial t} \int_{v} \left[\frac{1}{2} \epsilon E^{2} + \frac{1}{2} \mu H^{2} \right] dv - \int_{v} \sigma E^{2} dv$$

$$\downarrow_{\text{rate of decrease in energy stored}}_{\text{\in electric and magnetic field}} \qquad \text{ohmic power dissipated}$$

The above equation referred to as poynting's theorem.

06. (c)

- Sol: At r = 3cm = 0.03m, V = 100VAt r = 5cm = 0.05m, V = -100V
- (i) The potential changes with respect to r.

Hence change of potential with θ and ϕ is zero. That is $\frac{\partial V}{\partial \theta} = \frac{\partial V}{\partial \phi} = 0$

$$\overline{\nabla}^{2} \mathbf{V} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial \mathbf{V}}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \mathbf{V}}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} \mathbf{V}}{\partial \phi^{2}}$$
$$= \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial \mathbf{V}}{\partial r} \right) = 0$$

Assuming $r \neq 0$, we have $\frac{d}{dr} \left(r^2 \frac{dV}{dr} \right) = 0$

Integrating this equation twice, we get

$$r^2 \frac{dV}{dr} = A$$
 or $dV = \frac{Adr}{r^2}$ or $V = -\frac{A}{r} + B$

Substituting the boundary conditions in the expression of potential, we have

(iv)
$$V = 0 = \frac{15}{r} - 400$$
 hence $r = 3.75$ cm
(v) $\overline{D} = \varepsilon_0 \varepsilon_r \overline{E} = \varepsilon_0 \times 5 \times \frac{15}{r^2} \hat{a}_r = \frac{75\varepsilon_0}{r^2} \hat{a}_r C/m^2$
 $\rho_s = |\overline{D}_N| = |\overline{D}| = \frac{75\varepsilon_0}{r^2} C/m^2$
 $Q = \rho_s \times area = \frac{75\varepsilon_0}{r^2} \times 4\pi r^2 = 300\pi\varepsilon_0 = 8.345 \, nC$

06. (d)

Sol: Antenna gain G = $10\log(109.66f^2d^2n)$ where, d - diameter f - frequency η - efficiency $G_t = G_r = 10\log(109.66 \times (12)^2 \times 3^2 \times 0.55)$ $G_t = G_r = 48.93dB$ EIRP = P_t + G_t = $10\log(10) + 48.93$ EIRP = 58.93 dBwfree space loss $P_L = 32.4 + 20\log F_{MHz} + 20\log d_{km}$ $P_L = 32.4 + 20\log(12000) + 20\log(35,9000)$ $P_L = 205.1dB$

Power received
$$P_r = EIRP + G_r - P_L$$

= 38.93 + 48.93 - 205.1
 $P_r(dB) = -97.24 \text{ dBw}$
 $P_r = 10 \frac{-97.24}{10}$
 $P_r = 1.89 \times 10^{-10} \text{w}$

Power flux density $(PFD)_r = EIRP - 20log(d)_m - 10.99$ $= 58.93 - 20log(3.59 \times 10^7) - 10.99$ $(PFD)_r = -103.14 \text{ dB}(\text{w/m}^2)$

07. (a)

Sol:

(i) Given that, Radius R = 5km Frequency reuse factor N = 4 Path loss exponent r = 4 Now, reuse ratio $q = \sqrt{3N} = \sqrt{3 \times 4}$ $= \sqrt{12}$ q = 3.464

(A) The carrier to interference power ratio for no cell sectoring

$$CIR = \frac{1}{q^{-r}} = \frac{1}{(3.464)^{-4}}$$

= 143.31
CIR (dB) = 10log(143.31)
CIR(dB) = 21.56 dB

(B) CIR when 120° cell sectoring is used

$$CIR = \frac{1}{3 \times q^{-r}}$$

= $\frac{1}{3 \times (3.464)^{-4}}$
= 47.99
= 10log(47.99)
CIR = 16.81 dB

(C) CIR when 60° cell sectoring is used

$$CIR = \frac{1}{6(q)^{-r}}$$
$$= \frac{1}{6(3.464)^{-4}}$$
$$= 23.85$$
$$= 10\log(23.85)$$
$$CIR = 13.80 \text{ dB}$$

(ii) (A) Given that,

Channel data rate = 270.833kbps Time duration of a bit $T_b = \frac{1}{data rate}$ $T_b = \frac{1}{270.833k}$ $T_b = 3.69\mu s$

(B) Number of bits per time slot = 156.25Time duration of a time slot $T_{slot} = 156.25 \times T_b$ = 156.25×3.69 $T_{slot} = 577 \mu s$

(C) Number of time slots per TDMA frame = 8

Time duration of a frame, T_f = number of time slots× T_{slot}

 $= 8 \times 577 \mu s$ T_f = 4.616ms

(**D**) To find time duration for a user occupying a single time slot between two successive transmissions has to wait for the time duration of a frame. Hence, a user has to wait for 4.616ms between two successive transmissions.

07. (b)

- **Sol:** l = 1cm, $P_{rad} = 1$ mW, f = 100 MHz, $\theta = 90^{\circ}$
- (i) For Hertzian dipole,

$$P_{rad} = 40\pi^{2} \times I^{2} \left(\frac{l}{\lambda}\right)^{2}$$

$$\lambda = \frac{c}{f} = \frac{3 \times 10^{8}}{10^{8}} = 3m$$

$$1 \times 10^{-3} = 40 \times \pi^{2} \times I^{2} \times \left(\frac{10^{-2}}{3}\right)^{2}$$

$$I = \sqrt{\frac{10^{-3} \times 9}{40\pi^{2} \times 10^{-4}}} = 0.47746A$$
(ii)
$$E = \frac{\eta k I dI \sin \theta}{4\pi r}$$

$$= 120\pi \times \frac{2\pi}{3} \times \frac{0.47746 \times 10^{-2}}{4\pi \times 100} \times \sin 90$$

$$= 3mV/m$$

$$H = \frac{E}{\eta}$$

$$= \frac{3 \times 10^{-3}}{120\pi} = 7.96\mu A/m$$

07.(c)

Sol:

(i) In an additive white Gaussian noise (AWGN) channel, the channel output Y is given by. Y = X + n

Where X is channel input and n is additive bandlimited white Gaussian noise with zero mean & variance σ^2

The capacity C_s of an AWGN channel is given by C_s = $\frac{1}{2}\log_2\left(1+\frac{S}{N}\right)b$ /sample

Where S/N is signal to noise ratio at channel output

If the channel bandwidth 'B' Hz is fixed, then the output y(t) is also a bandlimited signal completely characterized by its periodic sample values taken at Nyquist rate 2B samples/sec. Then the channel capacity C (b/sec) of AWGN channel is given by,

 $C = 2B \times C_s = B \log_2 \left(1 + \frac{S}{N}\right) b/s$ this equation is known as Shannon-Hartley law.

Thus Shannon Hartley law undergoes the fundamental role of BW and S/N in communication. It also shows that we can exchange increased bandwidth for decreased signal power for a system with a given capacity C.

$$C = B \log_2 \left(1 + \frac{S}{NB} \right)$$

Let $S/NB = \lambda$

$$C = \frac{S}{N\lambda} \log_2(1+\lambda)$$

As $B \to \infty$ (i.e., when bandwidth approaches infinity) $\Rightarrow \lambda \to 0$

$$\operatorname{Lt}_{B \to \infty} C = \operatorname{Lt}_{\lambda \to 0} \frac{S}{N\lambda} \log_2(1+\lambda) = \frac{S}{N} \operatorname{Lt}_{\lambda \to 0} \frac{1}{\lambda} \log_2(1+\lambda)$$

$$\operatorname{Limit}_{B \to \infty} C = \frac{S}{N} \log_2 e \qquad \left[\because \lim_{x \to 0} \frac{1}{x} \log_2(1+x) = \log_2 e = 1.44 \right]$$

$$\therefore \operatorname{Lt}_{B \to \infty} C = 1.44 \frac{S}{N}$$

(ii) Given x, a random variable is uniformly distributed over [-1, 2]

The equation y = g(x) = 2x + 3 has a single solution $x_1 = (y - 3)/2$ & the range of y is [1, 7] $(1/6; 1 \le y \le 7)$

08.(a)

Sol:

(i) The minimum number of bits per sample is "7" for a signal to quantization noise ratio of 40 dB. The number of samples in a duration of

 $10 \text{ seconds} = 8000 \times 10$ = 8 × 10⁴ samples The minimum storage is = 7 × 8 × 10⁴ = 560 k bits

(ii) The similarities between offset QPSK and MSK are that both have a half-symbol delay between the in-phase and quadrature components of each data symbol, and both have the same probability of error.

The differences between the two techniques are:

- (1) The basis functions for offset QPSK are sinusoids multiplied by a rectangle function, while the basis functions for MSK are sinusoids multiplied by half a cosine pulse.
- (2) Offset QPSK is a form of phase modulation while MSK is a form of frequency modulation.
- (iii) Let x be a binomial random variable

(A) p(x > 1) = 1 - p(x = 0) - p(x = 1)= $1 - {}^{10}c_0(0.01)^0(0.99)^{10} - {}^{10}c_1(0.01)^1(0.99)^9$ $\therefore p(x > 1) = 0.0042$

(B) According to Poisson distribution,

$$p(x = k) = e^{-np_e} \frac{(np_e)k}{k!} \quad np_e = 10(0.01)$$

$$np_e = 0.1$$

$$p(x > 1) = 1 - p(x = 0) - p(x = 1)$$

$$= 1 - e^{-0.1} \frac{(0.1)^0}{0!} - e^{-0.1} \frac{(0.1)^1}{1!}$$

∴ $p(x > 1) = 0.0047$

08. (b) Sol:

TCP header format

0						10	5			
16 bit source port number							16 bit destination port number		Î	
32 bit sequence number										
32 bit acknowledgement number									20 0 9 10	
4-bit header length	reserved (6 bits)	U R G	A P C S C H	R S T	S Y N	F I N	16 bit window size			
16 bit TCP checksum 16 bit urgent pointer										
Options (if any)										
Data (if any)										

Source port Number (16 bits):

Sending application port number.

Destination port Number (16 bits):

Receiving application port number.

Sequence Number (32 bits):

Specifies the number assigned to the first byte of data in the current message.

Acknowledgement Number (32 bits):

Contains the value of the next sequence number that the sender of the segment is expecting to receive, if the ACK control bit is set.

Header length (4 bits):

Header length in words of 32 bits. Min header size is 5 words (20 bytes) and max header size is 15 words (60 bytes).

Reserved bits (6 bits):

Must be zero. This is for future use.

Flags bits (6 bits):

Contains the various flags.

URG: Indicates that some urgent data has been placed.

ACK: Indicates that acknowledgement number is valid.

PSH: Indicates that data should be passed to the application as soon as possible.

RST: Resets the connection.

SYN: Synchronizes sequence numbers to initiate a connection.

FIN: Means that the sender of the flag has finished sending data.

Window size (16 bits): Specifies the size of the sender's receive window (that is, buffer space available for incoming data).

Checksum (16 bits):

Used to detect error in TCP segment.

Urgent pointer (16 bits): Points to the first urgent data byte in the packet.

08. (c) Sol:

(i)
$$\overline{\nabla} \times \overline{E} = \begin{vmatrix} \hat{a}_x & \hat{a}_y & \hat{a}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 10^4 \cos(10^9 t - \beta z) & 0 & 0 \end{vmatrix}$$

$$= -\hat{a}_y \left[-10^4 (-1) \sin(10^9 t - \beta z) \times (-\beta) \right]$$
$$= \hat{a}_y \left[\beta 10^4 \sin(10^9 t - \beta z) \right]$$
$$\overline{\nabla} \times \overline{E} = -\frac{\partial \overline{B}}{\partial t}$$
Hence $\frac{d\overline{B}}{dt} = -\hat{a}_y \left[\beta 10^4 \sin(10^9 t - \beta z) \right]$
$$\therefore \overline{B} = -\hat{a}_y \left\{ \beta 10^4 (-1) \frac{\cos(10^9 t - \beta z)}{10^9} \right\}$$
$$= \beta 10^{-5} \cos(10^9 t - \beta z) \hat{a}_y$$
$$\therefore \overline{H} = \frac{\overline{B}}{\mu_0 \mu_r} = \frac{\beta 10^{-5} \cos(10^9 t - \beta z) \hat{a}_y}{\mu_0}$$

ACE Engineering Academy Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata | Ahmedabad

:26:

ī

$$\begin{split} \overline{\nabla} \times \overline{H} &= \begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & \frac{\beta 10^{-5} \cos(10^{9} t - \beta z)}{\mu_{0}} & 0 \end{vmatrix} \\ &= \hat{a}_{x} \left[-\frac{\beta 10^{-5}}{\mu_{0}} (-1) \sin(10^{9} t - \beta z) (-\beta) \right] \\ &= -\frac{\beta^{2} 10^{-5}}{\mu_{0}} \sin(10^{9} t - \beta z) \hat{a}_{x} \\ \overline{\nabla} \times \overline{H} = \sigma \overline{E} + \overline{J}_{0} = \overline{J}_{0} \text{ as } \sigma = 0 \\ \therefore \overline{\nabla} \times \overline{H} = \frac{\partial \overline{D}}{\partial t} = \epsilon_{0} \epsilon_{r} \frac{\partial \overline{E}}{\partial t} \\ \Rightarrow -\frac{\beta^{2} 10^{-5}}{\mu_{0}} \sin(10^{9} t - \beta z) \overline{a}_{x} = \epsilon_{0} (25) 10^{4} (-1) \sin(10^{9} t - \beta z) \times \hat{a}_{x} \times (10^{9}) \\ \therefore \frac{\beta^{2} 10^{-5}}{\mu_{0}} = 25 \times 10^{13} \times \epsilon_{0} \\ \text{Or } \beta = 16.678 \text{ rad/m} \end{split}$$
(ii) $\overline{J}_{D} = -25 \times 10^{13} \epsilon_{0} \sin(10^{9} t - \beta z) \overline{a}_{x} \\ \text{When } z = 0 \\ \overline{J}_{D} = -2213.5 \sin(10^{9} t) \hat{a}_{x} \text{ A / m}^{2} \end{aligned}$
(iii) $I_{D} = \int_{0}^{\overline{J}} \frac{1}{0^{-2}} \frac{d\overline{S}}{d\overline{S}} \\ &= \int \left[-2213.5 \sin(10^{9} t - \beta z) \hat{a}_{x} \right] \left[\text{dy } dz \, \hat{a}_{x} \right] \\ &= -2213.5 \left[\cos(10^{9} t - \beta z) \hat{d}_{y} \right] \left[\text{dy } dz \, \hat{a}_{x} \right] \\ &= -2213.5 \left[\cos(10^{9} t - \beta z) \frac{1}{0} \right]_{0}^{0.1} \left[y \right]_{0}^{9} \\ &= -\frac{2213.5b}{\beta} \left[\cos(10^{9} t - 0.1 \times 16.678) - \cos(10^{9} t) \right] \\ &= -\frac{2213.5b}{\beta} \left[\cos(10^{9} t - 1.6678) - \cos(10^{9} t) \right] \\ &= -\frac{2213.5b}{\beta} \left[1.09685 \cos 10^{9} t - 0.9953 \sin 10^{9} t \right] \\ &= \frac{2213.5b}{16.678} \left[1.09685 \cos 10^{9} t - 0.9953 \sin 10^{9} t \right] \\ &= 6.636 \left[1.09685 \cos 10^{9} t - 0.9953 \sin 10^{9} t \right] \end{aligned}$