



**ACE**  
**Engineering Academy**  
Leading Institute for ESE/GATE/PSUs

Hyderabad | Delhi | Ahmedabad | Bhopal | Pune | Bhubaneswar | Bengaluru  
Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi | Kukatpally | Kolkata

# **GATE- 2019**

**Questions with Detailed Solutions**

**ELECTRONICS & COMMUNICATION  
ENGINEERING**

ACE Engineering Academy has taken utmost care in preparing the **GATE-2019** Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).



**GATE - 2019**  
**ELECTRONICS & COMMUNICATION**  
**ENGINEERING**

**Forenoon  
Session**  
**09/02/19**

**Subject wise weightage**

| <b>S. No.</b>             | <b>Name of the Subject</b> | <b>1 Mark (Q)</b> | <b>2 Marks (Q)</b> | <b>Total Marks</b> |
|---------------------------|----------------------------|-------------------|--------------------|--------------------|
| 1                         | Verbal Ability             | 3                 | 1                  | 5                  |
| 2                         | Numerical Ability          | 2                 | 4                  | 10                 |
| 3                         | Engineering Mathematics    | 5                 | 3                  | 11                 |
| 4                         | Network Theory             | 1                 | 2                  | 5                  |
| 5                         | Control Systems            | 2                 | 4                  | 10                 |
| 6                         | Digital Circuits           | 3                 | 1                  | 5                  |
| 7                         | Signals & System           | 2                 | 3                  | 8                  |
| 8                         | EDC & VLSI                 | 4                 | 8                  | 20                 |
| 9                         | Analog Circuits            | 1                 | 2                  | 5                  |
| 10                        | EMT                        | 3                 | 3                  | 9                  |
| 11                        | Communication Systems      | 4                 | 4                  | 12                 |
| <b>Total No. of Marks</b> |                            | <b>30</b>         | <b>70</b>          | <b>100</b>         |

**Subject Experts,  
ACE Engineering Academy**

## Section : General Aptitude

01. The boat arrived \_\_\_\_\_ dawn.  
 (a) Under      (b) at      (c) on      (d) in

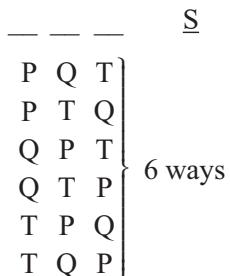
**01. Ans: (b)**

**Sol:** Use preposition 'at' dawn

**End of Solution**

02. When he did come home, she \_\_\_\_\_ him lying dead on the roadside somewhere.  
 (a) concluded      (b) notice      (c) looked      (d) pictured

**02. Ans: (d)**


**Sol:** Pictured means to have a thought, understanding or idea about something or someone.

**End of Solution**

03. Five different books (P, Q, R, S, T) are to be arranged on a shelf. The books R and S are to be arranged first and second, respectively from the right side of the shelf. The number of different orders in which P, Q and T may be arranged is \_\_\_\_\_.  
 (a) 6      (b) 2      (c) 12      (d) 120

**03. Ans: (a)**

**Sol:** Five different books = P, Q, R, S and T from the given data, the above books are arranged as follows



**Another Method:**

From the given data R and S places are fixed and remaining three books can be arranged in  $3!$  ways (i.e.)  $3 \times 2 \times 1 = 6$  ways.

Hence Option (1) is correct.

**End of Solution**

04. The strategies that the company \_\_\_\_\_ to sell its products \_\_\_\_\_ house-to-house marketing.  
 (a) use, includes      (b) uses, include      (c) uses, including      (d) used, includes

**04. Ans: (b)**

**Sol:** Sub + Verb agreement

'The Company' is singular, so 'uses' and the 'strategies' is plural, so 'include'(The company uses, the strategies include).

# RRB (JE)-2019

## Online Test Series



### STAGE - I

Common for all Streams

No. of Tests : 20

Starts from 25<sup>th</sup> February 2019



### STAGE - II

CE | ME | EC | EE

No. of Tests : 20

Starts from 6<sup>th</sup> May 2019



040 - 48539866 / 040 - 40136222



testseries@aceenggacademy.com

ACE Launches

For B.Tech – CSE Students



# GATE



# Placement Training

In Level – 1 Companies

Short Term & Long Term Batches

05. It would take one machine 4 hours to complete a production order and another machine 2 hours to complete the same order. If both machines work simultaneously at their respective constant rates, the time taken to complete the same order is \_\_\_\_\_ hours.

(a) 3/4

(b) 2/3

(c) 7/3

(d) 4/3

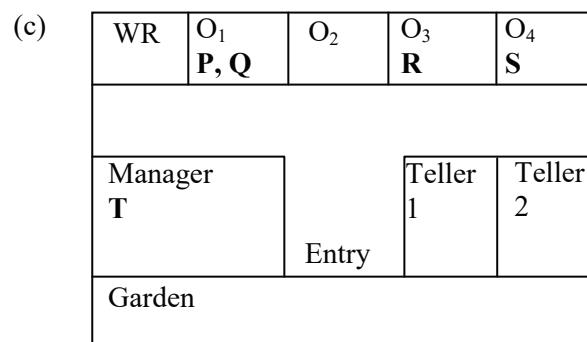
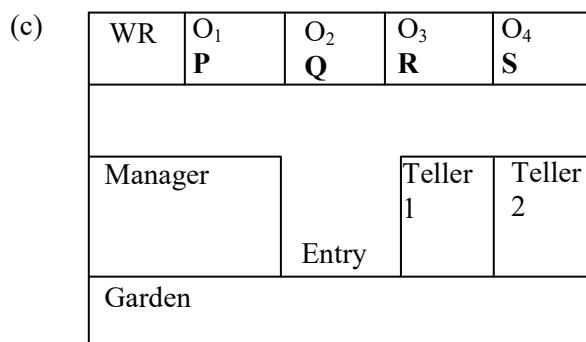
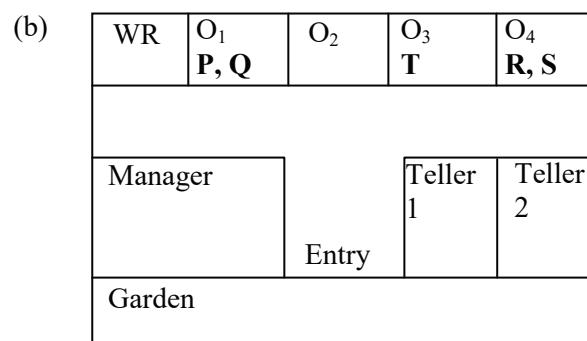
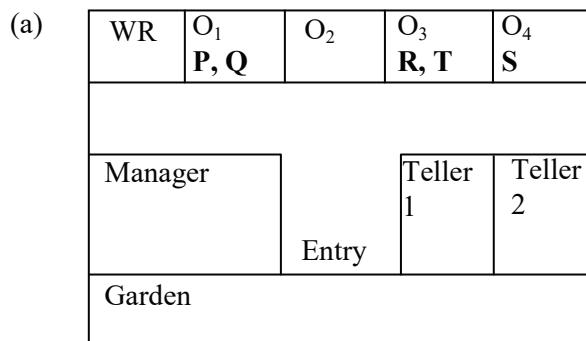
**05. Ans: (d)**

**Sol:** Machine one ( $M_1$ ) can take to complete production = 4 hours

Second Machine ( $M_2$ ) can take to complete production = 2 hours

$$M_1 = 4 \text{ hours, 1 hours} = \frac{1}{4}^{\text{th}} \text{ production}$$

$$M_2 = 2 \text{ hours, 1 hours} = \frac{1}{2}^{\text{th}} \text{ production}$$





$$\text{In one hour } (M_1 + M_2) = \frac{1}{4} + \frac{1}{2} = \frac{1+2}{4} = \frac{3}{4}^{\text{th}}$$

$$\therefore M_1 \text{ and } M_2 \text{ can take to complete production} = \frac{4}{3} \text{ hours}$$

**End of Solution**

06. Five people P, Q, R, S and T work in a bank. P and Q don't like each other but have to share an office till T gets a promotion and moves to the big office next to the garden. R, who is currently sharing an office with T wants to move to the adjacent office with S, the handsome new intern. Given the floor plan, what is the current location of Q, R and T?

(O = Office, WR = Washroom)



06. Ans: (a)

**Sol:** Before getting promotion 'T' sharing with R and P and Q's are working together means they are in same office.

Option '2' is not correct due to T is sharing with R (i.e.) before getting promotion T is not worked alone.

Option '3' is not correct due to 'T' place of work is not defined.

Option '4' is also not correct due to after 'T' getting promotion P and Q is are not working together.

## End of Solution

07. Four people are standing in a line facing you. They are Rahul, Mathew, Seema and Lohit. One is an engineer, one is a doctor, one a teacher and another a dancer. You are told that:

07. Ans: (a)

**Sol:** Four peoples are Rahu, Mathew, Seema and Lohit and in the group one engineer, one is a doctor, one a teacher and another a dancer.

### Statement 1:

Seema Mathew

### Statement 2:

Lohit — — — — Engineer

### Statement 3:

Rahul ≠ doctor

#### Statement 4:

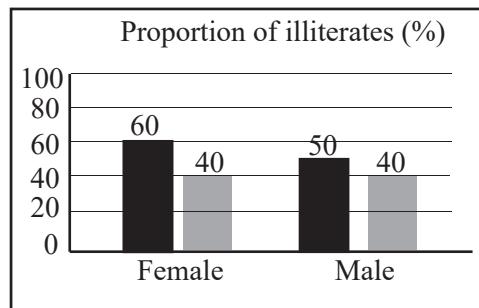
Teacher (or) Dancer Dancer (or) Teacher

### Statement 5:

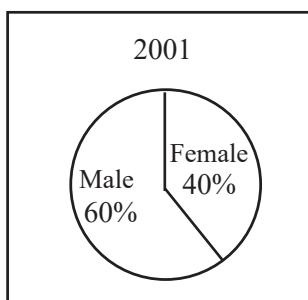
Seema

Doctor

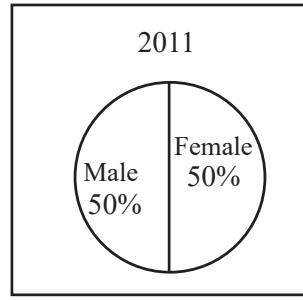
From above conditions, the following line can be formed


|        |                |                |          |
|--------|----------------|----------------|----------|
| Lohit  | Seema          | Rahul          | Mathew   |
| ↓      | ↓              | ↓              | ↓        |
| Doctor | Teacher/Dancer | Teacher/Dancer | Engineer |

From above, an engineer in the group is Mathew.


Hence option '1' is correct.

08. The bar graph in Panel(a) shows the propagation of male and female illiterates in 2001 and 2011. The proportions of males and females in 2001 and 2011 are given in Panel(b) and (c), respectively. The total population did not change during this period.


The percentage increase in the total number of literates from 2001 to 2011 is \_\_\_\_.



Panel (a)



Panel (b)



Panel (c)

(a) 35.43

(b) 30.43

(c) 34.43

(d) 33.43

**08. Ans: (b)**

**Sol:** Panel (a), Bar diagram represents, proportion of illiterates (%) dark shaded represents female and male illiterates in 2001 and light shaded represents female and male illiterates in 2011. Panel (b) and panel (c) male and females in 2001 and 2011 respectively.

Assume population in 2001 = 100 nos

from given data, population in 2011 also 100.

From the given Bar charts and pie charts, the following table can be possible.

|             | 2001           |                | 2011           |                |
|-------------|----------------|----------------|----------------|----------------|
|             | Males          | Females        | Males          | Females        |
| Total       | 60             | 40             | 50             | 50             |
| Illiterates | 50% of 60 = 30 | 60% of 40 = 24 | 40% of 50 = 20 | 40% of 50 = 20 |
| Literates   | 60 - 30 = 30   | 40 - 24 = 16   | 50 - 20 = 30   | 50 - 20 = 30   |

Total literates in 2001 =  $30 + 16 = 46$

Total literates in 2011 =  $30 + 30 = 60$

$$\therefore \text{The percentage increase in the total number of literates from 2001 to 2011} = \frac{60 - 46}{46} \times 100 \\ = \frac{14}{60} \times 100 = 30.43\%$$

09. "Indian history was written by British historians – extremely well documented and researched, but not always impartial. History had to serve its purpose: Everything was made subservient to the glory of the Union Jack. Latter-day Indian scholars presented a contrary picture."

From the text above, we can infer that:

Indian history written by British historians \_\_\_\_\_

- (a) was not well documented and researched and was always biased
- (b) was well documented and not researched but was always biased
- (c) was well documented and researched but was sometimes biased
- (d) was not well documented and researched and was sometimes biased

**09. Ans: (c)**

**Sol:** Other choices are irrelevant

**End of Solution**

10. Two design consultants, P and Q, started working from 8 Am for a client. The client budgeted a total of USD 3000 for the consultants. P stopped working when the hour hand moved by 210 degrees on the clock. Q stopped working when the hour hand moved by 240 degrees. P took two tea breaks of 15 minutes each during her shift, but took no lunch break. Q took only one lunch break for 20 minutes, but no tea breaks. The market rate for consultants is USD 200 per hour and breaks are not paid. After paying the consultants, the client shall have USD \_\_\_\_\_ remaining in the budget.

- (a) 000.00
- (b) 166.67
- (c) 300.00
- (d) 433.33

**10. Ans: (b)**

**Sol:** P and Q started work at 8 am

P makes an angle of  $210^\circ$

Q makes an angle of  $240^\circ$

hours hand makes an angle of  $30^\circ$  for each hours (i.e.)  $\frac{360^\circ}{12} = 30^\circ$

P  $\rightarrow 210^\circ$  and Q  $\rightarrow 240^\circ$

Tea break time of P =  $15 \text{ min} \times 2 = 30 \text{ min}$

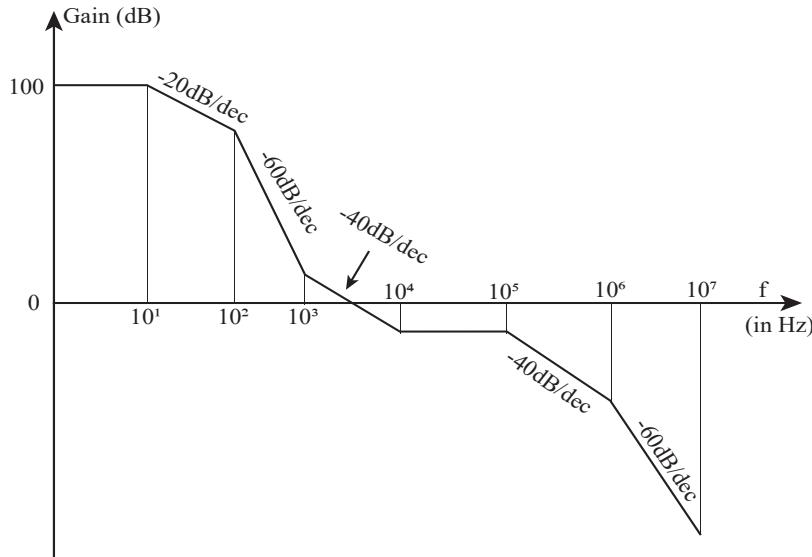
Lunch break time of Q =  $20 \text{ min}$

P's working hours including breaks =  $\frac{210}{30} = 7 \text{ hours}$

Q's working hours including breaks =  $\frac{240}{30} = 8 \text{ hours}$

P's net working hours (excluding breaks) =  $7 \text{ hrs} - 30 \text{ min} = 6 \text{ hrs } 30 \text{ min}$

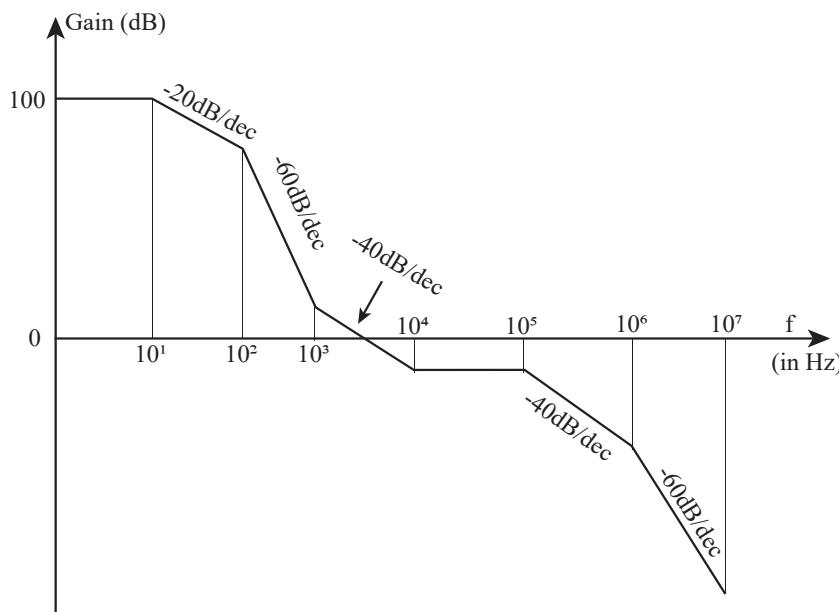
Q's net working hours (excluding breaks) =  $8 \text{ hrs} - 20 \text{ min} = 7 \text{ hrs } 40 \text{ min}$


P's and Q's total working hours =  $6 \text{ hrs } 30 \text{ min} + 7 \text{ hrs } 40 \text{ min} = 14 \text{ hrs } 10 \text{ min}$

Total amount payed to consultants =  $14 \text{ hrs} \times 200 + \frac{10}{60} \times 200 = 2800 + 33.34 = 2833.33$

The remaining amount with client from the budget =  $3000 - 2833.33 = 166.67 \text{ USD}$

## Section : Electronics &amp; Communication Engineering


01. For an LTI system, the Bode plot for its gain is as illustrated in the figure shown. The number of system poles  $N_p$  and the number of system zeros  $N_z$  in the frequency range  $1 \text{ Hz} \leq f \leq 10^7 \text{ Hz}$  is



(a)  $N_p = 4, N_z = 2$   
 (b)  $N_p = 6, N_z = 3$   
 (c)  $N_p = 7, N_z = 4$   
 (d)  $N_p = 5, N_z = 2$

**01. Ans: (b)**

**Sol:**



At  $f = 10\text{Hz} \rightarrow 1\text{pole} (-20 \text{dB/dec})$

$f = 10^2 \text{Hz} \rightarrow (-40 \text{dB/dec}) \rightarrow 2 \text{poles}$

$f = 10^3 \text{Hz} \rightarrow (+20 \text{dB/dec}) \rightarrow 1 \text{zero}$

$f = 10^4 \text{Hz} \rightarrow (+40 \text{dB/dec}) \rightarrow 2 \text{zeros}$

$f = 10^5 \text{Hz} \rightarrow (-40 \text{dB/dec}) \rightarrow 2 \text{poles}$

$f = 10^6 \text{Hz} \rightarrow (-20 \text{dB/dec}) \rightarrow 1 \text{pole}$

$N_p = 6, N_z = 3$

**End of Solution**

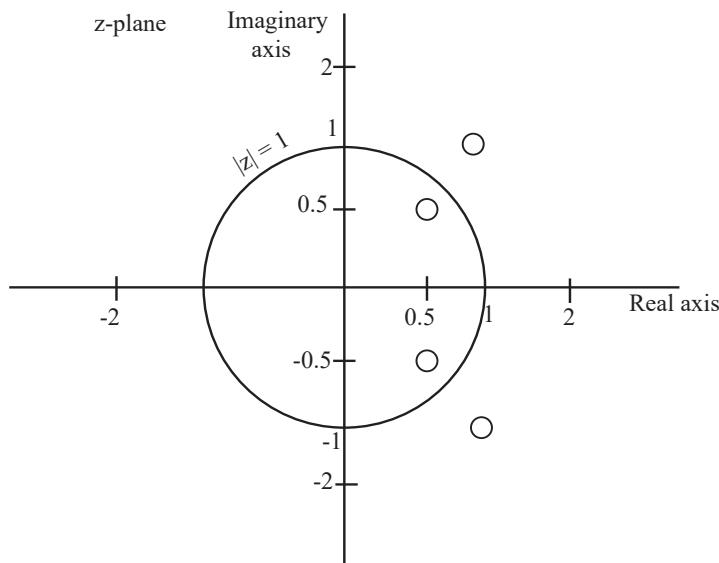
02. Let  $Y(s)$  be the unit-step response of a causal system having a transfer function  $G(s) = \frac{3-s}{(s+1)(s+3)}$

that is,  $Y(s) = \frac{G(s)}{s}$ . The forced response of the system is

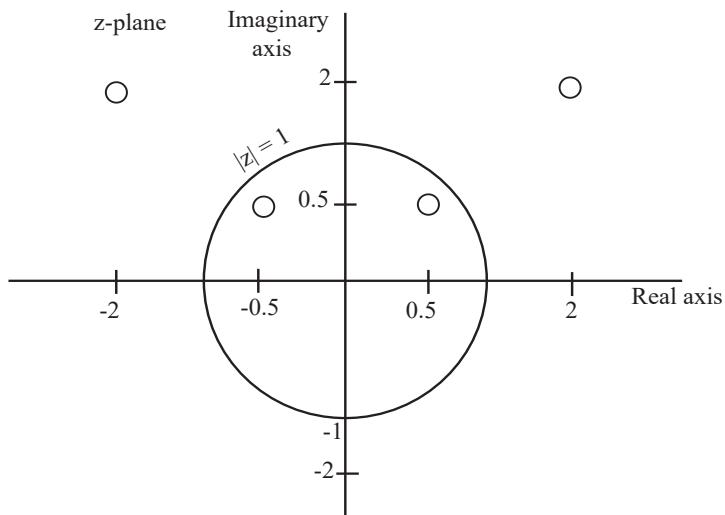
- (a)  $u(t)$
- (b)  $2u(t)$
- (c)  $2u(t) - 2e^{-t}u(t) + e^{-3t}u(t)$
- (d)  $u(t) - 2e^{-t}u(t) + e^{-3t}u(t)$

**02. Ans: (a)**

**Sol:**  $Y(s) \rightarrow$  Unit step response of a causal system


$$\begin{aligned} Y(s) &= \frac{G(s)}{s} = \frac{3-s}{s(s+1)(s+3)} \\ &= \frac{-2}{s+1} + \frac{1}{s+3} + \frac{1}{s} \\ &\downarrow_{\text{ILT}} \end{aligned}$$

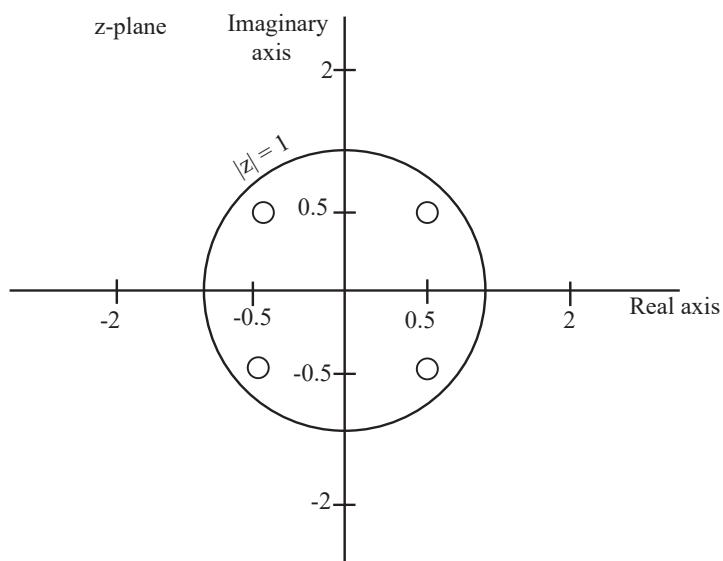
$y(t) = -2e^{-t}u(t) + e^{-3t}u(t) + u(t)$ . So, the forced response of the system is  $u(t)$


**End of Solution**

03. Let  $H(z)$  be the z-transform of a real-valued discrete-time signal  $h[n]$ . If  $P(z) = H(z) H\left(\frac{1}{z}\right)$  has a zero at  $z = \frac{1}{2} + \frac{1}{2}j$ , and  $P(z)$  has a total of four zeros, which one of the following plots represents all the zeros correctly?


(a)




(b)



(c)

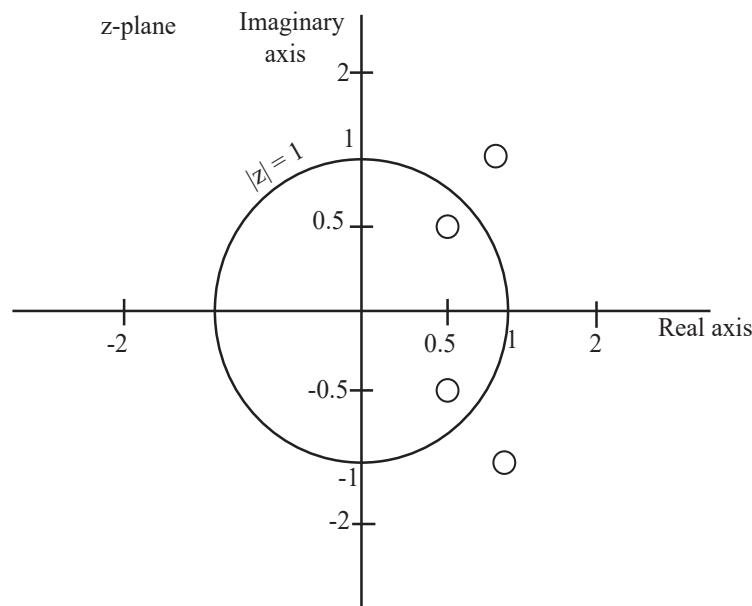


(d)



03. Ans: (a)

**Sol:**  $H(z)$  is Z-transform of real valued discrete time signal  $h(n)$

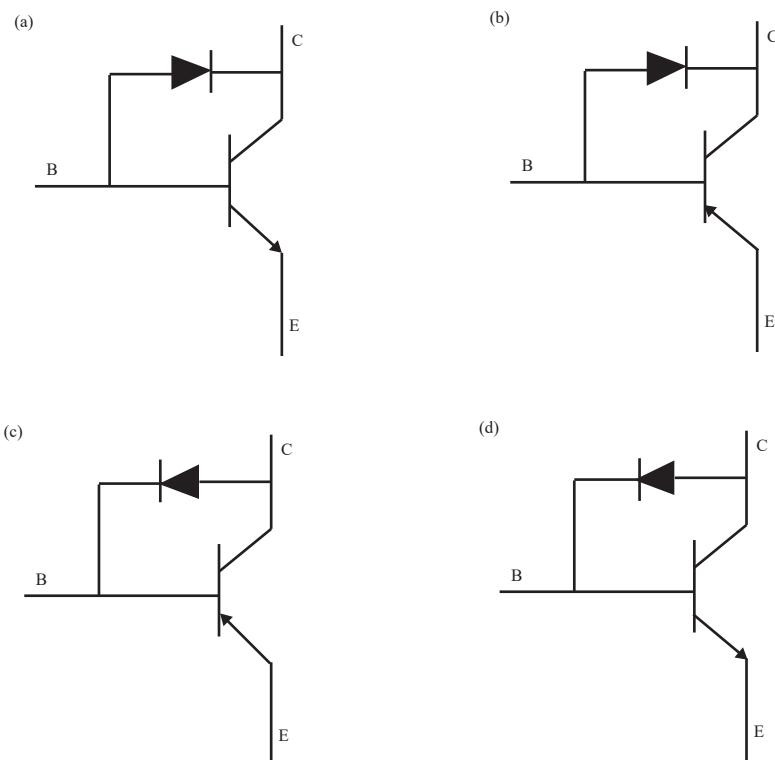
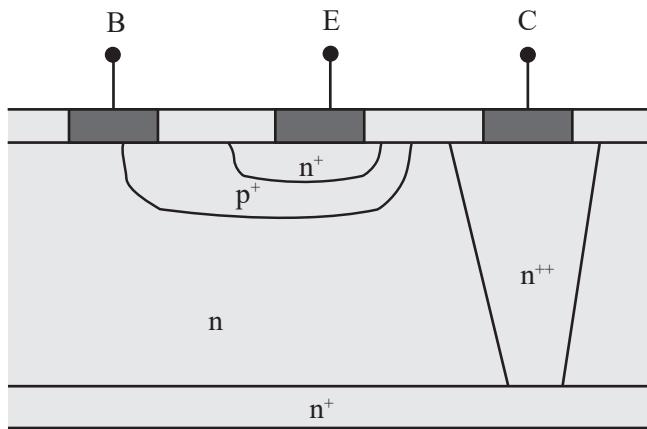

If  $H(z)$  has a zero at  $z_1 = \frac{1}{2} + \frac{j}{2}$

The remaining zeros are  $z_2 = z_1^* = \frac{1}{2} - \frac{j}{2}$

$$z_3 = \frac{1}{z_1} = 1 - j$$

$$z_4 = \left(\frac{1}{z_1}\right)^* = 1 + j$$

The pole zero plot is



---

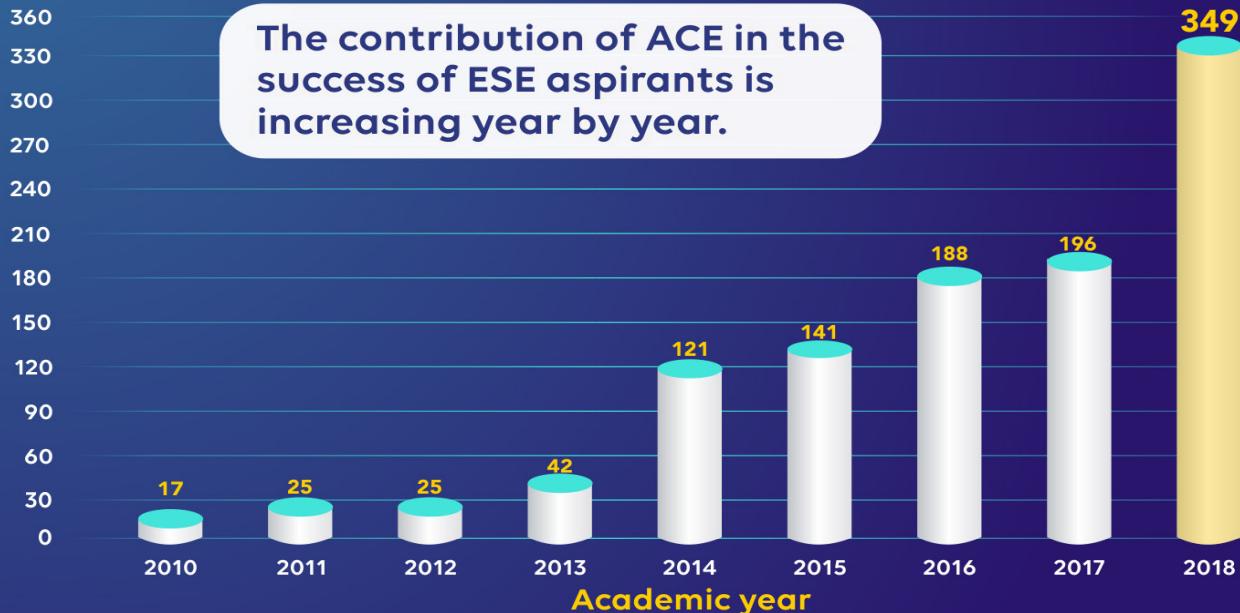
 End of Solution
 

---

04. The correct circuit representation of the structure shown in the figure is



**04. Ans: (a)**


**Sol:** As per the fabrication structure given BJT is npn transistor with base to collector of nn<sup>+</sup> material means act as P-N diode from base to collector i.e at base usually 'n' material acts as p-type with respect to n<sup>++</sup> and n<sup>++</sup> act as n-type material with respect to n-material

**End of Solution**



To WIN The RACE..  
Join ACE...

No. of selections in ESE (IES)



SHORT TERM BATCHES

# SUMMER »SHORT TERM BATCHES

**GATE+PSUs - 2020**

— HYDERABAD —

29<sup>th</sup> April | 06<sup>th</sup> May | 11<sup>th</sup> May  
18<sup>th</sup> May | 26<sup>th</sup> May | 02<sup>nd</sup> June 2019

— DELHI —

11<sup>th</sup> May | 23<sup>rd</sup> May 2019

**ADMISSIONS ARE OPEN**

**EARLY BIRD OFFER :**

Register on or Before 31<sup>st</sup> March 2019 : 3000/- Off

Start Early.. Gain Surely...

05. The families of curves represented by the solution of the equation  $\frac{dy}{dx} = -\left(\frac{x}{y}\right)^n$   
 For  $n = -1$  and  $n = +1$ , respectively, are

- (a) Circles and Hyperbolas
- (b) Parabolas and Circles
- (c) Hyperbolas and Circles
- (d) Hyperbolas and Parabolas

**05. Ans: (c)**

**Sol:** Given  $\frac{dy}{dx} = -\left(\frac{x}{y}\right)^n$

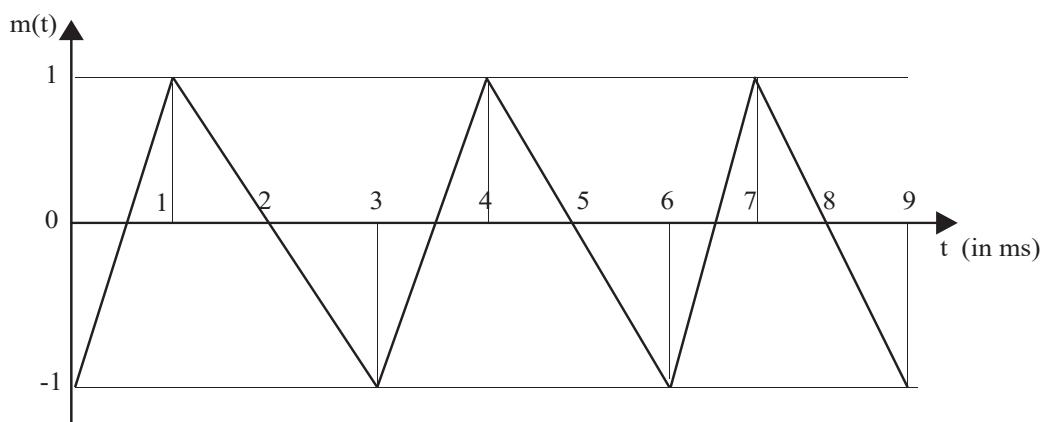
$$\Rightarrow y^n dy + x^n dx = 0 \text{ (use variable separable method)}$$

$$\text{By Integrating } \frac{y^{n+1}}{n+1} + \frac{x^{n+1}}{n+1} = \frac{c^{n+1}}{n+1} \text{ For } (n \neq -1)$$

$$\Rightarrow y^{n+1} + x^{n+1} = c^{n+1}$$

Clearly for  $n = 1$   $x^2 + y^2 = c^2 \Rightarrow$  circle

$$\text{For } n = -1 \quad \frac{dy}{dx} = -\left(\frac{x}{y}\right)^{-1} = -\frac{y}{x}$$


$$\Rightarrow x dy + y dx = 0$$

$$\Rightarrow d(xy) = 0$$

By Integrating  $\rightarrow xy = c \rightarrow$  Hyperbola

**End of Solution**

06. The baseband signal  $m(t)$  shown in the figure is phase-modulated to generate the PM signal  $\phi(t) = \cos(2\pi f_c t + k m(t))$ . The time  $t$  on the x-axis in the figure is in milliseconds. If the carrier frequency is  $f_c = 50$  kHz and  $k = 10\pi$ , then the ratio of the minimum instantaneous frequency (in kHz) to the maximum instantaneous frequency (in kHz) is \_\_\_\_\_ (rounded off to 2 decimal places).



**06. Ans: 0.75**

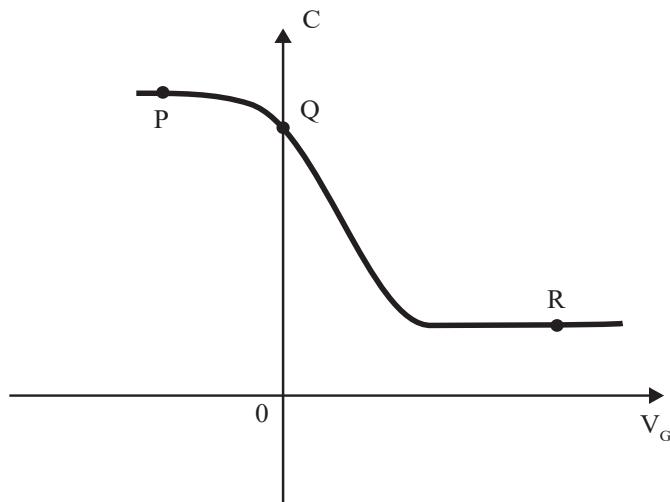
**Sol:**  $f_i = f_c + \frac{k}{2\pi} \frac{d}{dt} m(t)$

$$f_{\max} = f_c + \frac{k}{2\pi} \frac{d}{dt} m(t)_{\max}$$

$$f_{\min} = f_c + \frac{k}{2\pi} \frac{d}{dt} m(t)_{\min}$$

given  $f_c = 50\text{kHz}$ ,  $k = 10\pi$   $\Rightarrow \frac{k}{2\pi} = 5$

$$\left. \frac{dm(t)}{dt} \right|_{\min} = -1k, \left. \frac{dm(t)}{dt} \right|_{\max} = 2k$$


$$\frac{f_{\min}}{f_{\max}} = \frac{50k + 5k}{50k + 10k} = \frac{45k}{60k} = 0.75$$

---

 End of Solution
 

---

07. The figure shows the high-frequency C-V curve of a MOS capacitor (at  $T = 300\text{K}$ ) with  $\Phi_{ms} = 0\text{ V}$  and no oxide charges. The flat-band, inversion, and accumulation conditions are represented, respectively, by the points



- (a) Q, R, P
- (b) Q, P, R
- (c) R, P, Q
- (d) P, Q, R

**07. Ans: (a)**

**Sol:** Given C-V characteristics of MOS capacitor with p-type substrate for high frequencies.

Point-P possible in accumulation mode

Point-Q possible in flat band mode

Point-R possible in inversion mode

So, option (1) is correct

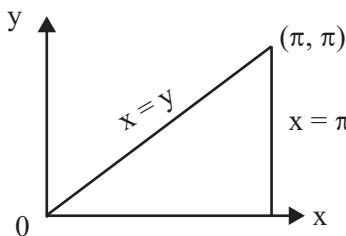
08. The value of the integral  $\int_0^\pi \int_y^\pi \frac{\sin x}{x} dx dy$ , is equal to \_\_\_\_\_.

**08. Ans: 2**

**Sol:**  $\int_{y=0}^\pi \left[ \int_{x=y}^\pi \frac{\sin x}{x} dx \right] dy$

Change the order of integration, then

x: 0 to  $\pi$


y: 0 to x

$$\int_{x=0}^\pi \left[ \int_{y=0}^{y=x} \frac{\sin x}{x} dy \right] dx$$

$$= \int_{x=0}^\pi \frac{\sin x}{x} \cdot x dx = -\cos x \Big|_0^\pi$$

$$= -(-1-1)$$

$$= 2$$



**End of Solution**

09. The number of distinct eigenvalues of the matrix  $A = \begin{bmatrix} 2 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix}$  is equal to \_\_\_\_\_.

**09. Ans: 3**

**Sol:** Given that  $A = \begin{bmatrix} 2 & 2 & 3 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 2 \end{bmatrix}$

The given matrix is an upper triangular matrix. Its eigen values are Just diagonal elements only.

∴ Eigen values are 2, 1, 3, 2

∴ Number of distinct eigen values = 3

**End of Solution**

10. A standard CMOS inverter is designed with equal rise and fall times ( $\beta_n = \beta_p$ ). If the width of the pMOS transistor in the inverter is increased. What would be the effect on the LOW noise margin ( $N M_L$ ) and the HIGH noise margin  $N M_H$ ?

- No change in the noise margins.
- $N M_L$  decreases and  $N M_H$  increases.
- $N M_L$  increases and  $N M_H$  decreases.
- Both  $N M_L$  and  $N M_H$  increase.

## 10. Ans: (c)

Sol:

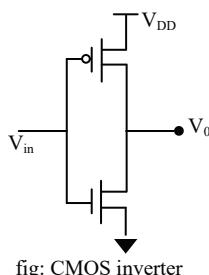



fig: CMOS inverter

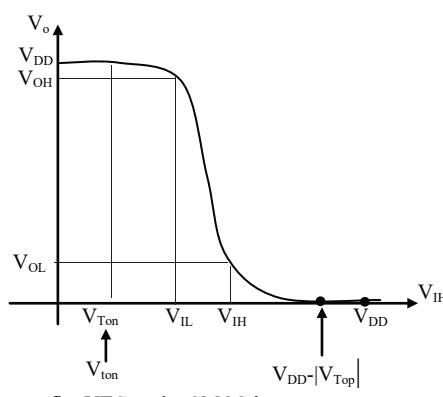



fig: VTC or the CMOS inverter

The behavior of the CMOS inverter for static conditions of operation is described by the voltage transfer characteristics (VTC) and for dynamic operation condition is described by the time response during switching conditions.

$$V_{OH} = V_{DD}$$

$$V_{IL} = \frac{2V_o - |V_{Top}| - V_{DD} + k_r V_{Ton}}{1 + k_r}$$

$$V_o = V_{in} - V_{Top} + \sqrt{(V_{in} - V_{DD} - V_{Top})^2 + k_r (V_{in} - V_{top})^2}$$

$$k_r = \frac{\beta_n}{\beta_p} = \frac{\mu_n C_{ox} \left(\frac{W}{L}\right)_n}{\mu_p C_{ox} \left(\frac{W}{L}\right)_p}$$

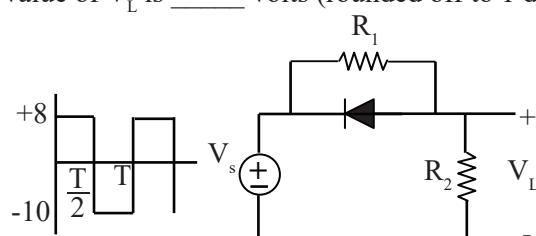
$$V_{IH} = \frac{V_{DD} + V_{Top} + k_r (2V_o + V_{Top})}{1 + k_r}$$

$$V_o = V_{in} - V_{Ton} + \sqrt{(V_{in} - V_{Ton})^2 + \frac{1}{k_r} [V_{in} - V_{DD} - V_{Top}]^2}$$

$$V_{OL} = 0$$

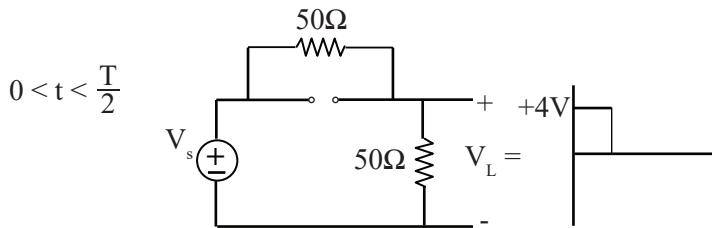
$$NM_L = V_{IL} - V_{OL}$$

$$NM_H = V_{OH} - V_{IH}$$

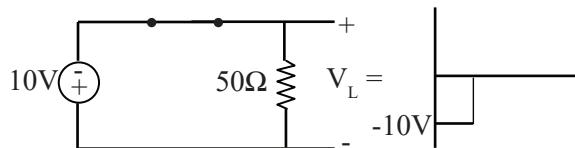

$$\therefore W_p \uparrow \rightarrow NM_L \uparrow$$

$$W_p \uparrow \rightarrow NM_H \downarrow$$

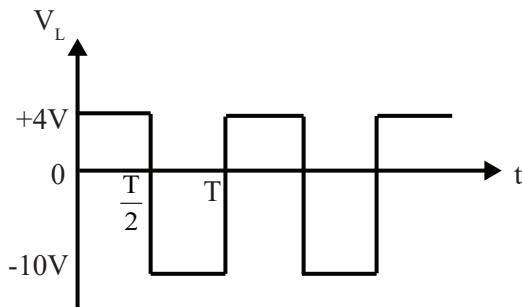
End of Solution


11. In the circuit shown,  $V_s$  is a square wave of period  $T$  with maximum and minimum values of 8 V and -10 V, respectively. Assume that the diode is ideal and  $R_1 = R_2 = 50\Omega$ .

The average value of  $V_L$  is \_\_\_\_\_ volts (rounded off to 1 decimal place).




11. Ans: -3


Sol:



$$\frac{T}{2} < t < T$$



So, output waveform is



$$\begin{aligned} V_L_{(\text{Avg})} &= \frac{1}{T} \left[ \int_0^{T/2} 4 \, dt + \int_{T/2}^T (-10) \, dt \right] \\ &= \frac{1}{T} \left[ 4 \left( \frac{T}{2} - 0 \right) - 10 \left( T - \frac{T}{2} \right) \right] \end{aligned}$$

$$= \frac{1}{T} \cdot \frac{T}{2} [4 - 10]$$

$$V_L_{(\text{Avg})} = -3 \text{ Volts}$$

End of Solution

 12. The value of the contour integral  $\frac{1}{2\pi j} \oint \left( z + \frac{1}{z} \right)^2 dz$  evaluated over the unit circle  $|z| = 1$  is \_\_\_\_\_.

12. Ans: 0

 Sol: Given  $\frac{1}{2\pi j} \oint_C \left( z + \frac{1}{z} \right)^2 dz$  C is  $|z| = 1$ 

$$\oint_C \left( z + \frac{1}{z} \right)^2 dz = \oint_C \frac{(z^2 + 1)^2}{z^2} dz$$

$z = 0$  is singular point lies inside of the curve  $C$ ,  $|z| = 1$

By Cauchy's Integral formula

$$\oint_C \frac{(z^2 + 1)^2}{z^{1+1}} = \frac{1}{2\pi J} \frac{f'(z)}{1!} \Big|_{\text{at } z=0}$$

Here  $f(z) = (z^2 + 1)^2$

$$f'(z) = 2(z^2 + 1) \cdot 2z \Rightarrow f'(0) = 0$$

$$\therefore \frac{1}{2\pi J} \oint_C \frac{(z^2 + 1)^2}{z^2} dz = \frac{1}{2\pi J} \times 0 = 0$$

---

**End of Solution**

---

13. Consider the signal  $f(t) = 1 + 2 \cos(\pi t) + 3 \sin\left(\frac{2\pi t}{3}\right) + 4 \cos\left(\frac{\pi}{2}t + \frac{\pi}{4}\right)$ , where  $t$  is in seconds. Its fundamental time period, in seconds, is \_\_\_\_\_.

**13. Ans: 12**

**Sol:**  $f(t) = 1 + 2\cos(\pi t) + 3\sin\left(\frac{2\pi}{3}t\right) + 4\cos\left(\frac{\pi}{2}t + \frac{\pi}{4}\right)$

$$\omega_0 = \text{GCD}\left(\pi, \frac{2\pi}{3}, \frac{\pi}{2}\right)$$

$$= \text{GCD}\left(\frac{6\pi}{6}, \frac{4\pi}{6}, \frac{3\pi}{6}\right)$$

$$= \frac{\pi}{6}$$

$$\text{Time period } T = \frac{2\pi}{\omega_0} = 12 \text{ secs}$$

Alternate method

$$(i) \omega_1 = \pi \quad \omega_2 = \frac{2\pi}{3} \quad \omega_3 = \frac{\pi}{2}$$

$$\frac{2\pi}{T_1} = \pi \Rightarrow T_1 = 2 \quad \frac{2\pi}{T_2} = \frac{2\pi}{3} \Rightarrow T_2 = 3 \quad \frac{2\pi}{T_3} = \frac{\pi}{2} \Rightarrow T_3 = 4$$

$$(ii) \frac{T_1}{T_2} = \frac{2}{3}$$

$$\frac{T_1}{T_3} = \frac{2}{4} = \frac{1}{2}$$

(iii) L.C.M of denominators of step (ii)

$$= \text{L.C.M } (3, 2) = 6$$

$$(iv) T = (\text{L. C. M}) T_1 = (2)(6) = 12 \text{ secs}$$

14. Let  $Z$  be an exponential random variable with mean 1. That is, the cumulative distribution function of  $Z$  is given by

$$F_z(x) = \begin{cases} 1 - e^{-x} & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Then  $\Pr(Z > 2 | Z > 1)$ , rounded off to two decimal places, is equal to \_\_\_\_\_.

**14. Ans: 0.3679**

**Sol:** Given that  $Z$  is exponential distribution with cumulative function  $F_z(x) = 1 - e^{-x} \quad x \geq 0$

$$0 \quad x < 0$$

We know that probability density function

$$f_z(x) = F'_z(x) = e^{-x} \quad x \geq 0$$

$$0 \quad x < 0$$

$$P(z > 2 | z > 1) = \frac{P((z > 2) \cap (z > 1))}{P(z > 1)}$$

$$= \frac{\int_2^\infty e^{-x} dx}{\int_1^\infty e^{-x} dx}$$

$$= \frac{(-e^{-x})_2^\infty}{(-e^{-x})_1^\infty}$$

$$= \frac{-(e^{-\infty} - e^{-2})}{-(e^{-\infty} - e^{-1})} = \frac{e^{-2}}{e^{-1}}$$

$$= e^{-1}$$

$$= 0.3679$$

**End of Solution**

15. In the circuit shown, what are the values of  $F$  for  $EN = 0$  and  $EN = 1$ , respectively?

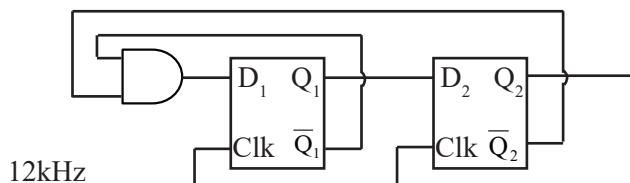


- (a) Hi-Z and D
- (b) 0 and D
- (c) Hi-Z and  $\bar{D}$
- (d) 0 and 1

## 15. Ans: (a)

**Sol:** Case-1: When enable = 0, both MOSFETs are off, hence F = Hi-Z

Case-2: When enable = 1, inputs of both MOSFETs is  $\bar{D}$  i.e.,


→ If  $D = 0$  is  $\Rightarrow$  n-channel MOSFET is on, p-channel MOSFET is off so  $F = 0$ ,

→ If  $D = 1 \Rightarrow$  PMOS-on, NMOS-off. thus,  $F = V_{DD}$  = logic 1

i.e, when  $E = 1 \Rightarrow F = D$

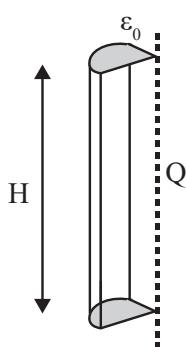
**End of Solution**

16. In the circuit shown, the clock frequency, i.e., the frequency of the CLK signal, is 12 kHz. The frequency of the signal at  $Q_2$  is \_\_\_\_\_ kHz.



## 16. Ans: 4

**Sol:** Given  $D_1 = \bar{Q}_1 \bar{Q}_2$ ,  $D_2 = Q_1$


| CLK | Present state |       | Flipflops inputs |       | Next state |       |
|-----|---------------|-------|------------------|-------|------------|-------|
|     | $Q_1$         | $Q_2$ | $D_1$            | $D_2$ | $Q_1$      | $Q_2$ |
|     | 0             | 0     | 1                | 0     | 1          | 0     |
|     | 1             | 0     | 0                | 1     | 0          | 1     |
|     | 0             | 1     | 0                | 0     | 0          | 0     |
|     |               |       |                  |       |            |       |

So, the circuit counts 00,10,01,.....

Hence, the frequency at  $Q_2$  is  $\frac{f_{CLK}}{3} = \frac{12}{3} = 4$  kHz

**End of Solution**

17. What is the electric flux  $\left( \int \vec{E} \cdot d\vec{a} \right)$  through a quarter-cylinder of height H (as shown in the figure) due to an infinitely long line charge along the axis of the cylinder with a charge density of Q?



(a)  $\frac{4H}{Q\epsilon_0}$       (b)  $\frac{HQ}{4\epsilon_0}$       (c)  $\frac{H\epsilon_0}{4Q}$       (d)  $\frac{HQ}{\epsilon_0}$



# ESE – 2019

STAGE-II (MAINS)

New Batches @

HYDERABAD

17th Feb 2019

DELHI

18th Feb 2019

PUNE

16th Feb 2019

ESE - 2019 Mains Test Series ( Offline/Online)

Starts from **30<sup>th</sup> March 2019**.

Test Series will be conducted at all our centres



## APPSC-AEE (Prelims) Online Test Series

**No. of Tests : 18**

Topic Wise Tests : 15 | Mock Tests - 3

Civil | Mechanical | Electrical

**Available Now**

All Tests will be available till **18<sup>th</sup> February 2019**

📞 040 - 48539866 / 040 - 40136222

✉️ testseries@aceenggacademy.com

20 In the table shown, List-I and List-II, respectively, contain terms appearing on the left-hand side and the right-hand side of Maxwell's equations (in their standard form). Match the left-hand side with the corresponding right-hand side.

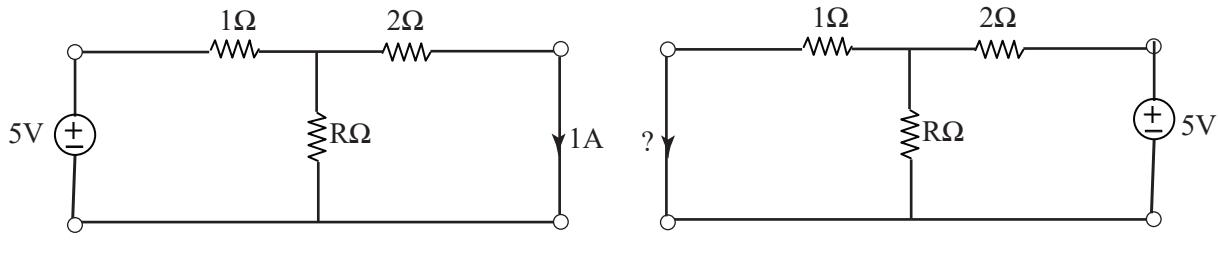
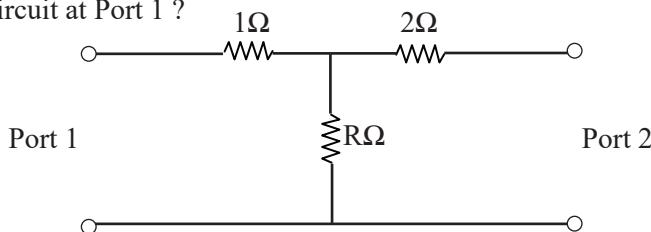
| List I |                   | List II |                                     |
|--------|-------------------|---------|-------------------------------------|
| 1      | $\nabla \cdot D$  | P       | 0                                   |
| 2      | $\nabla \times E$ | Q       | $\rho$                              |
| 3      | $\nabla \cdot B$  | R       | $-\frac{\partial B}{\partial t}$    |
| 4      | $\nabla \times H$ | S       | $J + \frac{\partial D}{\partial t}$ |

(a) 1 – Q, 2 – R, 3 – P, 4 – S  
 (c) 1 – P, 2 – R, 3 – Q, 4 – S

(b) 1 – Q, 2 – S, 3 – P, 4 – R  
 (d) 1 – R, 2 – Q, 3 – S, 4 – P

**20. Ans: (a)**

**Sol:** 1.  $\nabla \cdot \vec{D} = \rho$  (Q)  $\rightarrow$  Gauss's Law



2.  $\nabla \times \vec{E} = \frac{-\partial \vec{B}}{\partial t}$  (R)  $\rightarrow$  Faraday's Law

3.  $\nabla \cdot \vec{B} = 0$  (P)  $\rightarrow$  Gauss's Law for magnetic fields

4.  $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$  (S)  $\rightarrow$  Ampere's Law

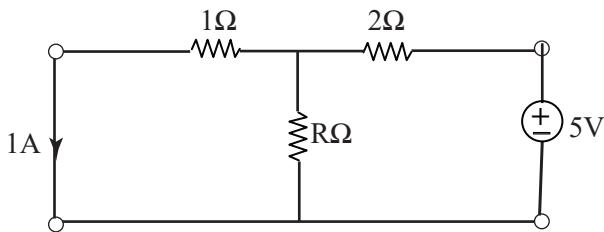
**End of Solution**

21. Consider the two-port resistive network shown in the figure. When an excitation of 5 V is applied across Port 1, and Port 2 is shorted, the current through the short circuit at Port 2 is measured to be 1 A (sec(a) in the figure). Now, if an excitation of 5 V is applied across Port 2, and Port 1 is shorted (sec(b) in the figure). What is the current through the short circuit at Port 1 ?



(a) 1 A

(b) 0.5 A


(c) 2.5 A

(d) 2 A

**21. Ans: (a)**

**Sol:** This is direct application of reciprocity theorem - which states, in any linear passive bilateral network excited by a single source. The ratio of response to excitation remains constant even if the position of source and Load are interchanged.

$$\text{So, } \frac{i}{V} = \text{Constant}$$



So, answer is 1 Amp

---

 End of Solution
 

---

22. Radiation resistance of a small dipole current element of length  $\ell$  at a frequency of 3 GHz is 3 ohms. If the length is changed by 1%, then the percentage change in the radiation resistance, rounded off to two decimal places, is \_\_\_\_\_ %

**22. Ans: 2**

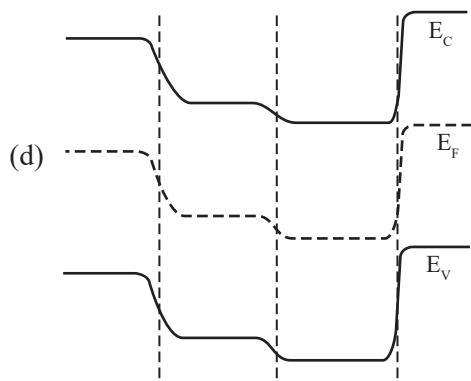
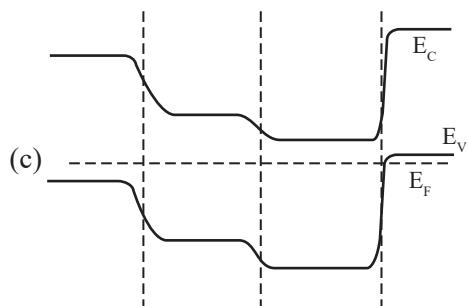
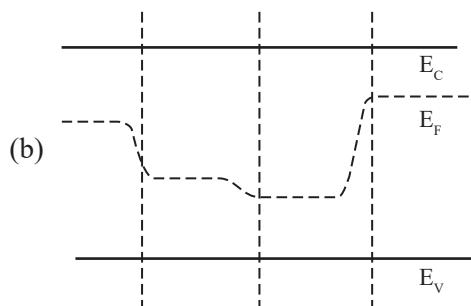
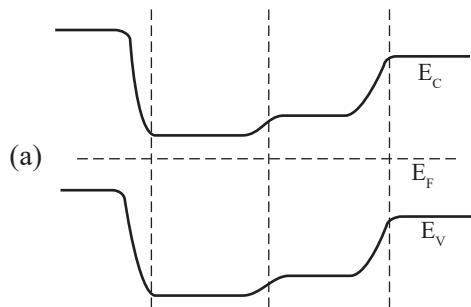
**Sol:** Given  $f = 3\text{GHz}$

$$R_{\text{rad}} = 3\Omega$$

$$\frac{\Delta\ell}{\ell} \times 100 = 1$$

$$\frac{\Delta R}{R} \times 100 = ?$$

$$R_{\text{rad}} = 80\pi^2 \left(\frac{\ell}{\lambda}\right)^2$$





$$R_{\text{rad}} \propto \ell^2$$

$$\frac{\Delta R_{\text{rad}}}{R_{\text{rad}}} \times 100 = 2 \frac{\Delta\ell}{\ell} \times 100 \\ = 2(1)$$

$$\frac{\Delta R_{\text{rad}}}{R_{\text{rad}}} \times 100 = 2\%$$

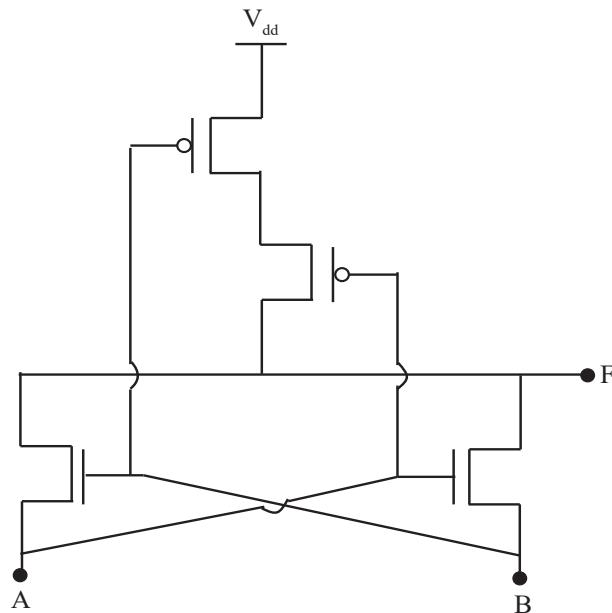
23. Which one of the following options describes correctly the equilibrium band diagram at  $T = 300$  K of a Silicon pnn<sup>+</sup>p<sup>++</sup> configuration shown in the figure?

p      n      n<sup>+</sup>      p<sup>++</sup>



## 23. Ans: (c)

Sol: → The device is not biased hence fermi level should be constant.


→ In P type fermi level should be closer to  $E_V$ .

→ In N type fermi level should be closer to  $E_C$ .

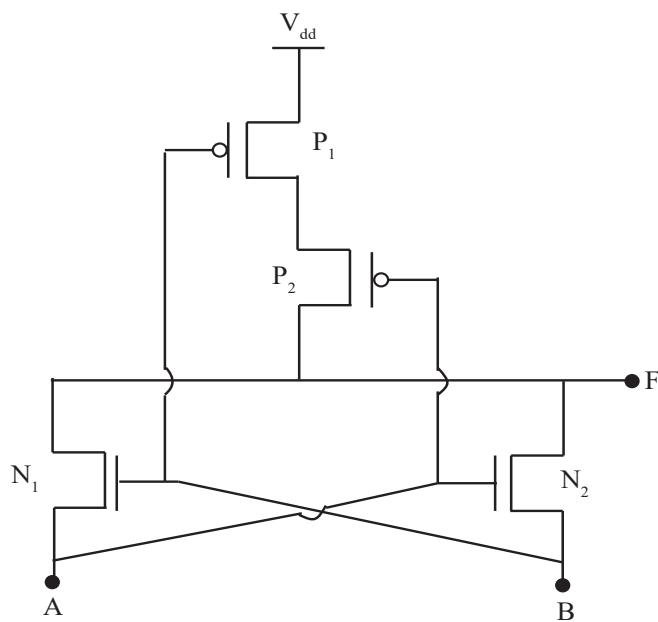
→ In  $P^{++}$  fermi level penetrates into valence band.

**End of Solution**

24. In the circuit shown, A and B are the inputs and F is the output. What is the functionality of the circuit?



(a) XNOR


(b) SRAM Cell

(c) Latch

(d) XOR

## 24. Ans: (a)

Sol:



| A | B | N <sub>1</sub> | N <sub>2</sub> | P <sub>1</sub> | P <sub>2</sub> | F(Output) |
|---|---|----------------|----------------|----------------|----------------|-----------|
| 0 | 0 | OFF            | OFF            | ON             | ON             | 1         |
| 1 | 0 | ON             | OFF            | OFF            | ON             | 0         |
| 0 | 1 | OFF            | ON             | ON             | OFF            | 0         |
| 1 | 1 | ON             | ON             | OFF            | OFF            | 1         |

∴ Given diagram is XNOR.

---

**End of Solution**

---

25. If X and Y are random variables such that  $E[2X+Y] = 0$  and  $E[X + 2Y] = 33$ , then  $E[X] + E[Y] = \underline{\hspace{2cm}}$ .

**25. Ans: 11**

**Sol:** Given X,Y are Random variables

$$E(2X + Y) = 0 \text{ and } E(X+2Y) = 33$$

$$\Rightarrow 2E(X) + E(Y) = 0 \dots \dots \dots (1)$$

$$\Rightarrow E(X) + 2 E(Y) = 33 \dots \dots \dots (2)$$

By solving (1) and (2)  $E(Y) = 22$

$$E(X) = -11$$

$$\therefore E(X) + E(Y) = 22 - 11 = 11$$

---

**End of Solution**

---

26. The dispersion equation of a waveguide, which relates the wavenumber  $k$  to the frequency  $\omega$ , is

$$k(\omega) = (1/c)\sqrt{\omega^2 - \omega_0^2}$$

where the speed of light  $c = 3 \times 10^8$  m/s, and  $\omega_0$  is a constant. If the group velocity is  $2 \times 10^8$  m/s, then the phase velocity is

- (a)  $2 \times 10^8$  m/s
- (b)  $4.5 \times 10^8$  m/s
- (c)  $3 \times 10^8$  m/s
- (d)  $1.5 \times 10^8$  m/s

**26. Ans: (b)**

**Sol:** Given

$$\text{wave number } \beta = k(\omega) = \frac{1}{c} \sqrt{\omega^2 - \omega_0^2}$$

$$\text{Group velocity } (v_g) = 2 \times 10^8 \text{ m/s}$$

$$\text{Phase velocity } (v_p) = \frac{\omega}{\beta}$$

$$v_p = \frac{\omega c}{\sqrt{\omega^2 - \omega_0^2}}$$

we know

$$v_g = \frac{d\omega}{d\beta} = \frac{1}{\left(\frac{d\beta}{d\omega}\right)}$$

$$\beta = \frac{1}{c} \sqrt{\omega^2 - \omega_0^2}$$

$$\frac{d\beta}{d\omega} = \frac{1}{c} \frac{1}{2\sqrt{\omega^2 - \omega_0^2}} 2\omega$$

$$\frac{d\beta}{d\omega} = \frac{\omega}{c\sqrt{\omega^2 - \omega_0^2}}$$

$$\frac{1}{v_g} = \frac{\omega}{c\sqrt{\omega^2 - \omega_0^2}}$$

$$\sqrt{\omega^2 - \omega_0^2} = \frac{\omega v_g}{c}$$

$$= \frac{\omega \cdot 2 \times 10^8}{3 \times 10^8}$$

$$\sqrt{\omega^2 - \omega_0^2} = \frac{2\omega}{3}$$

$$\text{so, } v_p = \frac{\omega c}{\sqrt{\omega^2 - \omega_0^2}} = \frac{\omega c}{\frac{2\omega}{3}}$$

$$v_p = \frac{3}{2} c = \frac{3}{2} (3 \times 10^8) = 4.5 \times 10^8 \text{ m/s.}$$

(or)

we know the relation

$$v_p v_g = c^2$$

$$v_p = \frac{c^2}{v_g}$$

$$v_p = \frac{(3 \times 10^8)^2}{2 \times 10^8}$$

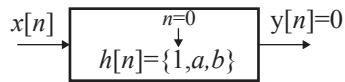
$$v_p = 4.5 \times 10^8 \text{ m/s.}$$

---

### End of Solution

---

27. It is desired to find three-tap causal filter which gives zero signal as an output to an input of the form  $x(n) = c_1 \exp\left(-\frac{j\pi n}{2}\right) + c_2 \exp\left(\frac{j\pi n}{2}\right)$


Where  $c_1$  and  $c_2$  are arbitrary real numbers. The desired three-tap filter is given by

$$h[0] = 1, \quad h[1] = a, \quad h[2] = b$$

And

$$h[n] = 0 \text{ for } n < 0 \text{ or } n > 2.$$

What are the values of the filter taps  $a$  and  $b$  if the output is  $y[n] = 0$  for all  $n$ , when  $x[n]$  is as given above?



|                                          |                                            |
|------------------------------------------|--------------------------------------------|
| (a) $a = 1, b = 1$<br>(c) $a = 0, b = 1$ | (b) $a = -1, b = 1$<br>(d) $a = 0, b = -1$ |
|------------------------------------------|--------------------------------------------|

**27. Ans: (c)**

**Sol:** Given  $x(n) = c_1 \exp\left(-\frac{j\pi n}{2}\right) + c_2 \exp\left(\frac{j\pi n}{2}\right)$

and  $h(0) = 1$ ;  $h(1) = a$ ;  $h(2) = b$

$$H(e^{j\omega}) = 1 + ae^{-j\omega} + be^{-j2\omega}$$

Given that  $y(n) = 0$  for all  $n$

From the given options by trial & errors of we make  $a = 0$  &  $b = 1$

$$\text{Due to } c_1 e^{-\frac{j\pi n}{2}} \Rightarrow \text{output} = 1 + 0.e^{+\frac{j\pi}{2}} + e^{-j2\left(-\frac{\pi}{2}\right)} = 1 - 1 = 0$$

$$c_2 e^{\frac{j\pi n}{2}} \Rightarrow \text{output} = 1 + 0.e^{-\frac{j\pi}{2}} + e^{-j2\left(\frac{\pi}{2}\right)} = 1 - 1 = 0$$

---

**End of Solution**


---

28. Let the state-space representation of an LTI system be  $\dot{x}(t) = Ax(t) + Bu(t)$ ,  $y(t) = Cx(t) + du(t)$  where  $A, B, C$  are matrices,  $d$  is a scalar,  $u(t)$  is the input to the system and  $y(t)$  is its output. Let  $B = [0 \ 0 \ 1]^T$  and  $d = 0$ . which one of the following options for  $A$  and  $C$  will ensure that the transfer function of this LTI system is

$$H(s) = \frac{1}{s^3 + 3s^2 + 2s + 1} ?$$

(a)  $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -2 & -1 \end{bmatrix}$  and  $C = [0 \ 0 \ 1]$

(b)  $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix}$  and  $C = [0 \ 0 \ 1]$

(c)  $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -2 & -1 \end{bmatrix}$  and  $C = [1 \ 0 \ 0]$

(d)  $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix}$  and  $C = [1 \ 0 \ 0]$

**28. Ans: (d)**

**Sol:**  $H(s) = \frac{1}{s^3 + 3s^2 + 2s + 1}$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} [u]$$

$$[Y] = [1 \ 0 \ 0] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

# SPARK BATCHES

@ HYDERABAD

**GATE+PSUs - 2020**

**11<sup>th</sup> May & 9<sup>th</sup> June, 2019**

**ESE+GATE+PSUs - 2020**

**11<sup>th</sup> May & 9<sup>th</sup> June, 2019**

**Early Bird  
Discount  
₹ 5000**

(Register Before 31<sup>st</sup> Mar 2019)

@ DELHI

**GATE+PSUs - 2020**

**11<sup>th</sup> May, 2019**

**ESE+GATE+PSUs - 2020**

**11<sup>th</sup> May, 2019**

**Early Bird  
Discount  
₹ 3000**



(Register Before 31<sup>st</sup> Mar 2019)



**ACE**  
Engineering Academy  
Leading Institute for ESE/GATE/PSUs



**The Leader of IES/GATE Coaching**

HYDERABAD AHMEDABAD DELHI Bhopal PUNE Bhubaneswar BANGALORE LUCKNOW PATNA CHENNAI VISAKHAPATNAM VJAYAWADA TIRUPATI KOLKATA

Hyderabad's Famous ACE ENGINEERING ACADEMY

**Now @ AHMEDABAD**

To Win The RACE.. Join ACE.. @ Sunrise Mall, Mansi Circle To Win The RACE.. Join ACE..



To Win the RACE..  
Join ACE...



Most Expert  
Faculties



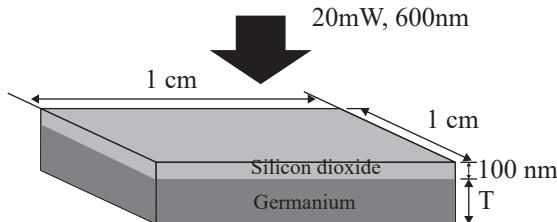
Innovative  
Learning Skills



Best Test Practice



Online Test Series


Programs Offered :

CLASSROOM COACHING | POSTAL COACHING | INTERVIEW GUIDANCE

ONLINE TEST SERIES | CLASSROOM TEST SERIES

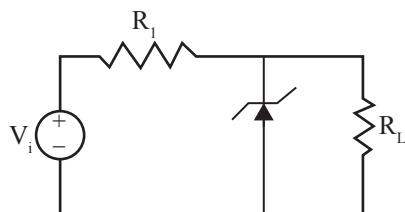
0 +079 4890 2228 | 9160499966 [www.aceenggacademy.com](http://www.aceenggacademy.com)

29. A germanium sample of dimensions  $1\text{ cm} \times 1\text{ cm}$  is illuminated with a  $20\text{ mW}$ ,  $600\text{ nm}$  laser light source as shown in the figure. The illuminated sample surface has a  $100\text{ nm}$  of loss-less Silicon dioxide layer that reflects one-fourth of the incident light. From germanium interface, one-third is absorbed in the germanium layer, and one-third is transmitted through the other side of the sample. If the absorption coefficient of germanium at  $600\text{ nm}$  is  $3 \times 10^4\text{ cm}^{-1}$  and the bandgap is  $0.66\text{ eV}$ , the thickness of the germanium layer, rounded off to 3 decimal places, is \_\_\_\_\_  $\mu\text{m}$ .



29. **Ans: 0.231**

**Sol:**  $1 - e^{-\alpha x} = 0.5$


$$e^{-\alpha x} = 0.5$$

$$x = \frac{-\ln(0.5)}{\alpha} = \frac{-\ln(0.5)}{3 \times 10^4} \text{ cm}$$

$$= 0.231 \text{ mm}$$

**End of Solution**

30. In the circuit shown, the breakdown voltage and the maximum current of the Zener diode are  $20\text{ V}$  and  $60\text{ mA}$ , respectively. The values of  $R_1$  and  $R_L$  are  $200\text{ }\Omega$  and  $1\text{ k}\Omega$ , respectively. What is the range of  $V_i$  that will maintain the Zener diode in the 'on' state?



(a)  $18\text{ V}$  to  $24\text{ V}$       (b)  $22\text{ V}$  to  $34\text{ V}$       (c)  $24\text{ V}$  to  $36\text{ V}$       (d)  $20\text{ V}$  to  $28\text{ V}$

30. **Ans: (c)**

**Sol:**  $\frac{V_{i,\min} - 20}{0.2\text{k}} = \frac{20}{1\text{k}}$

$$V_{i,\min} = 24\text{V}$$

$$\frac{V_{i,\max} - 20}{0.2\text{k}} = 60\text{mA} + 20\text{mA}$$

$$V_{i,\max} = 36\text{V}$$

31. Let  $h[n]$  be a length-7 discrete-time finite impulse response filter, given by

$$\begin{aligned} h[0] &= 4, & h[1] &= 3, & h[2] &= 2, & h[3] &= 1, \\ h[-1] &= -3, & h[-2] &= -2, & h[-3] &= -1, \end{aligned}$$

and  $h[n]$  is zero for  $|n| \geq 4$ . A length-3 finite impulse response approximation  $g[n]$  of  $h[n]$  has to be obtained such that

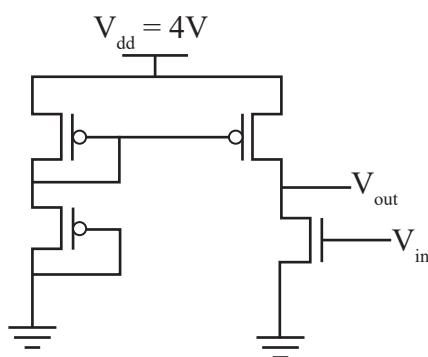
$$E(h, g) = \int_{-\pi}^{\pi} |H(e^{j\omega}) - G(e^{j\omega})|^2 d\omega$$

is minimized, where  $H(e^{j\omega})$  and  $G(e^{j\omega})$  are the discrete-time Fourier transforms of  $h[n]$  and  $g[n]$ , respectively. For the filter that minimizes  $E(h, g)$ , the value of  $10g[-1] + g[1]$ , rounded off to 2 decimal places, is \_\_\_\_\_.

**31. Ans: -27**

**Sol:** To minimize energy in the error signal, there are different approaches like, Prony's method, pade approximation. As  $g(n)$  length is three samples. Assume samples as  $g(-1)$ ,  $g(0)$ , and  $g(1)$ . We can minimize  $E(h, g)$  by making  $h(n) = g(n)$  using rectangular window & Parseval's theorem of DTFT.

Based on which  $10g(-1) + g(1) = 10(-3) + 3 = -27$ .


**End of Solution**

32. In the circuit shown, the threshold voltages of the pMOS ( $|V_{tp}|$ ) and nMOS ( $V_{tn}$ ) transistors are both equal to 1 V. All the transistors have the same output resistance  $r_{ds}$  of  $6 \text{ M}\Omega$ . The other parameters are listed below:

$$\mu_n C_{ox} = 60 \mu\text{A}/V^2; \left(\frac{W}{L}\right)_{n\text{MOS}} = 5$$

$$\mu_p C_{ox} = 30 \mu\text{A}/V^2; \left(\frac{W}{L}\right)_{p\text{MOS}} = 10$$

$\mu_n$  and  $\mu_p$  are the carrier mobilities, and  $C_{ox}$  is the oxide capacitance per unit area. Ignoring the effect of channel length modulation and body bias, the gain of the circuit is \_\_\_\_\_ (rounded off to 1 decimal place).



**32. Ans: -900**

$$\begin{aligned} \text{Sol: } I_{DC} &= \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L}\right)_p (V_{SGP} - |V_{TP}|)^2 = \frac{1}{2} \times 30 \frac{\mu\text{A}}{V^2} \times 10 \times (2 - 1)^2 \text{V}^2 \\ &= 150 \mu\text{A} \end{aligned}$$

$$\begin{aligned} g_{mn} &= \sqrt{2I_{DC} \mu_n C_{ox} \left(\frac{W}{L}\right)_n} = \sqrt{2 \times 150 \mu\text{A} \times 60 \frac{\mu\text{A}}{V^2} \times 5} \\ &= 300 \mu\text{S} \end{aligned}$$

$$A_v = -g_m (r_{ds} \parallel r_{ds}) = -300 \times 3 = -900$$

33. Consider a causal second-order system with the transfer function

$$G(s) = \frac{1}{1 + 2s + s^2}$$

with a unit-step  $R(s) = \frac{1}{s}$  as an input. Let  $C(s)$  be the corresponding output. The time taken by the system output  $c(t)$  to reach 94% of its steady-state value  $\lim_{t \rightarrow \infty} c(t)$ , rounded off to two decimal places, is

(a) 4.50      (b) 3.89      (c) 2.81      (d) 5.25

**33. Ans: (a)**

**Sol:**  $G(s) = \frac{1}{1 + 2s + s^2}$

$$G(s) = \frac{1}{(s + 1)^2}$$

$$G(s) = \frac{1}{s(s + 1)^2} = \frac{1}{s} - \frac{1}{(s + 1)^2} - \frac{1}{s + 1}$$

$$C(t) = (1 - te^{-t} - e^{-t})u(t)$$

$\Rightarrow$  94% of ss value = 0.94

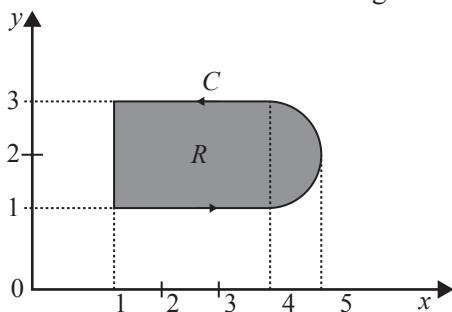
$$0.94 = (1 - te^{-t} - e^{-t})$$

$$0.06 = e^{-t} (t+1)$$

$\Rightarrow$  By option verification method

Let  $t = 4.5$

$$e^{-t} (t+1) = e^{-4.5} (1 + 4.5) = 0.06109 \approx 0.06$$


Thus option 4.5 is the Answer

**End of Solution**

34. Consider the line integral

$$\int_C (xdy - ydx)$$

the integral being taken in a counterclockwise direction over the closed curve  $C$  that forms the boundary of the region  $R$  shown in the figure below. The region  $R$  is the area enclosed by the union of a  $2 \times 3$  rectangle and a semi-circle of radius 1. The line integral evaluates to



(a)  $6 + \pi/2$       (b)  $8 + \pi$       (c)  $12 + \pi$       (d)  $16 + 2\pi$

**34. Ans: (c)**

**Sol:** By Greens theorem

$$\int_C \underbrace{xdy}_N - \underbrace{ydx}_M = \iint_R \left( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

$$\Rightarrow \int_C (xdy - ydx) = \iint_R (1 + 1) dx dy$$

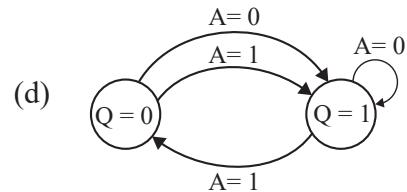
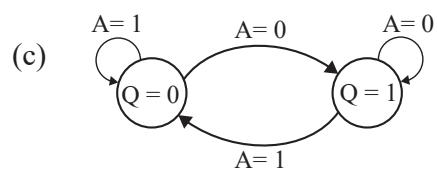
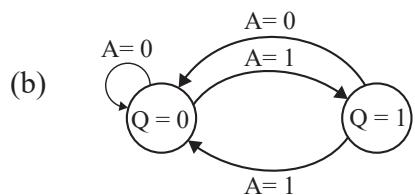
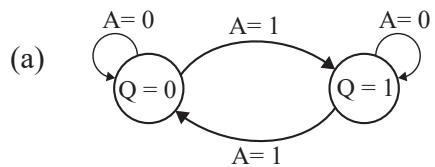
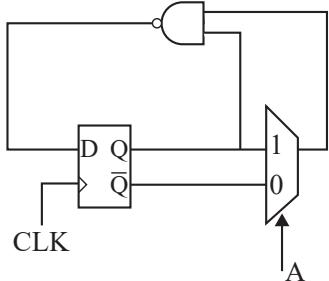
$$= \int \int 2 dx dy$$

$$\Rightarrow \int_C (xdy - ydx) = 2 \times \text{Area of the region}$$

$$= 2(\text{Area of a rectangle} + \text{Area of a semi circle})$$

$$= 2 \left[ 2 \times 3 + \frac{\pi(1)^2}{2} \right] = 2 \left( 6 + \frac{\pi}{2} \right)$$

$$= 2 \frac{(12 + \pi)}{2}$$






$$= 12 + \pi$$

---

**End of Solution**

---

35. The state transition diagram for the circuit shown is



**35. Ans: (d)**

$$Q(t+1) = D \dots \dots \dots (1)$$

$$D = \overline{(\overline{A} \overline{Q} + A\overline{Q})(Q)} \dots \dots \dots (2)$$

Substitute (2) in (1)

$$Q(t+1) = \overline{A \cdot Q}$$

So, if  $A = 0 \Rightarrow Q(t+1) = 1$

$$A = A \Rightarrow Q(t+1) = \overline{Q}$$

$$\text{If } A = 0, D = \overline{Q \cdot \overline{Q}} = \overline{0} = 1$$

$$\text{If } A = 1, D = \overline{Q \overline{Q}} = \overline{Q}$$

36. In an ideal pn junction with an ideality factor of 1 at  $T = 300$  K, the magnitude of the reverse-bias voltage required to reach 75% of its reverse saturation current, rounded off to 2 decimal places, is \_\_\_\_\_ mV.

$[k = 1.38 \times 10^{-23} \text{ JK}^{-1}, h = 6.625 \times 10^{-34} \text{ J-s}, q = 1.602 \times 10^{-19} \text{ C}]$

**36. Ans: 35.87**

**Sol:**  $I_R = 0.75 I_S$

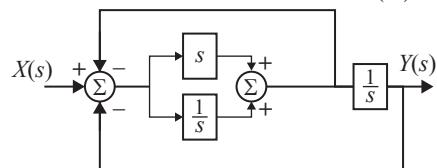
$$I_D = -0.75 I_S$$

$$I_S (e^{V_D/V_T} - 1) = -0.75 I_S$$

$$e^{V_D/V_T} = 0.25$$

$$V_D = V_T \ln(0.25)$$

$$V_R = -V_T \ln(0.25)$$


$$= -\frac{1.38 \times 10^{-23} \times 300}{1.6 \times 10^{-19}} \times -1.386$$

$$= 35.87 \text{ mV}$$

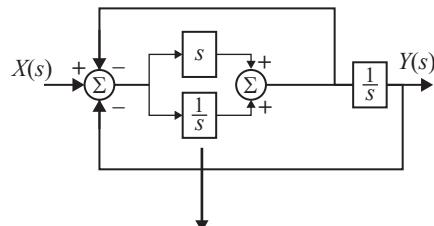
**End of Solution**

37. The block diagram of a system is illustrated in the figure shown, where  $X(s)$  is the input and  $Y(s)$  is the output.

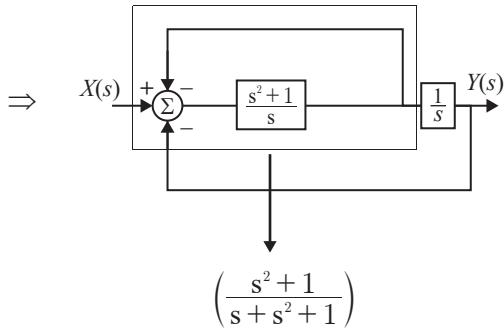
The transfer function  $H(s) = \frac{Y(s)}{X(s)}$  is



$$(a) H(s) = \frac{s+1}{s^2+s+1}$$


$$(b) H(s) = \frac{s^2+1}{s^3+2s^2+s+1}$$

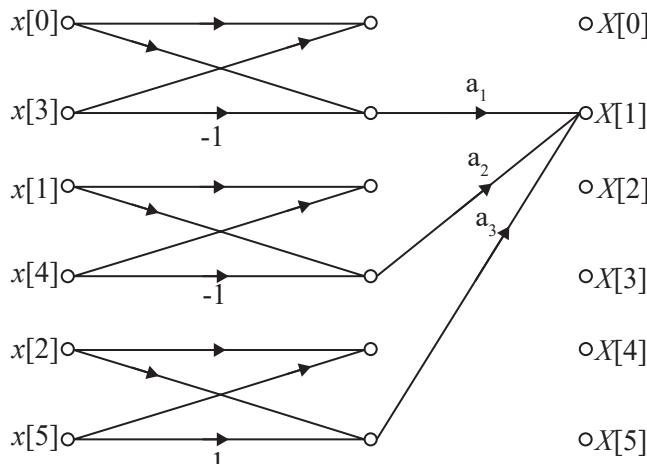
$$(c) H(s) = \frac{s^2+1}{2s^2+1}$$


$$(d) H(s) = \frac{s^2+1}{s^3+s^2+s+1}$$

**37. Ans: (b)**

**Sol:**




$$\left(s + \frac{1}{s}\right) = \left(\frac{s^2+1}{s}\right)$$



$$\frac{Y(s)}{X(s)} = \frac{(s^2 + 1)}{s(s^2 + s + 1) + s^2 + 1} = \frac{s^2 + 1}{s^3 + 2s^2 + s + 1}$$

## End of Solution

38. Consider a six-point decimation-in-time Fast Fourier Transform (FFT) algorithm, for which the signal-flow graph corresponding to  $X[1]$  is shown in the figure. Let  $W_6 = \exp\left(-\frac{j2\pi}{6}\right)$ . In the figure, what should be the values of the coefficients  $a_1, a_2, a_3$  in terms of  $W_6$  so that  $X[1]$  is obtained correctly?



(a)  $a_1 = 1, a_2 = W_6, a_3 = W_6^2$   
 (b)  $a_1 = -1, a_2 = W_6^2, a_3 = W_6$   
 (c)  $a_1 = 1, a_2 = W_6^2, a_3 = W_6$   
 (d)  $a_1 = -1, a_2 = W_6, a_3 = W_6^2$

38. Ans: (a)

$$\begin{aligned}
 \text{Sol: } X(k) &= \sum_{n=0}^{N-1=5} x(n) W_6^{kn} \\
 &= x(0) + x(1) W_6^k + x(2) W_6^{2k} + x(3) W_6^{3k} + x(4) W_6^{4k} + x(5) W_6^{5k}
 \end{aligned}$$

$$X(1) = x(0) + x(1)W_6^1 + x(2)W_6^2 + x(3)W_6^3 + x(4)W_6^4 + x(5)W_6^5$$

Based on symmetry

$$W_N^{k+\frac{N}{2}} = -W_N^k \quad W_6^3 = -W_6^0 = -1$$

$$W_6^4 = -W_6^1$$

$$W_6^5 = -W_6^2$$

From the SFG

We can say  $a_1 = 1$

$$a_2 = W_6$$


$$a_3 = W_6^2$$

---

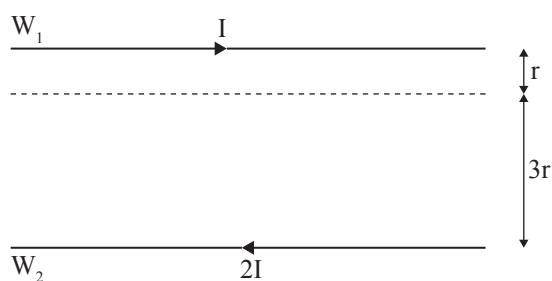
**End of Solution**

---

39. Two identical copper wires W1 and W2, placed in parallel as shown in the figure, carry currents I and 2I, respectively, in opposite directions. If the two wires are separated by a distance of 4r, then the magnitude of the magnetic field  $\vec{B}$  between the wires at a distance r from W1 is



(a)  $\frac{\mu_0 I}{6\pi r}$


(b)  $\frac{\mu_0^2 I^2}{2\pi r^2}$

(c)  $\frac{6\mu_0 I}{5\pi r}$

(d)  $\frac{5\mu_0 I}{6\pi r}$

**39. Ans: (d)**

**Sol:**





$$\theta = \frac{d}{dz}, xDy = \theta y$$

$$x^2 D^2 y = \theta(\theta - 1)y$$

∴ The given DE is equivalent to

$$\theta(\theta - 1) - 3\theta y + 3y = 0$$

$$\theta^2 y - 4\theta y + 3y = 0$$

$$\therefore \frac{d^2y}{dz^2} - 4\frac{dy}{dz} + 3y = 0$$

Axillary equation  $m^2 - 4m + 3 = 0$

$$(m - 1)(m - 3) = 0$$

$$\therefore m = 1, 3$$

The solution is  $y = C_1 e^z + C_2 e^{3z}$

$$\therefore y = C_1 x + C_2 x^3$$

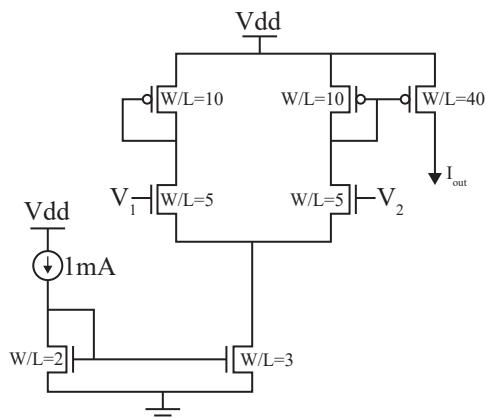
$$y(1) = 1 \Rightarrow 1 = C_1 + C_2$$

$$y(2) = 14 \Rightarrow 14 = 2C_1 + 8C_2$$

$$\text{By solving } C_2 = 2, C_1 = -1$$

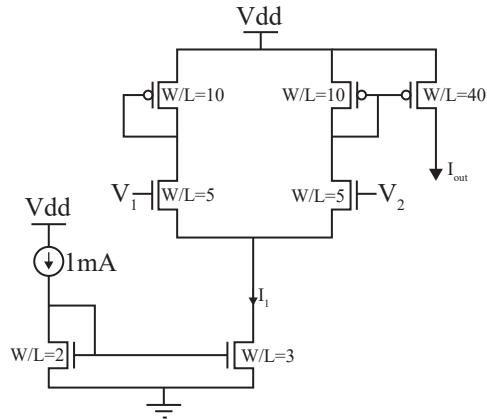
$$\therefore y = -x + 2x^3$$

$$\therefore y(1.5) = -1.5 + 2(1.5)^3$$


$$= 5.25$$

---

### End of Solution


---

42. In the circuit shown,  $V_1 = 0$  and  $V_2 = V_{dd}$ . The other relevant parameters are mentioned in the figure. Ignoring the effect of channel length modulation and the body effect, the value of  $I_{out}$  is \_\_\_\_\_ mA (rounded off to 1 decimal place).



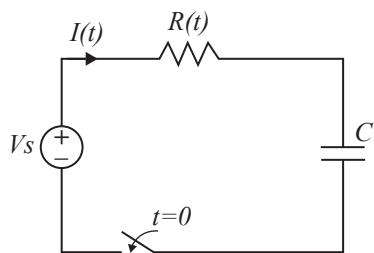
## 42. Ans: 6

Sol:



$$I_1 = \frac{\left(\frac{W}{L}\right)_2}{\left(\frac{W}{L}\right)_1} \times 1\text{mA} = \frac{3}{2} \text{mA}$$

$$I_{\text{out}} = \frac{\left(\frac{W}{L}\right)_4}{\left(\frac{W}{L}\right)_3} \times \frac{3}{2} \text{mA}$$


$$= \frac{40}{10} \times \frac{3}{2} = 6\text{mA}$$

End of Solution

 43. The RC circuit shown below has a variable resistance  $R(t)$  given by the following expression:

$$R(t) = R_0 \left(1 - \frac{t}{T}\right) \text{ for } 0 \leq t \leq T$$

where  $R_0 = 1\Omega$ , and  $C = 1 \text{ F}$ . We are also given that  $T = 3 R_0 C$  and the source voltage is  $V_s = 1\text{V}$ . If the current at time  $t = 0$  is 1 A, then the current  $I(t)$ , in amperes, at time  $t = T/2$  is \_\_\_\_\_ (rounded off to 2 decimal places).



## 43. Ans: 0.1

Sol: In general for RC circuit with state variable voltage across capacitor  $V_C(t) = V_s [1 - e^{-t/\tau}]$

$$\text{But current } I(t) = i_C(t) = C \frac{dV_C(t)}{dt}$$

$$I(t) = C \frac{d}{dt} \left[ V_s (1 - e^{-t/\tau}) \right]$$

$$= CV_S \left[ 0 - e^{-t/\tau} \times \frac{1}{T} \right]$$

$$I(t) = \frac{V_S}{R(t)} e^{-t/R(t) \cdot C}$$

$$\text{Given } R(t) = R_0 \left[ 1 - \frac{t}{T} \right]$$

$$\begin{cases} R_0 = 1\Omega \\ T = 3R_0C = 3 \end{cases} \Rightarrow R(t) = 1 \left[ 1 - \frac{t}{3} \right]$$

$$I(t) = \frac{1}{\left(1 - \frac{t}{3}\right)} e^{-t\left(1 - \frac{t}{3}\right)}$$

$$\text{At } t = \frac{T}{2} = \frac{3}{2} \text{ sec}$$

$$I\left(t = \frac{3}{2}\right) = \frac{1}{\left(1 - \frac{1}{2}\right)} e^{-\left(3/2\right)/(1/2)}$$

$$I = 2 e^{-3} A$$

$$= 0.099 \approx 0.1 \text{ Amps}$$

---

 End of Solution
 

---

44. A single bit, equally likely to be 0 and 1, is to be sent across an additive white Gaussian noise (AWGN) channel with power spectral density  $N_0/2$ . Binary signaling, with  $0 \rightarrow p(t)$  and  $1 \rightarrow q(t)$ , is used for the transmission, along with an optimal receiver that minimizes the bit-error probability.

Let  $\phi_1(t)$ ,  $\phi_2(t)$  form an orthonormal signal set.

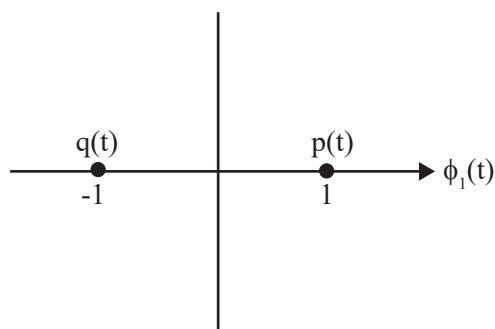
If we choose  $p(t) = \phi_1(t)$  and  $q(t) = -\phi_1(t)$ , we would obtain a certain bit-error probability  $P_b$ .

If we keep  $p(t) = \phi_1(t)$ , but take  $q(t) = \sqrt{E} \phi_2(t)$ , for what value of  $E$  would we obtain the same bit-error probability  $P_b$ ?

- (a) 3
- (b) 2
- (c) 1
- (d) 0

**44. Ans: (a)**

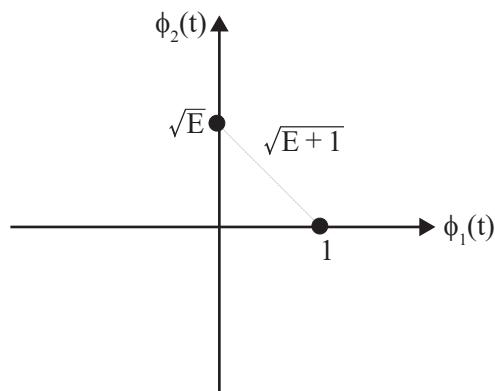
**Sol:** 0 is represented by  $p(t)$


1 is represented by  $q(t)$

$\phi_1(t)$  and  $\phi_2(t)$  form are orthonormal signal set

$$p(t) = \phi_1(t)$$

$$q(t) = -\phi_1(t)$$


The signal space diagram is



$$d_{\min} = 2$$

$$\text{If } p(t) = \phi_1(t) \text{ and } q(t) = \sqrt{E} \phi_2(t)$$

The signal space diagram is



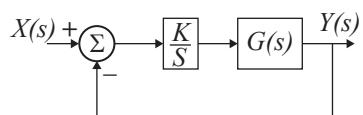
bit error probability will be same if the  $d_{\min}$  is same

$$\sqrt{1+E} = 2$$

$$1+E = 4$$

$$E = 3$$

---


**End of Solution**

---

45. Consider a unity feedback system, as in the figure shown, with an integral compensator  $\frac{K}{s}$  and open-loop transfer function

$$G(s) = \frac{1}{s^2 + 3s + 2}$$

where  $K > 0$ . The positive value of  $K$  for which there are exactly two poles of the unity feedback system on the  $j\omega$  axis is equal to \_\_\_\_\_ (rounded off to two decimal places).



45. Ans: 6

**Sol:**  $G_C(s) = \frac{K}{s(s^2 + 3s + 2)}$

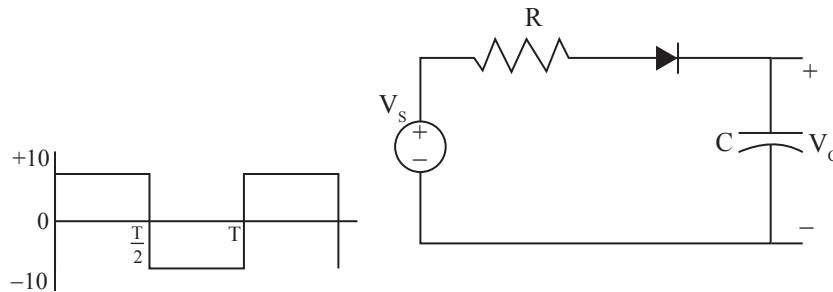
$$CE \rightarrow 1 + G_C(s) = 0$$

$$CE \rightarrow s^3 + 3s^2 + 2s + k = 0$$

$$\begin{array}{c|cc} s^3 & 1 & 2 \\ s^2 & 3 & k \\ s^1 & \left(\frac{6-k}{3}\right) = 0 & 0 \\ s^0 & k & \end{array}$$

$$AE \rightarrow 3s^2 + 6 = 0$$

$$s = \pm j\sqrt{2}$$


$$k = 6$$

---

 End of Solution
 

---

46. In the circuit shown,  $V_s$  is a 10 V square wave of period  $T = 4$  ms with  $R = 500 \Omega$  and  $C = 10 \mu\text{F}$ . The capacitor is initially uncharged at  $t = 0$ , and the diode is assumed to be ideal. The voltage across the capacitor ( $V_c$ ) at 3 ms is equal to \_\_\_\_ volts (rounded off to one decimal place).



46. Ans: 3.3

**Sol:**  $V_s = 10V$

$$V_c(t) = 10V (1 - e^{-t/Rc})$$

$$V_c(t = 2\text{ms}) = 10V \left(1 - e^{-\frac{2 \times 10^{-3}}{500 \times 10 \times 10^{-6}}}\right)$$

$$= 3.3V$$

 T/2  $\leftrightarrow$  T: Diode is OFF

$$V_c(t = 3\text{ms}) = 3.3V$$



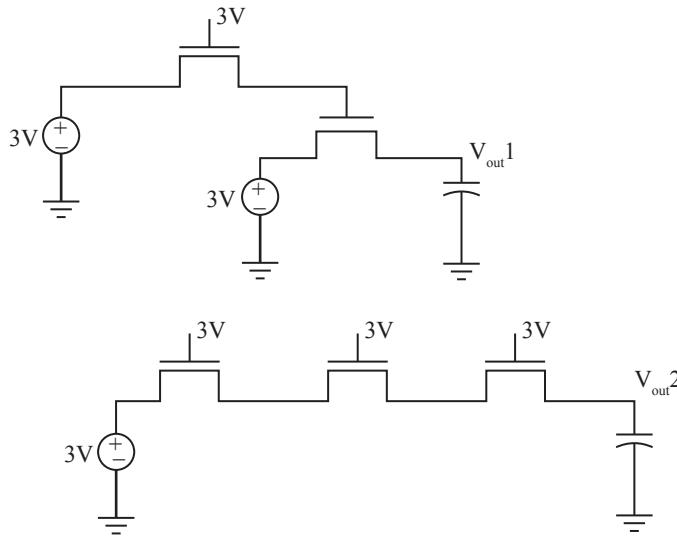
# HEARTY CONGRATULATIONS TO OUR ESE 2018 RANKERS



TOTAL SELECTIONS  
in Top 10

34

E & T TOP 10  
10


E E TOP 10  
10

C E TOP 10  
8

M E TOP 10  
6

and many more...

47. In the circuits shown the threshold voltage of each nMOS transistor is 0.6 V. Ignoring the effect of channel length modulation and body bias, the values of  $V_{out1}$  and  $V_{out2}$ , respectively, in volts, are



47. Ans: (a)

**Sol:** Given,  $V_{TN} = 0.6V$ ,  $\lambda = 0$  &  $V_{SB} = 0$

$$\therefore V_{th} = V_{tho} \text{ (or)} V_t = V_{to}$$

Since, N-MOS, current always flow from drain to source,

⇒ from fig (1)

$$\therefore V_{G1} = 3V, V_{D1} = 3V, V_{TN} = 0.6V$$

Since, to ON N-MOS [E - mode],

$$V_{GS} \geq V_{Th}$$

$$\text{Let } V_{GS} = V_{Th} \Rightarrow V_{G1} - V_{s1} = V_{Th}$$

$$\therefore V_{S1} = V_{G1} - V_{Th} = 2.4V$$

Since,  $V_{S1} = V_{G2} \Rightarrow V_{G2} = 2.4V$ ,

$$\& V_{D2} = 3V$$

∴ Let  $V_{cs2} \equiv V_{T1} \Rightarrow V_{cs} - V_{cs2} = V_{T1}$

$$\therefore V = V = 2.4 - 0.6$$

= 1.8 V

$$\therefore V_{\text{th}} = 1.8V.$$

out  
Similarly from fig (2)

$$V_1 \equiv V_2 \equiv V_3 \equiv 3V \text{ & } V_4 = 3V$$

$$V_1 \equiv V_0 - V_0 \equiv 3 - 0.6 \equiv 2.4V$$

$$\therefore V_{S1} = V_{G1} = 2.4V$$

$$\therefore V_{S1} - V_{O2} = 2.4 \text{ V}$$

$$\& V_{S3} = V_{G3} - V_{Th} = 2.4V$$

$$V_{out2} = 2.4V$$

$$\therefore V_{o1} = 1.8V, V_{o2} = 2.4V$$

---

 End of Solution
 

---

48. A rectangular waveguide of width  $w$  and height  $h$  has cut-off frequencies for  $TE_{10}$  and  $TE_{11}$  modes in the ratio 1:2. The aspect ratio  $w/h$ , rounded off to two decimal places, is \_\_\_\_\_

**48. Ans: 1.73**

**Sol:**  $f_c|_{TE_{10}} = \frac{c}{2} \frac{1}{a}$

$$f_c|_{TE_{11}} = \frac{c}{2} \sqrt{\frac{1}{a^2} + \frac{1}{b^2}}$$

Given

$$\frac{f_c|_{TE_{10}}}{f_c|_{TE_{11}}} = \frac{1}{2}$$

$$f_c|_{TE_{11}} = 2f_c|_{TE_{10}}$$

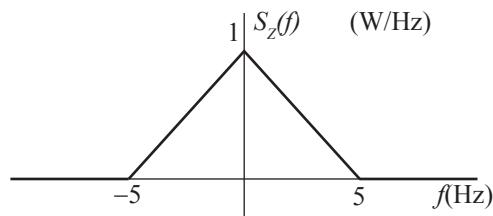
$$\frac{c}{2} \sqrt{\frac{1}{a^2} + \frac{1}{b^2}} = 2 \frac{c}{2} \frac{1}{a}$$

$$\frac{1}{a^2} + \frac{1}{b^2} = \frac{4}{a^2}$$

$$\frac{1}{b^2} = \frac{3}{a^2}$$

$$\left(\frac{a}{b}\right)^2 = 3$$

$$\frac{a}{b} = \sqrt{3}$$


$$\frac{a}{b} = 1.732$$

---

 End of Solution
 


---

49. Let a random process  $Y(t)$  be described as  $Y(t) = h(t) * X(t) + Z(t)$ , where  $X(t)$  is a white noise process with power spectral density  $S_x(f) = 5 \text{ W/Hz}$ . The filter  $h(t)$  has a magnitude response given by  $|H(f)| = 0.5$  for  $-5 \leq f \leq 5$ , and zero elsewhere.  $Z(t)$  is a stationary random process, uncorrelated with  $X(t)$ , with power spectral density as shown in the figure. The power in  $Y(t)$ , in watts, is equal to \_\_\_\_\_ W (rounded off to two decimal places).



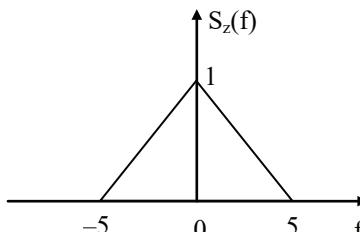
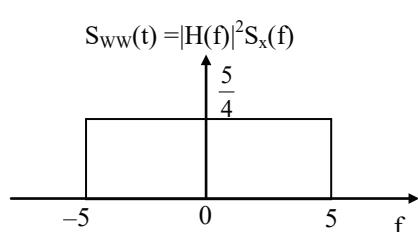
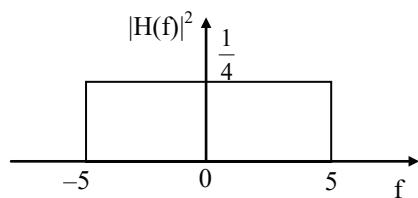
49. Ans: 17.5

Sol:


 Let us assume  $x(t)*h(t) = w(t)$ 

$$y(t) = w(t) + z(t)$$

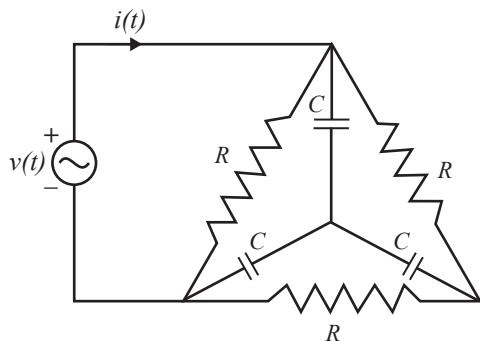
$$R_{YY}(\tau) = R_{ww}(\tau) + R_{zz}(\tau) + R_{wz}(\tau) + R_{zw}(\tau)$$




 $x(t)$  &  $z(t)$  are uncorrelated

$$R_{wz}(\tau) = R_{zw}(\tau) = 0$$

$$R_{YY}(\tau) = R_{ww}(\tau) + R_{zz}(\tau)$$

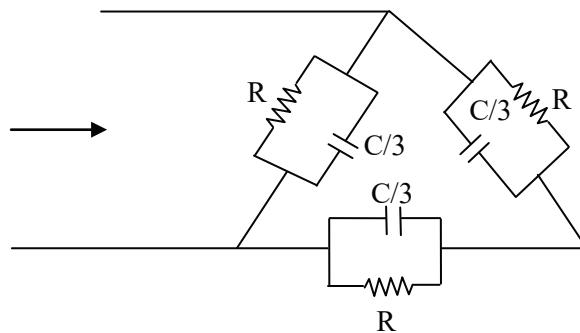
$$S_{YY}(f) = S_{ww}(f) + S_{zz}(f)$$


The power of  $y(t)$  is  $P_Y = \int_{-\infty}^{\infty} S_{YY}(f) df = \int_{-\infty}^{\infty} S_{ww}(f) df + \int_{-\infty}^{\infty} S_{zz}(f) df$

$$S_{ww}(f) = |H(f)|^2 S_x(f)$$


$$P_Y = \frac{5}{4}(10) + \frac{1}{2}(10)(1) = 12.5 + 5 = 17.5 \text{ W}$$

End of Solution

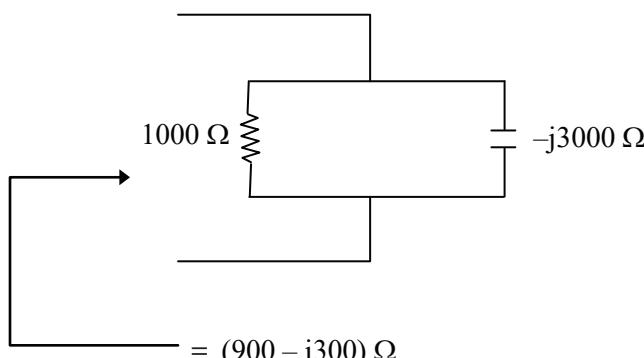

50. In the circuit shown, if  $v(t) = 2 \sin(1000 t)$  volts,  $R = 1 \text{ k}\Omega$  and  $C = 1 \mu\text{F}$ , then the steady-state current  $i(t)$ , in milliAmperes (mA), is

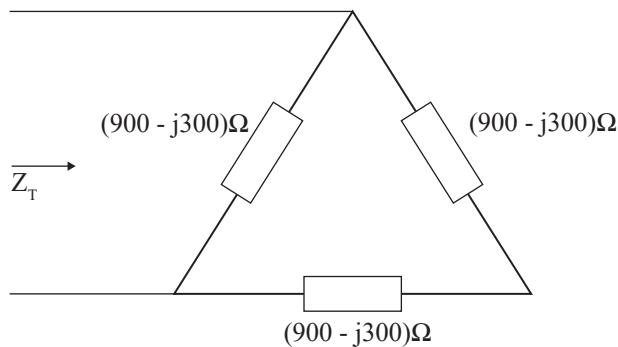


(a)  $2 \sin(1000 t) + 2 \cos(1000 t)$   
 (b)  $\sin(1000 t) + 3 \cos(1000 t)$   
 (c)  $\sin(1000 t) + \cos(1000 t)$   
 (d)  $3 \sin(1000 t) + \cos(1000 t)$

50. Ans: (d)

Sol:



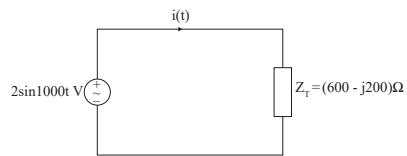


$$R = 1000 \Omega \quad \frac{C}{3} = \frac{1}{3} \mu\text{F}$$

at  $\omega = 1000 \text{ rad/sec}$

$$X_C = \frac{-j}{\omega C} = \frac{-j}{1000 \times \frac{1}{3} \times 10^{-6}}$$

$$X_C = -j3000\Omega$$






$$Z_T = (900 - j300) \parallel (1800 - j600)$$

$$Z_T = \frac{(1440000 - j1080000)}{(2700 - j900)}$$

$$Z_T = (600 - j200)\Omega$$

Finally



$$\text{So, } i(t) = \frac{2 \sin 1000t}{(600 - j200)} = \frac{2 \sin 1000t}{632.455 \angle -18.434}$$

So,

$$i(t) = 3.162 \sin(1000t + 18.434^\circ) \text{ mA}$$

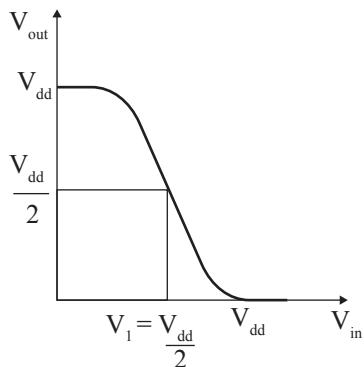
$$S(A + B) = \sin A \cos B + \cos A \sin B$$

So,

$$i(t) = 3.162 (\sin 1000t \cos 18.434 + \cos 1000t \sin 18.434) \text{ mA}$$

$$i(t) = (3 \sin 1000t + \cos 1000t) \text{ mA}$$

**End of Solution**


51. A CMOS inverter, designed to have a mid-point voltage  $V_1$  equal to half of  $V_{dd}$ , as shown in the figure, has the following parameters:

$$V_{dd} = 3 \text{ V}$$

$$\mu_n C_{ox} = 100 \mu\text{A/V}^2; V_{tn} = 0.7\text{V} \text{ for nMOS}$$

$$\mu_p C_{ox} = 40 \mu\text{A/V}^2; |V_{tp}| = 0.9\text{V} \text{ for pMOS}$$

The ratio of  $\left(\frac{W}{L}\right)_n$  to  $\left(\frac{W}{L}\right)_p$  is equal to \_\_\_\_ (rounded off to 3 decimal places).



**51. Ans: 0.225**

$$\mu_n C_{ox} \left(\frac{W}{L}\right)_N (1.5 - V_{TN})^2 = \mu_p C_{ox} \left(\frac{W}{L}\right)_P (1.5 - |V_{TP}|)^2$$

$$100 \times \left(\frac{W}{L}\right)_N \times 0.8^2 = 40 \times \left(\frac{W}{L}\right)_P \times 0.6^2$$

$$\frac{(W/L)_N}{(W/L)_P} = \frac{9}{16} \times \frac{4}{10} = 0.225$$

---

**End of Solution**

---

52. The quantum efficiency ( $\eta$ ) and responsivity ( $R$ ) at a wavelength  $\lambda$  (in  $\mu\text{m}$ ) in a p-i-n photodetector are related by

$$(a) R = \frac{\lambda}{\eta \times 1.24}$$

$$(b) R = \frac{1.24 \times \lambda}{\eta}$$

$$(c) R = \frac{\eta \times \lambda}{1.24}$$

$$(d) R = \frac{1.24}{\eta \times \lambda}$$

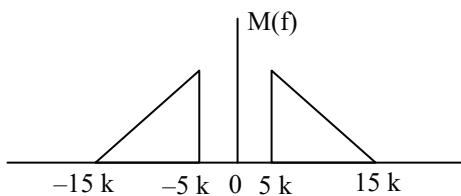
**52. Ans: (c)**

**Sol:**  $R = \frac{\eta q}{hv} = \frac{\eta q \lambda}{hc}$

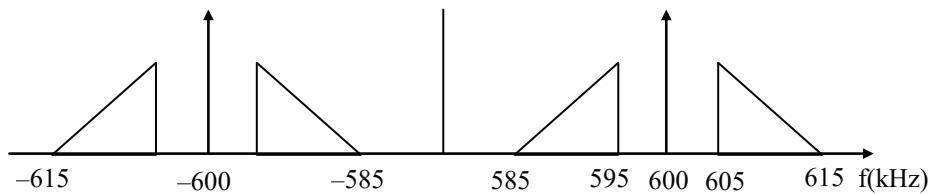
$$R = \frac{\eta \lambda}{1.24}$$

---

**End of Solution**


---

53. A voice signal  $m(t)$  is in the frequency range 5 kHz to 15 kHz. The signal is amplitude-modulated to generate an AM signal  $f(t) = A(1+m(t)) \cos 2\pi f_c t$ , where  $f_c = 600$  kHz. The AM signal  $f(t)$  is to be digitized and archived. This is done by first sampling  $f(t)$  at 1.2 times the Nyquist frequency, and then quantizing each sample using a 256-level quantizer. Finally, each quantized sample is binary coded using  $K$  bits, where  $K$  is the minimum number of bits required for the encoding. The rate, in Megabits per second (rounded off to 2 decimal places), of the resulting stream of coded bits is \_\_\_\_ Mbps.


**53. Ans:**

As there is an ambiguity in the question, one of the question out of the following two cases may be possible

**Sol:** Spectrum of the voice signal  $m(t)$  is



The spectrum of modulated signal is



School of thought 1

The modulated signal is a bandpass signal so the minimum sampling rate is  $f_s = \frac{2f_H}{N}$

$$f_H = 615 \text{ kHz} \quad N = \text{int}\left(\frac{615}{30}\right) = 20.5 = 20$$

$$f_s = \frac{2 \times 615}{20} \text{ kHz} = 61.5 \text{ kHz}$$

sampling rate =  $61.5 \times 1.2 \text{ k} = 73.8 \text{ kHz}$

$$L = 256 = 2^8$$

Minimum number of bits required to encode each sample is '8'.

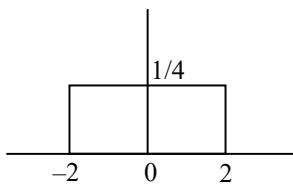
so the bit rate =  $73.8 \times 10^3 \times 8 = 0.5904 \text{ Mbps}$

school of thought 2

sampling rate =  $2 \times 615 \times 10^3 \times 1.2 = 1.476 \text{ MHz}$

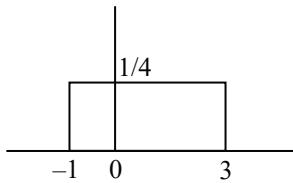
so the bit rate =  $1.476 \times 8 = 11.808 \text{ Mbps}$

54. A random variable  $X$  takes values  $-1$  and  $+1$  with probabilities  $0.2$  and  $0.8$ , respectively. It is transmitted across a channel output is  $Y = X + N$ . The noise  $N$  is independent of  $X$ , and is uniformly distributed over the interval  $[-2, 2]$ . the receiver makes a decision

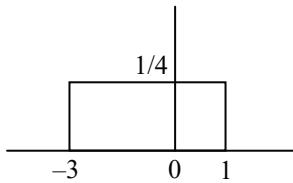

$$\hat{X} = \begin{cases} -1, & \text{if } Y \leq \theta \\ +1, & \text{if } Y > \theta \end{cases}$$

where the threshold  $\theta \in [-1, 1]$  is chosen so as to minimize the probability of error  $\Pr[\hat{X} \neq X]$ . The minimum probability of error, rounded off to 1 decimal place, is \_\_\_\_\_

**54. Ans: 0.1**


**Sol:**  $P(-1) = 0.2, P(1) = 0.8$

the pdf of noise is




the received signal  $Y = X + N$

The pdf if '1' is transmitted



The pdf if '-1' is transmitted



The threshold voltage should lies between  $-1$  and  $+1$

$$\begin{aligned} P_e &= 0.8 \int_{-\infty}^{V_{TH}} \frac{1}{4} dz + 0.2 \int_{V_{TH}}^{\infty} \frac{1}{4} dz \\ &= 0.8 \int_{-1}^{V_{TH}} \frac{1}{4} dz + 0.2 \int_{V_{TH}}^1 \frac{1}{4} dz \end{aligned}$$

$$P_e = 0.2[V_{TH} + 1] + 0.05[1 - V_{TH}]$$

$$V_{TH} = -1 \rightarrow P_e = 0.1$$

$$V_{TH} = 0 \rightarrow P_e = 0.25$$

$$V_{TH} = 1 \rightarrow P_e = 0.4$$

So the minimum probability of error is  $0.1$

55. Consider a long-channel MOSFET with channel length 1  $\mu\text{m}$  and width 10  $\mu\text{m}$ . The device parameters are acceptor concentration  $N_A = 5 \times 10^{16} \text{ cm}^{-3}$ , electron mobility  $\mu_n = 800 \text{ cm}^2/\text{V}\cdot\text{s}$ , oxide capacitance/area  $C_{ox} = 3.45 \times 10^{-7} \text{ F/cm}^2$ , threshold voltage  $V_T = 0.7 \text{ V}$ . The drain saturation current ( $I_{Dsat}$ ) for a gate voltage of 5 V is \_\_\_\_ mA (rounded off to two decimal places). [ $\epsilon_0 = 8.854 \times 10^{-14} \text{ F/cm}$ ,  $\epsilon_{si} = 11.9$ ]

**55. Ans: 25.5**

**Sol:**  $I_{Dsat} = \frac{1}{2} \mu_n C_{ox} \times \frac{W}{L} (V_{GS} - V_{TH})^2$

$$= \frac{1}{2} \times 800 \times 3.45 \times 10^{-7} \times \frac{10}{1} \times (5 - 0.7)^2$$
$$= 25.5 \text{ mA}$$

---

**End of Solution**

---