

Head Office : Sree Sindhi Guru Sangat Sabha Association, # 4-1-1236/1/A, King Koti, Abids, Hyderabad - 500001.

Ph: 040-23234418, 040-23234419, 040-23234420, 040 - 24750437

Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata | Ahmedabad

Offline GATE Mock – 4 _ Solutions

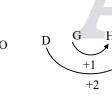
General Aptitude (GA)

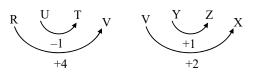
One Mark Solutions:

01. Ans: (A)

(ACTION AND PURPOSE) One slices a cake before eating; one carves a turkey before cooking.

02. Ans: (C)


03. Ans: (A)


Apparent mean visible, easy to see or understand while Ambiguous mean no clear stated or defined.

04. Ans: (C)

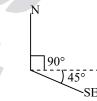
Sol:

: RUTV is different Ans is (C)

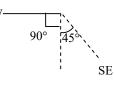
05. Ans: (B)Sol: Clearly, thirteenth result

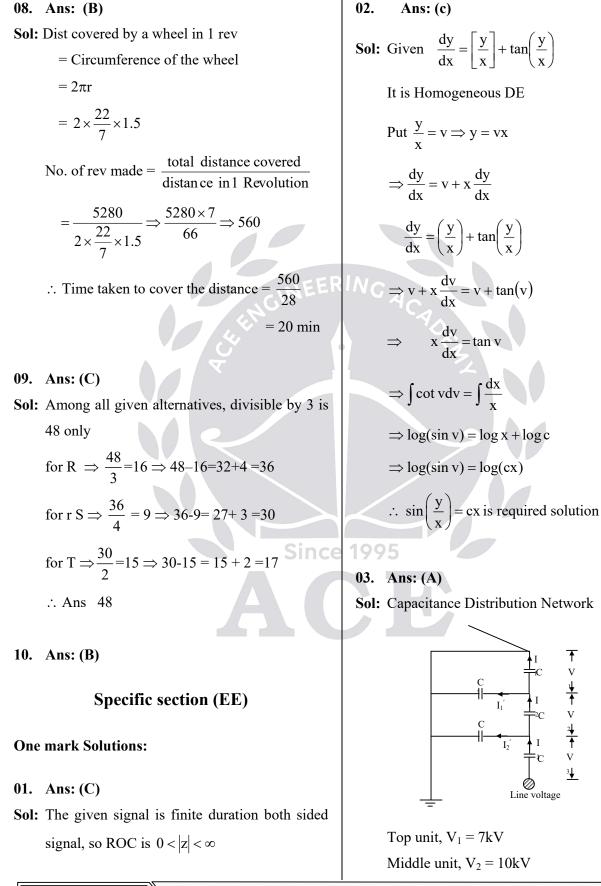
= (sum of 25 results) - (sum of 24 results)

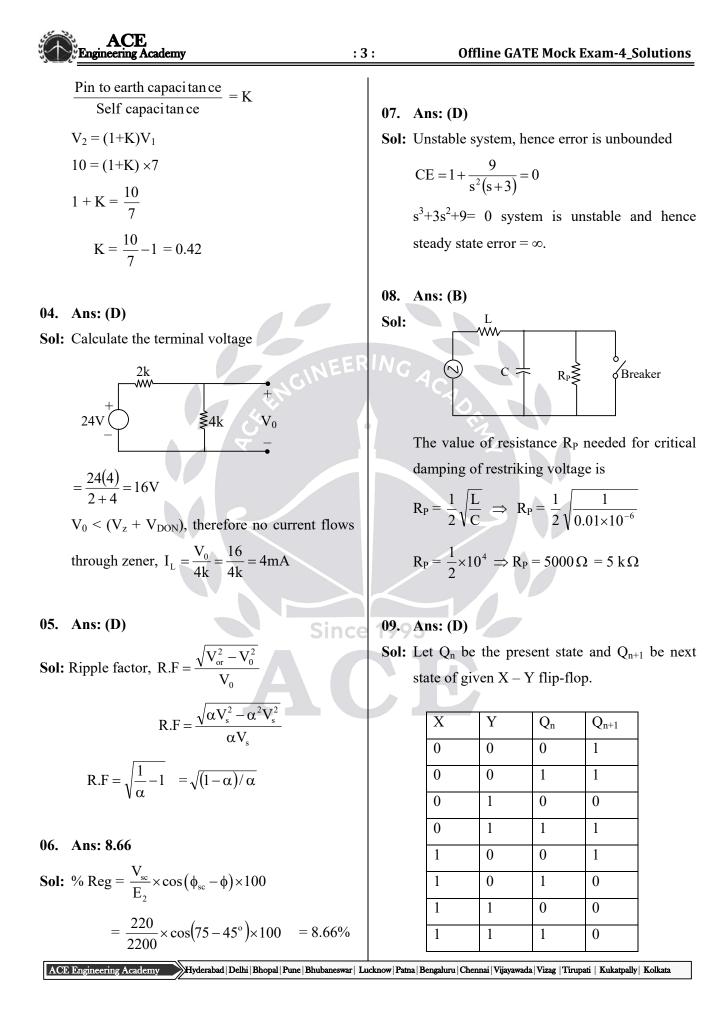
 $=(18\times25) - [(14\times12)+(17\times12)]$


= 450 - (168 + 204) = 450 - 372 = 78

Two Mark Solutions:


06. Ans: (C)


07. Ans: (C)


Sol: If south–East becomes north, it suggests that there is a movement of 135° in anti-clockwise direction.

Similarly, when North-East becomes west ∴ When west moves 135° in anti-clock wise direction, it becomes south–East

Solving from K-map • 10 1 1 Characteristic equation of X - Y flip-flop is $Q_{n+1} = \overline{Y} \overline{Q}_n + \overline{X} Q_n$ Characteristic equation of a J – K flip-flop is given by $Q_{n+1} = J\overline{Q}_n + \overline{K}Q_n$ By comparing $J = \overline{Y}, K = X$ 10. Ans: (B) 14 **Sol:** efficiency $\eta = \frac{P_{out}}{P}$ So $P_{in} = \frac{P_{out}}{\eta} = \frac{7.46 \times 10^3}{0.85} = 8.77 \text{ kW}$ current, $I_{L} = \frac{P_{in}}{V} = \frac{8.77 \times 10^{3}}{440}$ Motor line =19.93 A Since 1995 $I_{sh} = \frac{V}{R_{ch}} = \frac{440}{200} = 2.2A$ Armature current, $I_a=I_L-I_{sh}=19.93-2.2$ =17.73A $E_a = V - I_a R_a = 440 - 17.73 \times 0.6 = 429.36V$ 11. Ans: (A) In graph theory, Every f-loop consists of only one link in its representation Every f-cutset consists of only one twig in its representation

- Tree connects all the nodes without any closed loop
- In a complete graph, between any pair of nodes only one branch is connected for all the combinations.

12. Ans: 1

13. Ans: (B)

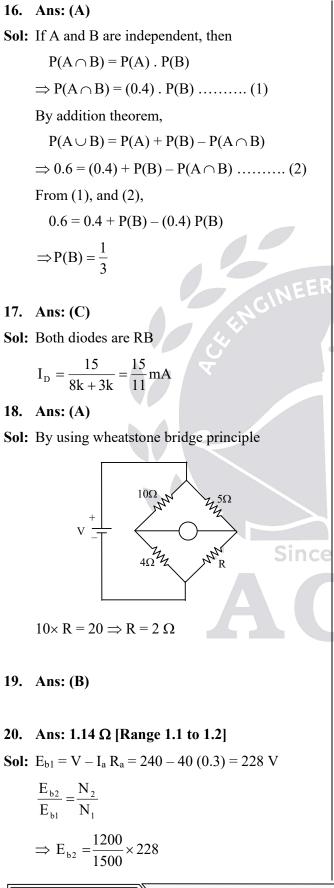
Sol: The probability density function of X is

$$f(x) = \begin{bmatrix} \frac{1}{30}, & 0 < x < 30\\ 0, & \text{otherwise} \end{bmatrix}$$

$$P(5 < X < 10) = \int_{5}^{10} f(x) \, dx = \int_{5}^{10} \frac{1}{30} \, dx = \frac{1}{6}$$
4. Ans: 0.93 (Range: 0.9 - 0.95)
bl: Required probability = P (A \cap B \cap C)
= P(A) + P(B)+P(C) - P(A \cap B)-P(B \cap C))

$$P(A \cap C) + P(A \cap B \cap C)$$

= 0.8 + 0.5 + 0.3 - (0.8)(0.5) - (0.5)(0.3) -
(0.8)(0.3) + (0.8)(0.5)(0.3)
= 0.93.


$$\mathbf{B} = \frac{\frac{1}{100} \times 1000}{\frac{1}{100} \times 50} = \frac{10}{0.5} = 20$$

Damping coefficient 'B' in pu MW/Hz

$$= \left(\frac{\partial P_{\rm D}}{\partial f}\right) / P_{\rm r} = \frac{20}{2000}$$

Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata ACE Engineering Academy

.

= 182.4 V Now $E_{b2} = V - I_a (R_a + R_{se}) = 182.4 V$ $\Rightarrow 240 - 40 (0.3 + R_{se}) = 182.4$ $\Rightarrow R_{se} = 1.14 \Omega$

21. Ans: (C) Sol: Stoke's theorem is $\oint_{\ell} \overline{H}.d\overline{\ell} = \int_{s} J.ds$

Converts form closed line to open surface.

22. Ans: (A)

Sol: Root locus diagram starts at poles are at s = 0, s = -20 and $s = \infty$ and ends/terminates at s = -10, s = -10 and s = -100.

- 23. Ans: (D)
- Sol: The given D.E 4y'''+4y''+y' = 0 $\Rightarrow 4D^3 + 4D^2 + D = 0$ $\Rightarrow D(2D + 1)^2 = 0$ Since $199D = 0, \frac{-1}{2}, \frac{-1}{2}$ $\therefore y_c = C_1 + (C_2 + C_3x)e^{-1/2}x$

24. Ans: (D) Sol: $I_{LV} = 10 \times 2 = 20 \text{ A}$ (transformation ratio = 2) $Z = 0.15 + j0.37 = 0.399 \angle 67^{\circ}$ $I_0 = \frac{200}{600} - \frac{j200}{300} = 0.33 - j0.67$ $I = I'_1 + I_0 = 20 \angle -36.86 + 0.33 - j0.67$ $= 20.65 \angle -37.8$

25. Ans: 1

Sol: Here, $i_L(0^-) = 0A = i_L(0^+)$ $V_{\rm C}(0^-) = 0{\rm V} = V_{\rm C}(0^+)$ By KVL in s-Domain \Rightarrow $\frac{10}{s} = 2I(s) + 1sI(s) + \frac{2}{s}I(s)$ $= I(s)\left(2+s+\frac{2}{s}\right)$ $\Rightarrow \frac{10}{s} = I(s) \frac{(2s+s^2+2)}{s}$ $\Rightarrow I(s) = \frac{10}{s^2 + 2s + 2}$ So, the characteristic equation is $s^{2}+2s+2=0$ by comparing with $s^2 + 2\xi\omega_n s + \omega_n^2 = 0$ $\Rightarrow 2\xi\omega_n = 2 \Rightarrow \xi\omega_n = 1$ $\Rightarrow \tau = \frac{1}{\xi \omega_{-}} \sec = \frac{1}{1} = 1 \sec t$ **Two Marks Solutions:** 26. Ans: (A)

Sol: Let the output from the upper first level multiplexer is f_a and form the lower first level multiplexer is f_b

$$\begin{split} f_a &= \overline{w}x + w\overline{x}, \\ f_b &= \overline{w}x + wx = x \\ f &= f_a \overline{y} \,\overline{z} + f_b y\overline{z} + yz = (\overline{w}x + w\overline{x})\overline{y} \,\overline{z} + xy\overline{z} + yz \\ &= \overline{w}x\overline{y} \,\overline{z} + w\overline{x} \,\overline{y} \,\overline{z} + xy + yz \end{split}$$

27. Ans: (C)

Sol: Given data:

 $R_1 = 1500\Omega, C_1 = 0.03$

 $R_2 = 1876 \ \Omega$ in series with $C_2 = 0.03 \ \mu F$

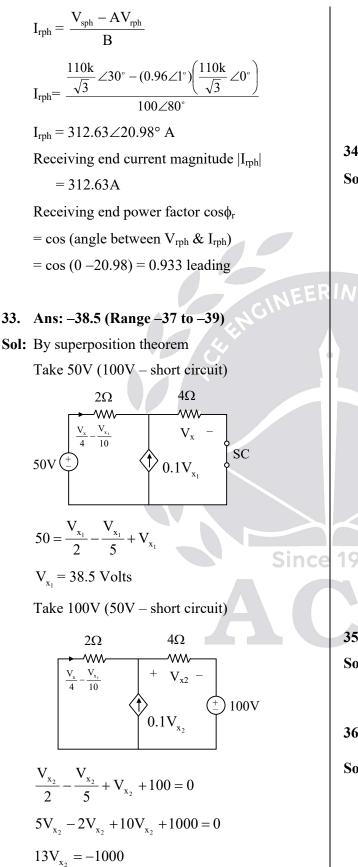
CD = unknown

 $DA = C_3 = 0.5 \ \mu F$

We don't know the value of 'Z', but it is a combination of R, L (or) R, C.

28. Ans: (C) Sol: 2000H : LXI SP, 2724H; (SP) = 2724H 2003H : CALL 2006H ; (TOS) \leftarrow (PC),(SP) $\downarrow \downarrow$ (TOS) = 2006H (SP) = 2722H 2006H : POP H; (HL) \leftarrow (TOS), (SP) $\uparrow \uparrow$ (HL) = 2006H

ACE Engineering Academy Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata


Since

$$(SP) = 2724 \text{ II}$$

$$2007H : 1NR H : (H) \leftarrow (H) + 1$$

$$(H) = 21$$
Thus (HL) = 2106H & (SP) = 2724H
29. Ans:(C)
Sol: Given that
$$v_{\tau} = 1 + \frac{2.1 - 1}{60}i_{z} = 1 + 0.0183 i_{z}$$

$$\int_{0}^{1} \frac{1}{\sqrt{2}} \int_{0}^{2} \frac{1}{\sqrt{2$$

$$V_{x_{2}} = -77$$
By superposition theorem = $V_{x} = V_{x_{1}} + V_{x_{2}}$
= 38.5 - 77
= -38.5V
4. Ans: $\delta_{cr} = 70.336$ (68 to 72)
ol: $\delta = 30^{\circ}$, $P_{m2} = 0.5$, $P_{m3} = 1.5$, $P_{s} = 1.0$
 $\delta_{0(rad)} = 0.52$
 $\delta_{max} = 180 - \sin^{-1} \left(\frac{P_{s}}{P_{m3}}\right)$
= $180 - \sin^{-1} \left(\frac{1.0}{1.5}\right)$
 $\delta_{max} = 180 - 41.80 = 138.18$
 $\delta_{max} = 138.18 \times \frac{\pi}{180} = 2.41$
 $\delta_{c} = \cos^{-1} \left[\frac{1.0(2.41 - 0.523) + 1.5 \cos 138.18 - 0.5 \cos 30^{\circ}}{1.5 - 0.5}\right]$
= $\cos^{-1} \left[\frac{1.00 \times 1.887 + 1.5 \times - 0.7452 - 0.5 \times \frac{\sqrt{3}}{2}}{1.5 - 0.5}\right]$
= $\cos^{-1} [1.887 + (-1.1175) - 0.433]$
= $\cos^{-1} [1.887 + (-1.1175) - 0.433]$
= $\cos^{-1} [1.887 - 1.5505]$
= $\cos^{-1} [0.3365] = 70.336^{\circ}$.
5. Ans:6
ol: Loops are L₁ = gh, L₂ = ab, L₃ = dc, L₄ = ef,

 $L_5 = ebch and L_6 = gdaf.$

36. Ans: (B)

Sol:
$$e^{-|t|} \leftrightarrow \frac{2}{1+\omega^2}$$

 $\frac{2}{1+t^2} \leftrightarrow 2\pi e^{-|\omega|}$
 $\frac{1}{1+t^2} \leftrightarrow \pi e^{-|\omega|}$

37. Ans: (C) Sol: Force acting on electron $\overline{F} = -e\overline{E} = -1.6 \times 10^{-19} (-2.5 \times 10^6 \hat{a}_z)$ $= 4 \times 10^{-13} \hat{a}_z N$ $F = ma = m \frac{dv}{dt}$ $\Rightarrow dv = \frac{Fdt}{m}$ $v = \int \frac{F}{m} dt + C$

$$= \int \frac{4 \times 10^{-13}}{9.11 \times 10^{-31}} dt +$$

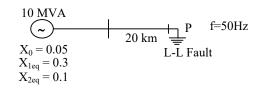
= 4.39 ×10¹⁷ t + C

We have at t=0, v=0, so that c=0: $v(t) = 4.39 \times 10^{17} t \text{ m/sec}$

С

3

38. Ans: (C)


Sol: Given that

3-
$$\phi V_{s} = 230 V, L_{s} = 4 mH: 3$$

 $I_{0} = 10 A$
Given $V_{0} = -210 V$
 $\cos \alpha = \frac{\pi \left(V_{0} + \frac{3\omega L_{s}}{\pi} I_{0} \right)}{3V_{m\ell}}$
 $\cos \alpha = \frac{\pi (-210 + 12)}{3 \times \sqrt{2} \times 230} = -0.6375$

 $\alpha = 129.60^{\circ}$

39. Ans: - 2.886 (Range: - 2.6 to -3.0)

Sol:

GMD =
$$\sqrt[3]{5 \times 5 \times 5} = 5$$

Self GMD = 0.7788×0.5×10⁻²
= 3.894×10⁻³m
L = 2×10⁻⁴ ln $\left(\frac{5}{3.894 \times 10^{-3}}\right)$
= 14.315×10⁻⁴ H/km
For 20 km length total inductance
L_{eq} = 14.315×10⁻⁴×20
= 0.0286 H
X_{eq} = 2 π fL_{eq}
= 2 π × 50 × 0.0286 = 8.994 Ω
p.u. reactance of the line
= 8.994× $\frac{10 \times 10^6}{(30 \text{ kV})^2}$ = j 0.1 p.u.
Transmission line X_{1eq} = X_{2eq} = j 0.1 p.u.
LL-fault occurs at point P.
I_f = $\frac{-j\sqrt{3} E_{a1}}{X_{1eq} + X_{2eq}}$ [E_{a1} = prefault voltage]
 $I_f = \frac{-j\sqrt{3} E_{a1}}{X_{1eq} + X_{2eq}}$ [E_{a1} = prefault voltage]
 $I_r = \frac{-j\sqrt{3} \times 1.0}{(j0.3 + j0.1) + (j0.1 + j0.1)}$

$$I_f = -2.886 \text{ p.u.}$$

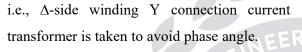
40. Ans: 4

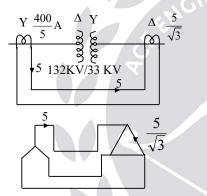
Sol: For the source free RC - circuit and with the given connection,

$$V_{C_1}(\infty) = V_{C_2}(\infty) = \frac{V_1C_1 + V_2C_2}{C_1 + C_2}$$
 Volts

Where $V_1 = V_{C_1}(0)$ and $V_2 = V_{C_2}(0)$

Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata ACE Engineering Academy


Since


$$\Rightarrow V_{C_1}(\infty) = V_{C_2}(\infty) = \frac{10.2 + 0.3}{2 + 3}$$
 Volts
$$= 4V$$

- 41. Ans: (D)
- **Sol:** $V_{E1} = 0.7V$

 $V_{E2} = V_{E1} - 0.7 = 0.7 - 0.7 = 0V$

- 42. Ans : 554.25 (Range :553 to 556)
- **Sol:** The current transformer is connected opposite connection

The primary rating of current transformer is obtained by

 $400 \times 132 = 33 \times x$

- \Rightarrow x = 1600 A
- The phase current of secondary side of HV CT = 5A
- \therefore The pilot current = 5A = Line current
- \therefore The phase current of Δ connected current

transformer = $\frac{5}{\sqrt{3}}$ A.

 \therefore The current transformer ratio on LT side

$$=\frac{1600}{5/\sqrt{3}}=\frac{1600\sqrt{3}}{5}=320\sqrt{3}=554.25$$

Shortcut: The current in pilot wire and always taken as line current and current transformer rating is taken as phase currents.

43. Ans: (C)

Sol:
$$y(n) = x(n)*h_1(n)*h_2(n)$$

 $Y(z) = X(z) H_1(z) H_2(z)$
 $H_1(z) = \frac{1}{1 - 0.5z^{-1}}$
 $H_2(z) = 1 - 0.5z^{-1}$
 $Y(z) = X(z)$
 $\downarrow IZT$
 $y(n) = x(n)$

44. Ans: (B)

Sol: The PM of a system is approximately equals to 100 ξ $40^\circ = 100\xi$ $\therefore \xi = 0.4$ 45. Ans: (A) Sol: $e = -N \frac{d\phi}{dt}$; $\phi = \frac{-1}{N} \int edt$

$$=\frac{-1}{200}\int (200\sin\omega t - 50\sin 3\omega t)dt$$

$$\phi = \frac{1}{200} \left[\frac{200}{\omega} \cos \omega t - \frac{50}{3\omega} \cos 3\omega t \right] Wb$$

$$\phi = \frac{1000}{200} \left[\frac{200}{100\pi} \cos \omega t - \frac{50}{300\pi} \cos 3\omega t \right] \text{mWb}$$

$$\phi = 5 \left[\frac{2}{\pi} \cos \omega t - \frac{1}{6\pi} \cos 3\omega t \right] \text{mWb}$$

 $\omega = 100 \pi$,

$$= \frac{5}{\pi} \bigg[2\cos\omega t - \frac{1}{6}\cos 3\omega t \bigg]$$

W_e $\propto \phi^2 f^2$
W₁ = K[(2)² × ω^2 + (1/6)² × 9 ω^2]
= K[4.25 ω^2]
W₂ = K(2² ω^2) = K × 4 ω^2
% Reduction = $\frac{4.25 - 4}{2}$ = 5.88%

4.25

46. Ans: (D)

Sol: Let f = 4x - 2y + 3z - 4;

ACE

ngineering Academy

Then $\hat{a}_x = \pm \frac{\overline{\nabla}f}{|\overline{\nabla}f|}$ gives possible unit vector

which are perpendicular to f.

The unit vector with negative sign gives the unit vector which is directed from higher value of f toward, the lower value of f. the unit vector with positive sign gives the unit vector which is directed from lower value of f towards the higher value of f.

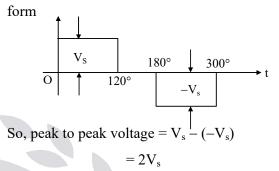
We have to determine $\overline{a_{21}}$

In region 1, at $P_1(0, 0, 100)$;

$$f_1 = 4 \times 0 - 2 \times 0 + 3 \times 100 - 4$$

= 296

In region 2, at $P_2(0, 0, -100)$; $f_2 = 4 \times 0 - 2 \times 0 + 3 \times -100 - 4$ = -304


Hence we have to determine the unit vector from lower value of f ($f_2 = -304$) towards higher value of f ($f_1 = 296$). That is with positive sign

$$\hat{a}_{n} = \frac{\overline{\nabla}f}{\left|\overline{\nabla}f\right|} = \frac{4\hat{a}_{x} - 2\hat{a}_{y} + 3\hat{a}_{z}}{\sqrt{(4)^{2} + (-2)^{2} + (3)^{2}}}$$

$$= 0.74 \hat{a}_{x} - 0.37 \hat{a}_{y} + 0.55 \hat{a}_{z}$$

47. Ans: 200 (200 to 200)

Sol: In 180° conduction mode the voltage wave

$$= 2 \times 100$$

48. Ans: (B)

Sol:
$$\frac{V_0}{V_{in}} = \frac{+g_m R_c}{2} = \left(\frac{I_{CDC}}{v_t}\right) \cdot \frac{R_c}{2} = \frac{ImA}{Q5m} \left(\frac{2K}{2}\right)$$
$$= \frac{1000}{25} = 40$$

49. Ans: (C)

Since

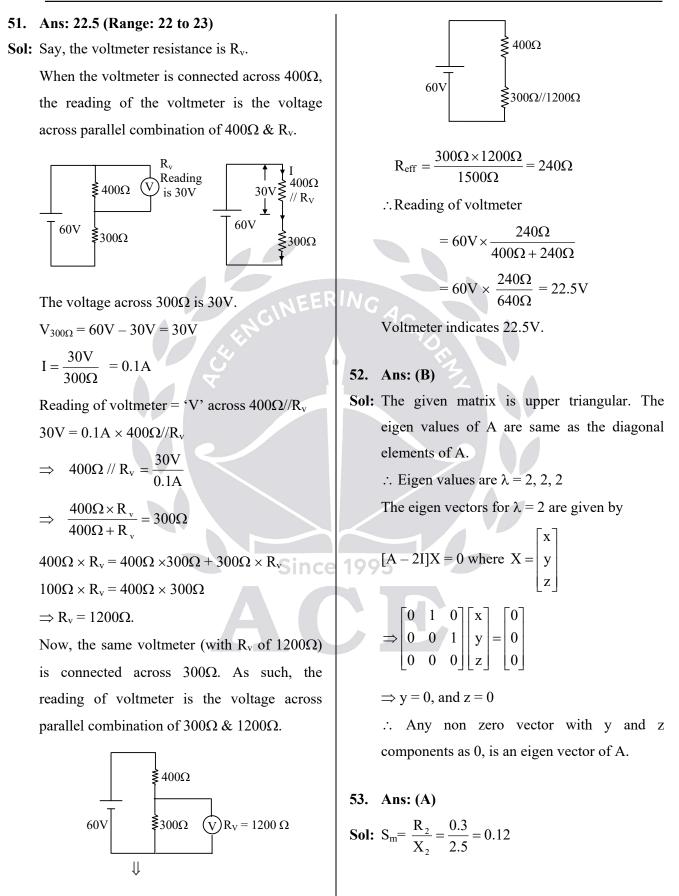
Sol: electrical input = P_{mech.output} + friction Loss + core Loss

$$= 9kW + 2kW + 0.8kW$$

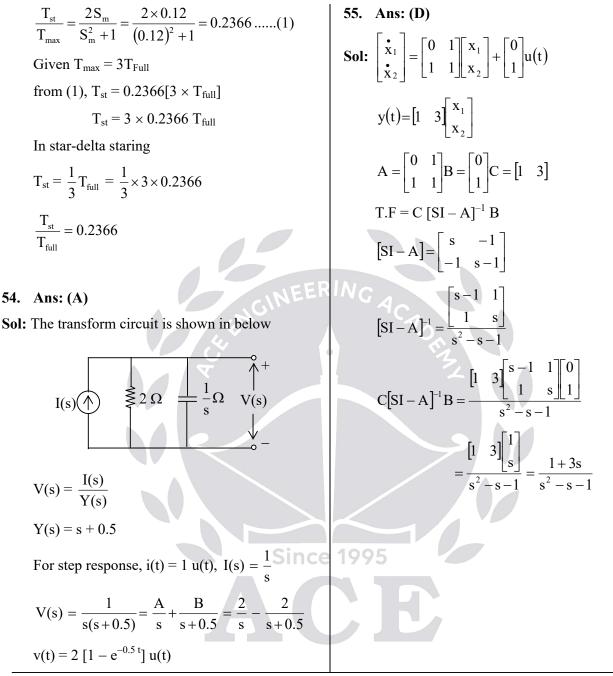
$$P_{in} = 11.8kW.$$

$$\sqrt{3}V_{L}I_{L}\cos\phi = 11800$$

$$\Rightarrow \sqrt{3} \times 400 \times I_{L} \times 0.8 = 11800 \Rightarrow I_{L} = 21.29A$$


50. Ans: (B)

Sol: $-X = \overline{X} + 1$ in 2's complement form


MVI A,X ; (A) = X CMA ; (A) = \overline{X} ADI 01H ; (A) = \overline{X} + 1

ACE Engineering Academy

