

Hyderabad | Delhi | Ahmedabad | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi | Kukatpally | Kolkata

GATE - 2019

Questions with Detailed Solutions

MECHANICAL ENGINEERING

Forenoon Session

ACE Engineering Academy has taken utmost care in preparing the **GATE-2019** Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to GATE- 2019 Solutions are to be sent to the following email address hyderabad@aceenggacademy.com | Contact Us:040-23234418,19,20

ACE ME 2 **GENERAL APTITUDE** 01. The sum and product of two integers are 26 and 165 respectively. The difference between these two integers is _____. (A) 3 (B) 6 (C) 2 (D) 4 01. Ans: (D) Assume two integers are a and b Sol: a + b = 26ab = 165 we have $(a+b)^2 = (a-b)^2 + 4ab$ $(26)^2 = (a - b)^2 + 4 \times 165$ $(a-b)^2 = 676 - 660 = 16$ $(a-b)=\sqrt{16}=4$ \therefore The difference between these two integers = 4 **End of Solution** writer, passed away in 2018. 02. John Thomas, an (B) prominent (A) dominant (D) imminent (C) eminent 02. Ans: (C) Sol: Eminent means successful, well known and respected. **End of Solution** 03. — I permitted him to leave, I wouldn't have had any problem with him being absent, I? (A) Have, would (B) Had, wouldn't (C) Have, wouldn't (D) Had, would

ACE Engineering Publications

Ϋ́́	Engineering Publications	3	GATE-2019_Solutions
03.	Ans: (D)		
Sol:	Conditional tense Type 3 (formula)	
	Had $+$ V ₃ , would $+$ have $+$	V ₃	
	In question tag, if the stat	ement is negative. the question tag	should be positive i.e. wouldn't have
	had. would?		1
		End of Solution	
04	The minister avoided any	mention of the issue of women's re	servation in the private in the private
01.	sector He was accused of	the issue	servation in the private in the privat
	(A) tying	(B) collaring	
	(C) skirting	(D) belting	
04	Ans: (C)	(D) beining	
501.	Skirting means to avoid	(comething) especially because it is	difficult or will cause problems
501.	Skirting means to avoid		difficult of will cause problems.
		End of Solution	
05	A worker noticed that the	e hour hand on the factory clock he	d moved by 225 degrees during he
05.	stay at the factory. For he	w long did she stay in the factory?	a moved by 225 degrees during her
	Stay at the factory. For no (Λ) 4 hours and 15 mins	(P) 2 75 hours	
	(\mathbf{C}) 8.5 hours	(D) 7.5 hours	
05		(D) 7.5 Hours	
05.	Ans: (D)	Since 1995	
Sol:	The worker stay in the fac	$tory = 3 + 3 + \frac{3}{2} = 7.5 \text{ hrs}$	
		AIT	
		0°	
		12	
	(27	0°) 9 3 (90°)	
		8	
		7 6	
		180°	

ACE ME 4 06. A firm hires employees at five different skill levels P, Q, R, S, T. The shares of employment at these skill levels of total employment in 2010 is given in the pie chart as shown. There were a total of 600 employees in 2010 and the total employment increased by 15% from 2010 to 2016. The total employment at skill levels P, Q and R remained unchanged during this period. If the employment at skill level S increased by 40% from 2010 to 2016, how many employees were there at skill level T in 2016? (A) 35 Percentage share of skills in 2010 (B) 60 Ρ (C) 72 20 S 25 (D) 30 Q 25 R 25 06. Ans: (B) **Sol:** The total employment in 2010 at all skill level = 600Total employment increased from 2010 to 2016 =15% of $600 = \frac{15}{100} \times 600 = 90$ \therefore The employment increased from 2010 to 2016 at S and T skill level = 90

(The total employment at skill levels P, Q and R remained unchanged during this period)

The employment at skill level 'S' in 2010

$$=25 \times 6 = 150$$
 (::100%=600,1%=6)

The employment at skill level S increased by 40 % from 2010 to 2016 = 40% of 150

$$\frac{40}{100} \times 150 = 60$$

Increased number of employees at skill level T from 2011 to 2016

$$=90-60=30$$

Total employee at level T in $2016 = 600 \times 5\% + 30$

= 30 + 30 = 60

ACE Engineering Publications

ACE GATE-2019 _Solutions 5 07. A person divided an amount of Rs. 100,000 into two parts and invested in two different schemes. In one he got 10% profit and in the other he got 12%. If the profit percentages are interchanged with these investments he would have got Rs.120 less. Find the ratio between his investments in the two schemes. (A) 47 : 53 (B) 9:16 (C) 11 : 14 (D) 37:63 07. Ans: (A) Sol: Total investment Rs. 100,000/-First scheme Second scheme Investment = xInvestment = xProfit = $10\%(\uparrow)$ Profit = $10\%(\uparrow)$ Case-I 10% of x + 12% of (100,000 - x) = 12% of 100,000 - 2% of x Case-II (If profit percentages are interchanged 12% of x + 10% of (100,000 - x)) 10% of 100,000 + 2% of x **Since 1995** The difference between case-I and Case-II = 12012% of 100,000 - 2% of x - (10% of 100,000 + 2% of x) = 1202% of 100,000 - 4% of x = 1202000 - 4% of x = 120 4% of x = 1880 $x = \frac{1880 \times 100}{4} = 47,000$ The amount invested in first scheme = Rs. 47,000/-The amount invested in 2^{nd} scheme = Rs. 100,000 - 47,000 = 53,000 $=\frac{47000}{53000}=\frac{47}{53}=47:53$

ACE Engineering Publications

10. Congo was named by Europeans. Congo's dictator Mobuto later changed the name of the country and the river to Zaire with the objective of Africanising names of persons and spaces. However, the name Zaire was a Portuguese alternation of *Nzadi o Nzere*, a local Congo river in the 16th and 17th centuries.

7

Which one of the following statements can be inferred from the paragraph above ?

- (A) The term Nzadi o Nzere was of Portuguese origin
- (B) As a dictator Mobuto ordered the Portuguses to alter the name of the river to Zaire
- (C) Mobuto was not entirely successful in Africanising the name of his country
- (D) Mobuto's desire to Africanise names was prevented by the Portuguese

10. Ans: (C)

Sol: As it suggests, that all names are of European origin. Mobuto was not successful in Africanising the name of his country.

End of Solution

Since 1995

ACE Engineering Publications

RRB (JE)-2019 Online Test Series

Common for all Streams No. of Tests : 20 Starts from 25th February 2019

STAGE - II

CE | ME | EC | EE No. of Tests : 20 Starts from 6th May 2019

() 040 - 48539866 / 040 - 40136222

🖄 testseries@aceenggacademy.com

ACE Launches

For **B.Tech – CSE Students**

Placement Training

In **Level – 1 Companies** Short Term & Long Term Batches

MECHANICAL ENGINEERING

9

01. The lengths of a large stock of titanium rods follow a normal distribution with a mean (μ) of 440 mm and a standard deviation (σ) of 1mm. What is the percentage of rods whose lengths lie between 438 mm and 441 mm?

(D) 86.64 %

z=-2 z=0 z=1

- (A) 81.85 % (B) 68.4 %
- (C) 99.75%
- **01. Ans:** (A)

Ζ

Sol:

$$Z = \frac{x - \mu}{x - \mu}$$

 σ

$$(x = 438) = \frac{438}{2}$$

$$P(Z = -2) = 2.28\%$$
$$Z (x = 441) = \frac{441 - 440}{1} = 1$$

$$P(Z = 1) = 84.13 \%$$

The percentage of rods whose lengths lie between 438 mm and 441 mm =

$$= P (Z = 1) - P(Z = -2)$$

= 84.13 % - 2.28 % = 81.85 %

End of Solution

02. A slender rod of length L, diameter d (L >> d) and thermal conductivity k₁ is joined with another rod of identical dimensions, but of thermal conductivity k₂, to form a composite cylindrical rod of length 2L. The heat transfer in radial direction and contact resistance are negligible. The effective thermal conductivity of the composite rod is

(A)
$$\frac{2k_1k_2}{k_1 + k_2}$$
 (B) $\sqrt{k_1k_2}$
(C) $k_1 + k_2$ (D) $\frac{k_1k_2}{k_1 + k_2}$

ACE Engineering Publications

(10)

ME

	ACE Engineering Publications	(13)	GATE-2019 _Solutions
05.	Ans: (A)		
Sol:	System: I		
	$k_{eq} = \frac{k.k}{k+k} = \omega_{n_1} = \sqrt{\frac{k}{2m}}$	<u>k</u> 2	
	System - II		
	$k_{eq} = 2k \omega_n$	$_{2} = \sqrt{\frac{2k}{m}}$	
	$\frac{\omega_{n_1}}{\omega_{n_2}} = \frac{\sqrt{\frac{k}{2m}}}{\sqrt{\frac{2k}{m}}}$	$= \sqrt{\frac{k}{2m}} \times \frac{m}{2k} = \frac{1}{2}$ End of Solution	
06	A snur gear w	vith 20° full depth teeth is transmitting 20 kW at 200 rad	s The nitch circle diameter
00.	of the gear is	100 mm. The magnitude of the force applied on the gear i	n the radial direction is
	(A) 0.36 kN	(B) 1.39 kN	
	(C) 0.73 kN	(D) 2.78 kN	
06.	Ans: (C)	Since 1995	
Sol:	$\phi = 20^{\circ}, P = 20^{\circ}$ Torque = Po $T = \frac{20000}{200} =$ Now, T = F $\Rightarrow 100 = F_{T}$ $\Rightarrow F_{T} = 200^{\circ}$	$D kW, \omega = 200 rad / s, d = 100 mm = 0.1m$ $D kW, \omega = 200 rad / s, d = 100 mm = 0.1m$ $D kW, \omega = 200 rad / s, d = 100 mm = 0.1m$ $D kW, \omega = 200 rad / s, d = 100 mm = 0.1m$ $D kW, \omega = 200 rad / s, d = 100 mm = 0.1m$ $D kW, \omega = 200 rad / s, d = 100 mm = 0.1m$ $D kW, \omega = 200 rad / s, d = 100 mm = 0.1m$ $D kW, \omega = 100 Nm$ $D kW, \omega = 200 rad / s, d = 100 mm = 0.1m$ $D kW, \omega = 100 Nm$ $D kW, \omega = 200 rad / s, d = 100 mm = 0.1m$ $D kW, \omega = 100 Nm$ $D kW, \omega = 100 Nm$	
ACEE	$\rightarrow \Gamma_{\rm T} = 200$	U IN	ayawada • Vizaq • Tirupati • Kolkata • Ahmedahad

	GATE-2019_S	olutions
09.	Ans: (B)	
Sol:	Given, $Q_{1-2} = W_{1-2}$	
	$\therefore \Delta U_{1-2} = 0$	
	$\Rightarrow \mathbf{c}_{\mathrm{V}} \big[\mathbf{T}_2 - \mathbf{T}_1 \big] = 0$	
	\Rightarrow T ₁ = T ₂	
	So, the process is isothermal.	
	End of Solution	
10.	Water flows through a pipe with a velocity given $\vec{V} = \left(\frac{4}{t} + x + y\right)\hat{j}$ m/s, where \hat{j} is the u	nit vector
	in the y direction, t (> 0) is in seconds, and x and y are in meters. The magnitude	e of total
	acceleration at the point $(x, y) = (1, 1)$ at $t = 2$ s is m/s ² .	
10.	Ans: 3	
Sol:	$\vec{\mathbf{V}} = \left(\frac{4}{t} + \mathbf{x} + \mathbf{y}\right)\hat{\mathbf{j}}$	
	\therefore u = 0,	
	$\mathbf{v} = \left(\frac{4}{t} + \mathbf{x} + \mathbf{y}\right)$	
	w = 0	
	$a_{x} = u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z} + \frac{\partial u}{\partial t} = 0 + 0 + 0 + 0 = 0$	
	$\mathbf{a}_{z} = \mathbf{u}\frac{\partial \mathbf{w}}{\partial \mathbf{x}} + \mathbf{v}\frac{\partial \mathbf{w}}{\partial \mathbf{y}} + \mathbf{w}\frac{\partial \mathbf{w}}{\partial z} + \frac{\partial \mathbf{w}}{\partial t} = 0 + 0 + 0 + 0 = 0$	
	$a_{y} = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} + \frac{\partial v}{\partial t}$	
	$= v \frac{\partial v}{\partial y} + \frac{\partial v}{\partial t}$	
	$=\left(\frac{4}{t}+x+y\right)\left(1\right)+\left(\frac{-4}{t^2}\right)$	

ME

$$= x + y + \frac{4}{t} - \frac{4}{t^2}$$

$$= 1 + 1 + \frac{4}{2} - \frac{4}{2^2}$$

$$= 3$$

$$|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_y^2} = \sqrt{0^2 + 3^2 + 0^2} = 3 \text{ m/s}^2$$
End of Solution
11. For the equation $\frac{dy}{dx} + 7x^2y = 0$, if $y(0) = 3/7$, then the value of $y(1)$ is
(A) $\frac{3}{6}e^{-3/7}$
(B) $\frac{7}{3}e^{-3/7}$
(C) $\frac{7}{3}e^{-7/3}$
(D) $\frac{3}{7}e^{-7/3}$
(D) $\frac{3}{7}e^{-7/3}$
11. Ans: (D)
Sol: Given $\frac{dy}{dx} + 7x^2y = 0$(1)
With $y(0) = \frac{3}{7}$(2)
Now, (1) is written as
 $\Rightarrow \int \frac{1}{y}dy + \int 7x^2dx = C$
 $\Rightarrow \log y + \frac{7x^3}{3} = C$
 $\Rightarrow y = e^{-\frac{7x^3}{3}} \cdot C$
Using (2), (3) becomes
 $\frac{3}{7} = e^{\theta}e^{C}$ (or) $e^{C} = \frac{3}{7}$(4)
 \therefore The solution of (1) with (3) & (4) is given by
 $y = y(x) = e^{-\frac{7x^3}{3}} \cdot e^{C} = \frac{3}{7}e^{-\frac{3}{7}}$

CATE-2019_Solutions The length, width and thickness of a steel sample are 400 mm, 40 mm and 20 mm, respectively. Its thickness needs to be uniformly reduced by 2 mm in a single pass by using horizontal slab milling. The milling cutter (diameter: 100 mm, width: 50 mm) has 20 teeth and rotates at 1200 rpm. The feed per tooth is 0.05 mm. The feed direction is along the length of the sample. If the overtravel distance is the same as the approach distance, the approach distance and time taken to

complete the required machining task are

- (A) 21 mm, 28.9 s
- (C) 21 mm, 39.4s

(B) 14 mm, 18.4 s(D) 14 mm, 21.4 s

12. Ans: (D)

ACE Engineering Publications

Sol: Approach =
$$\sqrt{d(D-d)} = \sqrt{2(100-2)}$$

 $=\sqrt{196}=14\,mm$

Here, AP = OR = 14 mm

Machine time =
$$\frac{L + AP + OR}{fZN} = \frac{400 + 14 + 14}{0.05 \times 20 \times 1200} = 0.356 \text{ min} = 21.4 \text{ sec}$$

End of Solution

13. The table presents the demand of a product. By simple three-months moving average method, the demand-forecast of the product for the month of September is

	Month	Demand
	January	450
	February	440
	March	460
	April	510
	May	520
	June	495
	July	475
	August	560
(A) 490		(B) 5
(A) 490		(D) 3
(C) 510		(D) 5

To WIN The RACE.. Join ACE...

SUMMER SHORT TERM BATCHES

GATE+PSUs - 2020

DELHI — 11th May | 23rd May 2019

ADMISSIONS ARE OPEN

EARLY BIRD OFFER : Register on or Before 31st March 2019 : 3000/- Off

GATE-2019 Solutions

13. Ans: (C)

Sol: 3 month moving average method :

$$F_{sep} = \frac{D_{Aug} + D_{July} + D_{June}}{3}$$
$$= \frac{560 + 475 + 495}{3} = 510$$

End of Solution

19

- 14. Which one of the following welding methods provides the highest heat flux (W/mm²)?
 - (A) Tungsten inert gas welding (B) Laser beam welding
 - (C) Plasma arc welding

14. Ans: (B)

Sol: Heat flux means power input in terms of heat per unit area. It will be maximum in Laser beam welding.

End of Solution

15. A cylindrical rod of diameter 10 mm and length 1.0 m is fixed at one end. The other end is twisted by an angle of 10° by applying a torque. If the maximum shear strain in the rod is p×10⁻³, then p is equal to _____ (round off to two decimal places).

Since

15. Ans: 0.87

Sol: d = 10mm

$$\theta = 10^{\circ} = 10^{\circ} \times \frac{\pi}{180}$$
 radian

$$R = \frac{a}{2} = 5 \text{ mm}$$

L = 1m,

$$\phi_{\rm max} = P \times 10^{-3}$$

from torsion equation, $\frac{T}{J} = \frac{\tau_{max}}{R} = \frac{G\theta}{\ell}$

$$\Rightarrow \frac{\tau_{\text{max}}}{G} = \frac{R\theta}{\ell}$$
$$\phi_{\text{max}} = \frac{R\theta}{\ell}$$

ACE Engineering Publications (H

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

d

L–1m

- (C) (18.66, 12.32)
- (D) (22.32, 8.26)

ACE Engineering Publications (Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

►X

GATE-2019 Solutions

17. Ans: (B)

Sol: The matrix transformation in first quadrant is given by

Y=PX, where
$$\theta = 30$$
.

$$\Rightarrow \begin{bmatrix} x^{1} \\ y^{1} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x^{1} \\ y^{1} \end{bmatrix} = \begin{bmatrix} \cos(30) & -\sin(30) \\ \sin(30) & \cos(30) \end{bmatrix} \begin{bmatrix} 20 \\ 10 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x^{1} \\ y^{1} \end{bmatrix} = \begin{bmatrix} (20)\cos(30) & -(10)\sin(30) \\ (20)\sin(30) & +(10)\cos(30) \end{bmatrix} \begin{bmatrix} 20 \\ 10 \end{bmatrix}$$

$$\therefore \begin{bmatrix} x^{1} \\ y^{1} \end{bmatrix} = \begin{bmatrix} 12.32 \\ 18.66 \end{bmatrix}$$
(x¹, y¹) = (12.32, 18.66)
Hence, option (b) is correct.
End of Solution

21

18. As per common design practice, the three type of hydraulic turbines, in descending order of flow rate, are

Since 1995

- (A) Francis, Kaplan, Pelton
- (B) Pelton, Kaplan, Francis
- (C) Pelton, Francis, Kaplan
- (D) Kaplan, Francis, Pelton

18. Ans: (D)

Sol: Kaplan turbine has highest flow area hence it can handle highest discharge. On the other hand, Pelton turbine has lowest flow area hence it works on low discharge.

 $\therefore Q_{Kaplan} > Q_{Francis} > Q_{Pelton}$

ACE

22

20. Consider the matrix $P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

The number of distinct eigenvalues of P is

(A) 2	(B) 1
(C) 3	(D) 0

ACE Engineering Publications

23

New Batches @

HYDERABAD	DELHI	
17th Feb 2019	18th Feb 2019	

ESE - 2019 Mains Test Series (Offline/Online)

Starts from **30th March 2019.** Test Series will be conducted at all our centres

APPSC-AEE (Prelims) Online Test Series

PUNE

16th Feb 2019

No. of Tests : 18 Topic Wise Tests : 15 | Mock Tests - 3

Civil | Mechanical | Electrical

Available Now

All Tests will be available till 18th February 2019

🕓 040 - 48539866 / 040 - 40136222 🛛 🗳 testseries@aceenggacademy.com

22. For a hydro dynamically and thermally fully developed laminar flow through a circular pipe of constant cross-section, the Nusselt number at constant wall heat flux (Nuq) and that at constant wall temperature (NuT) are related as

$$(A) Nu_q < Nu_T \qquad (B) Nu_q = Nu_T$$

(C)
$$Nu_q = (Nu_T)^2$$
 (D) $Nu_q > Nu_T$

22. Ans: (D)

Sol: For laminar flow through circular tube :

 $Nu_q = 4.36$ (For constant heat flux)

 $Nu_T = 3.66$ (For constant wall temperature)

 $Nu_q > Nu_T$

End of Solution

23. Consider the stress-strain curve for an ideal elastic-plastic strain hardening metal as shown in the figure. The metal was loaded in uniaxial tension starting from O. Upon loading, the stress-strain curve passes through initial yield point at P, and then strain hardens to point Q, where the loading was stopped. From point Q, the specimen was loaded to point R, where the stress is zero. If the same specimen is reloaded in tension from point R, the value of stress at which the material yields again is _____ MPa.

(26)

23. Ans: 210 MPa

Sol: Yield strength will increase to 210 MPa due to strain hardening.

24. A block of mass 10 kg rests on a horizontal floor. The acceleration due to gravity is 9.81 m/s². The coefficient of static friction between the floor and the block is 0.2. A horizontal force of 10 N is applied on the block as shown in the figure. The magnitude of force of friction (in N) on the block is _____.

25. A solid cube of side 1 m is kept at a room temperature of 32° C. The coefficient of linear thermal expansion of the cube material is $1 \times 10^{-5/\circ}$ C and the bulk modulus is 200 GPa. If the cube is constrained all around and heated uniformly to 42° C, then the magnitude of volumetric (mean) stress (in MPa) induced due to heating is _____.

ACE Engineering Publications

25. Ans: 60

Sol: Since the block is heated uniformly and constrained in all directions,

hydrostatic state of stress develops.

:. Volumetric strain
$$\in_v = \frac{\sigma}{k} = 3\alpha$$
 (t)

 $\therefore \sigma = 3\alpha t(k)$

$$= 3 \times 1 \times 10^{-5} (42 - 32) \times 200 \times 10^{3}$$

$$\therefore \sigma = 60 \text{ MPa}$$

End of Solution

27

26. A gas turbine with air as the working fluid has an isentropic efficiency of 0.70 when operating at a pressure ratio of 3. Now, the pressure ratio of the turbine is increased to 5, while maintaining the same inlet conditions. Assume air as a perfect gas with specific heat ratio $\gamma = 1.4$. If the specific work output remains the same for both the cases, the isentropic efficiency of the turbine at the pressure ratio of 5 is ______ (round off to two decimal places).

ТÎ

26. Ans: 0.515

Sol: Given,
$$r_{p1} = 3$$
, $r_{p_2} = 5$
W = n × W

$$\mathbf{v}_{act} = \eta_{s} \times \mathbf{v}_{isentropic}$$

$$= \eta_{s} \times \mathbf{c}_{p} [T_{3} - T_{4}]$$
Since 12
$$= \eta_{s} \times \mathbf{c}_{p} T_{3} \left[1 - \frac{1}{\frac{T_{3}}{T_{4}}} \right]$$

$$W_{act} = \eta_s \times c_p \times T_3 \left[1 - \frac{1}{\frac{\gamma - 1}{r_p^{\gamma}}} \right]$$

$$(W_{act})_{1} = (W_{act})_{2}$$

$$\therefore \ \eta_{s_{1}} \times \left[1 - \frac{1}{3^{\frac{1.4-1}{1.4}}}\right] = \eta_{s_{2}} \times \left[1 - \frac{1}{5^{\frac{1.4-1}{1.4}}}\right] \quad \Rightarrow \eta_{s_{2}} = 0.515$$

ACE Engineering Publications

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

S

ACE

27. In ASA system, the side cutting and end cutting edge angles of a sharp turning tool are 45° and 10°, respectively. The feed during cylindrical turning is 0.1 mm/rev. The center line average surface roughness (in μm, round off to one decimal place) of the generated surface is _____.

28

27. Ans: 3.75

Sol: Peak to valley height

$$h_{max} = \frac{f}{\tan C_s + \cot C_e}$$

$$C_s = S.C.E.A, C_e = E.C.E.A$$

$$\Rightarrow h_{max} = \frac{0.1}{\tan 45^0 + \cot 10^0}$$

$$h_{max} = \frac{0.1}{1 + 5.67} = 0.015 \, mm$$
The approximate value of centre line average

 $R_a = \frac{h_{\text{max}}}{4} = \frac{0.015}{4} = 0.00375 mm = 3.75 \ \mu\text{m}$

28. Three slabs are joined together as shown in the figure. There is no thermal contact resistance at the interfaces. The center slab experiences a non-uniform internal heat generation with an average value equal to 10000 Wm⁻³, while the left and right slabs have no internal heat generation. All slabs have thickness equal to 1 m and thermal conductivity of each slab is equal to 5 Wm⁻¹K⁻¹. The two extreme faces are exposed to fluid with heat transfer coefficient 100 Wm⁻²K⁻¹ and bulk temperature 30°C as shown. The heat transfer in the slabs is assumed to be one dimensional and steady, and all properties are constant. If the left extreme face temperature T₁ is measured to be 100°C, the right extreme face temperature T₂ is ______°C.

Left extreme
face
$$T_1 = 100^{\circ}C$$
 1m 1m 1m T_2
100 W/m².K
30°C 100 W/m².K

ACE Engineering Publications

ME

where,
$$\dot{m} = \frac{P_i V_i}{RT_i} = \frac{100 \times 15}{0.5 \times 300} = 10$$

Thus,
 $10[c_p T_i] + 101 - 51 = 10 \times [c_p \times T_2]$ [:: $v_1 = 0, v_2 = 0$ and $\frac{dW}{dt} = 0$]
 $10 \times 1 \times 300 + 50 = 10 \times 1 \times T_2$
 $T_2 - 305 \text{ K} - 32^{\circ}\text{C}$
End of Solution
30. In orthogonal turning of a cylindrical tube of wall thickness 5 mm, the axial and the tangential
cutting forces were measured as (259 N and 1601 N, respectively). The measured chip thickness
after machining was found to be 0.3 mm. The rake angle was 10° and the axial feed was 100
mm/min. The rotational speed of the spindle was 1000 rpm. Assuming the material to be perfectly
plastic and Merchant's first solution, the shear strength of the material is closest to
(A) 875 MPa (B) 200 MPa
(C) 722 MPa (D) 920 MPa
30. Ans: (C)
Sol: Axial cutting force = Feed Force - F_r = 1259N
Tangental Force = $F_c = 1601 \text{ N}$
Chip thickness = $t_2 = 0.3 \text{ mm}$
Rake angle $a_0 = 10^{\circ}$
Feed = 100 mm/min
Rotational speed = 1000 rpm
Feed in mm/rev, $f = \frac{100}{1000} = 0.1 \text{ mm}/\text{rev}$
Shear strength = $\tau_c = ?$
Since S.C. E. A is not mentioned therefore it can be assumed to be
zero :: S.C.E.A $\psi_r = 0$ and hence
feed = uncut thickness = $t_1 = 0.1 \text{ mm}$ s

ACE Engineering Publications

ACE

GATE-2019 _Solutions

31

ACE Engineering Publications

HEARTY CONGRATULATIONS TO OUR ESE 2018 RANKERS

AIR

AIR

AIR

RAMESH KAMULLA

AMIT KUMAR ME

RATIPALLI NAGESWAR

AIR

AIR

AIR

PRAVEEN KUMAR

KARTHIK KOTTURU

TEKCHAND DESHWAL

SHANAVAS CP E&T

CE

AIR

AIR

AIR

AIR

AIR

AIR

MAYUR PATIL ME

RISHABH DUTT CE

ROHIT KUMAR CE

PUNIT SINGH CE

JAPJIT SINGH E&T

AIR

ANKIT GARG

NARENDRA KUMAR

and many more ...

EE

SURYASH GAUTAM E&T

32. A uniform thin disk of mass 1 kg and radius 0.1 m is kept on a surface as shown in the figure. A spring of stiffness $k_1 = 400$ N/m is connected to the disk center A and another spring of stiffness $k_2 = 100$ N/m is connected at point B just above point A on the circumference of the disk. Initially, both the springs are unstretched. Assume pure rolling of the disk. For small disturbance from the equilibrium, the natural frequency of vibration of the system is _____ rad/s (round off to one decimal place).

ME

ACE Engineering Publications

34. A single block brake with a short shoe and torque capacity of 250 N-m is shown. The cylindrical brake drum rotates anticlockwise at 100 rpm and the coefficient of friction is 0.25. The value of a, in mm (round off to one decimal place), such that the maximum actuating force P is 2000 N, is _____.

35

ACE Engineering Publications

ACE

ACE

- ME
- 35. A cube of side 100 mm is placed at the bottom of an empty container on one of its faces. The density of the material of the cube is 800 kg/m³. Liquid of density 1000 kg/m³ is now poured into the container. The minimum height to which the liquid needs to be poured into the container for the cube to just lift up is _____ mm.
 35. Ans: 80
 Sol: ∑F_y = 0 F_B - W + N = 0 When the cube is just about to lift, N = 0 ∴ F_B = W pg∀ = ρ_xg∀_x 1000×a²×h = 800×a²×a ∴ h = 0.8a = 0.8×100 = 80 mm End of Solution
- 36. Two immiscible, incompressible, viscous fluids having same densities but different viscosities are contained between two infinite horizontal parallel plates, 2 m apart as shown below. The bottom plate is fixed and the upper place moves to the right with a constant velocity of 3 m/s. With the assumptions of Newtonian fluid, steady, and fully developed laminar flow with zero pressure gradient in all directions, the momentum equations simplify to

$$\frac{d^2u}{dy^2} = 0$$

If the dynamic viscosity of the lower fluid, μ_2 , is twice that of the upper fluid, μ_1 , then the velocity at the interface (round off to two decimal places) is _____ m/s.

ACE Engineering Publications

36. Ans: 1

 $\tau_1=\tau_2$

Let V be the velocity of the interface. i.e. $\mu_1 \frac{U-V}{h_1} = \mu_2 \frac{V-0}{h_2}$ $\mu_1 \frac{(3-V)}{1} = 2\mu_1 \left(\frac{V}{1}\right)$ 3-V = 2V $\therefore V = 1 \text{ m/s}$ End of Solution 37. In a UTM experiment, a sample of length 100 mm, was loaded in tension until failure. The failure load was 40 kN. The displacement, measured using the cross-head motion, at failure, was 15 mm.

37

load was 40 kN. The displacement, measured using the cross-head motion, at failure, was 15 mm. The compliance of the UTM is constant and is given by 5×10^{-8} m/N. The strain at failure in the sample is _____%.

37. Ans: 2

Sol: L = 100 mm Failure load, P = 40 kN Compliance of UTM = C = $\frac{\ell}{AE} = 5 \times 10^{-8} \frac{m}{N} = \text{constant}$ and $\delta \ell = \frac{P\ell}{AE}$ $P = (\delta \ell) \frac{AE}{\ell}$ $40 \times 10^3 = (\delta \ell) \times \frac{1}{C}$ $\delta \ell = 40 \times 10^3 \times 5 \times 10^{-8} = 200 \times 10^{-5} \text{ m}$ Strain = $\epsilon = \frac{\delta \ell}{\ell} = \frac{200 \times 10^{-5}}{0.1} = 2 \times 10^{-2}$ % Strain = 2×10⁻²×100% = 2%

HEAD OFFICE : HYDERABAD

Sree Sindhi Guru Sangat Sabha Association, # 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001. Address - II : # 204, Rahman Plaza, Abids, Hyderabad - 500001. Contact No: 040-23234418/19/20, 040-24750437 E-Mail : hyderabad@aceenggacademy.com

DELHI

Address I : Plot No. 3, Kh.No. 264, Near Saket Metro Station, Saidulajab, New Delhi-110030. Address II : # 63, FNS House, Beside Oriental Bank of Commerce, Near Hauz Khas Metro Station,Kalu Sarai,New Delhi-110016. Contact No : 9205282121, 9205282123, 7838971777, 9205282120.

BHOPAL

G - 1, Plot no : 207, Zone II, M.P Nagar, M. P - 462013. Contact No: 0755-2554512, 0755-2554612, 0755-4280242

PUNE

302, Vekatesh Villa, Upstairs JANATHA Sahakari Bank, Shivaji Nagar, Pune, Maharashtra - 411005. Contact No : 020- 25535950, 09343499966

BHUBANESWAR

Plot No: 625/A, 3rd Floor, Janpath, Saheed Nagar, Bhubaneswar. Contact No: 0674-2540340, 9861566244, 09379099966

LUCKNOW

A-7, Sector-J, Aliganj, Lucknow, Uttar Pradesh – 226024 Contact No. : 93421 99966, 8081 99 99 66, 0522 4046966

PATNA

1st Floor, N. P. Tower, Kankarbagh, PATNA - 800020. Contact No.: 08252194512, 9308699966, 9212188818

DILSUKH NAGAR

Gaddiannaram,Dilsukhnagar, Hyderabad. Contact No : 040 – 40209345, 040 – 40044451 **KUKATPALLY** 2nd floor, BSR Bellezza, Opp : JNTUH Campus, KPHB, Kukatpally, Hyderabad- 500072. Contact No: 040-6597 4465, 040-40199966, 93476 99966

BENGALURU

223, G R Arcade, 2nd floor, Malleswaram, Bangalore - 560003. Contact No: 080-23466699,41526699, 09341299966.

CHENNAI

39, North Usman Road, T Nagar, Chennai - 600017. Contact No : 044 - 42123289 , 9343799966

VISHAKAPATNAM

Door No. 48-14-91/6, 3rd Floor, Sri Nagar, Visakhapatnam – 530001. Contact No : 0891-6616001, 08374808999

VIJAYAWADA

Opp Stella College, Near Benz Circle, Vijayawada – 520 008 Contact No. : 0866-2490001, 96760 76001

TIRUPATI

Plot No:10, AIR Bypass Road, Tirupathi – 517502. Contact No : 0877-2244388, 9618155166, 09341499966

KOLKATA

3rd Floor, 369/4, EM Bypass, Avishar Shopping Mall, Kolkata - 700078. Contact No : 8297899966, 8886899966

AHMEDABAD

Shop.No 231, 2nd Floor, Sunrise Mall, Near Mansi Circle, Vasthrapur-Gujarat-380015. Contact No : 079 4890 2228, 9160499966 38. A stream power cycle with regeneration as shown below on the T-s diagram employs a single open feed water heater for efficiency improvement. The fluids mix with each other in an open feedwater heater. The turbine is isentropic and the input (bleed) to the feedwater heater from the turbine is at state 2 as shown in the figure. Process 3-4 occurs in the condenser. The pump work is negligible. The input to the boiler is at state 5. The following information is available from the steam tables:

39

State	1	2	3	4	5	6
Enthalpy (kJ/kg)	3350	2800	2300	175	700	1000

The mass flow rate of steam bled from the turbine as a percentage of the total mass flow rate at the inlet to the turbine at state 1 is _____.

38. Ans: 20

ACE

Sol: Let 'm₁' kg of steam enters the turbine, 'm₂' kg of steam is bled from the turbine into the feed water heater and 'm₁-m₂' kg of steam enters the condenser.

From energy balance of open feed water heater,

 $m_2h_2+(m_1-m_2)h_4=m_1h_5$

$$m_2 \times 2800 + (m_1 - m_2) 175 = m_1 \times 700$$

$$2625 \,\mathrm{m_2} = 525 \,\mathrm{m_1}$$

:. Percentage of steam bled from the turbine = $\frac{m_2}{m_1} \times 100 = 0.2 \times 100 = 20\%$

39. Consider an elastic straight beam of length $L = 10\pi$ m, with square cross-section of side a = 5 mm, and Young's modulus E = 200 GPa. This straight beam was bent in such a way that the two ends meet, to form a circle of mean radius R. Assuming that Euler-Bernoulli beam theory is applicable to this bending problem, the maximum tensile bending stress in the bent beam is _____ MPa.

ACE Engineering Publications

42

Activity	Immediate predecessor	Estimated duration (weeks)
Р	-	5
Q	-	1
R	Q	2
S	P, R	4
Т	P	KING A
U	S, T	-3

If all activities other than S take the estimated amount of time, the maximum duration (in weeks) of the activity S without delaying the completion of the project is _____.

41. Ans: 6

Sol:

Project completion time = 14 weeks

Total float of 'S' = 11 - 5 - 4 = 2 weeks

Maximum duration of activity 'S' without delaying the project completion time

= Total float + duration

= 2 + 4 = 6 weeks

ME

42. In a four bar planar mechanism shown in the figure, AB = 5 cm, AD = 4 cm and DC = 2 cm. In the configuration shown, both AB and DC are perpendicular to AD. The bar AB rotates with an angular velocity of 10 rad/s. The magnitude of angular velocity (in rad/s) of bar DC at this instant is

ACE Engineering Publications

(44)

43. Ans: (A)

Sol: The given system of equations can be expressed in the matrix form:

$$\begin{bmatrix} 1 & 1 & 1 \\ a & -a & 3 \\ 5 & -3 & a \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 6 \end{bmatrix}$$
AX = B form
$$Where A = \begin{bmatrix} 1 & 1 & 1 \\ a & -a & 3 \\ 5 & -3 & a \end{bmatrix} X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \& B = \begin{bmatrix} 1 \\ 6 \\ 6 \end{bmatrix}$$
The augmented matrix is
$$\begin{bmatrix} A/B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ a & -a & 3 \\ 5 & -3 & a 6 \end{bmatrix}$$
R₂ - aR₁ & R₃ - 5R₁

$$\begin{bmatrix} A/B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2a & 3-a \\ 0 & -8 & a -5 \end{bmatrix} \begin{bmatrix} 1 \\ 5-a \\ 0 & 0 & a^2-a-12 \\ 5a-20 \end{bmatrix}$$
AR₃ - 4R₂

$$\begin{bmatrix} A/B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2a & 3-a \\ 0 & 0 & a^2-a-12 \\ 5a-20 \end{bmatrix}$$
For infinite solutions $p(A/B) = p(A) < Number of unknowns$

$$\Rightarrow a^2 - a - 12 = 0 \& 5a - 20 = 0$$

$$\Rightarrow a = 4$$
Hence, option (A) is correct.

ACE Engineering Publications

Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

ME

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER	COURSE	ВАТСН ТҮРЕ	DATE
HYDERABAD - DSNR	HYDERABAD - DSNR GATE + PSUS – 2020		26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - DSNR	ESE + GATE + PSUs - 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - DSNR	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - DSNR	GATE + PSUs - 2020	Morning/Evening Batch	24th February 2019
HYDERABAD - DSNR	ESE – 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019
HYDERABAD - Abids	GATE + PSUS – 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - Abids	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - Abids	ESE + GATE + PSUs - 2020	Morning Batch	24th February 2019
HYDERABAD - Abids	ESE – 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019
HYDERABAD - Abids	GATE + PSUs - 2020	Weekend Batch	24th February 2019
HYDERABAD - Abids	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Morning/Evening Batch	24th February 2019
HYDERABAD - Kukatpally	GATE + PSUS – 2020	Regular Batches	17th May, 1st, 16th June, 1st July 2019
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - Kothapet	ESE + GATE + PSUS - 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - Kothapet	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019
DELHI	ESE+GATE+PSUs - 2020	Weekend Batches	9th Mar 2019
DELHI	ESE+GATE+PSUs - 2020	Regular Evening Batch	18 th Feb 2019
DELHI	ESE+GATE+PSUs - 2020	Regular Day Batch	11 th May 2019
DELHI	ESE+GATE+PSUs - 2020	Spark Batch	11 th May 2019
DELHI	GATE+PSUs - 2020	Short Term Batches	11 th , 23 rd May 2019
BHOPAL	ESE+GATE+PSUs - 2020	Regular Day Batch	01st Week of June 2019
BHUBANESWAR	GATE+PSUs - 2020	Weekend Batch	16 th Feb 2019
BHUBANESWAR	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019
CHENNAI	GATE+PSUs - 2020 & 21	Weekend Batch	16 th Feb 2019
CHENNAI	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019
BANGALORE	GATE+PSUs - 2020 & 21	Weekend Batch	23 rd Feb 2019
BANGALORE	GATE+PSUs - 2020	Regular Batch	17 th June 2019

FOR BATCH DETAILS VISIT : www.aceenggacademy.com

ACE

a Direction of motion

R,

CG_₽W

44. A car having weight W is moving in the direction as shown in the figure. The center of gravity (CG) of the car is located at height h from the ground, midway between the front and rear wheels. The distance between the front and rear wheels is *l*. The acceleration of the car is a, and acceleration due to gravity is g. The reactions on the front wheels (R_f) and rear wheels (R_r) are given by

46

(A)
$$R_{f} = R_{r} = \frac{W}{2} - \frac{W}{g} \left(\frac{h}{\ell}\right) a$$

(B) $R_{f} = \frac{W}{2} - \frac{W}{g} \left(\frac{h}{\ell}\right) a; R_{r} = \frac{W}{2} + \frac{W}{g} \left(\frac{h}{\ell}\right) a$
(C) $R_{f} = R_{r} = \frac{W}{2} + \frac{W}{g} \left(\frac{h}{\ell}\right) a$
(D) $R_{f} = \frac{W}{2} + \frac{W}{g} \left(\frac{h}{\ell}\right) a; R_{r} = \frac{W}{2} - \frac{W}{g} \left(\frac{h}{\ell}\right) a$

 $g(\ell)$

44. Ans: (B)

Sol: We analyse this problem in the frame of reference of car.

F.B.D of car is shown below,

As our frame of reference is accelerated hence, we have to apply a pseudo force 'ma' as shown above, where, f_1 and f_2 are friction forces on rear and front wheels respectively.

For vertical equilibrium,

$$\mathbf{R}_{\mathbf{r}} + \mathbf{R}_{\mathbf{f}} = \mathbf{W} \quad ----(\mathbf{i})$$

 $\Sigma M_0 = 0 ,$

ACE Engineering Publications

GATE-2019_Solutions

$$W \times \frac{\ell}{2} - \frac{Wa}{g} \times h - R_f \times \ell = 0 \quad \text{------(ii)}$$
From (i) & (ii)
$$R_f = \frac{W}{2} - \frac{W}{g} \left(\frac{h}{\ell}\right) a$$

$$R_r = \frac{W}{2} + \frac{W}{g} \left(\frac{h}{\ell}\right) a$$
End of Solution
45. If one mole of H₂ gas occupies a rigid container with a capacity of 1000 litres and the temperature is raised from 27°C to 37°C, the change in pressure of the contained gas (round off to two decimal places), assuming ideal gas behaviour, is ______ Pa. (R = 8.314 J/mol.K)
45. Ans: 83.14
Sol: Volume, V = 1000 lit = 1m³
For ideal gas, PV = nRT
Differntiating above expression we get, Vdp = nRdT
Litre p = 1×8.314 × 10
.:.dP = 83.14 Pa
End of Solution

46. Match the following sand mold casting defects with their respective causes.

	Defect		Cause
Р	Blow hole	1.	Poor collapsibility
Q	Misrun	2	Mold erosion
R	Hot tearing	3	Poor permeability
S	Wash	4	Insufficient fluidity

(A) P-3, Q-4, R-1, S-2

(C) P-2, Q-4, R-1, S-3

(B) P-4, Q-3, R-1, S-2 (D) P-3, Q-4, R-2, S-1

ACE Engineering Publications

	ACE Engineering Publications	(48) ME	
46.	Ans: (A)		
Sol:	Blow hole	\Rightarrow Poor Permeability	
	Misrun	\Rightarrow Insufficient Fluidity	
	Hot tearing	\Rightarrow Poor Collapsibility	
	Wash	\Rightarrow Mold erosion	
		End of Solution	
47.	A harmonic fur	nction is analytic if it satisfies the Laplace equation. If $u(x, y) = 2x^2 - 2y^2 + 4xy$	is a
	harmonic funct	ion, then its conjugate harmonic function $v(x, y)$ is	
	$(A) - 4xy + 2y^{2}$	$(B) 4xy - 2x^2 + constant$	
	(C) $4y^2 - 4xy +$	- constant (D) $2x^2 - 2y^2 + xy + constant$	
47.	Ans: (B)	AN AD	
Sol:	Given u(x, y) =	$= 2x^2 - 2y^2 + 4xy$	
	$\frac{\partial u}{\partial x} = 4x + 4y, \frac{\partial u}{\partial x}$	$\frac{\partial u}{\partial y} = -4y + 4x$	
	By C-R equation	ons $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} & \frac{\partial u}{\partial y} = \frac{-\partial v}{\partial x}$	
	$\therefore \frac{\partial \mathbf{v}}{\partial \mathbf{x}} = \frac{-\partial \mathbf{u}}{\partial \mathbf{y}} = \frac{-\partial \mathbf{u}}{\partial \mathbf{y}} = \frac{-\partial \mathbf{u}}{\partial \mathbf{y}} = \frac{-\partial \mathbf{u}}{\partial \mathbf{y}}$	$4y - 4x - \dots (1)$	
	$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 4x + 4x$	-4y(2) Since 1995	
	From (1), V =	$\int (4y - 4x) dx + k(y)$	
	$V = 4xy - 2x^2 +$	- K(y) (4)	
	$\therefore \frac{\partial \mathbf{v}}{\partial \mathbf{y}} = 4\mathbf{x} + \frac{\mathbf{d}}{\mathbf{d}\mathbf{y}}$	-k(y)(3)	
	From (2) & (3)	$\frac{d}{dy}k(y) = 4y$	
	$\int \frac{\mathrm{d}}{\mathrm{d}y} \mathbf{k}(y) \mathrm{d}y$	$dy = \int 4y dy$	
	$\mathbf{K}(\mathbf{y}) = 2\mathbf{y}$	$^{2}+C$	

Energy balance: between points 1 and 5 : $\dot{q} \times \pi d \times L = \dot{m} c_{p} (T_{s} - T_{i})$ $\dot{q} \times \pi \times d \times l = 50 \,\dot{m} \,c_{p}$ $\dot{q} = \frac{50 \,\dot{m} \,c_p}{\pi d}$ Similarly, Energy balance between points 1 and 2 : $\dot{m}c_{p}(T_{2}-T_{1})=\dot{q}\times\pi\times d\times 0.4$ $\dot{\mathrm{m}} \times \mathrm{c}_{\mathrm{p}} \times (\mathrm{T}_{2} - 0) = \frac{50 \, \dot{\mathrm{m}} \, \mathrm{c}_{\mathrm{p}}}{\pi \mathrm{d}} \times \pi \mathrm{d} \times 0.4$ $T_2 = 20^{\circ}C$ Energy balance between points 1 and 3: $\dot{\mathrm{m}}\mathrm{c}_{\mathrm{p}}(\mathrm{T}_{3}-\mathrm{T}_{1})=\dot{\mathrm{q}}\times\pi\times\mathrm{d}\times0.6$ $\dot{\mathrm{m}} \times \mathrm{c}_{\mathrm{p}} \times (\mathrm{T}_{3} - 0) = \frac{50 \, \dot{\mathrm{m}} \, \mathrm{c}_{\mathrm{p}}}{\pi \mathrm{d}} \times \pi \mathrm{d} \times 0.6$ $T_3 = 30^{\circ}C$ Energy balance between points 1 and 4 : $\dot{m}c_{p}(T_{4}-T_{1})=\dot{q}\times\pi\times d\times 0.8$ $\dot{\mathrm{m}} \times \mathrm{c}_{\mathrm{p}} \times (\mathrm{T}_{4} - 0) = \frac{50 \, \dot{\mathrm{m}} \, \mathrm{c}_{\mathrm{p}}}{\pi \mathrm{d}} \times \pi \mathrm{d} \times 0.8$ $T_4 = 40^{\circ}C$ In constant heat flux condition : Nu = 4.36 (constant) $\frac{hd}{k} = 4.36$

50

 $h = 4.36 \frac{k}{d}$ = constant (because k and d are constant)

ACE Engineering Publications

GATE-2019 _Solutions

ACE

ACE Engineering Publications

49. A plane-strain compression (forging) of a block is shown in the figure. The strain in the z-direction is zero. The yield strength (S_y) in uniaxial tension/compression of the material of the block is 300 MPa and it follows the Tresca (maximum shear stress) criterion. Assume that the entire block has started yielding. At a point where $\sigma_x = 40$ MPa (compressive) and $\tau_{xy} = 0$, the stress component σ_y is

ME

49. Ans: (A)

Sol: $\tau_{xy} = 0$

Principal Stress, $\sigma_z = \frac{\sigma_x + \sigma_y}{2}$

 $\therefore \sigma_x = \sigma_{max}, \sigma_y = \sigma_{min}$

 $\therefore \sigma_x - \sigma_y = \sigma_0$

 $-40 - \sigma_{v} = 300$

 $\Rightarrow \sigma_y = -340 MPa = 340 MPa (Compression)$

End of Solution

50. At a critical point in a component, the state of stress is given as $\sigma_{xx} = 100$ MPa, $\sigma_{xy} = 220$ MPa, $\sigma_{xy} = \sigma_{yx} = 80$ MPa and all other stress components are zero. The yield strength of the material is 468 MPa. The factor of safety on the basis of maximum shear stress theory is _____ (round off to one decimal place).

50. Ans: 1.78

Sol:
$$\sigma_x = 100 MPa$$
, $\sigma_{yy} = 220 MPa$, $\tau_{xzy} = 80 MPa$

$$S_{yt} = 468 MPa$$
, F.S. = ? (MSST)

$$\sigma_{l,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \left(\tau_{xy}\right)^2} = \frac{100 + 220}{2} \pm \sqrt{\left(\frac{100 - 220}{2}\right)^2 + 80^2}$$

 $\sigma_1 = 257.08 MPa, \sigma_2 = 62.9 MPa, \sigma_3 = 0$

According to maximum shear stress theory,

$$\tau_{max} = \frac{S_{yt}}{2 \times FS} = Max \left[\left| \frac{\sigma_1 - \sigma_2}{2} \right|, \left| \frac{\sigma_1}{2} \right|, \left| \frac{\sigma_2}{2} \right| \right]$$
$$\tau_{max} = \frac{257.08}{2} = 128.54 MPa$$
$$128.54 = \frac{468}{2 \times FS}$$
$$FS = 1.78$$

ACE Engineering Publications

ACE

51. Consider a prismatic straight beam of length $L = \pi$ m, pinned at the two ends as shown in the figure. The beam has a square cross-section of side p = 6 mm. The Young's modulus E = 200 GPa, and the coefficient of thermal expansion $\alpha = 3 \times 10^{-6}$ K⁻¹. The minimum temperature rise required to cause Euler buckling of the beam is ______ K.

53

Since 1995

51. Ans: 1

Sol: $L = \pi m$

side = 6 mm,

E = 200 GPa,

 $\alpha = 3 \times 10^{-6} \, \text{K}$

Thermal thrust due to restricted expansion,

$$\mathbf{P} = (\sigma_{\rm th})\mathbf{A} = (\mathbf{E} \ \boldsymbol{\alpha} \ \mathbf{t}) \ \mathbf{A}$$

Euler buckling load, $P_e = \frac{\pi^2 E I_{\min}}{L_e^2}$

For hinged ends, $L_c = L$

$$\therefore Pe = \frac{\pi^2 E \frac{a^2}{12}}{L^2}$$

Condition for buckling, $P = P_e$

$$(E\alpha t)A = \frac{\pi^2 E}{L^2} \frac{a^4}{12}$$
$$(\alpha t)a^2 = \frac{\pi^2 a^4}{12L^2}$$
$$t = \frac{1}{\alpha} \times \frac{\pi^2 a^2}{12L^2}$$
$$= \frac{1}{3 \times 10^{-6}} \times \frac{\pi^2 \times 6^2}{12(\pi \times 1000)^2}$$
$$t = 1^\circ K$$

ACE Engineering Publications

Р

52. The rotor of a turbojet engine of an aircraft has a mass 180 kg and polar moment of inertia 10 kg.m² about the rotor axis. The rotor rotates at a constant speed of 1100 rad/s in the clockwise direction when viewed from the front of the aircraft. The aircraft while flying at a speed of 800 km per hour takes a turn with a radius of 1.5 km to the left. The gyroscopic moment exerted by the rotor on the aircraft structure and the direction of motion of the nose when the aircraft turns, are

54

- (A) 162.9 N-m and the nose goes up
- (B) 1629.6 N-m and nose goes up
- (C) 162.9 N and the nose goes down
- (D) 1629.6 N-m and the nose goes down
- 52. Ans: (D)

Sol: mass of rotor = 180 kg

- $I = 10 \text{ kg-m}^2$
- $\omega_s = 1100 \text{ rad/s}$
- v = 800 kmph
- R = 1.5 km

Spin	+x	$+\hat{i}$
Precession	+y	+ĵ
Gyroscopic Reaction	Stare 19	$+\hat{k}$

 $I = I\omega_{s}\omega_{p} = 1629.62$ N-m

Nose goes down

End of Solution

53. Five jobs (J1, J2, J3, J4 and J5) need to be processed in a factory. Each job can be assigned to any of the five different machines (M1, M2, M3, M4 and M5). The time durations taken (in minutes) by the machines for each of the jobs, are given in the table. However, each job is assigned to a specific machine in such a way that the total processing time is minimum. The total processing time is ______ minutes.

ACE Engineering Publications

GATE-2019_Solutions

ACE Engineering Publications

	M1	M2	M3	M4	M5
J1	40	30	50	50	58
J2	26	38	60	26	38
J3	40	34	28	24	30
J4	28	40	40	32	48
J5	28	32	38	22	44

55

End of Solution

53. Ans: 146

Sol: Assignment model:

	M1	M2	M3	M4	M5	Row min
J1_	40	30	50	50	58	30
J2	26	38	60	26	38	26
J3	40	34	28	24	30	24
J4	28	40	40	32	48	28
J5	28	32	38	22	44	22

	10	0	20	20	28
Sir	02	12	34	0	12
	16	10	4	0	6
A	0	12	12	4	20
	6	10	16	0	22
Column min	0	0	4	0	6

 10	0	16	20	22	
×	12	30	- X	6	
 16	10	0	X	····)X	
0	12	8	4	14	
6	10	12	0	16	

16	0	16	26	22
X	6	24	X	0
22	10	0	6	×
0	6	2	4	8
6	4	6	0	10

ACE Engineering Publications

GATE-2019 _Solutions

ACE Engineering Publications

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER	COURSE	ВАТСН ТҮРЕ	DATE
LUCKNOW	GATE+PSUs - 2020	Regular Batch	Mid - May 2019
PATNA	GATE+PSUs - 2020	Weekend Batch	16 th Feb 2019
VIJAYAWADA	GATE+PSUs - 2020 & 21	Weekend Batch	10 th , 24 th Feb 2019
VIJAYAWADA	GATE+PSUs - 2020	Summer + Weekend	6 th , 15 th May 2019
VIJAYAWADA	GATE+PSUs - 2020	Regular Batch	8 th , 22 nd June 2019
KOLKATA	GATE+PSUs - 2020&21	Weekend Batch	16 th Feb 2019
KOLKATA	GATE+PSUs - 2020	Regular Batch	8 th June 2019
KOLKATA	ESE+GATE+PSUs - 2021	Evening & Weekend	16 th Feb 2019
AHMEDABAD	GATE+PSUs - 2020	Regular Batch	02nd Week of June 2019

GENCO TRANSCO DISCOMS ELECTRICAL ENGINEERING

Regular Batch : 10th Feb 2019

@ KUKATPALLY (HYDERABAD)