

Hyderabad | Delhi | Ahmedabad | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi | Kukatpally | Kolkata

GATE - 2019

Questions with Detailed Solutions

COMPUTER SCIENCE & INFORMATION TECHNOLOGY

ACE Engineering Academy has taken utmost care in preparing the **GATE-2019** Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to GATE- 2019 Solutions are to be sent to the following email address hyderabad@aceenggacademy.com | Contact Us:040-23234418,19,20

ACE CSIT 2 **GENERAL APTITUDE** around the fulcrums of trust. 01.The search engine's business model (A) Sinks (B) Bursts (C) Plays (D) Revolves Ans: (D) 01. **Sol:** Means to cause to go round or rotate. **End of Solution** Ten friends planned to share equally the cost of buying a gift for their teacher. When two of them 02. decided not to contribute, each of the other friends had to pay Rs.150 more. The cost of the gift was Rs . (A) 12000 (B) 6000 (C) 666 (D) 3000 02. Ans: (B) **Sol:** Let the cost of gift = Rs. xif 10 friends equally contribute, share per head $\frac{x}{10}$ if 8 friends equally contribute, share per head $\frac{x}{8}$ 95 increase in share per head $=\frac{x}{8} - \frac{x}{10} = \frac{x}{40}$ given, $\frac{x}{40} = Rs150$ \therefore x = Rs 6000

End of Solution

03. Two cars start at the same time from the same location and go in the same direction. The speed of the first car is 50 km/h and the speed of the second car is 60 km/h. The number of hours it takes for the distance between the two cars to be 20 km is _____.
(A) 1
(B) 6

(D) 3

ACE Engineering Publications (Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad

(C) 2

		3	GATE-2019_Solutions		
03.	Ans: (C)				
Sol:	Relative speed of the two cars (m	noving in same direction) = 60 km/ h	nr – 50km / hr = 10 km/hr		
	So, time taken = $\frac{20km}{10km/hr} = 2hr$	S			
		— End of Solution —			
04.	The expenditure on the project	as follow: equipment Rs.	20 lakhs, salaries Rs.12 lakhs,		
	and contingency Rs.3 lakhs.				
	(A) breaks	(B) breaks down			
	(C) break Down	(D) break			
04.	Ans: (B)				
Sol:	Means to divide into parts to be a	analyzed.			
		End of Solution			
05.	A court is to a judge as	_ is to a teacher.			
	(A) a punishment	(B) a student			
	(C) a syllabus	(D) a school			
05.	Ans: (D)				
Sol:	Analogy type (person and work	place) A judge decides in the courts	just as a teacher teaches in the		
	school. The obvious analogical r	elationship is a court: judge : : scho	ol : teacher.		
		End of Solution			
06.	"A recent High Court judgement	t has sought to dispel the idea of be	gging as a disease which leads		
	to its stigmatization and criminalization – and to regard it as a symptom. The underlying disease is				
	the failure of the state to protect citizens who fall through the social security net".				
	Which one of the following statements can be inferred from the given passage?				
	(A) Beggars are created because of the lack of social welfare schemes				
	(B) Beggars are lazy people who beg because they are unwilling to work				
	(C) Begging has to be banned because it adversely affects the welfare of the state				
	(D) Begging is an offence that ha	as to be dealt with firmly			
06.	Ans: (A)				
Sol:	The last sentence infers this ("T	he underlying disease is the failure	of the state to protect citizens		
	who fall through the social secur	who fall through the social security net").			
		End of Solution			
ACE E	Engineering Publications (Hyderabad • Delhi • Bhopa	al • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai	i • Vijayawada • Vizag • Tirupati • Kolkata • Ahmedabad		

ACE Engineering Publications

ACE Engineering Publications

RRB (JE)-2019 Online Test Series

Common for all Streams No. of Tests : 20 Starts from 25th February 2019

STAGE - II

CE | ME | EC | EE No. of Tests : 20 Starts from 6th May 2019

() 040 - 48539866 / 040 - 40136222

🖄 testseries@aceenggacademy.com

ACE Launches

For B.Tech – CSE Students

Placement Training

In **Level – 1 Companies** Short Term & Long Term Batches

ACE Engineering Publications

GATE-2019_Solutions

09. Ans: (C)

Sol: The total students is clubs can be found out using the relation of venn - diagram

7

ACE Engineering Publications

	GATE-2019_Solutions
	To represent in 16 bits, using sign extension place 1's at MSB for Negative numbers.
	$(-28)_{10} = [1111\ 1111\ 1110\ 0100]_2$
	End of Solution
03.	Consider a sequence of 14 elements: A = [-5, -10, 6, 3, -1, -2, 13, 4, -9, -1, 4, 12, -3, 0].
	The subsequence sum $S(i, j) = \sum_{k=i}^{j} A[k]$. Determine the maximum of $S(i, j)$
	where $0 \le i \le j \le 14$. (Divide and conquer approach may be used).
03.	Ans: 29
	End of Solution
04.	Consider the following C program:
	#include <stdio.h></stdio.h>
	int jumble (int x, int y)
	x = 2 * x + y;
	return x;
	}
	int main()
	{
	int $x = 2, y = 5;$
	y = jumble (y, x); Since 1995
	x = jumble (y, x);
	printf("%d \n", x);
	return 0;
	}
	The value printed by the program is

ACE Engineering Publications

ACE

13

ACE Engineering Publications

GATE-2019_Solutions

 $a = g_1^{-1} bg_1, b = g_2^{-1} cg_2$ $\Rightarrow a = g_1^{-1} (g_2^{-1} cg_2) g_2$ $=(g_1^{-1}.g_2^{-1})c(g_2g_1) \Rightarrow a = (g_2g_1)^{-1}c(g_2g_1)$ \Rightarrow R₁ is transitive and R₁ is equivalence relation. R_2 is not reflexive since $\forall a \in G a = a^{-1}$ need not be true. \therefore R₁ is equivalence relation but not R₂ So, option (A) is correct. **End of Solution** 09. If L is a regular language over $\Sigma = \{a, b\}$, which one of the following languages is NOT regular? (A) L. $L^{R} = \{xy | x \in L, y^{R} \in L\}$ (B) Prefix(L) = { $x \in \Sigma^* | \exists y \in \Sigma^*$ such that $xy \in L$ } (C) $\{ww^R \mid w \in L\}$ (D) Suffix (L) = $\{y \in \Sigma^* | \exists x \in \Sigma^* \text{ such that } xy \in L\}$ 09. Ans: (C) **Sol:** A. L is regular \Rightarrow L^R is regular L . L^{R} is also regular. B. If L is regular then prefix(L) is also regular C. ww^R is possible as not regular D. If L is regular then suffix(L) is also regular. 1005 Note: If L is finite language then option (C) can be regular. **End of Solution** 10. Which of the following protocol pairs can be used to send and retrieve e-mails (in that order)? (A) IMAP, SMTP (B) SMTP, POP3 (C) IMAP, POP3 (D) SMTP, MIME 10. Ans: (B) Sol: SMTP: Simple Mail Transfer Protocol used to send mail **POP 3:** Post Office Protocol used to retrieve mail End of Solution

15

ACE Engineering Publications

To WIN The RACE.. Join ACE...

SUMMER SHORT TERM BATCHES

GATE+PSUs - 2020

DELHI — 11th May | 23rd May 2019

ADMISSIONS ARE OPEN

EARLY BIRD OFFER : Register on or Before 31st March 2019 : 3000/- Off

	I8 CSI	ſ
13.	Consider the following C program:	
	#include <stdio.h></stdio.h>	
	int main()	
	{	
	int arr[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 5}, *ip = arr + 4;	
	printf("%d\n", ip[1]);	
	return 0;	
	}	
	The number that will be displayed on execution of the program is	
13.	Ans: 6	
Sol:	0 1 2 3 4 5 6 7 8 9 10 11 12	
	1 2 3 4 5 6 7 8 9 0 1 2 5	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	ip	
	ip = arr + 4	
	$= 100 + (4 \times 2)$	
	= 108 / ip pointer pointing to 108	
	printf("%d", ip[1]);	
	output is 6 Since 1995	
	End of Solution	
14.	Which one of the following is NOT a valid identity?	
	(A) $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ (B) $x \oplus y = x + y$, if $xy = 0$	
	(C) $(x + y) \oplus z = x \oplus (y + z)$ (D) $x \oplus y = (xy + x'y')'$	
14.	Ans: (C)	
Sol:	(A). L.H.S	
	$[x \oplus y] \oplus z$	
	$= \left[x \overline{y} + \overline{x} y \right] \oplus z$	
	$= x \overline{y} \overline{z} + \overline{x} y \overline{z} + \overline{x} \overline{y} z + xyz$	
ACE I	ngincering Publications Hyderabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirupati • Kolkata • Ahmeda	bad

GATE-2019 _Solutions

ACE Engineering Publications

(20)

SZ.	Engineering Publications
	such that $ xy \le 5$, $ y \ne 0$
	$\forall i, xy^i z \in L$
	i.e., $aa(aaa)^i \in L$
	So, option (C) is correct.
	End of Solution
16.	Consider the following two statements about database transaction schedules:
	I. Strict two-phase locking protocol generates conflict serializable schedules that are also
	recoverable.
	II. Timestamp-ordering concurrency control protocol with Thomas Write Rule can generate view
	serializable schedules that are not conflict serializable.
	Which of the above statements is/are TRUE?
	(A) Both I and II (B) I only
	(C) II only (D) Neither I nor II
16.	Ans: (A)
Sol:	I. Strict 2 PL requires that all the executive mode locks taken by the transactions must be hele
	until it commits, so the strict 2PL schedules are cascadeless and also recoverable
	II. Time stamp ordering protocols can generate conflict serializable schedules but time stamp
	ordering protocol with Thomas write rule can generate view serializable schedules.
	End of Solution
17.	Which one of the following statements is NOT correct about the B ⁺ tree data structure used fo
	creating an index of a relational database table?
	(A) B ⁺ tree is a height-balanced tree
	(B) Non-leaf nodes have pointers to data records
	(C) Each leaf node has a pointer to the next leaf node
	(D) Key values in each node are kept in sorted order
17.	Ans: (B)
Sol:	• B ⁺ Tree is a height balanced search tree
	• non leaf nodes have pointers to the next level nodes but not to the data records
	• All the leaf nodes are connected with a pointer P _{next} .
	• All the key values in each node are kept in sorted order.

ACE Engineering Publications

ACE GATE-2019 _Solutions 21 The value of $3^{51} \mod 5$ is _____. 18. 18. Ans: 2 **Sol:** Fast exponential modular arithmetic (used in RSA) $3^{51} \mod 5 \Longrightarrow a^e \mod 5$ 51 = Binary0 1 1 0 1 1 4 1 4 4 1 3 3 2 X Х 4 2 **End of Solution** Consider the grammar given below: 19. $S \rightarrow Aa$ $A \rightarrow BD$ $B \rightarrow b \mid \epsilon$ $D \rightarrow d \mid \epsilon$ Let a, b, d and \$ be indexed as follows: \$ b d а 3 2 0 1 Compute the FOLLOW set of the non-terminal B and write the index values for the symbols in the FOLLOW set in the descending order. (For example, if the FOLLOW set is {a, b, d, \$}, then the answer should be 3210) 19. Ans: 31 Sol: $S \rightarrow Aa$

```
A \rightarrow BD
```

```
B \rightarrow b|\epsilon
```

 $D \rightarrow d|\epsilon$

 $Follow(B) = \{d\} \cup Follow(A)$

 $= \{d\} \cup \{a\} = \{a, d\}$

Descending order: 31 where a = 3 and d = 1

ACE

(22)

CSIT

K C	Engineering Publications 22	CSI
20.	Let X be a square matrix. Consider the following two statements on X.	
	I. X is invertible.	
	II. Determinant of X is non-zero.	
	Which one of the following is TRUE?	
	(A) I implies II; II does not imply I	
	(B) II implies I; I does not imply II	
	(C) I does not imply II; II does not imply I	
	(D) I and II are equivalent statements	
20.	Ans: (D)	
Sol:	Given we know that a matrix invertiable \Leftrightarrow det is non zero.	
	Statement I: X is invertiable, (X is a square matrix)	
	Statement II: Determinant of X is non zero.	
	∴ Both statements are equivalent	
	So, option (D) is correct.	
	End of Solution	
21.	The following C program is executed on a Unix/Linux system:	
	#include <unistd. h=""></unistd.>	
	int main()	
	int i; Since 1995	
	for $(i = 0; i < 10; i + +)$	
	if (i % $2 = = 0$) fork();	
	return 0;	
	}	
	The total number of child processes created is	

ACE Engineering Publications

New Batches @

HYDERABAD	DELHI	
17th Feb 2019	18th Feb 2019	

ESE - 2019 Mains Test Series (Offline/Online)

Starts from **30th March 2019.** Test Series will be conducted at all our centres

APPSC-AEE (Prelims) Online Test Series

PUNE

16th Feb 2019

No. of Tests : 18 Topic Wise Tests : 15 | Mock Tests - 3

Civil | Mechanical | Electrical

Available Now

All Tests will be available till 18th February 2019

🕓 040 - 48539866 / 040 - 40136222 🛛 🗳 testseries@aceenggacademy.com

GATE-2019_Solutions

25

ACE Engineering Publications

ACE

ACE Engineering Publications

(26)

CSIT

ACE Engineering Publications

ACE Engineering Publications

f_1f_2	f_3	$f_1.f_2 \oplus f_3$
0	0	0
0	1	1
1	0	1
1	1	0

[If both cases present then that term absent in f]

Now f_1 . $f_2 \oplus f_3$

 $f_1 \cdot f_2 = \Sigma (2, 8, 14)$

 $f_3 = \Sigma(2, 7, 11, 14)$

 $f=f_1. f_2 \oplus f_3 = \Sigma(7, 8, 11)$

 $f = \Sigma(7, 8, 11)$

End of Solution

27

- 27. Suppose that in a IP over Ethernet network, a machine X wishes to find the MAC address of another machine Y in its subnet. Which one of the following techniques can be used for this?
 - (A) X sends an ARP request packet to the local gateway's IP address which then finds the MAC address of Y and sends to X.
 - (B) X sends an ARP request packet with broadcast IP address in its local subnet.
 - (C) X sends an ARP request packet to the local gateway's MAC address which then finds the MAC address of Y and sends to X.
 - (D) X sends an ARP request packet with broadcast MAC address in its local subnet.

27. Ans: (D)

Sol: X sends an ARP request packet with broadcast MAC address in its local subnet.

ACE

CSIT

ARP request packet (Broadcast by X)
Source IP Address = X IP Address
Destination IP Address = Y IP Address
Source MAC Address = X MAC Address
Destination MAC Address = BroadCast MAC Address
(FF :: FF::FF::FF::FF)
ARP Reply packet (Unicast by Y)
Source IP Address = Y IP Address
Destination IP Address = X IP Address
Source MAC Address = Y MAC Address
Destination MAC Address = X MAC Address
End of Solution
Consider the following grammar and the semantic actions to support the inherited type declaration

28. Consider the following grammar and the semantic actions to support the inherited type declaration attributes. Let X1, X2, X3, X4, X5 and X6 be the placeholders for the non-terminals D, T, L or L1 in the following table:

Production rule	Semantic action
$D \rightarrow TL$	$X_1.type = X_2.type$
$T \rightarrow int$	T.type = int
$T \rightarrow float$	T.type = float
$L \rightarrow L_1$, id	$X_3.type = X_4.type$
	addType(id.entry, X5.type)
$L \rightarrow id$	addType(id.entry, X ₆ .type)

Which one of the following are the appropriate choices for X_1 , X_2 , X_3 and X_4 ?

(A) $X_1 = T$, $X_2 = L$, $X_3 = T$, $X_4 = L_1$ (B) $X_1 = T$, $X_2 = L$, $X_3 = L_1$, $X_4 = T$

(C) $X_1 = L, X_2 = T, X_3 = L_1, X_4 = L$ (D) $X_1 = L, X_2 = L, X_3 = L_1, X_4 = T$

28. Ans: (C)

Sol: D \rightarrow TL {X₁.type = X₂.type}

 $T \rightarrow int \{T.type = int\}$

 $T \rightarrow \text{float} \{T.\text{type} = \text{float}\}$

	ACE Engineering Publications	(29)	GATE-2019_Solutions		
	$L \rightarrow L_1$, id {X ₃ .type = X ₄ .type, addT	Type (id.entry, X ₅ .type)}			
	$L \rightarrow id \{addType (id.entry, X_6.type)\}$)}			
	Case (i):				
	$D \rightarrow TL$				
	$T \rightarrow int$				
	$T \rightarrow float$				
	Here, T.type is known as either int o	or float.			
	$D \rightarrow TL$ semantic should assign T.ty	ype to L.type.			
	So. L.Type = T.type.				
	Therefore, $X_1 = L$ and $X_2 = T$.	NEERING			
	So, SDT is given below.				
	$D \rightarrow TL \{L.type = T.type\}$				
	$T \rightarrow int \{T.type = int\}$	7			
	$T \rightarrow \text{float} \{\text{T.type} = \text{float}\}$				
	$L \rightarrow L_1$, id{ L_1 .type = L.type; addType	pe(id.entry, L.type)}			
	$L \rightarrow id \{addType(id.entry, L.type)\}$	\rightarrow			
	X_1 is L, X_2 is T, X_3 is L_1 , X_4 is L				
		End of Solution			
29.	Consider the following statements:	Since 1995.			
	I. The smallest element in a max-heap is always at a leaf node.				
	II. The second largest element in a r	nax-heap is always a child of th	ne root node.		
	III. A max-heap can be constructed	from a binary search tree in $\Theta($	n) time.		
	IV. A binary search tree can be cons	structed from a max-heap in $\Theta($	n) time.		
	Which of the above statements are T	TRUE?			
	(A) I, III and IV	(B) II, III and IV			
	(C) I, II and III	(D) I, II and IV			
29.	Ans: (C)				
		End of Solution			

HEARTY CONGRATULATIONS TO OUR ESE 2018 RANKERS

AIR

AIR

AIR

RAMESH KAMULLA

AMIT KUMAR ME

RATIPALLI NAGESWAR

AIR

AIR

AIR

PRAVEEN KUMAR

KARTHIK KOTTURU

TEKCHAND DESHWAL

SHANAVAS CP E&T

CE

AIR

AIR

AIR

AIR

AIR

AIR

MAYUR PATIL ME

RISHABH DUTT CE

ROHIT KUMAR CE

PUNIT SINGH CE

JAPJIT SINGH E&T

AIR

ANKIT GARG

NARENDRA KUMAR

and many more ...

EE

SURYASH GAUTAM E&T

ACE Engineering Publications

CSIT

	$L := \{ x \in \sum^{n} \pi(x) = id \}$ $x_{1 \circ x_{1}} = x_{1}$ $x_{1 \circ x_{2}} = x_{2}$ $x_{2 \circ x_{2}} = x_{1}$ $x_{2 \circ x_{1}} = x_{2}$				
	DFA that accepts L:				
	2 states are enough to accept L.				
	If we have Σ that contain set of bijections from {1, 2,5} to {1, 2,5} then $ \Sigma = 120$				
	$\sum = \{x_1, x_2, x_3, \dots, x_{120}\}.$				
	Similarly, we can design DFA with 120 states.				
	End of Solution				
33.	Which one of the following languages over $\Sigma = \{a, b\}$ is NOT context-free?				
	(A) $\{ww^R \mid w \in \{a, b\}^*\}$ (B) $\{a^n b^i \mid i \in \{n, 3n, 5n\}, n \ge 0\}$				
	(C) $\{wa^{n}b^{n}w^{R} \mid w \in \{a, b\}^{*}, n \ge 0\}$ (D) $\{wa^{n}w^{R}b^{n} \mid w \in \{a, b\}^{*}, n \ge 0\}$				
33.	Ans: (D)				
Sol:	(A) $\{ww^{R} w \in (a + b)^{*}\}$ is CFL				
	(B) $\{a^{n}b^{i} \mid i \in \{n, 3n, 5n\}, n \ge 0\} = \{a^{n}b^{n}\} \cup \{a^{n}b^{3n}\} \cup \{a^{n}b^{5n}\}$ is also CFL.				
	(C) $\{wa^{n}b^{n}w^{R} \mid w \in (a+b)^{*}, n \ge 0\}$ is CFL				
	Equivalent CFG:				
	$S \rightarrow aSa \mid bSb \mid A$				
	$A \rightarrow aAb \mid \epsilon$				
	(D) $\{wa^{n}w^{R}b^{n} w \in (a+b)^{*}, n \ge 0\}$ is not CFL				
	End of Solution				

33

ACE Engineering Publications

ACE Engineering Publications

GATE-2019_Solutions

ACE

37. Ans: 160 **Sol:** cache size = 8 words word size = 4Bcache size = 8 * 4B = 32 BMemory clock rate = 60 - MHzMemory cycle time = $\frac{1}{60 \text{ Hz}} = \frac{1}{60 * 10^6}$ sec onds No. of cycles needed to transfer 1 block (8 words) 1 cycle for address + 3 cycles to fetch 8 words + 8*1=8 cycles to transmit \Rightarrow 12 – cycles Time required to access and transfer 8 words (32B) from memory = $12 \times \frac{1}{60 \times 10^6}$ sec onds $=\frac{1}{5\times10^6}$ sec onds In $\frac{1}{5 \times 10^6}$ second amount of data accessed =32 bytes In 1 second amount of data accessed = $\frac{32B}{1}$ $\frac{1}{5 \times 10^6}$ sec onds Since 1995 $= 32 \times 5 \times 10^6$ Bytes / second $= 160 \times 10^6$ Bytes / second End of Solution 38. There are *n* unsorted arrays: $A_1, A_2, ..., A_n$. Assume that *n* is odd. Each of $A_1, A_2, ..., A_n$ contains n distinct elements. There are no common elements between any two arrays. The worst-case time complexity of computing the median of the medians of A1, A2, An is $(A) O(n^2)$ (B) $\Omega(n^2 \log n)$ (D) $O(n \log n)$ (C) O(n)38. Ans: (A) **End of Solution**

37

ACE Engineering Publications

HEAD OFFICE : HYDERABAD

Sree Sindhi Guru Sangat Sabha Association, # 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001. Address - II : # 204, Rahman Plaza, Abids, Hyderabad - 500001. Contact No: 040-23234418/19/20, 040-24750437 E-Mail : hyderabad@aceenggacademy.com

DELHI

Address I : Plot No. 3, Kh.No. 264, Near Saket Metro Station, Saidulajab, New Delhi-110030. Address II : # 63, FNS House, Beside Oriental Bank of Commerce, Near Hauz Khas Metro Station,Kalu Sarai,New Delhi-110016. Contact No : 9205282121, 9205282123, 7838971777, 9205282120.

BHOPAL

G - 1, Plot no : 207, Zone II, M.P Nagar, M. P - 462013. Contact No: 0755-2554512, 0755-2554612, 0755-4280242

PUNE

302, Vekatesh Villa, Upstairs JANATHA Sahakari Bank, Shivaji Nagar, Pune, Maharashtra - 411005. Contact No : 020- 25535950, 09343499966

BHUBANESWAR

Plot No: 625/A, 3rd Floor, Janpath, Saheed Nagar, Bhubaneswar. Contact No: 0674-2540340, 9861566244, 09379099966

LUCKNOW

A-7, Sector-J, Aliganj, Lucknow, Uttar Pradesh – 226024 Contact No. : 93421 99966, 8081 99 99 66, 0522 4046966

PATNA

1st Floor, N. P. Tower, Kankarbagh, PATNA - 800020. Contact No.: 08252194512, 9308699966, 9212188818

DILSUKH NAGAR

Gaddiannaram,Dilsukhnagar, Hyderabad. Contact No : 040 – 40209345, 040 – 40044451 **KUKATPALLY** 2nd floor, BSR Bellezza, Opp : JNTUH Campus, KPHB, Kukatpally, Hyderabad- 500072. Contact No: 040-6597 4465, 040-40199966, 93476 99966

BENGALURU

223, G R Arcade, 2nd floor, Malleswaram, Bangalore - 560003. Contact No: 080-23466699,41526699, 09341299966.

CHENNAI

39, North Usman Road, T Nagar, Chennai - 600017. Contact No : 044 - 42123289 , 9343799966

VISHAKAPATNAM

Door No. 48-14-91/6, 3rd Floor, Sri Nagar, Visakhapatnam – 530001. Contact No : 0891-6616001, 08374808999

VIJAYAWADA

Opp Stella College, Near Benz Circle, Vijayawada – 520 008 Contact No. : 0866-2490001, 96760 76001

TIRUPATI

Plot No:10, AIR Bypass Road, Tirupathi – 517502. Contact No : 0877-2244388, 9618155166, 09341499966

KOLKATA

3rd Floor, 369/4, EM Bypass, Avishar Shopping Mall, Kolkata - 700078. Contact No : 8297899966, 8886899966

AHMEDABAD

Shop.No 231, 2nd Floor, Sunrise Mall, Near Mansi Circle, Vasthrapur-Gujarat-380015. Contact No : 079 4890 2228, 9160499966

GATE-2019 _Solutions

39

Process	P ₁	P ₂	P ₃	P ₄
Arrival time	0	1	3	4
CPU burst time	3	1	3	Ζ

These processes are run on a single processor using preemptive Shortest Remaining Time First scheduling algorithm. If the average waiting time of the processes is 1 millisecond, then the value of Z is_____.

ACE Engineering Publications

ACE

43. Consider the following sets:

ACE

S1. Set of all recursively enumerable languages over the alphabet $\{0, 1\}$

41

- S2. Set of all syntactically valid C programs
- S3. Set of all languages over the alphabet $\{0, 1\}$
- S4. Set of all non-regular languages over the alphabet $\{0, 1\}$
- Which of the above sets are uncountable?
- (A) S1 and S2
- (C) S3 and S4
- 43. Ans: (C)
- Sol: S1: Set of all RELs over {0, 1} is countable
 - S2: Set of all syntactically valid C programs is countable
 - **S3:** Set of all languages over $\{0, 1\}$ is uncountable
 - S4: Set of all non regular languages is uncountable
 - ∴ S3 and S4 are uncountable

End of Solution

(B) S1 and S4

(D) S2 and S3

- 44. Consider the following snapshot of a system running *n* concurrent processes. Process *i* is holding X_i instances of a resource R, $1 \le i \le n$. Assume that all instances of R are currently in use. Further, for all *i*, process *i* can place a request for at most Y_i additional instances of R while holding the X_i instances it already has. Of the *n* processes, there are exactly two processes p and q such that $Y_p = Y_q = 0$. Which one of the following conditions guarantees that no other process apart from p and q can complete execution?
 - (A) Min $(X_p, X_q) \le Max \{Y_k \mid 1 \le k \le n, k \ne p, k \ne q\}$
 - (B) $X_p + X_q < Min \{Y_k \mid 1 \le k \le n, k \ne p, k \ne q\}$
 - (C) Min $(X_p, X_q) \ge$ Min $\{Y_k \mid 1 \le k \le n, k \ne p, k \ne q\}$
 - (D) $X_p + X_q < Max \{Y_k \mid 1 \le k \le n, k \ne p, k \ne q\}$

ACE Engineering Publications

ACE Engineering Publications

CSIT

44. Ans: (B)

- Sol: Two processes p & q are doing their work because they require zero more instances of resource.
 - After Finishing they will release whatever they have i.e.(X_p + X_q) and then other process can continue their execution.

Holding Requesting

P_1-	X_1	—	$Y_1 = 0$	\leftarrow Assume its p
P_2-	X_2	—	$Y_2 = 0$	\leftarrow Assume its q
P_3-	$\widetilde{X_3}$	—	$Y_3 = 8$	
P_4-	X_4	- /	Y ₄ = 7	Lets take random value
P_5-	X5		$Y_5 = 15$	RING
P_6-	X ₆	-	$Y_6 = 12$	The second secon

Now, To guarantee that, any other process (P_3 to P_6) will not complete execution, we must have less resources than the minimum request i.e. 7

So, if $(X_1 + X_2)$ is less than 7, no process will execute after $P_1 \& P_2$.

$$(X_1 + X_2) < Min(Y_3, Y_4, Y_5 and Y_6)$$

End of Solution

45. Let T be a full binary tree with 8 leaves. (A full binary tree has every level full). Suppose two leaves a and b of T are chosen uniformly and independently at random. The expected value of the distance between a and b in T (i.e., the number of edges in the unique path between a and b) is (rounded off to 2 decimal places)_____.

45. Ans: 4.86

Sol: From a Full Binary Tree 'T' of 8 leaf nodes, Two leaf nodes, A and B are selected randomly and uniformly. , then expected distance calculation is as follows:

Considering the above figure, there are 3 cases:

Case 1: The two leaf nodes are siblings, then Distance between siblings (1, 2) (3, 4) (5, 6) (7, 8) = 2

43

Case 2: The two leaf nodes are NOT siblings, But their parents are siblings, then the Distance is $\{(1, 3) (1, 4) (5, 7) (5, 8)\} = 4$

Case 3: The two leaf nodes are NOT siblings and their parents are also NOT siblings, but their grand parent is common, then Distance is $\{(1, 5), (1, 6), (1, 7), (1, 8)\} = 6$

In general, The total number of ways of selecting two nodes from 8 leaves is $= {}^{8}C_{2} = \frac{8 \times 7}{2 \times 1} = 28$

Case 1 : Probability of 2 selected leaf nodes being siblings

= number of favourable selections / total number of selections

So, $\frac{4}{{}^{8}C_{2}} = \frac{4}{28} = \frac{1}{7}$

ACE

Similarly for Case 2:

Favourable are (1, 3) (1, 4) (2, 3) (2, 4) (5, 7) (5, 8) (6, 7) (6, 8) = 8

So,
$$P = \frac{8}{{}^8C_2} = \frac{8}{28} = \frac{2}{7}$$

Similarly for Case 3:

favourable
$$\Rightarrow$$
 (1, 5), (1, 6) (1, 7) (1, 8) = 4
(2, 5), (2, 6), (2, 7), (2, 8) = 4
(3, 5), (3, 6), (3, 7), (3, 8) = 4
(4, 5), (4, 6), (4, 7), (4, 8) = 4
16

So, P =
$$\frac{16}{{}^8C_2} = \frac{16}{28} = \frac{4}{7}$$

Hence, Case 1 + Case 2 + Case 3, Probability is one as all the cases are considered

$$\left\{\frac{1}{7} + \frac{2}{7} + \frac{4}{7}\right\} = \frac{1+2+4}{7} = \frac{7}{7} = 1$$

ACE Engineering Publications

ACE

CSIT 44 Expected distance = $\sum_{i=1}^{3} probability \times distance$ $= \frac{1}{7}(2) + \frac{2}{7}(4) + \frac{4}{7}(6) = \frac{2}{7} + \frac{8}{7} + \frac{24}{7} = \frac{34}{7} = 4.86$ **End of Solution** 46. Consider the following C program: #include <stdio.h> int r() { static int num = 7: return num --} int main () { for (r(); r(); r()) printf ("%d", r ()); return 0: } Which one of the following values will be displayed on execution of the programs? (B) 63 1995 (A) 630 (D) 52 (C) 41 46. Ans: (D) Sol: The for loop contain three parts and they are initialization, testing condition, updating values of the variable. When we call r(), first time then it will return '7' When we call r(), second time then it will return 6 and '6' is non zero so the printf ("%d", r()); will print the value '5'. When we call r(), from updating values then it will return 4, When we call r() from testing condition then it will return 3 and it is non zero so printf("%d", r()) will print the value 2 so the output is 52.

ACE Engineering Publications

GATE-2019 _Solutions

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER COURSE		ВАТСН ТҮРЕ	DATE	
HYDERABAD - DSNR	GATE + PSUS – 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019	
HYDERABAD - DSNR	ESE + GATE + PSUs - 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019	
HYDERABAD - DSNR	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019	
HYDERABAD - DSNR	GATE + PSUs - 2020	Morning/Evening Batch	24th February 2019	
HYDERABAD - DSNR	ESE – 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019	
HYDERABAD - Abids	GATE + PSUS – 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019	
HYDERABAD - Abids	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019	
HYDERABAD - Abids	ESE + GATE + PSUs - 2020	Morning Batch	24th February 2019	
HYDERABAD - Abids	ESE – 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019	
HYDERABAD - Abids	GATE + PSUs - 2020	Weekend Batch	24th February 2019	
HYDERABAD - Abids	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019	
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Morning/Evening Batch	24th February 2019	
HYDERABAD - Kukatpally	GATE + PSUS – 2020	Regular Batches	17th May, 1st, 16th June, 1st July 2019	
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019	
HYDERABAD - Kothapet ESE + GATE + PSUS – 2020		Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019	
HYDERABAD - Kothapet	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019	
DELHI	ESE+GATE+PSUs - 2020	Weekend Batches	9th Mar 2019	
DELHI	ESE+GATE+PSUs - 2020	Regular Evening Batch	18 th Feb 2019	
DELHI	ESE+GATE+PSUs - 2020	Regular Day Batch	11 th May 2019	
DELHI	ESE+GATE+PSUs - 2020	Spark Batch	11 th May 2019	
DELHI	GATE+PSUs - 2020	Short Term Batches	11 th , 23 rd May 2019	
BHOPAL	ESE+GATE+PSUs - 2020	Regular Day Batch	01st Week of June 2019	
BHUBANESWAR	GATE+PSUs - 2020	Weekend Batch	16 th Feb 2019	
BHUBANESWAR	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019	
CHENNAI	GATE+PSUs - 2020 & 21	Weekend Batch	16 th Feb 2019	
CHENNAI	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019	
BANGALORE	GATE+PSUs - 2020 & 21	Weekend Batch	23 rd Feb 2019	
BANGALORE	GATE+PSUs - 2020	Regular Batch	17 th June 2019	

FOR BATCH DETAILS VISIT : www.aceenggacademy.com

	ACE Engineering Publications	(48)	CSIT
49.	Ans: 1		
Sol:	P X Y Z X1 Y1 Z1 X1 Y1 Z2 X2 Y2 Z2 X2 Y2 Z4	$ \begin{array}{c c} R \\ \hline Y V \\ Y1 V1 \\ Y3 V2 \\ Y2 V3 \\ Y2 V2 \end{array} $	
	Result of the express $ \frac{Q}{X Y T} $ $ \frac{X Y T}{X2 Y1 2} $ $ X1 Y2 5 $ $ X1 Y1 6 $ $ X3 Y3 1 $	sion $\prod_{X} \left(\sigma_{P,Y=R,Y \land R, V=V_{2}}^{(P \times R)} \right) is \frac{X}{X2}$ $\frac{\frac{R}{Y - V}}{Y1 - V1}$ $\frac{Y3 - V2}{Y2 - V2}$ $\frac{Y2 - V2}{Y2 - V2}$	
	Result of the express The result of (X2) –	sion $\prod_{X} \left(\sigma_{Q,Y=R,Y \land Q,T>2}^{(Q \times R)} \right)$ is $\frac{X}{X1}$ (X1) = X2	
50.	Consider the followi # include <stdio.h> int main () { float sum = while (i/j > { j = sur pri } return 0; }</stdio.h>	ng C program: Since 1995 = 0.0, j = 1.0, i = 2.0; > 0.0625) j + j; n = sum + i/j; ntf("%f\n", sum);	
ACE I	Engineering Publications	derabad • Delhi • Bhopal • Pune • Bhubaneswar • Lucknow • Patna • Bengaluru • Chennai • Vijayawada • Vizag • Tirup	ati • Kolkata • Ahmedabad

	ACE Engineering Publication	Cons		(49)	GATE-2019_Solutions	
	The num	nber of tim	es the variable s	sum will be prin	ted, when the above program is executed, is	
	·					
50.	Ans: 5					
Sol:	Step 1:	i = 2.0,	j = 1.0,	i/j > 0.0625	True	
	Step 2:	i = 2.0,	j = 2.0	i/j > 0.0625	True	
	Step 3:	i = 2.0,	j = 4.0	i/j > 0.0625	True	
	Step 4:	i = 2.0,	j = 8.0	i/j > 0.0625	True	
	Step 5:	i = 2.0,	j = 16.0	i/j > 0.0625	True	
	Step 6:	i = 2.0,	j = 32.0	i/j > 0.0625	False	
				NEERINC		
	So the n	umber of tin	nes printf("%f",	sum) executed is	5.1	
				End of Solution		
51.	Conside	r the first or	der predicate for	mula φ:	2	
	$ \forall x[(\forall z \ z x \Rightarrow ((z = x) \lor (z = 1))) \Rightarrow \exists w \ (w > x) \land (\forall z \ z w \Rightarrow ((w = z) \lor (z = 1)))] $ Here 'a b' denotes that 'a divides b', where a and b are integers. Consider the following sets: S1. {1, 2, 3 100} S2. Set of all positive integers					
	S3. Set of all integers					
	Which o	of the above	sets satisfy φ?	Since 199	75	
	(A) S2 a	and S3		(B) S1	l, S2 and S3	
	(C) S1 a	nd S2		(D) S	1 and S3	
51.	Ans: (A)				
Sol:	Given p	redicate form	nula can be inter	preted as:		
	"For each prime 'x', there exist prime 'w' where w>x"					
	S1: {1, 2	1: $\{1, 2, 3, \dots, 100\}$ fails to satisfy the formula because when $x = 97$ there is no w exist.				
	S2 and S3 are infinite sets, So for every x we can find w.					
	Therefor	re S2 & S3 o	an satisfy the gi	ven formula.		
	End of Solution					

ACE Engineering Publications

50

CSIT

ACE Engineering Publications

53. A relational database contains two tables Student and Performance as shown below:

51

S		
Roll_no	Student_name	
1	Amit	
2	Priya	
3	Vinit	
4	Rohan	
5	Smita	

ACE

Performance			
Roll_no	Subject_code	Marks	
1	А	86	
1	В	95	
1	С	90	
2	A	89	
2	С	92	
EERIN	С	80	

The primary key of the Student table is Roll_no. For the Performance table, the columns Roll_no. and Subject_code together form the primary key. Consider the SQL query given below:

SELECT S.Student_name, sum(P.Marks)

FROM Student S, Performance P

WHERE P.Marks > 84

GROUP BY S.Student_name;

The number of rows returned by the above SQL query is

53. Ans: 5

Sol: As there is no join condition, it is a Cartesian Product of student and performance tables.

Because of the statement "Group by S.Student_name", the rows are divided into 5 groups, one for each student and for each group one row will be returned as output.

Since 1995

End of Solution

ACE Engineering Publications

ACE CSIT 52 54. Let the set of functional dependencies $F = \{QR \rightarrow S, R \rightarrow P, S \rightarrow Q\}$ hold on a relation schema X = (PQRS). X is not in BCNF. Suppose X is decomposed into two schemas Y and Z, where Y = (PR) and Z = (QRS). Consider the two statements given below: I. Both Y and Z are in BCNF II. Decomposition of X into Y and Z is dependency preserving and lossless Which of the above statements is/are correct? (A) II only (B) Neither I nor II (C) I only (D) Both I and II 54. Ans: (A) **Sol:** $F = {QR \rightarrow S, R \rightarrow P, S \rightarrow Q}$ The decomposed relations Y(PR) and Z(QRS) satisfying the dependencies $\{R \rightarrow P\}$ and $\{QR \rightarrow S,$ $S \rightarrow Q$ respectively. Relation Y is in BCNF but relation Z is not in BCNF because in $S \rightarrow Q S$ is not a super key. All the dependencies of relation X is satisfying on relations Y and Z. **End of Solution** 55. Assume that in a certain computer, the virtual addresses are 64 bits long and the physical addresses are 48 bits long. The memory is word addressible. The page size is 8 kB and the word size is 4 bytes. The Translation Look-aside Buffer (TLB) in the address translation path has 128 valid entries. At most how many distinct virtual addresses can be translated without any TLB miss? (D) 8×2^{20} (A) 4×2^{20} (B) 16×2^{10} (C) 256×2^{10} 55. Ans: (C) **Sol:** As given memory is word addressable. Word size = 4 Bytes Page size = $8KB = \frac{8KB}{4B}$ words = 2K words Number of valid entries in TLB = 128128 entries can translate 128 page numbers in frame numbers. Hence, number of distinct virtual addresses translated without TLB miss = $128 \times 2K$ addresses $= 256 \times 2^{10}$ **End of Solution**

ACE Engineering Publications

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER	COURSE	ВАТСН ТҮРЕ	DATE
LUCKNOW	GATE+PSUs - 2020	Regular Batch	Mid - May 2019
PATNA	GATE+PSUs - 2020	Weekend Batch	16 th Feb 2019
VIJAYAWADA	GATE+PSUs - 2020 & 21	Weekend Batch	10 th , 24 th Feb 2019
VIJAYAWADA	GATE+PSUs - 2020	Summer + Weekend	6 th , 15 th May 2019
VIJAYAWADA	GATE+PSUs - 2020	Regular Batch	8 th , 22 nd June 2019
KOLKATA	GATE+PSUs - 2020&21	Weekend Batch	16 th Feb 2019
KOLKATA	GATE+PSUs - 2020	Regular Batch	8 th June 2019
KOLKATA	ESE+GATE+PSUs - 2021	Evening & Weekend	16 th Feb 2019
AHMEDABAD	GATE+PSUs - 2020	Regular Batch	02nd Week of June 2019

GENCO TRANSCO DISCOMS ELECTRICAL ENGINEERING

Regular Batch : 10th Feb 2019

@ KUKATPALLY (HYDERABAD)