

Hyderabad | Delhi | Ahmedabad | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi | Kukatpally | Kolkata

GATE – 2019 Questions with Detailed Solutions

INSTRUMENTATION ENGINEERING

ACE Engineering Academy has taken utmost care in preparing the **GATE-2019** Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to GATE- 2019 Solutions are to be sent to the following email address hyderabad@aceenggacademy.com | Contact Us:040-23234418,19,20

	ACE Engineering Academy	:3:	GATE-2019 EXAM PAPER				
03.	Ans: (c)						
Sol:	As no two odd or even num	bers are next to each other	and second number from left is exactly				
	half of the left most number,	the only possibility is					
	Left most <u>10</u> <u>5</u>						
	Now, middle number is twice	Now, middle number is twice the right most number, thus					
	Left most <u>10</u> <u>5</u> <u>4</u>	2_ Right most					
	Therefore, 7 must be the 2^{nd}	number from the right					
	Left most <u>10 5 4</u>	7_2_Right most					
		End of Solution					
04.	The radius as well as the hei	ght of a circular cone increa	ases by 10%. The percentage increase in				
	its volume is		70.				
	(a) 17.1 (b) 21.	0 (c) 33.1	(d) 72.8				
04.	Ans: (c)						
Sol:	Volume of cone = $\frac{1}{3}\pi r^2 h$						
	As per question, radius and height both increase by 10%						
	We know that, change in volume = Successive change of increase in radius and height.						
	\therefore Successive change of 10%, 10% and 10% = successive of 21% and 10% = 33.1%						
	Thus, change in volume $= 33$	3.1%					
0.5	The fishermon		d their lives were rewarded by the				
05.	aovernment	_ the mood victims owe	a men nves, were rewarded by me				
	(a) whom (b) to y	which (c) to whom	(d) that				
05.	Ans: (c)						
Sol:	The fishermen, to whom the	flood victims owed their liv	es, were rewarded by the government.				
	Objective case of who.						
		End of Solution					
06.	Two trains started at 7AM fr	om the same point. The first	t train travelled north at a speed of 80k/h				
	and the second train travelled	d south at a speed of 100km	n/h. The time at which they were 540km				
	apart is AM.						
	(a) 9 (b) 10	(c) 11	(d) 11.30				
ACE Er	Ingineering Academy	al Pune Bhubaneswar Lucknow Patna Bengaluru	u Chennai Vijayawada Vizag Tirupati Kukatpally Kolkata Ahmedabad				

	Engineering Academy	:4:	Instrumentation Engineering	
06.	Ans: (b)			
Sol:	Relative speed of both trains 8	30 + 100 = 180 km/hr		
	Initially they are separated by	distance = 540 km		
	\therefore Time taken to meet = $\frac{540}{180}$ =	= 3hrs		
	Thus, they meet 3hrs after 7A	M i.e., 10AM.		
		— End of Solution —		
07.	The nomenclature of Hindus	tani music has changed	over the centuries. Since the medieva	
	period dhrupad styles were ide	entified as baanis. Terms	like gayaki and baaj were used to refer to	
	vocal and instrumental styles,	respectively. With the in	nstitutionalization of music education the	
	term gharana became accepta	ble. Gharana originally	referred to hereditary musicians from a	
	particular lineage, including disciples and grand disciples.			
	Which one of the following pa	irings is NOT correct?	On .	
	(a) dhrupad, baani (b) ga	yaki, vocal (c) baaj,	institution (d) gharana, lineage	
07.	Ans: (c)			
Sol:	As per the data given			
	\rightarrow "dhrupad" is associated wit	th "baani"		
	\rightarrow "gayaki" is associated with	"vocal"		
	\rightarrow "baaj" is associated with "in	nstrumental"		
	\rightarrow "gharana" is associated wit	h "lineage"		
	Thus, baaj, institution is not co	Since 1995		
	Hence (c) is correct.			
		End of Solution -		
08.	"I read somewhere that in anc	ient times the prestige of	a kingdom upon the number of taxes tha	
	it was able to levy on its peop	ole. It was very much like	e the prestige of a head-hunter in his own	
	community."			
	Based on the paragraph above, the prestige of a head-hunter depended upon			
	(a) the prestige of the kingdom	h (b) the pres	stige of the heads	
	(c) the number of taxes he cou	ld levy (d) the num	nber of heads he could gather	
08.	Ans: (d)			
Sol:	Head-hunter refers to the num	ber of heads he could gath	her.	

RRB (JE)-2019 Online Test Series

Common for all Streams No. of Tests : 20 Starts from 25th February 2019

STAGE - II

CE | ME | EC | EE No. of Tests : 20 Starts from 6th May 2019

© 040 - 48539866 / 040 - 40136222

🖄 testseries@aceenggacademy.com

ACE Launches

For **B.Tech – CSE Students**

Placement Training

In **Level – 1 Companies** Short Term & Long Term Batches

	ACE Engineering Academy	:6:	Instrumentation Engineering		
09.	In a country of 1400 million	population, 70% own mobi	le phones. Among the mobile phone		
	owners, only 294 million account	ess the internet. Among the	ese users, only half buy goods from		
	e-commerce portals. What is th	e percentage of these buyers	in the country?		
	(a) 10.50 (b) 14.70	(c) 15.00	(d) 50.00		
<mark>09.</mark> Sol:	Ans: (a) Population: 1400 million				
	Population with mobile phones	$=\frac{70}{100}\times 1400 = 980$ million			
	Population with mobile phones Population with mobile phones	who access internet = 294 m who access internet and but	nillion (given) uy goods from e-commerce portals =		
	$\frac{50}{100} \times 294 = 147 \text{ million}$	CINEERING			
	Percentage of buyers in cour	$htry = \frac{147}{1400} \times 100 = 10.5\%$			
	र र	— End of Solution ——	2		
10.	Since the last one year, after a	125 basis point reduction	in repo rate by the Reserve Bank of		
	India, banking institutions have	e been making a demand to	reduce interest rates on small saving		
	schemes. Finally, the governm	ient announced yesterday a	reduction in interest rates on small		
	schemes to bring them on par w	ith fixed deposit interest rate	es.		
	Which of the following stateme	nts can be inferred from the	given passage?		
	(a) Whenever the Reserve Ban	k of India reduces the report	rate, the interest rates on small saving		
	schemes are also reduced.	Since 1995			
	(b) Interest rates on small saving schemes are always maintained on par with fixed deposit interest rates.				
	(c) The government sometime takes into consideration the demands of banking institutions				
	before reducing the interest rates on small saving schemes.				
	(d) A reduction in interest rates on small saving schemes follow only after a reduction in repo by				
	the Reserve Bank of India.				
10.	Ans: (d)				
Sol:	The word 'some times' is not po	ossible as you find indication	ns like 'since the last one year' and the		
	word 'finally' means almost con	ming to the conclusion. In a	ddition to that the government comes		
	in after RBI reduces repo rate.				

GATE-2019 EXAM PAPER

01. The circuit shown in the figure below uses ideal positive edge-triggered synchronous j-K flip flops with outputs X and Y. If the initial state of the outputs is X = 0and Y = 0 just before the arrival of the first clock pulse, the state of the output just before the arrival of the second clock pulse is

(c) $2\sqrt{2}$: 1

🕅 Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata | Ahmedabad

(d) 4:1

Figure (b)

(b) 2:1

(a) $\sqrt{2}$: 1

ACE Engineering Academy

ACE Engineering Academy

:7:

:8:

ACE Engineering Academy

	ACE Engineering Academy		:11:	GATE-2019 EXAM PAPER		
05.	A signal $\cos(2\pi f_m t)$ r (DSBWC) scheme to The modulation index is	nodulates a to yield s	a carrier $\cos(2\pi f_c t)$ a modulated signa . (Answer should be	using the double-sideband-with-carrier al $\cos(2\pi f_c t) + 0.3\cos(2\pi f_m t)\cos(2\pi f_c t)$. rounded off to one decimal place)		
05.	Ans: 0.3					
Sol:	Given modulated signal	l				
	$s(t) = \cos(2\pi f_c t) + 0.3\cos(2\pi f_m t)\cos(2\pi f_c t) = \cos(2\pi f_c t)[1 + 0.3\cos(2\pi f_m t)]$					
	$s(t) = cos(2\pi f_c t)[1 + 0.3cos(2\pi f_m t)]$					
	$s_{Am}(t) = A_c \left[1 + \mu \cos(2t)\right]$	$\pi f_m t$] cos(2	$\pi f_c t$			
	$\mu = 0.3$					
			End of Solution			
06.	If each of the values of factor of the circuit wou	f inductanc 1ld	e and resistance of a	series LCR circuit are doubled, the Q-		
	(a) reduce by a factor $$	$\frac{1}{2\sqrt{2}}$	(b) reduce by a fact	or 2		
	(c) increase by a factor	$\sqrt{2}$	(d) increase by a fac	etor 2		
06.	Ans: (b)					
Sol:	$Q_s = \frac{1}{R}\sqrt{\frac{L}{C}}$	\leq				
	Each is doubled					
	$Q_{s} = \frac{1}{2R} \sqrt{\frac{2L}{2C}} = \frac{1}{2} \left[\frac{1}{R} \sqrt{\frac{2L}{2C}} \right]$	$\left[\frac{L}{C}\right]$	Since 1995			
	So, Q-factor reduce by	factor '2'				
07	The input v[n] and out	out v[n] of	a discrete time system	are related as $y[n] = ay[n - 1] + y[n]$		
07.	The applitude on α for which the system is Pounded Input Pounded Output (PIPO) stable is					
	$(a) \alpha < 1 $	which the s ₁	$(a) \alpha > 1$	(d) $ \alpha < 3/2$		
07	$(a) \alpha < 1 \qquad (a)$	$(0) \alpha - 1$	$(\mathbf{C}) \mathbf{u} \geq 1$	(d) $ \alpha < 5/2$		
V7. Sol·	Alls. (a) BIBO stable					
501.	$\therefore \mathbf{y}(\mathbf{n}) = \alpha \mathbf{y}(\mathbf{n} - 1) + \mathbf{y}(\mathbf{n})$	n)				
	$ \alpha > 1$	<i>,</i>				
	U 1		End of Solution —			
ACE En	ngineering Academy	elhi Bhopal Pune B	hubaneswar Lucknow Patna Bengaluru	Chennai Vijayawada Vizag Tirupati Kukatpally Kolkata Ahmedabad		

	ACE Engineering Academy	: 12 :	Instrumentation Engineering
08.	In a single-mode optical fib	per, the zero-dispersion wavel	length refers to the wavelength at which
	(a) material dispersion is ze	ro.	
	(b) waveguide dispersion is	zero.	
	(c) sum of material dispersion	on and waveguide dispersion	is zero.
	(d) material dispersion and	waveguide dispersion are sim	ultaneously zero.
08.	Ans: (c)		
Sol:	Zero dispersion wavelength	n or zero dispersion point the	measured wavelength in a optical fiber
	where material dispersion a	nd wavelength dispersion can	cel each other.
09.	The resistance of a resist	for is measured using a vo	ltmeter and an ammeter. The voltage
	measurements have a me	an value of 1V and stand	ard deviation of 0.12V while current
	measurements have a mean	value of 1mA with standard	deviation of 0.05mA. Assuming that the
	errors in voltage and curr	rent measurements are indep	pendent, the standard deviation of the
	calculated resistance value i	isΩ.	
09.	Ans: 0.13		
Sol:	$d_1 = 0.12V, d_2 = 0.05mA$		
	$R = \sqrt{d_1^2 + d_2^2} = \sqrt{(0.12)^2 + (0.12)^2}$	$\overline{(0.05)^2} = \sqrt{0.0144 + 0.0025} =$	$=\sqrt{0.0169}=0.13$
		End of Solution	
10.	The figure below shows that	t i th full-adder block of a bina	ry adder circuit. C _i is the input carry and
	C_{i+1} is the output carry of the	e circuit. Assuming that each	logic gate has a delay of 2 nanosecond,
	with no additional time del	ay due to the interconnecting	wires. If the inputs A_i , B_i are available
	and stable throughout the c	arry propagation, the maximu	Im time taken for an input C_i to produce
	a steady-state output C_{i+1} is	nanosecond.	Δ.
	S _i		$-B_i$
	C _{i+1}		
10	Ans: A		– C _i
Sol.	A and B inputs are available	e at $t = 0$ and state throughout	nrocess
501.	The max time taken for inn	$C_{\rm at} = 0$ and state unoughout	$s = t_{ADD} + t_{OD} = 2 + 2 = 4$
ACEE	ngineering Academy	onal Prine Bhuhaneswar Lucknow Patria Benerihum	$S = \iota_{AND} + \iota_{OR} - 2 + 2 - 4$

	ACE Engineering Academy	: 13 :		GATE-2019 EXAM PAPER
11.	A pitot-static tube is used to	estimate the velo	ocity of an incompre	ssible fluid of density 1kg/m ³ .
	If the pressure difference me	asured by the tub	e is 200N/m ² , the vel	ocity of the fluid assuming the
	pitot-tube coefficient to be 1.	0, is m/s		
11.	Ans: 20m/sec			
Sol:	$S_{fluid} = 1 kg/m^3$			
	$\Delta p = 200 \text{N/m}^2$			
	$V_{f} = ?$			
	$C_{V} = 1.0$			
	$V_{\rm f} = C_{\rm v} \sqrt{2 \frac{\Delta p}{\rho}} = 1 \sqrt{\frac{2 \times 200}{1}}$	= 20m/s		
		End of So	olution A	
12.	$\vec{a}, \vec{b}, \vec{c}$ are three orthogonal v	ectors, Given tha	at $\vec{a} = \hat{i} + 2\hat{j} + 5\hat{k}$ and	$\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$, the vector \vec{c} is
	parallel to	•	3	
	(a) $\hat{i} + 2\hat{j} + 3\hat{k}$ (b) $2\hat{i} + \hat{j}$	(c) $2\hat{i} - \hat{j}$	$(d) 4\hat{k}$
12.	Ans: (c)			
Sol:	Given $\vec{a} = i + 2j + 5k$		\rightarrow	
	$\vec{b} = i + 2j - k$			
	The vectors $\vec{a}, \vec{b}, \vec{c}$ are orthog	gonal		
	$\Rightarrow \vec{a}.\vec{b} = 0 \ \vec{b}.\vec{c} = 0 \ , \ \vec{a}.\vec{c} = 0$) Since	1995	
	Option (c) satisfies			
	$\therefore \vec{c} = 2i - j$			
	Clearly $\vec{a} \cdot \vec{c} = (i + 2j + 5k)$.	(2i - j) = 2 - 2 =	0	
	$\vec{b}.\vec{c} = (i+2j-k).$ (2i - j) = 2 - 2 = 0)	
		— End of Se	olution ————	
13.	Consider a circuit comprisin	g only resistors	with constant resistant	nce and ideal independent DC
	voltage sources. If all the res	sistances are scale	ed down by a factor	10, and all source voltages are
	scaled up by a factor 10, the	power dissipated	in the circuit scales u	up by a factor of

Engineering Academy :15: GATE-2019 EXAM PAPER 15. Ans: (d) CMRR for an ideal instrumentation Amplifier is infinite, CMRR = $\frac{A_d}{A}$ Sol: $CMRR_{dB} = 20\log \left| \frac{A_d}{A_{cM}} \right|$ Option (a) cannot be the answer because of negative dB Option (b) is also wrong as the $A_d \neq A_{CM}$ Option (c) is also wrong as $A_d \neq 1.5 A_{CM}$ Option (d) could be the answer. **End of Solution** The vector function \vec{A} is given by $\vec{A} = \vec{\nabla}u$, where u(x, y) is a scalar function. Then $|\vec{\nabla} \times \vec{A}|$ is 16. (a) - 1(b) 0 (c) 1 (d)∞ 16. Ans: (b) Given $\vec{A} = \nabla u$ Sol: We know that $\operatorname{curl}\left(\overrightarrow{A}\right) = \operatorname{curl}\left(\nabla u\right) = 0$. For any scalar function **End of Solution** 17. In a cascade control system, the loop transfer function of the inner loop may be assumed to have a single time-constant τ_1 . Similarly, the closed loop transfer function of the outer loop may be assumed to have a single time-constant τ_2 . The desired relationship between τ_1 and τ_2 in a well-designed control system is (b) τ_1 is equal to τ_2 (a) τ_1 is much less than τ_2 (d) τ_1 is independent of τ_2 (c) τ_1 is much greater than τ_2 17. Ans: (a) Sol: In a cascade (or) master-slave control system, the slave loop (inner loop) must be faster than the master loop (outer loop) For proper control, slave loop should be atleast 3 times faster than the master loop (outer loop) $\tau_{\text{outer Loop}} \ge 3\tau_{\text{inner Loop}}$ $\tau_2 \ge 3\tau_1$ Hence we can say inner loop time constant is much lower than the outer loop time constant ACE Engineering Academy Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata | Ahmedabad

ESE – 2019 STAGE-II (MAINS)

ESE - 2019 Mains Test Series (Offline/Online)

Test Series will be conducted at all our centres

Starts from **30th March 2019**.

New Batches @

HYDERABAD		
17th Feb 2019	18	}

DELHI 18th Feb 2019

PUNE				
16th	Feb	2019		

Contraction of the second seco

APPSC-AEE (Prelims) --Online Test Series

No. of Tests : 18

Topic Wise Tests : 15 | Mock Tests - 3 Civil | Mechanical | Electrical

Available Now

All Tests will be available till 18th February 2019

20. 2 k ((20. 2 Sol: 0	A box has 8 red balls and 8 box without replacement. The drawn is green is (a) 4/15 (c) 1/2 Ans: (a) Given that Box contains 8 Re Two Balls are drawn successi Probablity of first ball is red a $= \frac{8}{16} \times \frac{8}{15} = \frac{4}{15}$ Thermocouple measure tempore	green balls. Two balls are c he probability that the first (b) 7/16 (d) 8/15 ad Balls and 8 Green Balls ively without replacement. and second ball is green ERING End of Solution	Irawn randomly in succession from the ball drawn is red and the second ball
t (((20. 4 Sol: 0 1 I	box without replacement. The drawn is green is (a) 4/15 (c) 1/2 Ans: (a) Given that Box contains 8 Re Two Balls are drawn successi Probablity of first ball is red a $= \frac{8}{16} \times \frac{8}{15} = \frac{4}{15}$ Thermocouple measure tempore	the probability that the first (b) 7/16 (d) 8/15 and Balls and 8 Green Balls ively without replacement. and second ball is green ERING End of Solution	ball drawn is red and the second ball
((20. 4 Sol: (1 I	drawn is green is (a) 4/15 (c) 1/2 Ans: (a) Given that Box contains 8 Re Two Balls are drawn successi Probablity of first ball is red a $= \frac{8}{16} \times \frac{8}{15} = \frac{4}{15}$ Thermocouple measure tempo	(b) 7/16 (d) 8/15 ed Balls and 8 Green Balls ively without replacement. and second ball is green	
((20. 2 Sol: (1 I	(a) 4/15 (c) 1/2 Ans: (a) Given that Box contains 8 Re Two Balls are drawn successi Probablity of first ball is red a $= \frac{8}{16} \times \frac{8}{15} = \frac{4}{15}$ Thermocouple measure tempore	(b) 7/16 (d) 8/15 ed Balls and 8 Green Balls ively without replacement. and second ball is green ERING End of Solution	
(20. 2 Sol: (1 I	(c) 1/2 Ans: (a) Given that Box contains 8 Re Two Balls are drawn successi Probablity of first ball is red a $= \frac{8}{16} \times \frac{8}{15} = \frac{4}{15}$ Thermocouple measure tempore	(d) 8/15 ed Balls and 8 Green Balls ively without replacement. and second ball is green ERING End of Solution	
20. / Sol: (] I	Ans: (a) Given that Box contains 8 Re Two Balls are drawn successi Probablity of first ball is red a $= \frac{8}{16} \times \frac{8}{15} = \frac{4}{15}$ Thermocouple measure tempe	ed Balls and 8 Green Balls ively without replacement. and second ball is green ERING End of Solution	
Sol: (1 I	Given that Box contains 8 Re Two Balls are drawn successi Probablity of first ball is red a $= \frac{8}{16} \times \frac{8}{15} = \frac{4}{15}$ Thermocouple measure tempe	ed Balls and 8 Green Balls ively without replacement. and second ball is green ERING End of Solution	
I	Two Balls are drawn successi Probablity of first ball is red a $= \frac{8}{16} \times \frac{8}{15} = \frac{4}{15}$ Thermocouple measure tempe	ively without replacement. and second ball is green ERING End of Solution	
I	Probablity of first ball is red a $= \frac{8}{16} \times \frac{8}{15} = \frac{4}{15}$ Thermocouple measure tempe	and second ball is green	
	$= \frac{8}{16} \times \frac{8}{15} = \frac{4}{15}$ Thermocouple measure tempe	End of Solution	
	16 ¹⁵ 15 Thermocouple measure tempe	End of Solution	
	Thermocouple measure tempe	End of Solution	
	Thermocouple measure tempe		30.
21. 1		erature based on	TZ I
((a) Photoelectric effect		
((b) Seebeck effect		
((c) Hall effect		
((d) Thermal expansion		
21. <i>A</i>	Ans: (b)		
Sol: 1	Thermocouple is a active tran	sducer works on the princip	le of seebeck effect
		Since 1995	
22. <i>I</i>	An 8-bit weighted resistor	digital-to-analog converter	(DAC) has the smallest resistance of
4	500 Ω. The largest resistance	has a valuekΩ.	
22. <i>I</i>	Ans: 64		
Sol: I	In a N-Bit Binary weighted re	esistor	
I	Digital to Analog converter,		
t	the largest value of resistance	$e = 2^{N-1}R$	
		$=2^{(8-1)},(500)$	
		$=128 \times 0.5$	
		$= 64 k\Omega$	

HEARTY CONGRATULATIONS TO OUR ESE 2018 RANKERS

AIR

AIR

AIR

AIR

AIR

AIR

RAMESH KAMULLA

AMIT KUMAR

TEKCHAND DESHWAL

SHANAVAS CP E&T

AIR

AIR

AIR

MAYUR PATIL ME

RISHABH DUTT CE

AIR

AIR

AIR

AIR

SOUVIK DEB ROY

EE

JAPJIT SINGH E&T

VITTHAL PANDEY ME

ANKIT GARG

CHIRAG SINGLA ME

RAVI TEJA MANNE

EE

RATIPALLI NAGESWAR

AIR

VIJAYA NANDAN CE

AIR

ROHIT BANSAL

TOP 10 TOP 10 TOP 10 TOP 10 TOTAL SELECTIONS -С M E & T 34 in Top 10 E E -E 5

and many more ...

SURYASH GAUTAM E&T

:22:

ACE Engineering Academy Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata | Ahmedabad

:24:

To WIN The RACE.. Join ACE...

SUMMER SHORT TERM BATCHES

GATE+PSUs - 2020

HYDERABAD

29th April | 06th May | 11th May 18th May | 26th May | 02nd June 2019

DELHI — 11th May | 23rd May 2019

ADMISSIONS ARE OPEN

EARLY BIRD OFFER : Register on or Before 31st March 2019 : 3000/- Off

Start Early.. Gain Surely...

	ACE Engineering Academy	: 26	:	Instrumentation Engineering
29.	A piezoelectric transducer	with sensitivity of	of 30 mV/kPa is in	tended to be used in the range of
	0kPa to 100kPa. The readout	ut circuit has a p	eak noise amplitud	e of 0.3mV and measured signals
	over the full pressure range	are encoded wi	th 10 bits. The sma	llest pressure that produce a non-
	zero output, in units of Pa, i	s approximately.		
	(a) 10 (b) 10	00	(c) 240	(d) 300
29.	Ans: (b)			
Sol:	Resolution of encoder = $\frac{V}{2^n}$	<u>ref</u> 		
	1 kPa \Rightarrow 30 mV	1		
	100kPa ⇒3000 mV = 3V			
	Noise of readout circuit $= 3$	V+0.3mVEEF	RINGA	
	$V_{ref} = 3.0003 V$	ENON		
	Resolution = $\frac{3.0003}{2^{10}-1} = \frac{3.00}{102}$	$\frac{03}{3} = 0.00293 \text{ V}$, in	
	Smallest readout by system	= 0.00293 V		
	1 kPa $\rightarrow 30$ mV			
	0.00293 V $\times \frac{1$ kPa}{30mV} \leftarrow 0.002	.93V		
	Resolution from i/p side = 9	07.666Pa ≈100P	a	
20	A14	End of	Solution	MOREET, 1-1, 11, 1 M1, M2, M2
30.	A voltage amplifier is cons	structed using en	nnancement mode	MOSFETS labelled M1, M2, M3
	and M4 in the figure below	7. M1. M2 and I	M4 are n-channel M	AOSEET's and M3 is a p-channel

0. A voltage amplifier is constructed using enhancement mode MOSFETs labelled M1, M2, M3 and M4 in the figure below. M1, M2 and M4 are n-channel MOSFETs and M3 is a p-channel MOSFET. All MOSFETs operate in saturation mode and channel length modulation can be ignored. The low frequency, small signal input and output voltage are V_{in} and V_{out} respectively and the dc power supply voltage is V_{DD} . All n-channel MOSFETs have identical transconductance g_{mn} while the p-channel MOSFET has transconductance g_{mp} . The expressions for the low frequency small signal voltage gain V_{out}/V_{in} is

:30:

$$A = \frac{3 \times \frac{1}{3}}{3} = \frac{1}{3}$$

$$B = \frac{3(-3+\frac{1}{3})}{3} = \frac{-1(-9+1)}{3} = \frac{-1(-8)}{3} = \frac{8}{3}$$

$$y(t) = \frac{1}{3} + \frac{8}{3}e^{-3t}$$

$$y(t) = \frac{1}{3} + \frac{8}{3}e^{-3} = 0.466$$
End of Solution
33. $X = X_1X_0$ and $Y = Y_1Y_0$ are 2-bit binary numbers. The Boolean function S that satisfies the condition "If $X > Y$, then S = 1", in its minimized form, is
(a) $X_1Y_1 + X_0Y_0$
(b) $X_1\overline{Y}_1 + X_0\overline{Y}_0\overline{Y}_1 + X_0\overline{Y}_0\overline{X}_1$
(c) $X_1\overline{Y}_1X_0\overline{Y}_0$
(d) $X_1Y_1 + X_0\overline{Y}_0Y_1 + X_0\overline{Y}_0\overline{X}_1$
33. Ans: (b)
Sol: Method:-1
 $X > Y$ if $X_1 > Y_1$ and $X_0 > Y_0$
 $i.e X > Y$ if $X_1\overline{Y}_1 + (X_1 \odot Y_1) \cdot X_0\overline{Y}_0$
 $= X_1\overline{Y}_1 + [\overline{X}_1\overline{X}_1 + X_1]X_0\overline{Y}_0 = \overline{Y}_1[X_1 + X_0\overline{Y}_0] + X_1Y_1X_0\overline{Y}_0$
 $= X_1\overline{Y}_1 + [\overline{X}_1\overline{X}_1 + X_1Y_1X_0\overline{Y}_0] = \overline{Y}_1[X_1 + X_0\overline{Y}_0] + X_1Y_1X_0\overline{Y}_0$
 $= X_1\overline{Y}_1 + \overline{X}_1X_0\overline{Y}_0 + X_1Y_1X_0\overline{Y}_0 = \overline{X}_1\overline{Y}_1 + \overline{Y}_1X_0\overline{Y}_0 + X_1Y_1X_0\overline{Y}_0$
 $= X_1\overline{Y}_1 + \overline{X}_1X_0\overline{Y}_0 + X_1Y_1\overline{X}_0\overline{Y}_0 = \overline{Y}_1[X_1 + X_0\overline{Y}_0] + X_1Y_1X_0\overline{Y}_0$
 $= X_1\overline{Y}_1 + X_0\overline{Y}_0\overline{Y}_1 + X_0\overline{Y}_0\overline{X}_1$
Method:-2
$$\boxed{\begin{array}{c} \overline{X}_1X_0 + \overline{Y}_1 + \overline{X}_1}{\overline{Y}_1 + \overline{X}_1}\overline{X}_1 + \overline{X}_1\overline{Y}_1\overline{X}_0}{\overline{Y}_1 + \overline{Y}_1} = \overline{X}_1\overline{Y}_1 + \overline{Y}_1X_0\overline{Y}_0 + \overline{X}_1\overline{Y}_0 + \overline{X}_1\overline{Y}_0\overline{Y}_0 + \overline{X}_1\overline{Y}_1\overline{Y}_1 + \overline{X}_1\overline{Y}_1\overline{Y}_0\overline{Y}_1 + \overline{X}_1\overline{Y}_1\overline{Y}_1\overline{Y}_1 + \overline{X}_1\overline{Y}_1\overline{Y}_1\overline{Y}_1 + \overline{X}_1\overline{Y}_1\overline{Y}_1\overline{Y}_1 + \overline{X}_1\overline{Y}_1\overline{Y}_1\overline{Y}_1\overline{Y}_1\overline{Y}_1\overline{Y}_1 + \overline{X}_1\overline{Y}_1\overline{$$

 M_1 and $M_2 \rightarrow$ are in current mirror, since identical M_1 and M_2 and current mirror \Rightarrow I_{4k} = 1mA :. $V_{G4} = 2V$ (:: $6 = I_{4k}(4k) + V_{G4}$). $\Rightarrow I_{D_2} = I_{D_4}$ $\therefore (6 - V_0 - V_{th})^2 = (2 - 0 - V_{th})^2$ $6 - V_0 = 2 \Longrightarrow V_0 = 4V.$ **End of Solution** 36. A complex function f(z) = u(x,y) + Iv(x,y) and its complex conjugate $f^*(z) = u(x,y) - I v(x,y)$ are both analytic in the entire complex plane, where z = x + i y and $i = \sqrt{-1}$. The function f is then given by (a) f(z) = x + i v(b) $f(z) = x^2 - y^2 + i 2xy$ (c) f(z) = constant(d) $f(z) = x^2 + y^2$ 36. Ans: (c) Given f(z) = u(x,y) + i v(x,y) is analytic Sol: And conjugate $f^*(z) = u(x,y) - i v(x,y)$ also analytic in entire complex plane. f(z) is analytic \Rightarrow C R equations holds $\frac{\partial x}{\partial x} = \frac{\partial v}{\partial y}$ ad $\frac{\partial y}{\partial y} = -\frac{\partial v}{\partial x}$ ce 1995 $f^*(z)$ is analytic $\Rightarrow \frac{\partial x}{\partial x} = -\frac{\partial v}{\partial y}$ ad $\frac{\partial y}{\partial y} = -\frac{\partial v}{2x}$ hence $\Rightarrow \frac{\partial v}{\partial v} = -\frac{\partial v}{\partial v}$ and $\frac{\partial v}{\partial x} = -\frac{\partial v}{\partial x}$ clearly $\frac{\partial v}{\partial v} = 0$ and $\frac{\partial v}{\partial x} = 0$ \therefore v = constant \Rightarrow u = constant \therefore f(z) = u + i v = constant ACE Engineering Academy Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata | Ahmedabad

JR GA TOP RANKERS **M8** E -AKASH CHOUKSEY CE ARNAB ADHIKABY MAMITA KALBA CSIT IAMAN JASWANI SAL L PANDEY (ISIT ALO AJAY KUMAR ROHIT TRIPATHI HIMANSHU SHARMA PRAKASH TIWARI ZAMBRE KAPIL SHREYA ALVA (HSII PAARTH GUPTA (HSI TARUN GUPTA VIKRAM GARG GAUT C TOP 10 TOP 100 C TOP 100 C TOP 10 TOP 100 C TOP 10 AMAN SINGH SNEHA PANDEY SHIS M CSIT D AJAY KUMAR PI VIPIN CHANDR TOP 10 TOP 100 C S I TOP 10 TOP 100 TOP 10 TOP 100 TOP 10 TOP 100 TOP 10 TOP 100 P E 6 69

HEAD OFFICE : HYDERABAD

Sree Sindhi Guru Sangat Sabha Association, # 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001. Address - II : # 204, Rahman Plaza, Abids, Hyderabad - 500001. Contact No: 040-23234418/19/20, 040-24750437 E-Mail : hyderabad@aceenggacademy.com

DELHI

Address I : Plot No. 3, Kh.No. 264, Near Saket Metro Station, Saidulajab, New Delhi-110030. Address II : # 63, FNS House, Beside Oriental Bank of Commerce, Near Hauz Khas Metro Station,Kalu Sarai,New Delhi-110016. Contact No : 9205282121, 9205282123, 7838971777, 9205282120.

BHOPAL

G - 1, Plot no : 207, Zone II, M.P Nagar, M. P - 462013. Contact No: 0755-2554512, 0755-2554612, 0755-4280242

PUNE

302, Vekatesh Villa, Upstairs JANATHA Sahakari Bank, Shivaji Nagar, Pune, Maharashtra - 411005. Contact No : 020- 25535950, 09343499966

BHUBANESWAR

Plot No: 625/A, 3rd Floor, Janpath, Saheed Nagar, Bhubaneswar. Contact No: 0674-2540340, 9861566244, 09379099966

LUCKNOW

A-7, Sector-J, Aliganj, Lucknow, Uttar Pradesh - 226024 Contact No. : 93421 99966, 8081 99 99 66, 0522 4046966

PATNA

1st Floor, N. P. Tower, Kankarbagh, PATNA - 800020. Contact No.: 08252194512, 9308699966, 9212188818

DILSUKH NAGAR

Gaddiannaram,Dilsukhnagar, Hyderabad. Contact No : 040 - 40209345, 040 - 40044451 KUKATPALLY

2nd floor, BSR Bellezza, Opp : JNTUH Campus, KPHB, Kukatpally, Hyderabad- 500072. Contact No: 040-6597 4465, 040-40199966, 93476 99966

BENGALURU

223, G R Arcade, 2nd floor, Malleswaram, Bangalore - 560003. Contact No: 080-23466699,41526699, 09341299966.

CHENNAI

39, North Usman Road, T Nagar, Chennai - 600017. Contact No : 044 - 42123289 , 9343799966

VISHAKAPATNAM

Door No. 48-14-91/6, 3rd Floor, Sri Nagar, Visakhapatnam – 530001. Contact No : 0891-6616001, 08374808999

VIJAYAWADA

Opp Stella College, Near Benz Circle, Vijayawada - 520 008 Contact No. : 0866-2490001, 96760 76001

TIRUPATI

Plot No:10, AIR Bypass Road, Tirupathi – 517502. Contact No : 0877-2244388, 9618155166, 09341499966

KOLKATA

3rd Floor, 369/4, EM Bypass, Avishar Shopping Mall, Kolkata - 700078. Contact No : 8297899966, 8886899966

AHMEDABAD

Shop.No 231, 2nd Floor, Sunrise Mall, Near Mansi Circle, Vasthrapur-Gujarat-380015. Contact No : 079 4890 2228, 9160499966

For Batch Details Visit : www.aceenggacademy.com

 $Y(\omega) = \left(1 + \frac{1}{2}e^{-j\omega}\right)X(\omega)$ \therefore H(ω) = 1 + $\frac{1}{2}e^{-j\omega}$ $Y(\omega) = X(\omega).H(\omega)$ $|\mathbf{Y}(\boldsymbol{\omega})|^2 = |\mathbf{X}(\boldsymbol{\omega})|^2 \cdot |\mathbf{H}(\boldsymbol{\omega})|$ $\therefore |Y(0)|^2 = |X(0)|^2 \cdot |H(0)|^2 = 4\frac{9}{4} = 9$ $H(0) = 1 + \frac{1}{2} = \frac{3}{2}$ $\therefore |Y(0)|^2 = 9$ **End of Solution** 39. The parallel resistance-capacitance bridge shown below has a standard capacitance value of $C_1 = 0.1 \ \mu F$ and a resistance value of $R_3 = 10 \ k\Omega$. The bridge is balanced at a supply frequency of 100 Hz for $R_1 = 375 \text{ k}\Omega$, $R_3 = 10 \text{ k}\Omega$ and $R_4 = 14.7 \text{ k}\Omega$. The value of the dissipation factor $D = 1/(\omega R_p C_p)$ of the parallel combination of C_p and R_p is _____ . (Answer should be rounded off to THREE decimal places) N¹ R_4 39. Ans: 0.042 Sol: $z_1 z_2 = z_2 z_3$ $\left(\mathbf{R}_{1} / \frac{1}{\mathrm{i}\omega \mathbf{C}_{2}}\right) (\mathbf{R}_{4}) = \left(\mathbf{R}_{2} / \frac{1}{\mathrm{i}\omega \mathbf{C}_{2}}\right) (\mathbf{R}_{3})$ $\left(\frac{\mathbf{R}_1}{1+\mathrm{j}\omega\mathbf{C}_1\mathbf{R}_1}\right)(\mathbf{R}_4) = \left(\frac{\mathbf{R}_2}{1+\mathrm{j}\omega\mathbf{C}_2\mathbf{R}_2}\right)(\mathbf{R}_3)$ ACE Engineering Academy Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata | Ahmedabad

: 37 :

 $\frac{\overline{R_{1}R_{4}}}{1+j\omega C_{1}R_{1}} = \frac{R_{2}R_{3}}{1+j\omega C_{2}R_{2}}$ $R_1R_4 + j\omega R_1R_4R_2C_2 = R_2R_3 + j\omega R_1R_2R_3C_1$ $R_1R_4 = R_2R_3$ $R_2 = \frac{R_1 R_4}{R_3} = \frac{375k \times 14.7k}{10k} = 551.25k\Omega$ $R_1R_4R_2C_2 = R_1R_2R_3C_1$ $C_2 = \frac{R_1 R_2 R_3 C_1}{R_1 R_4 R_2} = \frac{R_3 C_1}{R_4} = \frac{0.1 \mu F \times 10k}{14.7k} = 0.068 \mu F$ $D = \frac{1}{2\pi \times 100 \times 551.25 k \times 0.068 \mu F} = 0.04248$ **End of Solution** In the control system shown in the figure below, a reference signal $r(t) = t^2$ is applied at time 40. t = 0. The control system employs a PID controller $C(s) = K_p + K_l/s + K_Ds$ and the plant has a transfer function P(s) = 3/s. If $K_p = 10$, $K_I = 1$ and $K_D = 2$, the steady state value of e is PID P(s) Controller 95 S(c)1Ce (b) 2/3(d) ∞ (a) 0 **40.** Ans: (b) Sol: $K_p + \frac{K_I}{s} + K_D s$ R(s) C(s) $G(s) = \left(10 + \frac{1}{s} + 2s\right)\left(\frac{3}{s}\right)$ $G(s) = \frac{3(2s^2 + 10s + 1)}{s^2}$ $r(t) = t^2$

ACE Engineering Academy Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata | Ahmedabad

:38:

:40:

reconstructed from its samples according to the Nyquist sampling theorem is MHz.

of 10. The meter measures resistance of a device by measuring resistance of a device by measuring a full-range voltage of 2V across the device by passing an appropriate constant current for each range-setting. If a device having a resistance value in the range 8 k Ω to 12k Ω and a maximum power rating of 100µW is to be measure safely with this meter, the choice for range-setting on the meter for best resolution in measurement, in $k\Omega$, is

- (a) 2 (b) 20
- (c) 200 (d) 2000

:47:

If $20k\Omega$ range selected then maximum current flow would be 0.1mA and it is more than current rating of device (0.0912 mA) if resistance of device is 12 k Ω . Hence device would be damaged.

The next best range for measurement is $200k\Omega$ where maximum current rating of range is 0.01 mA which is less than current rating of device and it is safe. The best resolution is possible for lower safe range for given specifications.

End of Solution

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER	COURSE	ВАТСН ТҮРЕ	DATE
HYDERABAD - DSNR	GATE + PSUS – 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - DSNR	ESE + GATE + PSUs - 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - DSNR	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - DSNR	GATE + PSUs - 2020	Morning/Evening Batch	24th February 2019
HYDERABAD - DSNR	ESE – 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019
HYDERABAD - Abids	GATE + PSUS – 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - Abids	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - Abids	ESE + GATE + PSUs - 2020	Morning Batch	24th February 2019
HYDERABAD - Abids	ESE – 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019
HYDERABAD - Abids	GATE + PSUs - 2020	Weekend Batch	24th February 2019
HYDERABAD - Abids	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Morning/Evening Batch	24th February 2019
HYDERABAD - Kukatpally	GATE + PSUS – 2020	Regular Batches	17th May, 1st, 16th June, 1st July 2019
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - Kothapet	ESE + GATE + PSUS – 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - Kothapet	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019
DELHI	ESE+GATE+PSUs - 2020	Weekend Batches	9th Mar 2019
DELHI	ESE+GATE+PSUs - 2020	Regular Evening Batch	18 th Feb 2019
DELHI	ESE+GATE+PSUs - 2020	Regular Day Batch	11 th May 2019
DELHI	ESE+GATE+PSUs - 2020	Spark Batch	11 th May 2019
DELHI	GATE+PSUs - 2020	Short Term Batches	11 th , 23 rd May 2019
BHOPAL	ESE+GATE+PSUs - 2020	Regular Day Batch	01st Week of June 2019
BHUBANESWAR	GATE+PSUs - 2020	Weekend Batch	16 th Feb 2019
BHUBANESWAR	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019
CHENNAI	GATE+PSUs - 2020 & 21	Weekend Batch	16 th Feb 2019
CHENNAI	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019
BANGALORE	GATE+PSUs - 2020 & 21	Weekend Batch	23 rd Feb 2019
BANGALORE	GATE+PSUs - 2020	Regular Batch	17 th June 2019

FOR BATCH DETAILS VISIT : www.aceenggacademy.com

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER	COURSE	ВАТСН ТҮРЕ	DATE
LUCKNOW	GATE+PSUs - 2020	Regular Batch	Mid - May 2019
PATNA	GATE+PSUs - 2020	Weekend Batch	16 th Feb 2019
VIJAYAWADA	GATE+PSUs - 2020 & 21	Weekend Batch	10 th , 24 th Feb 2019
VIJAYAWADA	GATE+PSUs - 2020	Summer + Weekend	6 th , 15 th May 2019
VIJAYAWADA	GATE+PSUs - 2020	Regular Batch	8 th , 22 nd June 2019
KOLKATA	GATE+PSUs - 2020&21	Weekend Batch	16 th Feb 2019
KOLKATA	GATE+PSUs - 2020	Regular Batch	8 th June 2019
KOLKATA	ESE+GATE+PSUs - 2021	Evening & Weekend	16 th Feb 2019
AHMEDABAD	GATE+PSUs - 2020	Regular Batch	02nd Week of June 2019

GENCO TRANSCO DISCOMS ELECTRICAL ENGINEERING

Regular Batch : 10th Feb 2019

@ KUKATPALLY (HYDERABAD)

FOR BATCH DETAILS VISIT : www.aceenggacademy.com