

Hyderabad | Delhi | Ahmedabad | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi | Kukatpally | Kolkata

GATE – 2019 Questions with Detailed Solutions

ELECTRICAL ENGINEERING

ACE Engineering Academy has taken utmost care in preparing the **GATE-2019** Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to GATE- 2019 Solutions are to be sent to the following email address hyderabad@aceenggacademy.com | Contact Us: 040-23234418,19,20

GATE - 2019 Electrical Engineering

Subject wise weightage

S.No.	Name of the Subject	1 Mark	2 Marks	Total
01	Electric Circuits	2	4	10
02	EM Theory	1	2	5
03	Signals and Systems	2	1	3
04	Electrical Machines	3	4	11
05	Power Systems	4	4	12
06	Control Systems	2	3	8
07	Electrical & Electronic Measurements	0	1	2
08	Digital Electronics & Microprocessors	0	2	4
09	Analog Electronics	2	2	6
10	Power Electronics	2	4	10
11	Engineering Mathematics	7	3	13
12	Aptitude	2	4	10
13	English	3	1	5
		Total N	Marks	100

End of Solution

	ACE Engineering Publications	3	Electrical Engineering_GATE_1
03.	The missing number in the given the	ven sequence 343, 1331, 4913 is	5
	(a) 2744 (b) 2197		4096
03.	Ans: (b)		
	343, 1331,, 4913		
	7 ³ , 11 ³ , 13 ³ , 17 ³		
	cubes of prime numbers.		
	343, 1331, 2197, 4913.		
		End of Solution	
04.			the students
	(a) deteriorate (b)	accommodate (c) fill	(d) sit
04.	Ans: (b)	NGING	
		End of Solution	3
. -			
05.	The passengers were angry	the airline staff about the delay	y
	(a) on (c) with	(b) about (d) towards	
	(c) with	(u) towards	
05.	Ans: (c)		
		End of Solution	
0.6		in a Since 1995 and	
06.		nd $Y = \{2, 3, 4\}$, we construct a set Z of a principal set X. The product of A	
	values in the set Z is	ninators belong to set Y. The product of o	elements having minimum and maximum
	(a) $\frac{1}{12}$	(b) $\frac{1}{8}$	
	(c) $\frac{1}{6}$	(d) $\frac{3}{8}$	
	0	0	
06.	Ans: (d)		
Sol:		2 3 3 3 3 3	
	Set $z = \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{2}, \frac{2}{3}, \frac{2}{4}\right\}$	$\left\{\frac{2}{4}, \frac{3}{2}, \frac{3}{3}, \frac{3}{4}\right\}$ max = $\frac{3}{2}$	
	$\min = \frac{1}{4}$		
	$\max \times \min = \frac{3}{2} \times \frac{1}{4} = \frac{3}{8}$		
	2 7 0	End of Solution	

22	Engineering Publications	4	Electrical Engineering_GATE_1
)7.	Engineering PublicationsConsider five people- Mitra, Ganga, Lakshmi is taller than Sana. Mita is to 1. Lakshmi is taller than Rekha 2. Rekha is shorter than Mita 3. Rekha is taller than Sana 4. Sana is shorter than Ganga (a) 1 only (b) 1 and 2 (c) 3 only (d) 2 and 4	Rekha, Lakshmi and Sana, Ganga taller than Ganga. Which of the fol	is taller than both Rekha and Lakshmi
07.	Ans: (d)		
Sol:	Ganga > Rekha, Lakshmi Lakshmi > Sana Mita > Ganga Mita > Ganga > Rekha, Lakshmi Lakshmi > Sana	ENGINEERING ACAD	
	G.	End of Colution	
		End of Solution	
08.		ion is 80 and the percentage of a gi (b) 80.50	ination is 4 : 3. The total percentage or rls who passed is 90. The percentage o
	(c) 55.50	(d) 72.50	
08.	(c) 55.50 Ans: (d)		
		(d) 72.50 Since 1995 4:3 $\frac{4(x) + 3(90)}{(4+3)} = 80$ 4x + 270 = 560 4x = 290 x = 72.5	
	Ans: (d)	Since 1995 B: G x% 90% 4:3 $\frac{4(x) + 3(90)}{(4+3)} = 80$ 4x + 270 = 560 4x = 290 x = 72.5	
	Ans: (d)	Since 1995 B: G x% 90% 4:3 $\frac{4(x) + 3(90)}{(4+3)} = 80$ 4x + 270 = 560	
	Ans: (d)	Since 1995 B: G x% 90% 4:3 $\frac{4(x) + 3(90)}{(4+3)} = 80$ 4x + 270 = 560 4x = 290 x = 72.5 End of Solution	are even?

Engineering Publications

5

09. Ans: (a)

Sol: Numbers should contain digits 0, 2, 4, 6, 8 only $4 \times 5 \times 5 = 100$

End of Solution

10. An award-winning study by a group of researchers suggests that men are as prone to buying on impulse as women but women feel more guilty about shopping.

Which one of the following statements can be inferred from the given text?

- (a) Some men and women indulge in buying on impulse
- (b) All men and women indulge in buying on impulse
- (c) Few men and women indulge in buying on impulse
- (d) Many men and women indulge in buying on impulse

10. Ans: (b)

Sol: Para suggest that men and women are the same in buying habit.

End of Solution

Section : Electrical Engineering

Since 1

01. Which one of the following functions is analytic in the region $|z| \le 1$?

(b) $\frac{z^2-1}{z-0.5}$

(a)
$$\frac{z^2 - 1}{z + 2}$$

01. Ans (a)

Sol: Given the region $|z| \le 1$

$$f(z) = \frac{z^2 - 1}{z + 2}$$
 is not analytic at $z = -2$

and |z| = |-2| = 2 > 1 lies outside of given region |z| = 1

$$\therefore$$
 f (z) = $\frac{z^2 - 1}{z + 2}$ is analytic in the given region

End of Solution

O2. A six-pulse thyristor bridge rectifier is connected to a balanced three-phase, 50 Hz AC source. Assuming that the DC output current of the rectifier is constant, the lowest harmonic component in the AC input current is
(a) 100 Hz
(b) 250 Hz
(c) 150 Hz
(d) 300 Hz

ACE Engineering Publications

S Hyderabad + Delhi + Bhopal + Pune + Bhubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

(d)

RRB (JE)-2019 Online Test Series

Common for all Streams No. of Tests : 20 Starts from 25th February 2019

CE | ME | EC | EE No. of Tests : 20 Starts from 6th May 2019

© 040 - 48539866 / 040 - 40136222

testseries@aceenggacademy.com

ACE Launches

For **B.Tech – CSE Students**

Placement Training

In **Level – 1 Companies** Short Term & Long Term Batches

Ð	ACE		8	Electrical Engineering_GAT
05.	The inverse Laplace tr	ansform of H(s) = $\frac{1}{s^2}$	$\frac{s+3}{+2s+1} \text{ for } t \ge 0 \text{ is}$	
	(a) $3te^{-t} + e^{-t}$	(b) $2te^{-t} + e^{-t}$	(c) $4te^{-t} + e^{-t}$	(d) $3e^{-t}$
05.	Ans (b)			
Sol:	$H(s) = \frac{s+3}{(s+1)^2} = \frac{1}{(s+1)^2}$	$\frac{s}{(s+1)^2} + \frac{3}{(s+1)^2}$		
	$t^{n}e^{-at}u(t) \leftrightarrow \frac{n!}{(s+a)^{n+1}}$	ī		
	n =1; a = 1			
	$te^{-t}u(t) \leftrightarrow \frac{1}{(s+1)^2} \dots$	(1)	NEERINGACA	
	$3t e^{-t}u(t) \leftrightarrow \frac{3}{(s+1)^2}$	(2)	~o<	
	Apply Time Different	iation property		
	$\frac{\mathrm{d}}{\mathrm{dt}}[\mathrm{te}^{-\mathrm{t}}]\longleftrightarrow \frac{\mathrm{s}}{(\mathrm{s}+1)}$			
	$e^{-t} - te^{-t} \leftrightarrow \frac{s}{(s+1)^2}$	(3)		
	Adding (2) + (3)		Since 1995	
	$e^{-t} + 2t e^{-t} \leftrightarrow \frac{s+3}{s^2+2s+1}$		End of Solution	
06.	The characteristic equ	ation of a linear time-i	invariant (LTI) system is gi	iven by
	$\Delta(s) = s^4 + 2$ The system is BIBO st	$3s^3 + 3s^2 + s + k = 0$ table if		
	(a) $0 < k < \frac{8}{9}$	(b) $k > 3$	(c) $0 < k < \frac{12}{9}$	(d) $k > 6$

ACE Engineering Publications

ACE Engineering Publications

11

The open loop transfer function of a unity feedback system is given by $G(s) = \frac{\pi e^{-0.25s}}{s}$. 11. In G(s) plane, the Nyquist plot of G(s) passes through the negative real axis at the point (b) (-0.75, j0) (a) (-1.25, j0) (c) (-0.5, j0) (d) (-1.5, j0) 11. Ans (c) Sol: Given data: $G(s) = \frac{\pi e^{-0.25S}}{S}$ $\omega_{\rm nc} \Rightarrow \angle G (j\omega) = -180^{\circ}$ $-180^{\circ} = +90^{\circ} + 0.25\omega \times \frac{180^{\circ}}{\pi}$ $90^\circ = \frac{45^\circ \omega}{\pi} \Rightarrow \omega_{\rm pc} = 2\pi \, {\rm r/sec}$ Magnitude = $\frac{\pi}{\omega_{\rm pc}} = \frac{\pi}{2\pi} = 0.5$ Inter section point with negative real axis \Rightarrow (-0.5, j0) **End of Solution** A co-axial cylindrical capacitor shown in Figure (i) has dielectric with relative permittivity $\varepsilon_{r1} = 2$. When one-12. fourth portion of the dielectric is replaced with another dielectric of relative permittivity ε_{r_2} , as shown in Figure (ii), the capacitance is doubled. The value of ε_r , is ε. Fig. (i) Fig. (ii) 12. **Ans: 10** Sol: The capacitance of a coaxial cable $C = \frac{2\pi\epsilon\ell}{\ln(b/a)}$ $C_{a} = \frac{2\pi 2\varepsilon_{0}\ell}{\ell n (b/a)}$ ε₁₁ Fig. (i)

ACE Engineering Publications

13

Electrical Engineering_GATE_19

So, Total solution

$$i(t) = \frac{V_m}{|Z|} \sin(\omega t + \theta - \phi) - \frac{V_m}{|Z|} \sin(\theta - \phi) e^{\frac{-t}{\tau}}$$

DC offset value is $\frac{-V_m}{|Z|} \sin(\theta - \phi) e^{\frac{-t}{\tau}}$

Maximum when, $sin(\theta - \phi) = -1$ So, $\theta - \phi = -90^{\circ}$ $\theta = -90^{\circ} + 45$ $\theta = -45^{\circ}$

End of Solution

14. The output voltage of a single-phase full bridge voltage source inverter is controlled by unipolar PWM with one pulse per half cycle. For the fundamental rms component of output voltage to be 75% of DC voltage, the required pulse width in degrees (round off up to one decimal place) is ______.

14. Ans: 112.8

Sol: 1- ϕ full bridge inverter operating with unipolar PWM and one pulse per half cycle. It is a single pulse modulation

Since 1995

$$V_0 = \sum_{n=1,3}^{\infty} \left\{ \frac{4V_s}{n\pi} \sin \frac{n\pi}{2} \sin nd \right\} \sin n\omega t$$

RMS value of fundamental component

$$(v_0 1) = \left\{ \frac{4V_s}{\pi} \times \sin\frac{\pi}{2} \times \sin d \right\} \frac{1}{\sqrt{2}}$$

$$\frac{4V}{\pi} = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{$$

$$0.75 V_{s} = \frac{4 V_{s}}{\pi} \times 1 \times \sin d \times \frac{1}{\sqrt{2}}$$

$$\Rightarrow \sin d = \frac{0.75 \times \pi \sqrt{2}}{4} = 0.833$$

$$d = 56.4^{\circ}$$

width of pulse (2d)= 112.8°

End of Solution

15. Five alternators each rated 5 MVA, 13.2 kV with 25% of reactance on its own base are connected in parallel to a busbar. The short-circuit level in MVA at the busbar is ______.

١	Electrical Engineering_GATE_1
17.	Ans(a)
Sol:	$Q_R \propto \frac{V}{f}$
	Magnetizing reactance is dependent on the air gap flux
	End of Solution
18.	A system transfer function is $H(s) = \frac{a_1s^2 + b_1s + c_1}{a_2s^2 + b_2s + c_2}$. If $a_1 = b_1 = 0$, and all other coefficients are positive, the transfer function represents a (a) band pass filter (b) high pass filter
	(c) low pass filter (d) notch filter
18.	Ans (c)
Sol:	The standard 2 nd order LPF = $\frac{\omega_0^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}$
	The standard 2 nd order HPF = $\frac{Ks^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}$
	The standard 2 nd order BPF = $\frac{s^2}{s^2 + \frac{\omega_0}{Q}s + \omega_0^2}$
	In the given problem Since 1995
	$H(s) = \frac{C_1}{a_2 s^2 + b_2 s + c_2}$ represents standard LPF
	$H(0) = \frac{C_1}{C_2};$
	$H(\infty) = \underset{s \to 0}{\text{Lt}} SH(s)$
	$= \lim_{s \to 0} \frac{sC_1}{a_2s^2 + b_2s + c_2} = 0$
	$\therefore H(0) = \frac{C_1}{C_2}; H(\infty) = 0$
	LPf
	End of Solution

ACE

GATE+PSUs - 2020

- HYDERABAD -

29th April | 06th May | 11th May 18th May | 26th May | 02nd June 2019

DELHI — 11th May | 23rd May 2019

ADMISSIONS ARE OPEN

EARLY BIRD OFFER :

Register on or Before 31st March 2019 : 3000/- Off

	ACE17Electrical Engineering_GATE_
19.	A three-phase synchronous motor draws 200 A from the line at unity power factor at rated load. Considering the same line voltage and load, the line current at a power factor of 0.5 leading is (a) 200 A (b) 300 A (c) 400 A (d) 100 A
19.	Ans: (c)
Sol:	$\sqrt{3} V_L I_L$ = Power drawn by motor at upf = $\sqrt{3} V_L$ 200
	When the power factor changes to 0.5 leading, still power drawn will be the same (if change in losses is neglected)
	$\therefore \sqrt{3} V_L I_L(0.5) = \sqrt{3} V_L 200$
	$I_{L} = 400 \text{ A}$
	End of Solution
20.	A current controlled current source (CCCS) has an input impedance of 10 Ω and output impedance of 100 k Ω . When this CCCS is used in a negative feedback closed loop with a loop gain of 9, the closed loop output impedance is
	(a) $100 \text{ k}\Omega$ (b) 100Ω (c) 10Ω (d) $1000 \text{ k}\Omega$
20.	Ans: (d)
Sol:	CCCS is current-shunt-negative feedback amplifier.
	The output impedance $R_{of} = R_0(1 + \beta A)$, Given $A\beta = 9$
	$= 100 \times 10^3 (1 + 9)$
	= 1000 kW
	End of Solution
21.	The mean-square of a zero-mean random process is $\frac{kT}{c}$, where k is Boltzmann's constant, T is the absolute
	temperature, and c is a capacitance. The standard deviation of the random process is
	(a) $\frac{kT}{c}$ (b) $\frac{\sqrt{kT}}{c}$ (c) $\sqrt{\frac{kT}{c}}$ (d) $\frac{c}{kT}$
21.	Ans: (c)
Sol:	$V(x) = E[X^2] - (E[X])^2$
	Given $E[X^2] = \frac{kT}{c}$ and $E[X] = 0$
	Therefore, $V(x) = \frac{kT}{c}$ and
	Standard deviation $= \sqrt{V(x)} = \sqrt{\frac{kT}{c}}$

S. Zř	ACCE 19 Electrical Engineering_GATE_1
25.	If $f = 2x^3 + 3y^2 + 4z$, the value of line integral \int grad f. dr evaluated over contour C formed by the segments (-3)
	$-3, 2) \rightarrow (2, -3, 2) \rightarrow (2, 6, 2) \rightarrow (2, 6, -1)$ is
25.	Ans: 139
Sol:	Given $f = 2x^3 + 3y^2 + 4z$ grad $f = i\frac{\partial f}{\partial x} + j\frac{\partial f}{\partial y} + k\frac{\partial f}{\partial z}$
	$6x^{2}i+6yj+4k$ given that C is segment joining $(-3, -3, 2) \rightarrow (2, -3, 2) \rightarrow (2, 6, 2) \rightarrow (2, 6, -1)$
	$\therefore \int_{C} \operatorname{grad.dr} = \int_{C} (6x^{2}i + 6yj + 4k) \cdot (dxi + dyj + dzk)$
	$= \int_{C} (6x^2 dx + 6y dy + 4dz)$
	$= \int_{(-3,-3,2)}^{(2,6,-1)} \left(6x^2 dx + 6y dy + 4 dz \right)$
	equation of segment joinging $(-3, -3, 2)$ and $(2, 6, -1)$
	$\frac{x+3}{2-(-3)} = \frac{y+3}{6-(-3)} = \frac{z-2}{-1-2} = t$
	$ \begin{array}{cccc} x = 5t - 3 & \Rightarrow & dx = 5dt \\ \Rightarrow & y = 9t - 3 & \Rightarrow & dy = 9dt \\ z = -3t + 2 & \Rightarrow & dz = -3dt \end{array} \right\} t = 0 \ to \ 1 \ Since 1995 $
	$= \int_{t=0}^{1} 6(5t-3)^2 5dt + 6(9t-3)9dt + 4(-3)dt)$
	$= \int_{t=0}^{1} 30 (25t^2 - 30t + 9) dt + (486t - 162) dt - 12dt$
	$\left[750\frac{t^3}{3} - 900\frac{t^2}{2} + 270t + 486\frac{t^2}{2} - 162t - 12t\right]_0^1$
	[250 - 450 + 270 + 243 - 162 - 12]
	= 139
	End of Solution

Ô	ACE Engineering Publications	20	Electrical Engineering_GATE_1
26.	The voltage across and the current t	hrough a load are expressed as fo	llows
	$v(t) = -170 \sin(377 t - \frac{\pi}{6})V$		
	$i(t) = 8\cos\left(377 t + \frac{\pi}{6}\right)A$		
	The average power in watts (round	off to one decimal place) consum	ned by the load is
26.	Ans: 588.89 W		
Sol:	$V = -170 \sin(377t - 30^{\circ})$		
	$= -(170 \angle -30^{\circ})$ I = 8cos(377t + 30^{\circ})		
	$= 8\sin(90^\circ + 377t + 30^\circ)$		
	$= +(8 \angle 120^{\circ})$	EEDIAL	
		GINEERING 40	
	$\mathbf{S}^* = \mathbf{VI}^* = -\left(\frac{170}{\sqrt{2}} \angle -30^\circ\right) \left(\frac{8}{\sqrt{2}} \angle -30^\circ\right$	-120°)	
	S* = −(680∠−150°)		32
	S* = -(-588.89-j340)		
	$S^* = 588.89 + j340$		
	$P_{avg} = 588.89 W$		
		— End of Solution —	
27.	If $A = 2xi + 3yj + 4zk$ and $u = x^2 + y^2 + y$	$+z^{2}$, then div(uA) at (1, 1, 1) is	
27.	Ans: 45		
Sol:	Given the vector $$		
	$\overline{A} = 2x\hat{i} + 3y\hat{j} + 4z\hat{k}$ Scalar		
	$u = x^2 + y^2 + z^2$		
	we know		
	$\nabla . \begin{pmatrix} u & \overline{A} \\ \downarrow & \downarrow \\ \text{scalar vector} \end{pmatrix} = (\nabla u) . \overline{A} + u (\nabla . \overline{A})$		
	$\nabla u = \frac{\partial u}{\partial x}\hat{i} + \frac{\partial u}{\partial y}\hat{j} + \frac{\partial u}{\partial z}\hat{k}$		
	$(\nabla \mathbf{u}) = (2\mathbf{x}\hat{\mathbf{i}} + 2\mathbf{y}\hat{\mathbf{j}} + 2\mathbf{z}\hat{\mathbf{k}})$		
	$(\nabla \mathbf{u}).\overline{\mathbf{A}} = (2x\hat{\mathbf{i}} + 2y\hat{\mathbf{j}} + 2z\hat{\mathbf{k}}).(2x\hat{\mathbf{i}})$	$+3y \hat{j}+4z \hat{k}$	
	$=4x^{2}+6y^{2}+8z^{2}$		
	ngineering Publications Hyderabad + Delhi + Bho	nal + Pune + Rhuhanacwar + Lucknow + Datna + Damas	ıluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

New Batches @

HYDERABAD 17th Feb 2019

DELHI 18th Feb 2019 PUNE 16th Feb 2019

ESE - 2019 Mains Test Series (Offline/Online)

Starts from **30th March 2019.** Test Series will be conducted at all our centres

APPSC-AEE (Prelims) ---Online Test Series

No. of Tests : 18

Topic Wise Tests : 15 | Mock Tests - 3 Civil | Mechanical | Electrical

Available Now

All Tests will be available till 18th February 2019

🕓 040 - 48539866 / 040 - 40136222 🛛 🗳 testseries@aceenggacademy.com

29. In a 132 kV system, the series inductance up to the point of circuit breaker location is 50 mH. The shunt capacitance at the circuit breaker terminal is 0.05 μ F. The critical value of resistance in ohms required to be connected across the circuit breaker contacts which will give no transient oscillation is _____.

23

29. Ans: 500

ACE

Sol: Given data:

Series inductance, L = 50 mHShunt capacitance, $C = 0.05 \mu F$

Critical resistance required to be connected across breaker which will give no transient oscillation is,

$$R = \frac{1}{2}\sqrt{\frac{L}{C}}$$

 $=\frac{1}{2}\sqrt{\frac{50\times10^{-3}}{0.05\times10^{-6}}}=500\ \Omega$

End of Solution

30. A single-phase fully-controlled thyristor converter is used to obtain an average voltage of 180 V with 10 A constant current to feed a DC load. It is fed from single-phase AC supply of 230V, 50 Hz. Neglect the source impedance. The power factor (round off to two decimal places) of AC mains is

Since 1995

30. Ans: 0.7826

Sol: $1-\phi$ full wave rectifier

$$V_0 = 180 V$$

 $I_0 = 10A$

 V_s (supply voltage) = 230 V (RMS)

$$V_0 = \frac{2V_m}{\pi} \cos \alpha$$

$$180 = \frac{2 \times 230\sqrt{2}}{\pi} \cos \alpha = (0.9 \cos \alpha) 230$$

$$0.9\cos\alpha = \frac{180}{230} = 0.7826$$

Power factor = $0.9 \cos \alpha = 0.7826 \log \alpha$

End of Solution

۲	ACE Engineering Publications	24 Electrical Engineering_GATE_1
31.	A periodic function f(t), with a pe	priod of 2π , is represented as its Fourier series,
	$f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos nt + \sum_{n=1}^{\infty} T_n^{(n)}$	b _n sin nt .
	If $f(t) = \begin{cases} A \sin t, & 0 \le 1 \le \pi \\ 0, & \pi & t & 2\pi \end{cases}$	
	the Fourier series coefficients a_1 a	and b_1 of $f(t)$ are
	(a) $a_1 = 0; b_1 = A/\pi$	(b) $a_1 = \frac{A}{2}; b_1 = 0$
	(c) $a_1 = 0; b_1 = \frac{A}{2}$	(d) $a_1 = \frac{A}{\pi}; b_1 = 0$
	Ans(c) Half wave rectifier;	
501.	fian wave rectifier,	IFER WO
		GINEERIA
	EFS: $X_1 = -\frac{jA}{4} = \frac{1}{2}(a_1 - jb_1)$	$\frac{1}{0} \frac{1}{\pi} \frac{1}{2\pi}$
	EFS: $X_1 = -\frac{jA}{4} = \frac{1}{2}(a_1 - jb_1)$ $a_1 = 0; -\frac{jA}{4} = \frac{-jb_1}{2} \Rightarrow b_1 = \frac{A}{2}$	ž
		End of Solution
32.		duty ratio is controlled to regulate the output voltage at 48 V. The input DC
	č	r is 120W. The switching frequency is 50 kHz. Assume ideal components and a
	very large output filter capacitor. conduction modes. The value of t	The converter operates at the boundary between continuous and discontinuous he boost inductor (in uH) is
	conduction modes. The value of t	Since 1995
32.	Ans: 24	
Sol:		ACE
	DC-DC boost converter	
	$V_0 = 48 V$	
	$V_s = 24 V$	
	$V_0 = \frac{V_s}{1 - D} \Rightarrow 48 = \frac{24}{1 - D}$	DT T t

$$T = \frac{1}{f_s} = \frac{1}{50 \times 10^3} = 20 \mu s$$

output power (P) = 120 watts $f_s = 50 \text{ kHz}$

ACE Electrical 26 A DC-DC buck converter operates in continuous conduction mode. It has 48 V input voltage and it feeds a 34. resistive load of 24 Ω . The switching frequency of the converter is 250 Hz. If switch-on duration is 1 ms, the load power is (a) 12 W (b) 6 W (c) 48 W (d) 24 W 34. Ans: (b) Sol: DC-DC buck converter $V_{s} = 48V$ $R = 24\Omega$ $f_{2} = 250 \text{ Hz}$ $T_{ON} = DT = 1ms$ Time period (T) = $\frac{1}{f_s} = \frac{1}{250} = 4ms$ duty cycle (D) = $\frac{T_{ON}}{T} = \frac{1}{4}$ output voltage (V₀) = $DV_s = \frac{1}{4} \times 48 = 12V$ output current $(I_0) = \frac{V_0}{R} = \frac{12}{24} = \frac{1}{2} = 0.5A$ power = $V_0I_0 = 12 \times 0.5 = 6$ watts **End of Solution**

35. A three-phase 50 Hz, 400 kV transmission line is 300 km long. The line inductance is 1 mH/km per phase, and the capacitance is 0.01 μF/km per phase. The line is under open circuit condition at the receiving end and energized with 400 kV at the sending end, the receiving end line voltage in kV (round off to two decimal places) will be

35. Ans: 418.44

Sol: Given data:

A 3-φ, 50 Hz, 400 kV line

length of line, l = 300 km inductance and capacitances,

 $L = 1 \text{ mH/km}, C = 0.01 \mu \text{F/km}$

line was under open circuit condition

input voltage, $V_s = 400 \text{ kV} (LL)$

No load receiving end voltage, $V_{r_0} = \frac{V_s}{\Delta}$

29

ACE Engineering Publications

ACE Engineering Publication Electrical Engineering GATE 30 Case-1 Permeability of the core $(\mu_{i}) = \infty$ $(\mathbf{R}_{\mathrm{M}})_{1} = \mathbf{R}_{1} + \mathbf{R}_{2}$ $=\frac{\ell_c}{\mu A}+\frac{\ell_a}{\mu_0 A}$ $(R_{\rm M})_1 = 0 + \frac{0.2}{\mu_0 A}$ Case-2 Permeability of the core (μ_c) =1000 μ_0 $(R_M)_2 = R_1 + R_2$ $=\frac{39.8}{10^3\mu_0A}+\frac{0.2}{\mu_0A}$ $(R_{\rm M})_2 = \frac{1}{\mu_0 A} [0.2398]$ $\frac{B_1}{B_2} = \frac{(R_M)_2}{(R_M)_1}$ $B_2 = \frac{(R_M)_1}{(R_M)_2} = \frac{0.2}{0.2398}$ $B_2 = 0.83$ **End of Solution** 38. Consider a state-variable model of a system Since 1995 $\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\alpha & -2\beta \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ \alpha \end{bmatrix} \mathbf{r}$ $\mathbf{y} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$

where y is the output, and r is the input. The damping ratio ζ and the undamped natural frequency ω_n (rad/sec) of the system are given by

(a)
$$\zeta = \frac{\beta}{\sqrt{\alpha}}; \omega_{n} = \sqrt{\alpha}$$

(b) $\zeta = \sqrt{\alpha}; \omega_{n} = \frac{\beta}{\sqrt{\alpha}}$
(c) $\alpha = \sqrt{\beta}; \omega_{n} = \sqrt{\alpha}$
(d) $\zeta = \frac{\sqrt{\alpha}}{\beta}; \omega_{n} = \sqrt{\beta}$

ACE Electrical Engineering 31 38. Ans: (a) Sol: Given data: $TF = C [SI - A]^{-1}B + D$: D=0 $TF = C \frac{Adj[SI - A]}{[SI - A]}B$ $[SI - A] = \begin{bmatrix} S & -1 \\ \alpha & S + 2\beta \end{bmatrix}$ $TF = \frac{\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} S+2\beta & 1 \\ -\alpha & S \end{bmatrix} \begin{bmatrix} 0 \\ \alpha \end{bmatrix}}{S(S+2\beta)+\alpha} = \frac{\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ s\alpha \end{bmatrix}}{s^2+2\beta s+\alpha}$ $TF = \frac{\alpha}{s^2 + 2\beta s + \alpha}$ $\omega_n = \sqrt{\alpha} \text{ rad/sec}$ $2 \xi \omega_n = 2\beta$ $\beta = \xi \omega_n \Longrightarrow \xi = \frac{\beta}{\omega_n} = \frac{\beta}{\sqrt{\alpha}}$ **End of Solution**

39. A 220 V DC shunt motor takes 3 A at no-load. It draws 25 A when running at full-load at 1500 rpm. The armature and shunt resistances are 0.5 Ω and 220 Ω , respectively. The no-load speed in rpm (round off to two decimal places) is

39. Ans: 1579.32

Sol: DC shunt motor:

No-load (case-1):

$$V_t = 220 V$$

 $I_{L1} = 3A$
 $N_1 = ?$
 $I_{sh1} = \frac{V_t}{r_{sh}} = \frac{220}{220} = 1A$
 $\Rightarrow I_{a1} = I_{L1} - I_{sh1}$
 $= 2A$
 $E_{b1} = V_t - I_{a1}r_a = 220 - (2) (0.5) = 219 V$

Electrical Engineering 32 Loaded (case 2): $V_{t} = 220 V$ $I_{12} = 25 \text{ A}$ $N_2 = 1500 \text{ rpm}$ $I_{\rm sh2} = \frac{V_{\rm t}}{r_{\rm sh}} = 1 A$ $\therefore \phi = constant$ Since field current is constant $I_{a2} = I_{L2} - I_{sh2}$ = 24 A $E_{h2} = V_t - I_{a2} r_a$ = 220 - (24)(0.5)= 208 V $E_{\rm b} = k_{\rm a} \phi \omega \Longrightarrow E_{\rm b} \propto N$ $= \frac{E_{b1}}{E_{b2}} = \frac{N_1}{N_2} = \frac{219}{208} = \frac{N_1}{1500} \Rightarrow N_1 = 1579.32 \text{ rpm}$

End of Solution

40. A fully-controlled three-phase bridge converter is working from a 415 V, 50 Hz AC supply. It is supplying constant current of 100 A at 400 V to a DC load. Assume large inductive smoothing and neglect overlap. The rms value of the AC line current in amperes (round off to two decimal places) is _____.

40. Ans: 81.66 Sol: In a 3- φ bridge rectifier RMS value of AC line current = $I_0 \sqrt{\frac{2}{3}}$ = $100\sqrt{\frac{2}{3}}$ = 81.66 Amps End of Solution

Hyderabad + Delhi + Bhopal + Pune + Bhubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

ACE Engineering Publications

and 0.05pu, respectively. the neutral of the generator is grounded with a reactance so that the fault current for a bolted LG fault and that of a bolted three-phase fault at the generator terminal are equal. The value of grounding reactance in ohms (round off to one decimal place) is

ACE Engineering Publications

34

42. Ans: 1.8

Sol: Given data:

A 3- ϕ alternator 30 kV, 50 Hz, 50 MVA has sequence reactances

 $X_1 = 0.25 \text{ pu}, X_2 = 0.15 \text{ pu}, X_0 = 0.05 \text{ pu}$

Neutral of alternator grounded with a reactance to make

$$|I_{f(LG)}| = |I_{f(LLL)}|$$

$$\frac{3.E_{a1}}{X_1 + X_2 + X_0 + 3X_n} = \frac{E_{a1}}{X_1}$$

$$X_1 + X_2 + X_0 + 3X_n = 3X_1$$

$$0.45 + 3X_n = 0.75$$

$$X_n = 0.1 \text{ pu}$$

$$Z_{\text{base}} = \frac{[\text{kV base (LL)}]^2}{\text{MVA base}(3-\phi)} = \frac{30^2}{50} = 18 \Omega$$

$$\therefore X_n(\Omega) = 0.1 \times 18$$

$$= 1.8 \Omega$$

End of Solution

43. A moving coil instrument having a resistance of 10Ω , gives a full-scale deflection when the current is 10mA. What should be the value of the series resistance, so that it can be used as a voltmeter for measuring potential difference up to 100 V?

(a) 9 Ω (b) 990 Ω (c) 99 Ω (d) 9990 Ω Since 1995 43. Ans:(d) 10mA Sol: 0.1 100V $R_{sc} = R_m \left[\frac{V}{V_m} - 1 \right]$ $= 10 \left[\frac{100}{0.1} - 1 \right]$ 10[999] = 9990Ω **End of Solution**

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER	COURSE	ВАТСН ТҮРЕ	DATE
LUCKNOW	GATE+PSUs - 2020	Regular Batch	Mid - May 2019
PATNA	GATE+PSUs - 2020	Weekend Batch	16 th Feb 2019
VIJAYAWADA	GATE+PSUs - 2020 & 21	Weekend Batch	10 th , 24 th Feb 2019
VIJAYAWADA	GATE+PSUs - 2020	Summer + Weekend	6 th , 15 th May 2019
VIJAYAWADA	GATE+PSUs - 2020	Regular Batch	8 th , 22 nd June 2019
KOLKATA	GATE+PSUs - 2020&21	Weekend Batch	16 th Feb 2019
KOLKATA	GATE+PSUs - 2020	Regular Batch	8 th June 2019
KOLKATA	ESE+GATE+PSUs - 2021	Evening & Weekend	16 th Feb 2019
AHMEDABAD	GATE+PSUs - 2020	Regular Batch	02nd Week of June 2019

GENCO TRANSCO DISCOMS ELECTRICAL ENGINEERING

Regular Batch : 10th Feb 2019

@ KUKATPALLY (HYDERABAD)

FOR BATCH DETAILS VISIT : www.aceenggacademy.com

ACE Engineering Publications

É,	ACE Engineering Publications	37	Electrical Engineering_GATE_1
45.	Ans: 0.2642		
Sol:	P = Probability of defective resister		
	= 0.02		
	$n = 50 \Longrightarrow \lambda = np = 1$		
	Lt X be number of defective Resistors		
	$P(X \ge 2) = 1 - P(X < 2)$		
	$= 1 - \{ P(X=0) + P(X=1) \}$		
	$=1-\left[\frac{e^{-\lambda}\lambda^{0}}{0!}+\frac{e^{-\lambda}\lambda^{1}}{1!}\right]$		
	$= 1 \{ e^{-1} + e^{-1} \}$		
	$=1-\frac{2}{e}$	NEERINC	
	= 0.2642	SINCAC	
	4.4		
		– End of Solution —	
10			
			synchronous impedance of $(0.25+j2.5) \Omega_{i}$ the rms value of line-to-line internal voltage
	in volts (round off to two decimal places)		ine mis value of mie-to-mie meenal voltage
46.	Ans: 245.32		
Sol:	$V_{L} = 220 \text{ V} \Rightarrow V_{ph} = \frac{220}{\sqrt{3}} = 127.01. \text{ V}$		
	$Z_s = 0.25 + j2.5W = 2.512 \angle 84.28^\circ; I_a =$	Since 1995 10A, 0.8 lead pf	
	$E_{ph} = \sqrt{\left(V\cos\phi - I_a R_a\right)^2 + \left(V\sin\phi + I_a X_s\right)^2}$		
	$= \sqrt{(127.01 \times 0.8 - 10 \times 0.25)^2 + (127.01 \times 0.25)^2}$	$(1) \times (0) (1) (10) \times (2) (5)^2$	
	$= \gamma (127.01 \times 0.0 - 10 \times 0.25) + (127.01 \times 0.0 - 10 \times 0.25)$	$01 \times 0.6 + 10 \times 2.5)$	

$$E_{I} = \sqrt{3} \times E_{ph} = \sqrt{3} \times 141.64 = 245.32 \text{ V}$$

Method 2:

$$\begin{split} E_{ph} &= V \angle 0 - I_a \angle \phi Z_S \angle \theta \\ &= 127.0.1 \angle 0 - 10 \angle 36.86 \times 2.512 \angle 84.28^\circ \\ &= 141.64 \angle -8.71^\circ \\ E_L &= \sqrt{3} \times 141.64 = 245.32 \ V \end{split}$$

End of Solution

38 Electrical Engineering GATE IF
47. The transfer function of a phase lead compensator is given by

$$D(s) = \frac{3(s + \frac{1}{3T})}{(s + \frac{1}{T})}$$
The frequency (in rad/sec), at which $\angle D$ (jeo) is maximum, is
(a) $\sqrt{\frac{3}{T}}$ (b) $\sqrt{3T}$ (c) $\sqrt{\frac{1}{3T}}$ (d) $\sqrt{3T}$
47. Ans:(c)
Sol: Given data:

$$D(s) = \frac{3(s + \frac{1}{3T})}{(s + \frac{1}{T})}$$
End of Solution
48. Consider a 2 × 2 matrix M = [v, v_3], where, v, and v, are the column vectors. Suppose M^{1/s} $\left[u_1^{s} \right]$, where u_1^{s} and u_2^{s} are the row vectors. Consider the following statements:
Statement 1: $u_1^{T} v_1 = 1$ and $u_1^{T} v_2 = 1$
Statement 2: $u_1^{s} v_2 = 0$ and $u_2^{1} v_2 = 0$
Which of the following options is correct?
(a) Statement 3 is true and statement 1 is false
(b) Both the statements are true
48. Ans (d)
Sol: M = (v_1 v_2) = (\frac{a}{b} \frac{c}{d})
 $M^{1/s} = (\frac{u_1^{T}}{u_2^{1/s}}) = (\frac{c}{g} \frac{1}{h})$
47. Consider 1 (b) (a) $\frac{c}{g} \frac{c}{h}$

ACE Engineering Publications

39

Electrical Engineering_GATE_19

 $\mathbf{M}^{-1}\mathbf{M} = \mathbf{I}$

- $\Rightarrow \begin{pmatrix} ea + bf & ec + fd \\ ga + hb & gc + hd \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $ea + bf + 1 \Rightarrow u_1^{T} v_1 = 1$ $ec + fd + = 0 \Rightarrow u_1^{T} v_2 = 0$ $ga + hb = 0 \Rightarrow u_2^{T} v_1 = 0$ $gc + hd = 1 \Rightarrow u_2^{T} v_2 = 1$
- \therefore Both the statements are correct.

End of Solution

49. A single -phase transformer of rating 25kVA, supplies a 12 kW load at power factor of 0.6 lagging. The additional load at unity power factor in kW (round off to two decimal places) that may be added before this transformer exceeds its rated kVA is

Since 1995

49. Ans: 7.21

Sol: Let rated voltage =V volts 12 kW, 0.6 lag \rightarrow V×I₁×0.6= 12000

$$I_1 = \frac{12000}{0.6V} = \frac{20,000}{V}$$
$$\overline{I}_1 = \frac{20000}{V} \angle -53.13$$

Let UPF load = W kW VI₂ = W 1000

$$I_2 = \frac{1000W}{V}$$

$$\overline{I}_2 = \frac{1000W}{V} \angle 0^{\circ}$$

When both loads are present, total current

$$\overline{I} = \frac{1000}{V} [20 \angle -53.13 + W \angle 0^{\circ}]$$

$$= \frac{1000}{V} [12 - j16 + W]$$

$$I = \frac{1000}{V} [\sqrt{(12 + W)^{2} + 256}]$$

$$kVA = \sqrt{(12 + W)^{2} + 256} = 25$$

$$(12 + W)^{2} + 256 = 625, \quad (12 + W)^{2} = 369, \quad 2 + W = 19.21, \quad W = 7.21 \text{ kW}$$
End of Solution

Electrical Engineering GATE 19

40

ACE Engineering Publications

ACE

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER	COURSE	ВАТСН ТҮРЕ	DATE
HYDERABAD - DSNR	GATE + PSUS – 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - DSNR	ESE + GATE + PSUs - 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - DSNR	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - DSNR	GATE + PSUs - 2020	Morning/Evening Batch	24th February 2019
HYDERABAD - DSNR	ESE – 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019
HYDERABAD - Abids	GATE + PSUS – 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - Abids	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - Abids	ESE + GATE + PSUs - 2020	Morning Batch	24th February 2019
HYDERABAD - Abids	ESE – 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019
HYDERABAD - Abids	GATE + PSUs - 2020	Weekend Batch	24th February 2019
HYDERABAD - Abids	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Morning/Evening Batch	24th February 2019
HYDERABAD - Kukatpally	GATE + PSUS – 2020	Regular Batches	17th May, 1st, 16th June, 1st July 2019
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - Kothapet	ESE + GATE + PSUS - 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - Kothapet	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019
DELHI	ESE+GATE+PSUs - 2020	Weekend Batches	9th Mar 2019
DELHI	ESE+GATE+PSUs - 2020	Regular Evening Batch	18 th Feb 2019
DELHI	ESE+GATE+PSUs - 2020	Regular Day Batch	11 th May 2019
DELHI	ESE+GATE+PSUs - 2020	Spark Batch	11 th May 2019
DELHI	GATE+PSUs - 2020	Short Term Batches	11 th , 23 rd May 2019
BHOPAL	ESE+GATE+PSUs - 2020	Regular Day Batch	01st Week of June 2019
BHUBANESWAR	GATE+PSUs - 2020	Weekend Batch	16 th Feb 2019
BHUBANESWAR	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019
CHENNAI	GATE+PSUs - 2020 & 21	Weekend Batch	16 th Feb 2019
CHENNAI	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019
BANGALORE	GATE+PSUs - 2020 & 21	Weekend Batch	23 rd Feb 2019
BANGALORE	GATE+PSUs - 2020	Regular Batch	17 th June 2019

FOR BATCH DETAILS VISIT : www.aceenggacademy.com

ACE Engineering Publications

