

Hyderabad | Delhi | Ahmedabad | Bhopal | Pune | Bhubaneswar | Bengaluru Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupathi | Kukatpally | Kolkata

GATE - 2019

Questions with Detailed Solutions

CIVIL ENGINEERING

Afternoon Session

ACE Engineering Academy has taken utmost care in preparing the **GATE-2019** Examination solutions. Discrepancies, if any, may please be brought to our notice. ACE Engineering Academy do not owe any responsibility for any damage or loss to any person on account of error or omission in these solutions. ACE Engineering Academy is always in the fore front of serving the students, irrespective of the examination type (GATE/ESE/PSUs/PSC/GENCO/TRANSCO etc.,).

All Queries related to GATE- 2019 Solutions are to be sent to the following email address hyderabad@aceenggacademy.com | Contact Us: 040-23234418,19,20

GATE - 2019 CIVIL ENGINEERING

Subject wise weightage

S. No.	Name of the Subject	1 Mark (Q)	2 Marks (Q)
1	Verbal Ability	3	2
2	Numerical Ability	2	3
3	Engineering Mathematics	5	3
4	Engineering Mechanics	0	0
5	Solid Mechanics (Strength of Materials)	2	1
6	Structural Analysis	1	2
7	Construction Material & Management	1	1
8	Reinforced Cement Concrete	1	1
9	Steel Structures	1	2
10	Geotechnical Engineering	4	5
11	Fluid Mechanics & Hydraulic Machines	2	3
12	Hydrology	1	2
13	Irrigation	1	0
14	Environmental Engineering	2	4
15	Transportation Engineering	3	4
16	Geomatics Engineering (Surveying)	1	2
	TOTAL	30	35

	ACE Engineering Publications	3	CE_GATE_19_Questions with Detailed Solutions
04.	Ans: (c)		
Sol:	as that of. growth rate is singular number.		
		- End of Solut	ion
05.	Suresh wanted to lay a new carpet in his n sq. mts. Had to be left out for flower pots.	ew mansion with If the cost of carp	an area of 70×55 sq. mts. However an area of 550 et is Rs.50 per sq. mts., How much money (in Rs)
	will be spent by Suresh for the carpet now	?	
	(a) 1, 65, 000	(b) 2, 75, 000	
	(c)1, 92, 500	(d) 1, 27, 500	
05.	Ans: (a)		
Sol:	Area to be computed = $[(70 \times 55) - 550]$ of	or 3300 sq. m	
	Total cost of carpeting = $3300 \times \text{cost}$ per s	q.m	
	$= 3300 \times 50 \text{ rs}$		
	= Rs 1, 65,000		
		End of Solut	ion ———
06.	The Newspaper reports that over 500 hect	ares of tribal land	spread across 28 tribal settlements in Mohinitam-
	puram forest division have already been "a	alienated". A top f	orest official said, "First the tribals are duped out
	of their land holdings. Second, the familie forests".	s thus rendered la	ndless are often forced to encroach further into the
	On the basis of the information available i	n the paragraph,	is/are responsible for duping the tribals.
	(a)landless families	(b) fore	st officials
	(c) it cannot be inferred who	(d) the 1	newspaper
06	Ans: (c)		
Sol:	cannot be inferred. Para doesn't mention v	who is responsible	
		End of Solut	
		End of Solut	
07.	An oil tank can be filled by pipe X in 5 ho	urs and pipe Y in	4 hours, each pump working on its own. When the
	oil tank is full and the drainage hole is ope	en, the oil is drain	ed in 20 hours. If initially the tank was empty and
	someone started the two pumps together b	out left the drainag	e hole open, how many hours will it take for the
	tank to be filled? (Assume that the rate of	drainage is indepe	endent of the Head)
	(a)2.00 (b) 2.50	(c) 4.00	(d) 1.50
ACEL	Engineering Publications Hyderabad + Delbi + Rhopal + Pup	e + Bhubaneswar + Lucknow	+ Patna + Bengaluru + Chennai + Vijavawada + Vizag + Tirunati + Kolkata + Ahmedahad

		4	Civil Engineering_GATE_19 (Session-2)
07.	Ans: (b)		
Sol:	: Work done by pipes x,y and drain in the $=\frac{1}{5}$,	$\frac{1}{4} \& \left(\frac{-1}{20}\right)$ says	
	\therefore work done by pipes x, y and drain together	$\mathbf{r} = \left(\frac{1}{5} + \frac{1}{4} - \frac{1}{20}\right)$ on	$\frac{8}{20}$ or $\frac{2}{5}$
	\therefore The time taken to fill the tank = $\frac{5}{2}$ hrs or 2.	.5 hrs	
		End of Solution	
08.	Population of state X increased by x% and th Assume that x is greater than y. Let P be the r percentage increase in P from 2001 to 2011 is	e population of sta ratio of the popula s	ate Y increased by y% from 2001 to 2011. tion of state X to state Y in a given year. The
	(a) $\frac{100(x-y)}{100+y}$ (b) x	- y	
	(c) $\frac{x}{y}$ (d) $\frac{100(x)}{100}$	$\frac{x-y}{y+x}$	
<mark>08.</mark> Sol:	Ans: (a) : Let population of two states in 2001 ha asb ra	ıtio	
	$\tau_{\max} \ P = \frac{a}{b}$		
	Population of two states in $2011 = a + x/ya$, l	b + y ² /yb respectiv	vely
	Ratio of population in 2011 i.e P in 2011 = $\frac{a}{b}$	$\frac{x + x/ga}{x + y/gb}$	
	$=\frac{10}{10}$	$\frac{00a + ax}{00b + by}$	
		End of Solution	
09.	"Popular Hindi fiction, despite – or perhaps b ideals that viewers are meant to look up to rat of aspirational value: textbooks, English bool Which one of the following CANNOT be inff (a) Textbooks, English books or high literat (b) Protagonists in Hindi movies, being idea	because of – its with ther than identify ks, or high value li ferred from the par ture have aspiration als for viewers, rea	de reach, often does not appear in our cinema. As with, Hindi film protagonists usually read books iterature." agraph above? nal value, but not popular Hindi fiction ad only books of aspirational value

- (c) People do not look up to writers of textbooks, English books or high value literature
- Though popular Hindi fiction has wide reach, it often does not appear in the movies (d)

	ACE Engineering Publications		5	CE_GATE_1	9_Questions with Detailed S	olution
0 9.	Ans: (b)					
Sol:	para says usually. N	ot only				
			End of Solution	on ———		
10.	Mohan, the manager and John have work not want to work wi ue working?	r, wants his four workers ed together for 5 hours. I th Ram. Whom should M	to work in pairs Krishna and Am Iohan allot to w	s. No pair shou ir have worked ork with John	Ild work for more than 5 hours d as a team for 2 hours. Krishn , if he wants all the workers to	s. Ram ha does contin
	(a)Amir	(b) Krishna	(c) Ram		(d) None of the three	
10. Sol:	Ans: (b) As Krishna does not ∴Mohan should alle Note: Krishna alrea	t want to work with Ram, ot Krishna to John to wor dy worked with Amir as a	, he has to work k as a pair. a pair.	only with Joh	n.	
			End of Solution	on ———		

RRB (JE)-2019 Online Test Series

Common for all Streams No. of Tests : 20 Starts from 25th February 2019

CE | ME | EC | EE No. of Tests : 20 Starts from 6th May 2019

© 040 - 48539866 / 040 - 40136222

🖻 🖄 testseries@aceenggacademy.com

ACE Launches

For **B.Tech – CSE Students**

Placement Training

In **Level – 1 Companies** Short Term & Long Term Batches

		8		Civil	Engine	ering_GATE_19 (Session-2)
04.	A vehicle is moving on a road of grade $+4\%$ at a spear as 0.46 and acceleration due to gravity as 10 m/s ² . Obtaining distance (in m, round off to nearest integer)	eed of 20 On applyin along the	m/s. Co ng brake e horizor	nsider tl s to read ntal, is _	ne coeffi ch a spec	cient of rolling friction ed of 10 m/s, the required
04.	Ans: 30 m					
Sol:	: Given,					
	Upward gradient, $G = 4\% = 0.04$ (upgrade is taken as +ve)					
	Initial speed, $v_1 = 20 \text{ m/s}$					
	Coefficient of friction (rolling), $f = 0.46$					
	Acceleration due to gravity, $g = 10 \text{ m/s}^2$					
	Final velocity due to break application (reduced), v_2	= 10 m/s	5			
	Breaking distance , $S_{b} = \frac{(v_{1}^{2} - v_{2}^{2})}{2g(f+G)}$					
	$=\frac{(20^2-10^2)}{2\times10(0.46+0.04)}=30 \text{ m}$					
	End	of Solutio	on —			
05.	An anisotropic soil deposit has coefficient of permeas spectively. For constructing a flow net, the horizonta multiplying factor of	ability in al dimens	vertical ion of th	and hor ie proble	izontal c em's geo	lirections as k_z and k_x re- ometry is transformed by a
	(a) $\frac{k_z}{k_x}$ (b) $\sqrt{\frac{k_x}{k_z}}$	(c) $\sqrt{\frac{k_z}{k_x}}$			(d) $\frac{k_x}{k_z}$
05.	Ans: (c)					
	End	of Solutio	on —			
06.	The characteristic compressive strength of concrete the observed compressive strength expected at site i at different water-cement (w/c) ratios using the same	required s 4 MPa. e materia	in a proj The ave l as is us	ect is 2: rage con ed for th	5 MPa a mpressiv he proje	nd the standard deviation in ve strength of cubes tested ct is given in the table.
	w/c(%)	45	50	55	60	
	Average compressive strength of cubes (MPa)	35	25	20	15	
	The water-cement ratio (in percent, roundoff to the	ower inte	eger) to l	be used	in the m	ix is

ACE

06. Ans: 46

Sol: Mean strength $f_m = f_{ck} + 1.65 \sigma$ $= 25 + 1.65 \times 4$

= 31.6 MPa

From table

f _m (MPa)	w/c (%)
35	45%
31.6	?
25	50%

W/C ratio required = $45 + \frac{50 - 45}{35 - 25} \times (35 - 31.6) = 46.7\% \simeq 46\%$

End of Solution

0

(d)

 $\frac{1}{2}$

07. The following inequality is true for all x close to 0. $2 - \frac{x^2}{3} < \frac{x \sin x}{1 - \cos x} < 2$

(c)

What is the value $\lim_{x\to 0} \frac{x \sin x}{1 - \cos x}$?

(b) 1

(a)2

07. Ans: (a)

Sol: Lt $\frac{x \sin x}{1 - \cos x}$

 $=\frac{1}{\frac{1}{2}}$

= 2

$$= \operatorname{Lt}_{x \to 0} \frac{\frac{\operatorname{SIN} x}{x}}{\frac{1 - \cos x}{x^2}}$$

End of Solution

ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bhubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

9

CE GATE 19 Questions with Detailed Solution:

10. Ans: (c)

ACE

Sol: Shear flow in horizontal member (flange) is linear with zero at free end and in vertical member (web) it is parabolic.

11

Therefore the suitable option is (c).

End of Solution

11. An inflow hydrograph is routed through a reservoir to produce an outflow hydrograph. The peak flow of the inflow hydrograph is P₁ and the time of occurrence of the peak is t₁. The peak flow of the outflow hydrograph is P_{o} and the time of occurrence of the peak is t_{o} . Which one of the following statements is correct?

(a) $P_I > P_o$ and $t_I > t_o$	(b) $P_I > P_o$ and $t_I < t_o$
(c) $P_1 < P_0$ and $t_1 > t_0$	(d) $P_1 < P_0$ and $t_1 < t_0$

11. Ans: (b)

Sol:

Inflow Hydrograph out flow hydrograph p_1 p_0 t, t₀ $P_I > P_O$ $t_{I} < t_{O}$ **End of Solution**

The data from a closed traverse survey PQRS (run in the clockwise direction) are given in the table 12.

(in degree)
88
92
94
89
-

The closing error for the traverse PQRS (in degrees) is _____

	ACE 12 Civil Engineering_GATE_19 (Session-2)					
12.	Ans: 3					
Sol:	Sol: In a closed triangle sum of interior angles = $(2n - 4) \times 90^\circ = (2 \times 4) - 4 \times 90^\circ = 360^\circ$					
	angles = $(2n - 4) \times 90^\circ = (2 \times 4) - 4 \times 90^\circ = 360^\circ$					
	$\angle P + \angle Q + \angle R + \angle S = 88 + 92 + 94 + 89 = 363^{\circ}$					
	\therefore Angular correction = -3°					
	Angular error = $+3^{\circ}$					
	End of Solution					
13.	The command area of a canal grows only one crop, i.e., wheat. The base period of wheat is 120 days and its total					
	water requirement. Δ , is 40 cm. If the canal discharge is 2 m ³ /s, the area, in hectares, rounded off to the nearest					
	integer, which could be irrigated (neglecting all losses) is					

13. Ans: 5184

Sol: Wheat,

B = 120 days,

$$\Delta = 40 \text{ m},$$

$$Q = 2 \text{ m}^3/\text{s}$$

$$A = ?$$

$$Q = \frac{A}{D}$$

$$Q = \frac{A}{8.64 \times \frac{B}{\Delta}}$$

$$2 = \frac{A}{8.64 \times \frac{120}{0.4}}$$

A = 5184 ha

End of Solution

14. An earthen dam of height H is made of cohesive soil whose cohesion and unit weight are c and γ , respectively. If the factor of safety against cohesion is F_c , the Taylor's stability number (S_n) is

(a)
$$\frac{\gamma H}{cF_c}$$
 (b) $\frac{c}{F_c \gamma H}$ (c) $\frac{F_c \gamma H}{c}$ (d) $\frac{cF_c}{\gamma H}$
14. Ans: (b)
Sol: Stability number, $S_n = \frac{C}{F_c \gamma H}$
End of Solution
ACE Engineering Publications
Hyderabad + Delhi + Bhopal + Pune + Bhubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

ACE

Start Early.. Gain Surely...

GATE+PSUs - 2020

- HYDERABAD -

29th April | 06th May | 11th May 18th May | 26th May | 02nd June 2019

DELHI

11th May | 23rd May 2019

ADMISSIONS ARE OPEN

EARLY BIRD OFFER :

Register on or Before 31st March 2019 : 3000/- Off

Engineering Publications	17	CE_GATE_19_Questions with Detailed Solutions
Since $\frac{C_v}{d^2}$ remains same fo	r both the times,	
$T_v \propto t$		
$\frac{T_{v2}}{T_{v1}}=\frac{t_2}{t_1}$		
$\frac{T_{v2}}{0.0491} = \frac{9}{4}$		
$\therefore T_{v2} = 0.11044$		
$T_{v2} = \frac{\pi}{4} \left(\frac{U_2}{100} \right)^2$ since $T_{v2} <$	0.28	
$0.11044 = \frac{\pi}{4} \left(\frac{U_2}{100}\right)^2$		
U ₂ = 37.5 %		
$U_2 = \frac{S_2}{S_f} \times 100$		
$37.5 = \frac{S_2}{40} \times 100$		
$S_2 = 14.99 \text{ mm} \text{ say } 15 \text{ mm}$	l	
	———— End of Soluti	0 n
21. What is curl of the vector field 2	$4x^2$ yi + 5 z^2 j - 4yzk?	
(a) $-14z\mathbf{i} + 6y\mathbf{j} + 2x^2\mathbf{k}$ (c) $6z\mathbf{i} - 8xy\mathbf{i} + 2x^2y\mathbf{k}$	(b) $6zi + 4xj - 2x^2k$ (d) $- 14zi - 2x^2k$	
21. Ans: (d) Sol: Given: $\vec{V} = 2x^2y\vec{1} + 5z^2\vec{j} - 4yz\vec{1}$, K	
$\operatorname{curl} \vec{\nabla} = \nabla \times \vec{\nabla} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2x^2y & 5z^2 & -4y \end{vmatrix}$, VZ	
$=\vec{i}(-4z-10z)-\vec{j}(0-0)+\vec{k}(0-1)$	$-2x^{2}$)	
$= -14z\vec{i} - 2x^2\vec{k}$		
	End of Soluti	0 n

	ACE Engineering Publications		18	Civil Engineering_GATE_19 (Session-2
22.	A closed thin-	walled tube has thick	ness, t, mean enclosed area w	vithin the boundary of the centerline of tube's
	thickness, A _m a	and shear stress, τ . To	orsional moment of resistance	, T, of the section would be
	(a) $2\tau A_m t$	(b) $4\tau A_m t$	(c) $\tau A_m t$ (d) 0	$0.5\tau A_{m}t$
22.	Ans: (a)			
Sol:				
	For thin walle	d circular tubes	t →	
	Torsional mon	nent of resistance = 2	τA_t	
	where, $\tau = sh$	lear stress,		
	$A_m = A_I$	rea enclosed by media	an line,	
	t = th	ickness of tube.		
			End of Solution	
22	The notation "	SC" of par Indian Sta	andard Sail Classification Sys	atom rafara ta
23.	(a) Clayey san	d (b) Silty	r clay (c) Clayey si	ilt (d) Sandy clay
23. Sol:	Ans: (a) : The symb	ol SC refers to Clay	vev Sand.	
	5		5	
			— End of Solution	
24.	Analysis of a v	water sample revealed	d that the sample contains the	following species.
	$CO_{3}^{2-}, Na^{+}, H^{-}$	$^{+}$, PO ₄ ³⁻ , Al ³⁺ , H ₂ CO	¹ ₃ , Cl ⁻ , Ca ²⁺ , Mg ²⁺ , HCO ₃ , Fe	2 ²⁺ , OH ⁻
	Concentration	s of which of the spec	cies will be required to compu	ute alkalinity?
	(a) H^+ , H_2CO_3 ,	, HCO ₃ , OH-	(b) CO_3^{2-} , H ⁺	^{+,} HCO ₃ ⁻ , OH ⁻
	(c) $CO_{3^{-}}^{2^{-}}H^{+}$,	H_2CO_3 , HCO_3^-	(d) $CO_{3^{-}}H_{2}$	$_{2}$ CO ₃ , HCO ₃ , OH ⁻
24.	Ans: (b)			
Sol:	At $p^{H} < 4.3$ the	ere is no alkalinity pre	sent there is only free mineral	l acidity and dissolved carbon dioxide expressed
	as carbonic act	id $H_2CO_3^-$. Therefore	$H_2CO_3^-$ doesn't contribute alk	calinity remaining substances CO_3^{2-} , HCO_3^{-} , OH
	directly cause	alkalinity and it also	require H ⁺ ions to calculate (OH⁻.
			End of Solution	
ACE	Engineering Public	nations Hydershad + Delhi + Bh	nonal + Pune + Bhubaneswar + Lucknow + Patna	+ Rengaluru + Chennai + Vijavawada + Vizag + Tirunati + Kolkata + Ahmedaha

			19	CE_GATE_19_Questions with Detailed Solutions
25.	The velocity field	1 in a flow system is	given by $v = 2i + (x + i)$	$(x + y) \mathbf{j} + (xyz)\mathbf{k}$. The acceleration of the fluid at (1, 1,
	(a) $j + k$	(b) 4 j + 10 k	(c) 2 i + 10 k	(d) $4i + 12 k$
25 Sol:	Ans: (b)			
	$\vec{V} = 2\hat{i} + (x + i)$	$y)\hat{j}+(xyz)\hat{k}$		
	$a_x = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial x}$	$\frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} + \frac{\partial u}{\partial t} = 0$		
	$a_y = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial x}$	$\frac{\partial \mathbf{v}}{\partial \mathbf{y}} + \mathbf{w}\frac{\partial \mathbf{v}}{\partial z} + \frac{\partial \mathbf{v}}{\partial t} = 20$	(1) + (x + y)(1) + xy	$V_{Z}(0) + 0$
	= x + y +	+2 = 1 + 1 + 2 = 4		
	$a_z = u \frac{\partial w}{\partial x} + v \dot{x}$	$\frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} + \frac{\partial w}{\partial t} =$	2(yz) + (x+y)(xz)	+xyz(xy)+0
	= 2yz	$x + x^2z + xyz + x^2y^2z$		
	= 2(1	$)(2) + 1^{2}(2) + 1(1)(2)$	$2)+1^2\times1^2\times2$	
	= 4 + 2	2 + 2 + 2 = 10		
	$\therefore \vec{a} = a_x \hat{i} + a_y$	$a_{z}\hat{j} + a_{z}\hat{k} = o\hat{i} + 4\hat{j} + 1$	0k	
	$=4\widehat{j}+10\widehat{k}$			
			— End of Sol	ution
26.	Consider the reac mg/L) of a compo- reactor following becomes either a can be adjusted in constant. Assumin	tor shown in the figure ound in the influent as the first order reacting completely mixed find these two mixing completed y state and for Q, C_0	ure. The flow rate the and effluent are C_o and on. The mixing condo ow reactor (CMFR) onditions to L_{CMFR} are for $C/C_o = 0.8$, the value L	arough the reactor is Q m ³ /h. The concentrations (in nd C, respectively. The compound is degraded in the dition of the reactor can be varied such that the reactor or a plug-flow reactor (PFR). The length of the reactor nd L_{PFR} while keeping the cross-section of the reactor alue of L_{CMFR}/L_{PFR} (round off to 2 decimal places) is

ר

ſ

ACE Engineering Publications

21

CE_GATE_19_Questions with Detailed Solutions

28. Ans: 2.83

Sol:

Applying Bernoulli's equation between free surface and exit we get

$$H=h_{\rm f}+\frac{v^2}{2g}$$

Neglecting kinetic energy head at exit H = h_f -----(1)

for series combination $h_{\rm f} = h_{\rm f1} + h_{\rm f2}$

$$= \frac{fLQ_s^2}{12.1D^5} + \frac{fLQ_s^2}{12.1D^5}$$

i.e H = $\frac{2fLQ_s^2}{12.1D^5}$ ------ (2)

for parallel combination

$$h_{f} = h_{f1} = h_{f2} \qquad \& \qquad Q_{1} = Q_{2} = \left(\frac{Q_{p}}{2}\right)^{2}$$
i.e
$$H = \frac{fL\left(\frac{Q_{p}}{2}\right)^{2}}{12.1 \text{ D}^{5}}$$

$$H = \frac{fLQ_{p}^{2}}{4 \times 12.1 \text{ D}^{5}} - \dots (3)$$
from 2 & 3
$$\frac{2 fLQ_{s}^{2}}{12.1 \text{ D}^{5}} = \frac{fLQ_{p}^{2}}{4 \times 12.1 \text{ D}^{5}}$$
i.e
$$\frac{Q_{p}}{Q_{s}} = \sqrt{8} = 2.83$$

End of Solution

<section-header><section-header><section-header><section-header><section-header><section-header>

Starts from **30th March 2019.** Test Series will be conducted at all our centres

APPSC-AEE (Prelims) ---Online Test Series

No. of Tests : 18

Topic Wise Tests : 15 | Mock Tests - 3 Civil | Mechanical | Electrical

Available Now

All Tests will be available till 18th February 2019

🕓 040 - 48539866 / 040 - 40136222 🛛 🗳 testse

testseries@aceenggacademy.com

CE GATE 19 Questions with Detailed Solutions

32. A confined aquifer of 15 m constant thickness is sandwiched between two aquicludes as shown in the figure (not drawn to scale)

Reference Datum

The heads indicated by two piezometers P and Q are 55.2 m and 34.1 m, respectively. The aquifer has a hydraulic conductivity of 80 m/day and its effective porosity is 0.25. If the distance between the piezometers is 2500 m, the time taken by the water to travel through the aquifer from piezometer location P to Q (in days, round off to 1 decimal place) is _____

32. Ans: 925.7

ACE

Sol: Discharge velocity, V = k i

$$V = k \left(\frac{h_1 - h_2}{L}\right)$$
$$= 80 \left(\frac{55.2 - 34.1}{2500}\right) = 0.6752 \text{ m/day}$$

Porosity, n = 0.25 \therefore Seepage velocity, $V_s = \frac{V}{n}$

$$=\frac{0.6752}{0.25}=2.7008$$
 m/day

Time taken =
$$\frac{L}{V_s} = \frac{2500}{2.7008} = 925.65$$
 days say 925.7 days

End of Solution

25

ACE Engineering Publications

34. Ans: (b)

Sol: $\sigma_x = 80 \text{ MPa}, \qquad \sigma_y = -20 \text{ MPa}, \qquad \tau_{xy} = -25 \text{ MPa},$ Angle of major principal plane : $\tan 2\theta_p = \frac{2 \tau_{xy}}{(\sigma_x - \sigma_y)} = \frac{2(-25)}{80 - (-20)}$ $\theta_p = -13.28^{\circ}$ Angle of maximum shear stress plane $= \theta_p + 45 = -13.28 + 45 = 31.7^{\circ}$ End of Solution

35. Constant head permeability tests were performed on two soil specimens. S1 and S2. The ratio of height of the two specimens $(L_{s1} : L_{s2})$ is 1.5, the ratio of the diameter of specimens $(D_{s1} : D_{s2})$ is 0.5, and the ratio of the constant head $(h_{s1} : h_{s2})$ applied on the specimens is 2.0. If the discharge from both the specimens is equal, the ratio of the permeability of the soil specimens $(k_{s1} : k_{s2})$ is _____

27

35. Ans: 3

Sol:
$$Q = k \quad i \quad A$$
$$= k \times \frac{h}{L} \times \frac{\pi}{4} D^{2}$$
$$\frac{Q_{1}}{Q_{2}} = \frac{k_{1}}{k_{2}} \frac{h_{1}}{h_{2}} \frac{L_{2}}{L_{1}} \left(\frac{D_{1}}{D_{2}}\right)^{2}$$
$$1 = \frac{k_{1}}{k_{2}} \times 2 \times \frac{1}{1.5} \times 0.5^{2}$$
$$\frac{k_{1}}{k_{2}} = 3$$

End of Solution

36. A long uniformly distributed load of 10 kN/m and a concentrated load of 60 kN are moving together on the beam ABCD shown in figure (not drawn to scale). The relative positions of the two loads are not fixed. The maximum shear force (in kN, round off to the nearest integer) caused at the internal hinge B due to the two loads is _____.

ų.	30 Civil Engineering_GATE_19 (Session-2
38.	n the context of provisions relating to durability of concrete, consider the following assertions: Assertion (1): As per is 456-2000, air entrainment to the extent of 3% to 6% is required for concrete exposed to narine environment. Assertion (2): The equipment alkali content (in terms of Na ₂ O equivalent) for a cement containing 1% and 0.6% of Na ₂ O and K ₂ O, respectively is approximately 1.4% (rounded to 1 decimal place) Which one of the following statements is CORRECT? (a) Assertion (1) is FALSE and Assertion (2) is TRUE (b) Assertion (1) is TRUE and Assertion (2) is FALSE (c) Both Assertion (1) and Assertion (2) are FALSE (d) Both Assertion (1) and Assertion (2) are TRUE
38.	Ans: (a)
Sol:	As per clause 8.2.2.3 of IS 456-2000, entrained air percentage of 3 to 6% is required to resist freezing and thawing
	i.e. not for marine environment.
	Hence, Assertion (1) is wrong
	Equivalent alkali content is terms of Na ₂ O
	$= [Na_2O] + 0.685[K_2O]$
	$= 1 + 0.685 \times 0.6 = 1.41\%$
	Hence, Assertion (2) is correct.

39. Raw municipal solid waste (MSW) collected from a city contains 70% decomposable material that can be converted to methane. The water content of the decomposable material is 35°. An elementj analysis of the decomposable material yields the following mass percent?

C : H : O : N : other = 44 : 6 : 43 : 0.8 : 6.2

The methane production of the decomposable material is governed by the following stoichiometric relation.

 $C_aH_bO_cN_d + nH_2O \rightarrow mCH_4 + sCO_2 + dNH_3$

Given atomic weights : C = 12, H = 1, O = 16, N = 14. The mass of methane produced (in grams, round off to 1 decimal place) per kg of raw MSW will be_____

CE_GATE_19_Questions with Detailed Solution

39. Ans: 151.8 Sol: C: H: O: N = 44: 6: 43: 0.8 \Rightarrow a = 44, b = 6, c = 43, d = 0.8 $C_a H_b O_c N_d + n H_2 O \rightarrow m CH_4 + s CO_2 + d NH_3$ By balancing the equation, m + s = 44 -----(1) 4m - 2n = 3.6 -----(2) 2s - n = 43 -----(3) By solving m = 11.7Molecular weight of $C_{44} H_6 O_{43} N_{0.8} = 44 \times 12 + 6 \times 1 + 43 \times 16 + 0.8 \times 14 = 1233.2$ Molecular weight of 11.7 $CH_4 = 11.7 \times (12 + 4 \times 1) = 187.2$ 1233.2 parts of MSW produce = 187.2 parts of CH₄ gas 1 part of MSW produce = $\frac{187.2}{1233.2}$ parts of CH₄ gas 1 kg of MSW produce $=\frac{187.2}{1233.2} \times 1$ kg of CH₄ gas Mass of methane gas produced = 0.1518 kg = 151.8 gm**End of Solution**

40. A series of perpendicular offsets taken from a curved boundary wall to a straight survey line at an interval of 6 m are 1.22, 1.67, 2.04, 2.34, 2.14, 1.87 and 1.15 m. The area (in m², round off to 2 decimal places) bounded by the survey line, curved boundary wall, the first and the last offsets, determined using Simpson's rule is _____.

31

40. Ans: 68.5

Sol: By using Simpson's rule:

ACE

$$A = \frac{d}{3} [(first + last) + 2(odd) + 4(Even)]$$
$$= \frac{6}{3} [(1.22 + 1.15) + 2(2.04 + 2.14) + 4(1.67 + 2.34 + 1.87)]$$

 $= 68.5 \text{ m}^2$

Simpson's rule is applicable for odd number of ordinates and also for curved boundaries.

End of Solution

	ACE Engineering Publications	32	Civil Engineering_GATE_19 (Session-2)
41.	The inverse of the matrix $\begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$ is		
	(a) $\begin{bmatrix} -10 & 4 & 9 \\ 15 & -4 & -14 \\ -5 & 1 & 6 \end{bmatrix}$	(b) $\begin{bmatrix} 2 & -\frac{4}{5} & -\frac{9}{5} \\ -3 & \frac{4}{5} & \frac{14}{5} \\ 1 & -\frac{1}{5} & -\frac{6}{5} \end{bmatrix}$	
	(c) $\begin{bmatrix} -2 & \frac{4}{5} & \frac{9}{5} \\ 3 & -\frac{4}{5} & -\frac{14}{5} \\ -1 & \frac{1}{5} & \frac{6}{5} \end{bmatrix}$	(d) $\begin{bmatrix} 10 & -4 & -9 \\ -15 & 4 & 14 \\ 5 & -1 & -6 \end{bmatrix}$	
41.	Ans: (c)		
Sol:	Let $A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$		
	det (A) = 2(12 - 2) - 3 (16 - 1) + 4 (8 - 3) $= 2(10) - 2 (15) + 4(5)$		
	det (A) = -5		
	Minor of $2 = 12 - 2 = 10$		
	Minor of $3 = 16 - 1 = 15$		
	Minor of $4 = 8 - 3 = 5$		
	Minor of $4 = 12 - 8 = 4$		
	Minor of $3 = 8 - 4 = 4$ Minor of $1 - 4 - 3 = 1$		
	Minor of $1 = 3 - 12 = -9$		
	Minor of $2 = 2 - 16 = -14$		
	Minor of $4 = 6 - 12 = -6$		
	Cofactors of A = $\begin{bmatrix} 10 & -15 & 5 \\ -4 & 4 & -1 \\ -9 & 14 & -6 \end{bmatrix}$		
	$adj A = (cofactors of A)^T$		
	$adj A = \begin{bmatrix} 10 & -4 & -9 \\ -15 & 4 & 14 \\ 5 & -1 & -6 \end{bmatrix}$		
	$\therefore A^{-1} = \frac{adjA}{ A } = \frac{-1}{5} \begin{bmatrix} 10 & -4 & -9 \\ -15 & 4 & 14 \\ 5 & -1 & -6 \end{bmatrix}$		
ACE	Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bhubane	swar + Lucknow + Patna + Bengalu	ru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Egiocering Publication	33 CE_GATE_19_Questions with Detailed Solutions
$\mathbf{A}^{-1} = \begin{bmatrix} -2 & \frac{4}{5} & \frac{9}{5} \\ 3 & \frac{-4}{5} & \frac{-14}{5} \\ -1 & \frac{1}{5} & \frac{6}{5} \end{bmatrix}$	
Option (c) is correct	
	End of Solution

42. The ordinates, u, of a 2-hour unit hydrograph (i.e., for 1 cm of effective rain), for a catchment are shown in the table.

r(hour)	0	1	2	3	4	5	6	7	8	9	10	11	12
$u(m^3/s)$	0	2	8	18	32	45	30	19	12	7	3	1	0

A 6-hour storm occurs over the catchment such that the effective rainfall intensity is 1 cm/hour for the first two hours, zero for the next two hours, and 0.5 cm/hour for the last two hours. If the base flow is constant at 5 m^3/s . The peak flow due to this storm (in m^3/s round off to 1 decimal place) will be _____

42. Ans: 97

Sol:

			log 2h	log 4 hu		
Time	2h UH	1st DRH, R ₁ = 2 cm	2nd DRH, $R_2 = 0$	3rd DRH, R ₃ = 1 cm	Total DRH	B F
0	0	0	-	-	0	
1	2	4	-	-	4	
2	8	16	0	-	16	
3	18	36	0	-	36	
4	32	64	0	0	64	
5	45	90	0	2	92	5 (97 m ³ /s)
6	30	60	0	8	68	
7	19	38	0	18	56	
8	12	24	0	32	56	
9	7	14	0	45	59	
10	3	6	0	30	36	
11	1	2	0	19	21	
12	0	0	0	12	12	

 $q = V \times y = 8.1 \times 0.23 = 1.863 \text{ m}^2/\text{s}$

Hydraulic jump will be formed when depth of water changes from super critical depth to subcritical depth. For mild slopes, normal depth is more than the critical depth $(y_n > y_c)$

 \Rightarrow The flow after the jump is considered as uniform flow for which the depth is y_n.

Consider post jump depth $y_2 = y_n$ Calculation of y_n :

 $V = \frac{q}{V_{r}} = \frac{1}{n} R^{2/3} . S^{1/2}$

$$q = \frac{1.863}{y_n} = \frac{1}{0.015} (y_n^{2/3}) \left(\frac{1}{1800}\right)^{1/2}$$

 $35 \quad \boxed{CE_GATE_19_Questions with Detailed Solution}$ $\Rightarrow y_n = 1.11 \text{ m} = y_2$ $F_{r_2}^2 = \frac{q^2}{gy_2^3}$ $= \frac{1.863^2}{9.81 \times 1.11^3}$ $F_{r_2} = 0.508$ $y_1 = \frac{y_2}{2} \left[-1 + \sqrt{1 + 8F_{r_2}^2} \right]$ $= \frac{1.11}{2} \left[-1 + \sqrt{1 + 8 \times 0.508^2} \right]$ = 0.417End of Solution
44. A flexible pavement has the following class loads during a particular hour of the day.
i. 80 buses with 2-axles (each axle load of 40 kN);

ii. 160 trucks with 2-axles (from and rear axle loads of 40 kN and 80 kN, respectively)The equivalent standard axle load repetitions for this vehicle combination as per IRC : 37-2012 would be

(a) 180 (b) 250 (c) 240 (d) 320

44. Ans: (a)

Sol: Given,

80 buses with 2 axles, each axle load is 40 kN

 \therefore No. of repetitions of 40 kN, N₁ = 80 × 2 = 160

160 trucks, with, front axle local = 40 kN

No. of repetitions of 40 kN, $N_2 = 160$

Rear axle load of 80 kN, No. of trucks, $N_3 = 160$

: Equivalent standard axle repetitions, in terms of standard axle load 80 kN is

$$= (N_1 + N_2) \left[\frac{40}{80} \right]^4 + N_3 \left[\frac{80}{80} \right]^4$$
$$= (160 + 160) \left[\frac{40}{80} \right]^4 + 160 \left[\frac{80}{80} \right]^4 = 180$$
 (Standard axles)

End of Solution

45. A square footing of 2 m sides rests on the surface of a homogeneous soil bed having the properties cohesion c = 24 kPa, angle of internal friction $\phi = 25^{\circ}$ and unit weight $\gamma = 18 \text{ kN/m}^3$. Terzaghi's bearing capacity factors for $\phi = 25^{\circ}$ are N_c = 25.1. N_q = 12.7, N_g = 9.7, N'_c = 14.8, N'_q = 5.6, and N'_g = 3.2. The ultimate bearing capacity of the foundation (in kPa, round off to 2 decimal places is _____.

Engineering Publications

Civil Engineering_GATE_19 (Session-2

45. Ans: 353.92

Sol: For surface footing, $D_f = 0$ Since ϕ value given (25°) is less than 29°, the soil undergoes local shear failure.

For LSF, $q_u = 1.3 C_m N_c' + \gamma D_f N_q' + 0.4 \gamma B N\gamma'$ [square footing]

= $1.3 \times \frac{2}{3} \times C N_c' + 0 + 0.4 \gamma B N\gamma'$ = $1.3 \times \frac{2}{3} \times 24 \times 14.8 + 0 + 0.4 \times 18 \times 2 \times 3.2$

= 353.92 kPa

End of Solution

46. A broad gauge railway line passes through a horizontal curved section (radius = 875 m) of length 200 m. The allowable speed on this portion is 100 km/h. For calculating the cant, consider the gauge as centre-to-centre distance between the rail heads, equal to 1750 mm. The maximum permissible cant (in mm, round off to 1 decimal place) with respect to the centre-to-centre distance between the rail heads is _____

46. Ans: 82.5 mm

Sol: Given BG railway track, G = 1750 mm = 1.750 m (c/c) Radius of curve, R = 875 m Length of curve, l = 200 m Allowable speed, $V_{max} = 100$ kmph For normal speed, BG track cant deficiency allowed, $e_d = c_d = 75$ mm = 0.075 m We've $e_{th} = e_a + e_d$ \therefore where $= e_a = actual cant$ $e_{th} = theoritical cant with respect to <math>V_{max}$ $\frac{GV^2_{max}}{127R} = e_a + e_d$ $\frac{1.750 \times 100^2}{127 \times 875} = e_a + 0.075$ $e_a = 0.08248$ m = 82.48 mm \approx 82.5 mm

End of Solution

47. A timber pile of length 8 m and diameter 0.2 m is driven with a 20 kN drop hammer, falling freely from a height of 1.5 m. The total penetration of the pile in the last 5 blows is 40 mm. Use the Engineering News Record expression. Assume a factor of safety of 6 and empirical factor (allowing reduction in the theoretical set, due to energy losses) of 2.5 cm, The safe load carrying capacity of the pile (in kN, round off to 2 decimal places) is _____.

ACE Engineering Publications Hydera

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER	COURSE	ВАТСН ТҮРЕ	DATE
LUCKNOW	GATE+PSUs - 2020	Regular Batch	Mid - May 2019
PATNA	GATE+PSUs - 2020	Weekend Batch	16 th Feb 2019
VIJAYAWADA	GATE+PSUs - 2020 & 21	Weekend Batch	10 th , 24 th Feb 2019
VIJAYAWADA	GATE+PSUs - 2020	Summer + Weekend	6 th , 15 th May 2019
VIJAYAWADA	GATE+PSUs - 2020	Regular Batch	8 th , 22 nd June 2019
KOLKATA	GATE+PSUs - 2020&21	Weekend Batch	16 th Feb 2019
KOLKATA	GATE+PSUs - 2020	Regular Batch	8 th June 2019
KOLKATA	ESE+GATE+PSUs - 2021	Evening & Weekend	16 th Feb 2019
AHMEDABAD	GATE+PSUs - 2020	Regular Batch	02nd Week of June 2019

GENCO TRANSCO DISCOMS ELECTRICAL ENGINEERING

Regular Batch : 10th Feb 2019

@ KUKATPALLY (HYDERABAD)

FOR BATCH DETAILS VISIT : www.aceenggacademy.com

ACE

38

Civil Engineering_GATE_19 (Session

47. Ans: 151.52

Sol:

 $Q_{\rm safe} = \frac{w h \eta_{\rm h}}{F(S+C)}$

 $S = set value = \frac{40}{5} = 8 mm = 0.8 cm$ C = 2.5 cm, F = 6, W = 20 kN,h = 1.5 m = 150 cmTake, $\eta_h = 100 \%$

 $Q_{\rm safe} = \frac{20 \times 150 \times 1}{6(0.8 + 2.5)}$

$$= 151.5152 \text{ kN} \text{ say } 151.52 \text{ kN}$$

End of Solution

48. The dimensions of a soil sample are given in the table.

Parameter	Cutting edge	Sampling tube
Inside diameter (mm)	80	86
Outside diameter (mm)	100	90

For this sampler, the outside clearance ratio 9in percent, round off to 2 decimal places) is

48. Ans: 11.11 Sol:

Given, $D_1 = 80$, $D_2 = 100$, $D_3 = 86$, $D_4 = 90$

Outside clearance =
$$\frac{D_2 - D_4}{D_4} \times 100$$

$$=\frac{100-90}{90}\times 100$$

= 11.1111 % say 11.11 %

End of Solution

FBD OF GH

$$M_{\rm H} = V \times 3 = k_{\theta} \times \theta$$
$$\theta = \frac{10 \times 3}{3 \times 10^5} = 10^{-4} \text{rad}$$
$$= 0.0057 \text{ deg}$$

End of Solution

 $v \times 3 = k_0 \times \theta$

ACE CE GATE 19 Questions with Detailed Solutions 41 52. An ordinary differential equation is given below. $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)(x\ln x) = y$ The solution for the above equation is (Note: K denotes a constant in the options) (a) $y = Kxe^{-x}$ (b) $y = K \ln x$ (c) $y = Kx \ln x$ (d) $y = Kxe^x$ 52. Ans: (B) **Sol:** $\frac{dy}{dx}(x \log x) = y$ on separating the variables $\int \frac{1}{y} \, dy = \int \frac{1}{x \log x} \, dx \qquad \left(\operatorname{let} \log x = t, \ \frac{1}{x} \, dx = dt \right)$ $\log y = \int \frac{1}{t} dt + \log k$ $\log y = \log t + \log k$ \Rightarrow y = kt (or) $y = k \log x$ **End of Solution** 53. A water treatment plant treats 6000 m³ of water per day. As a part of the treatment process, discrete particles are required to be settled in a clarifier. A column test indicates that an overflow rate of 1.5 m per hour would produce the desired removed of particles through setting in the clarifier having a depth of 3.0 m. The volume of the required clarifier, (in m³, round off to 1 decimal place) would be 53. Ans: 500 $Q = 6000 \text{ m}^3/\text{day} = = \frac{6000}{24} = 250 \text{ m}^3/\text{hr}$ Sol: $v_0 = 1.5 \text{ m/hr}$ Surface area $= \frac{Q}{V_0} = \frac{250}{1.5} = 166.66 \text{ m}^2$ Depth, H = 3 mVolume of clarifies = Surface area \times depth $= 166.66 \times 3 = 500 \text{ m}^3$ **End of Solution** ACE Engineering Publications Hyderabad + Delhi + Bhopal + Pune + Bhubaneswar + Lucknow + Patna + Bengaluru + Chennai + Vijayawada + Vizag + Tirupati + Kolkata + Ahmedabad

Civil Engineering_GATE_19 (Session-2

54. The uniform arrival and uniform service rates observed on an approach road to a signalized intersection are 20 and 50 vehicles/minute, respectively. For this signal, the red time is 30 x. the effective green time is 30 s and the cycle is length is 60 s. Assuming that initially there are no vehicles in the queue, the average delay per vehicle using the approach road during a cycle length (in x, round off to 2 decimal places) is

54. Ans: 12.5

ACE

Sol: Effective green time, $C_i = 30 \text{ sec}$, Cycle length, $C_o = 60 \text{ sec}$ Normal flow (uniform arrival), $q_i = 20$ veh/minute Saturation flow (uniform service rate), $s_i = 50$ veh/minute Webster's Delay

$$d_{i} = \frac{\frac{C_{o}}{2} \left[1 - \frac{G_{i}}{C_{o}}\right]^{2}}{\left[1 - \frac{q_{i}}{s_{i}}\right]}$$
$$d_{i} = \frac{\frac{60}{2} \left(1 - \frac{30}{60}\right)^{2}}{\left(1 - \frac{20}{50}\right)} = 12.5 \text{ sec}$$

End of Solution

55. A 2 m × 4 m rectangular footing has to carry a uniformly distributed load of 120 kPa, As per the 2 : 1 dispersion method of stress distribution, the increment in vertical stress (in kPa) at a depth of 2 m below the footing is

55. Ans: 40

Sol:

 $\sigma_z = \frac{Q}{(B+Z)(L+Z)} \text{ for 2V to 1 H load dispersion}$ $= \frac{2 \times 4 \times 120}{(2+2)(4+2)} = 40 \text{ kPa}$

End of Solution

42

ESE / GATE / PSUs - 2020 ADMISSIONS OPEN

CENTER	COURSE	ВАТСН ТҮРЕ	DATE
HYDERABAD - DSNR	GATE + PSUS - 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - DSNR	ESE + GATE + PSUs - 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - DSNR	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - DSNR	GATE + PSUs - 2020	Morning/Evening Batch	24th February 2019
HYDERABAD - DSNR	ESE – 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019
HYDERABAD - Abids	GATE + PSUS – 2020	Regular Batches	26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - Abids	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - Abids	ESE + GATE + PSUs - 2020	Morning Batch	24th February 2019
HYDERABAD - Abids	ESE – 2019 STAGE-II (MAINS)	Regular Batch	17th Feb 2019
HYDERABAD - Abids	GATE + PSUs - 2020	Weekend Batch	24th February 2019
HYDERABAD - Abids	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Morning/Evening Batch	24th February 2019
HYDERABAD - Kukatpally	GATE + PSUS – 2020	Regular Batches	17th May, 1st, 16th June, 1st July 2019
HYDERABAD - Kukatpally	GATE + PSUs - 2020	Short Term Batches	29th April, 6th, 11th, 18th May 26th May, 2nd June, 2019
HYDERABAD - Kothapet	ESE + GATE + PSUS - 2020	Regular Batches	21st March, 26th April, 11th, 25th May, 09th, 24th June, 8th July 2019
HYDERABAD - Kothapet	ESE+GATE + PSUs - 2020	Spark Batches	11th May, 09th June 2019
DELHI	ESE+GATE+PSUs - 2020	Weekend Batches	9th Mar 2019
DELHI	ESE+GATE+PSUs - 2020	Regular Evening Batch	18 th Feb 2019
DELHI	ESE+GATE+PSUs - 2020	Regular Day Batch	11 th May 2019
DELHI	ESE+GATE+PSUs - 2020	Spark Batch	11 th May 2019
DELHI	GATE+PSUs - 2020	Short Term Batches	11 th , 23 rd May 2019
BHOPAL	ESE+GATE+PSUs - 2020	Regular Day Batch	01st Week of June 2019
BHUBANESWAR	GATE+PSUs - 2020	Weekend Batch	16 th Feb 2019
BHUBANESWAR	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019
CHENNAI	GATE+PSUs - 2020 & 21	Weekend Batch	16 th Feb 2019
CHENNAI	GATE+PSUs - 2020	Regular Batch	02nd Week of May 2019
BANGALORE	GATE+PSUs - 2020 & 21	Weekend Batch	23 rd Feb 2019
BANGALORE	GATE+PSUs - 2020	Regular Batch	17 th June 2019

FOR BATCH DETAILS VISIT : www.aceenggacademy.com