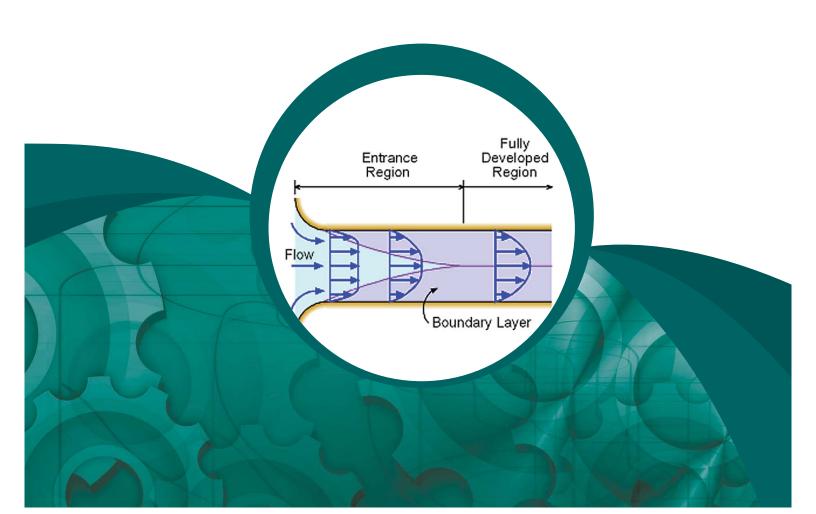


MECHANICAL ENGINEERING

FLUID MECHANICS

Volume - 1: Study Material with Classroom Practice Questions



Fluid Mechanics

Solutions for Volume - I_ Classroom Practice Questions

Chapter- 1 Properties of Fluids

01. Ans: (c)

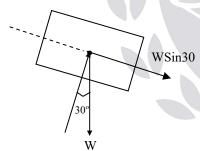
Sol: For Newtonian fluid whose velocity profile is linear, the shear stress is constant. This behavior is shown in option (c).

02. Ans: 100

Sol:
$$\tau = \frac{\mu V}{h} = \frac{0.2 \times 1.5}{3 \times 10^{-3}} = 100 \text{ N/m}^2$$

03. Ans: 1

Sol:



$$F = \tau \times A$$

$$W\sin 30 = \frac{\mu AV}{h}$$

$$\frac{100}{2} = \frac{1 \times 0.1 \times V}{2 \times 10^{-3}}$$

$$V = 1 \text{m/s}$$

Common data Q. 04 & 05

04. Ans: (c)

Sol:
$$D_1 = 100 \text{ mm}$$
, $D_2 = 106 \text{ mm}$

Radial clearance,
$$h = \frac{D_2 - D_1}{2}$$

$$=\frac{106-100}{2}=3$$
mm

$$L = 2m$$

$$\mu = 0.2 \text{ pa.s}$$

$$N = 240 \text{ rpm}$$

$$\omega = \frac{2\pi N}{60} = \frac{2\pi \times 240}{60}$$

$$\omega = 8\pi$$

$$\tau = \frac{\mu \omega r}{h} = \frac{0.2 \times 8\pi \times 50 \times 10^{-3}}{3 \times 10^{-3}}$$

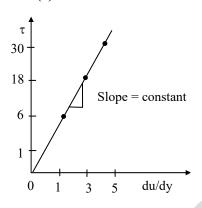
$$= 83.77 \text{N/m}^2$$

Sol: Power,
$$P = \frac{2\pi\omega^2 \mu Lr^3}{h}$$

= $\frac{2\pi \times (8\pi)^2 \times 0.2 \times 2 \times (0.05)^3}{3 \times 10^{-3}}$
= 66 Watt

06. Ans: (c)

Sol:



: Newtonian fluid

07. Ans: (a)

Sol:

$$\tau = \mu \frac{du}{dy}$$

$$u = 3 \sin(5\pi y)$$

$$\frac{du}{dy} = 3\cos(5\pi y) \times 5\pi = 15\pi\cos(5\pi y)$$

$$\tau \Big|_{y=0.05} = \mu \frac{du}{dy} \Big|_{y=0.05}$$

$$= 0.5 \times 15\pi \cos(5\pi \times 0.05)$$

$$= 0.5 \times 15\pi \times \cos\left(\frac{\pi}{4}\right) = 0.5 \times 15\pi \times \frac{1}{\sqrt{2}}$$

$$= 7.5 \times 3.14 \times 0.707 \approx 16.6 \text{N/m}^2$$

08. Ans: (d)

Sol:

- Ideal fluid \rightarrow Shear stress is zero.
- Newtonian fluid → Shear stress varies linearly with the rate of strain.
- Non-Newtonian fluid → Shear stress does not vary linearly with the rate of strain.

 Bingham plastic → Fluid behaves like a solid until a minimum yield stress beyond which it exhibits a linear relationship between shear stress and the rate of strain.

09. Ans: (b)

Sol:
$$V = 0.01 \text{ m}^3$$

$$\beta = 0.75 \times 10^{-9} \text{ m}^2/\text{N}$$

$$dP = 2 \times 10^7 \text{ N/m}^2$$

$$K = \frac{1}{\beta} = \frac{1}{0.75 \times 10^{-9}} = \frac{4}{3} \times 10^{9}$$

$$K = \frac{-dP}{dV/V}$$

$$dV = \frac{-2 \times 10^7 \times 10^{-2} \times 3}{4 \times 10^9} = -1.5 \times 10^{-4}$$

10. Ans: 320 Pa

Sol:
$$\Delta P = \frac{8\sigma}{D} = \frac{8 \times 0.04}{1 \times 10^{-3}} = \frac{32 \times 10^{-2}}{10^{-3}}$$

 $\Delta P = 320 \text{ N/m}^2$

11. Ans: (d)

Sol:

- As the temperature is increased, the viscosity of a liquid decreases due to the reduction in intermolecular cohesion.
- In gases, the viscosity increases with the rise in temperature due to increased molecular activity causing an increase in the change of momentum of the molecules, normal to the direction of motion.
- Thus, statement (I) is wrong but statement (II) is correct.

12. Ans: (c)

Sol: The surface energy is given by

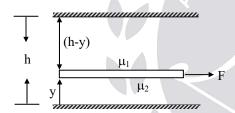
$$E = \sigma \times area$$

As area increases, surface energy will increase. Thus, statement (I) is correct.

Surface tension, σ is the property of fluid. Hence, it is independent of the size of the bubble. Thus, statement (II) is wrong.

Conventional Practice Solutions

01. Sol:



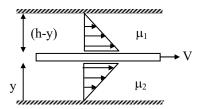
Assumptions:

- Thin plate has negligible thickness.
- Velocity profile is linear because of narrow gap.
- Given fluid is a Newtonian fluid which obeys Newton's law of viscosity.

The force required to pull it is proportional to the total shear stress imposed by the two oil layers.

$$F = F_1 + F_2,$$

Where F_1 = Force on top sides of plate, F_2 = Force on bottom side of plate The plate moves with velocity V



From Newton's law of viscosity,

$$\tau = \frac{\mu du}{dy}$$
 Let A be area of plate

 $F_1 = \tau_1 \times \text{Area of plate}$

$$F_1 = \mu_1 \times \frac{V}{h - y} \times A$$

$$F_2 = \mu_2 \times \frac{V}{y} \times A$$

(i) Shear force on two sides of the plate are equal:

$$F_1 = F_2$$

$$\frac{\mu_1 \times VA}{h - y} = \frac{\mu_2 VA}{y}$$

$$\frac{\mu_1}{\mu_2} = \frac{h - y}{y}$$

$$\frac{h}{y} = \frac{\mu_1}{\mu_2} + 1$$

$$\frac{h}{y} = \frac{\mu_1 + \mu_2}{\mu_2}$$

$$y = \frac{\mu_2 h}{\mu_1 + \mu_2}$$

The position of plate so that pull required to (ii) drag the plate is minimum.

$$F = \frac{\mu_1 V A}{h - y} + \frac{\mu_2 V A}{y} ,$$

[V, A, μ_1 & μ_2 , h are constant]

For minimum force, $\frac{dF}{dy} = 0$

$$-\mu_1 V A (h - y)^{-2} (-1) - \mu_2 V A y^{-2} = 0$$

$$\frac{\mu_2 VA}{y^2} = \frac{\mu_1 VA}{\left(h - y\right)^2}$$

$$\frac{\left(h-y\right)^2}{y^2} = \frac{\mu_1}{\mu_2}$$

$$\frac{h-y}{y} = \sqrt{\frac{\mu_1}{\mu_2}}$$

 $\frac{h}{y} = 1 + \sqrt{\frac{\mu_1}{\mu_2}}$ where y is the distance of the

thin flat plate from the bottom flat surface.

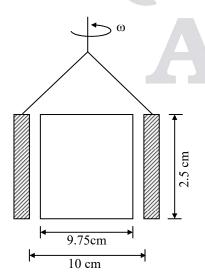
$$y = \frac{h}{1 + \sqrt{\frac{\mu_1}{\mu_2}}}$$

02. Ans: 8.105 Pa. S

Sol: Torque = 1.2N-m

Speed, N = 90 rpm

Diameter, $D_1 = 10 \text{ cm}$, $D_2 = 9.75 \text{ cm}$ H = 2.5 cm



Assumptions:

- The gap between two cylinders is narrow and hence velocity profile in the gap is assumed linear.
- No change in properties

Torque = Tangential force \times radius

Force = shear stress \times Area

$$=\frac{\mu \times VA}{h}$$

Where h is the clearance (radial)

$$h = \frac{10 - 9.75}{2}$$
$$= 0.125 \text{cm} = 1.25 \times 10^{-3} \text{m}$$

Area =
$$\pi DL$$

= $\pi \times 0.1 \times 2.5 \times 10^{-2}$
= $7.8539 \times 10^{-3} \text{m}^2$

$$F_{s} = \frac{\mu \times \omega r \times A}{h}$$

$$\omega = \frac{2\pi N}{60} = \frac{2\pi \times 90}{60} = 3\pi \text{ rad/s}$$

Torque =
$$F_s \times r$$

= $\frac{\mu \omega r A}{h} \times r$
= $\frac{\mu \omega r^2}{h} \times A$

$$1.2 = \frac{\mu \times 3\pi \times (0.05)^2 \times 7.8539 \times 10^{-3}}{1.25 \times 10^{-3}}$$

 $\mu = 8.105 \text{ Pa.s}$

Chapter- 2 **Pressure Measurement & Fluid Statics**

Ans: (a)

Sol: 1 millibar =
$$10^{-3} \times 10^5 = 100 \text{ N/m}^2$$

One mm of Hg = $13.6 \times 10^3 \times 9.81 \times 1 \times 10^{-3}$
= 133.416 N/m^2
1 N/mm² = $1 \times 10^6 \text{ N/m}^2$
1 kgf/cm² = $9.81 \times 10^4 \text{ N/m}^2$

02. Ans: (b)

Sol: Local atm.pressure 710 mm (350 mm of vaccum) Absolute pressure

03. Ans: (c)

Sol: Pressure does not depend upon the volume of liquid in the tank. Since both tanks have the same height, the pressure P_A and P_B are same.

04. Ans: (b)

Sol:

The manometer shown in Fig.1 is an open ended manometer for negative pressure measurement.

- The manometer shown in Fig. 2 is for measuring pressure in liquids only.
- The manometer shown in Fig. 3 is for measuring pressure in liquids or gases.
- The manometer shown in Fig. 4 is an open ended manometer for positive pressure measurement.

05. Ans: 2.2

Sol: h_p in terms of oil

$$s_o h_o = s_m h_m$$

$$0.85 \times h_0 = 13.6 \times 0.1$$

$$h_0 = 1.6m$$

$$h_p = 0.6 + 1.6$$

$$\Rightarrow h_p = 2.2m \text{ of oil}$$

(or)
$$P_{p} - \gamma_{oil} \times 0.6 - \gamma_{Hg} \times 0.1 = P_{atm}$$

$$\frac{P_{p} - P_{atm}}{\gamma_{oil}} = \left(\frac{\gamma_{Hg}}{\gamma_{oil}} \times 0.1 + 0.6\right)$$

$$= \frac{13.6}{0.85} \times 0.1 + 0.6 = 2.2 \text{ m of oil}$$

Gauge pressure of P in terms of m of oil = 2.2 m of oil

Sol:
$$h_M - \frac{s_w}{s_0} h_{w_1} = h_N - \frac{s_w h_{w_2}}{s_0} - h_0$$

 $h_M - h_N = \frac{9}{0.83} - \frac{18}{0.83} - 3$
 $h_M - h_N = -13.843 \text{ cm of oil}$

07. Ans: 2.125

Sol:

$$h_{P} = \overline{h} + \frac{I}{A\overline{h}}$$

$$= 2 + \frac{\pi D^{4} \times 4}{64 \times D^{2} \times 2 \times \pi}$$

$$= 2 + \frac{2^{2} \times 4}{64 \times 2} = 2.125 \text{m}$$

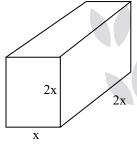
08. **Ans: 10**

Sol:
$$F = \rho g \overline{h} A$$

= $9810 \times 1.625 \times \frac{\pi}{4} (1.2^2 - 0.8^2)$
 $F = 10kN$

09. Ans: 1

Sol:



$$F_{bottom} = \rho g \times 2x \times 2x \times x$$

$$F_{V} = \rho gx \times 2x \times 2x$$

$$\frac{F_{B}}{F_{V}} = 1$$

10. **Ans: 10**

Sol:

$$F_V = x \times \pi$$

$$F_V = \rho g V = 1000 \times 10 \times \frac{\pi \times 2^2}{4}$$

$$F_V = 10\pi \text{ kN}$$

$$\therefore x = 10$$

11. Ans: (d)

Sol:
$$F_{net} = F_{H1} - F_{H2}$$

$$F_{HI} = \gamma \times \frac{D}{2} \times D \times 1 = \frac{\gamma D^2}{2}$$

$$F_{H2} = \gamma \times \frac{D}{4} \times \frac{D}{2} \times 1 = \frac{\gamma D^2}{8}$$

$$= \gamma D^2 \left(\frac{1}{2} - \frac{1}{8} \right) = \frac{3\gamma D^2}{8}$$

Ans: 2 12.

Since

Sol: Let P be the absolute pressure of fluid f3 at mid-height level of the tank. Starting from the open limb of the manometer (where pressure = P_{atm}) we write:

$$P_{\text{atm}} + \gamma \times 1.2 - 2 \gamma \times 0.2 - 0.5 \gamma \times \left(0.6 + \frac{h}{2}\right) = P$$

or
$$P - P_{atm} = P_{gauge}$$

$$= \gamma (1.2 - 2 \times 0.2 - 0.5 \times 0.6 - 0.5 \times \frac{h}{2})$$

For P_{gauge} to be zero, we have,

$$\gamma(1.2 - 0.4 - 0.3 - 0.25 \text{ h}) = 0$$

or
$$h = \frac{0.5}{0.25} = 2$$

13. Ans: (b)

Sol: The depth of centre of pressure from the free liquid surface is given by

$$h_{cp} = \overline{h} + \frac{I_{xx,c}}{A\overline{h}} \qquad -----(1)$$

Or,
$$h_{cp} - \overline{h} = \frac{I_{xx,c}}{A\overline{h}}$$

From the above relationship, as \overline{h} increases,

 $\frac{I_{xx,c}}{A\overline{h}}$ decreases. Thus, at great depth, the

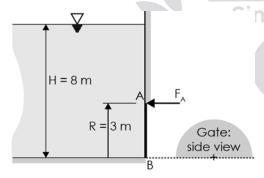
difference $(h_{cp} - \overline{h})$ becomes negligible. Hence, statement (I) is correct.

Also, it is clear from equation (1) that h_{cp} is independent of the density of the liquid.

Conventional Practice Solutions

01.

Sol:



$$\overline{h} = 5 + \left(3 - \frac{4 \times R}{3\pi}\right)$$

$$= 5 + \left(3 - \frac{4 \times 3}{3\pi}\right) = 5 + 1.727 = 6.727 \text{ m}$$

$$F_H = \gamma_w \times 6.727 \times Area \text{ (projected)}$$

$$=\gamma_{\rm w}\times 6.727\times \frac{\pi\!\times\!3^2}{2}$$

$$= \gamma_w \times 6.727 \times 4.5\pi$$

$$= 932.94 \text{ kN}$$

$$h_{ep} = 6.727 + \frac{0.10976 R^4}{\frac{\pi R^2}{2} \times 6.727}$$

$$= 6.727 + \frac{0.10976 \times 3^2 \times 2}{\pi \times 6.727}$$

$$=6.727+0.0935$$

= 6.8205 m from free liquid surface

= (8 - 6.8205) m from base B

= 1.1795 m from base B.

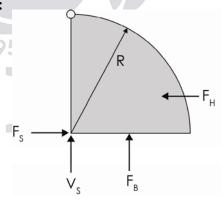
Taking moment about B

$$F_A \times 3 = 932.94 \times 1.1795$$

$$\Rightarrow$$
 F_A = 366.8 kN

02.

Sol:



$$\overline{h} = \left(1.5 + \frac{R}{2}\right)$$

$$F_H = \rho g \overline{h} A_{projected}$$

$$= \rho g \left(1.5 + \frac{R}{2} \right) (R \times 3)$$

$$= \gamma (1.5 + 1.5)(3 \times 3)$$

$$= 27 \gamma N$$

$$h_{cp} = 3 + \frac{\frac{1}{12} (3 \times 3^{3})}{(3 \times 3)(3)}$$

= 3.25 m from free liquid surface

$$= 3.25 - 1.5 = 1.75$$
 m from A

$$F_B = \gamma \left(\frac{\pi R^2}{4}\right)(3) = \gamma \times \frac{\pi \times 9 \times 3}{4} = \frac{27\pi\gamma}{4} N$$

 F_B will act through the centroid of the quadrant which is at a distance $\frac{4R}{3\pi}$ from the vertical line AB. Now, taking moment of the forces about the hinge A, we write

$$F_{s} \times 3 + F_{B} \times \frac{4R}{3\pi} - F_{H} \times 1.75 = 0$$

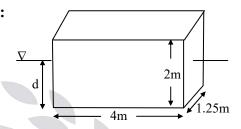
where F_s is the force in x-direction on the stop at B & V_s is in y-direction (does not contribute in the moment).

$$\begin{aligned} 3F_s &= 27 \times 1.75 \gamma - \frac{27\pi\gamma}{4} \times \frac{4R}{3\pi} = &10^4 (27 \times 1.75 - 9 \times 3) \\ &= 10^4 \times 27 \times 0.75 = 202.5 \text{ kN.m} \\ \Rightarrow F_s &= \frac{202.5}{3} = 67.5 \text{ kN} \end{aligned}$$

Chapter- 3 Buoyancy and Metacentric Height

01. Ans: (d)

Sol:



$$F_B = \text{weight of body}$$

$$\rho_b g V_b = \rho_f g V_f d$$

$$640 \times 4 \times 2 \times 1.25 = 1025 \times (4 \times 1.25 \times d)$$

$$d = 1.248 m$$

$$V_{fd} = 1.248 \times 4 \times 1.25$$

$$V_{fd} = 6.24 \text{ m}^3$$

02. Ans: (c)

Sol: Surface area of cube = $6 a^2$ Surface area of sphere = $4 \pi r^2$

$$199.4\pi r^2 = 6a^2$$

$$\frac{2\pi}{3} = \left(\frac{a}{r}\right)^2$$

$$F_{b,s} \propto V_s$$

$$= \frac{\frac{4}{3}\pi r^{3}}{a^{3}} = \frac{4}{3} \frac{\pi r^{3}}{\left(r\sqrt{\frac{2\pi}{3}}\right)^{3}}$$

$$=\frac{4}{3}\frac{\pi r^3}{\left(\sqrt{\frac{2\pi}{3}}\times\sqrt{\frac{2\pi}{3}}r^3\right)}=\sqrt{\frac{6}{\pi}}$$

03. Ans: 4.76

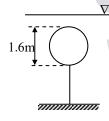
Sol:
$$F_B = F_{B,Hg} + F_{B,W}$$

 $W_B = F_B$

$$\begin{split} \rho_b g V_b &= \rho_{Hg} g \forall_{Hg} + \rho_w g \forall_w \\ \rho_b V_b &= \rho_{Hg} \forall_{Hg} + \rho_w \forall_w \\ S \times V_b &= S_{Hg} \forall_{Hg} + S_w \forall_w \\ 7.6 \times 10^3 &= 13.6 \times 10^2 (10 - x) + 10^2 \times x \\ -6000 &= -1260x \\ x &= 4.76 \text{ cm} \end{split}$$

Ans: 11 04.

Sol:



$$\begin{split} F_B &= W + T \\ W &= F_B - T \\ &= \rho_f g V_{fd} - T \\ &= 10^3 \times 9.81 \times \frac{4}{3} \pi (0.8)^3 - (10 \times 10^3) \\ &= 21 - 10 \\ W &= 11 \text{ kN} \end{split}$$

Ans: 1.375

Sol:
$$W_{water} = 5 N$$

$$W_{oil} = 7 N$$

$$S = 0.85$$

W - Weight in air

$$F_{B1} = W - 5$$

$$F_{B2} = W - 7$$

$$W - 5 = \rho_1 g V_{fd}(1)$$

$$W - 7 = \rho_2 g V_{fd}....(2)$$

$$V_{fd} = V_b$$

$$W - 5 = \rho_1 g V_b$$

$$W - 7 = \rho_2 g V_b$$

$$\frac{W - 7 = \rho_2 g V_b}{2 = (\rho_1 - \rho_2) g V_b}$$

$$V_b = \frac{2}{(1000 - 850)9.81}$$

$$V_b = 1.3591 \times 10^{-3} \,\mathrm{m}^3$$

$$W = 5 + (9810 \times 1.3591 \times 10^{-3})$$

$$W = 18.33 N$$

$$W = \rho_b g V_b$$

$$\frac{18.33}{9.81 \times 1.3591 \times 10^{-3}} = \rho_b$$

$$\rho_b = 1375.05 \text{ kg/m}^3$$

$$S_b = 1.375$$

06. Ans: (d)

Since

Sol: For a floating body to be stable, metacentre should be above its center of gravity. Mathematically GM > 0.

07. Ans: (b)

Sol: $W = F_B$

$$\rho_b g V_b = \rho_f g V_{fd}$$

$$\rho_b V_b = \rho_f V_{fd}$$

$$0.6 \times \frac{\pi}{4} d^2 \times 2d = 1 \times \frac{\pi}{4} d^2 \times x$$

$$x = 1.2d$$

$$GM = BM - BG$$

BM =
$$\frac{I}{V}$$
 = $\frac{\pi d^4}{64 \times \frac{\pi}{4} d^2 \times 1.2 d}$ = $\frac{d}{19.2}$ = 0.052d

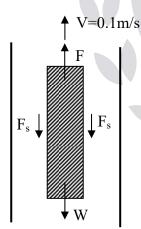
$$BG = d - 0.6d = 0.4d$$

Thus,
$$GM = 0.052d - 0.4d = -0.348 d$$

⇒ Hence, the cylinder is in unstable condition.

08. Ans: 122.475

Sol:



The thickness of the oil layer is same on either side of plate

y =thickness of oil layer

$$=\frac{23.5-1.5}{2}=11$$
mm

Shear stress on one side of the plate

$$\tau = \frac{\mu dU}{dy}$$

 F_s = total shear force (considering both sides of the plate)

$$= 2A \times \tau = \frac{2A\mu V}{y}$$

$$= \frac{2 \times 1.5 \times 1.5 \times 2.5 \times 0.1}{11 \times 10^{-3}}$$

$$= 102.2727 \text{ N}$$

Weight of plate, W = 50 N

Upward force on submerged plate,

$$F_v = \rho gV = 900 \times 9.81 \times 1.5 \times 1.5 \times 10^{-3}$$

= 29.7978 N

Total force required to lift the plate

$$= F_s + W - F_V$$

= 102.2727 + 50 - 29.7978
= 122.4749 N

09. Ans: (d)

Sol:

- Statement (I) is wrong because the balloon filled with air cannot go up and up, if it is released from the ground.
- However, with increase in elevation, the atmospheric pressure and temperature both decrease resulting into a decrease in air density. Thus, statement (II) is correct.

Conventional Practice Solutions

01. Ans: (i) 0.33, (ii) 0.5 m

Sol: Given data:

Inner diameter of hollow cylinder,

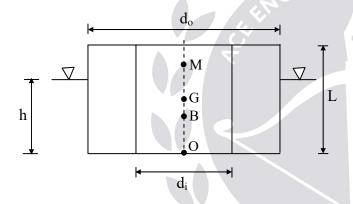
$$d_i = 300 \text{ mm}$$

Outer diameter of hollow cylinder,

$$d_0 = 600 \text{ mm}$$

S.G. of wooden hollow cylinder = 0.56

S.G. of oil =
$$0.85$$



Let 'h' be the depth of immersion of the cylinder in oil and L be the height of the cylinder.

Weight of hollow cylinder = Buoyant force acting on the hollow cylinder

$$Or, \quad \gamma_{\rm cyl} \! \times \! \frac{\pi}{4} \! \left(\! d_0^2 - d_{\rm i}^2 \right) \! \! \times L = \! \gamma_{\rm oil} \times \! \frac{\pi}{4} \! \left(\! d_0^2 - d_{\rm i}^2 \right) \! \! \times h$$

Or,
$$h = \frac{\gamma_{cyl}}{\gamma_{cil}} \times L = \frac{0.56}{0.85} L = 0.66 L$$

Let us then calculate the maximum height of the cylinder, L for the stable equilibrium condition. The centre of buoyancy B will be at a distance $\frac{h}{2}$ from O as shown in the figure.

Or,
$$OB = \frac{h}{2} = 0.33L$$

and
$$OG = \frac{L}{2} = 0.5L$$

Now, BM =
$$\frac{I}{\forall}$$

$$= \frac{\pi}{64} \left(d_0^4 - d_i^4 \right) \times \frac{4}{\pi \times \left(d_0^2 - d_i^2 \right) \times h}$$

$$= \frac{\left(d_0^2 + d_i^2 \right)}{16h} = \frac{\left(0.6^2 + 0.3^2 \right)}{16 \times 0.66L}$$

$$= \frac{0.0426}{L}$$

Thus, GM = BM - (OG - OB)
=
$$\frac{0.0426}{L}$$
 - $(0.5L - 0.33L)$
= $\frac{0.0426}{L}$ - $0.17L$

For stable equilibrium condition, $GM \ge 0$. Putting GM = 0 for the maximum height of the cylinder, we get

$$\frac{0.0426}{0.17} = L^2$$

$$\Rightarrow L = 0.5 \text{ m}$$
Thus, $h = 0.66 \times 0.5 = 0.33 \text{ m}$

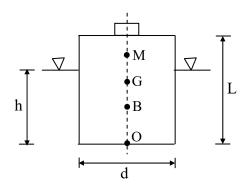
02. Ans: Unstable

Sol: Given data:

$$d = 1.0 \text{ m}, \qquad L = 1.5 \text{ m},$$

$$\rho_{sea \text{ water}} = 1026 \text{ kg/m}$$

$$m_{buov} = 80 \text{ kg} \qquad m = 10 \text{ kg}$$



$$(80+10)\times g = \frac{\pi}{4}\times 1^2\times h\times 1026\times g$$

where h is the depth of immersion of the buoy.

Thus,
$$h = \frac{4 \times 90}{\pi \times 1026} = 0.1117 \text{ m}$$

 $OB = \frac{h}{2} = 0.05585 \text{ m}$

The position of G due to a mass of 10 kg added to the cylindrical buoy is evaluated as:

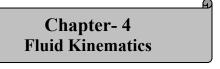
$$80 \times 0.75 + 10 \times 1.5 = 90 \times OG$$
Or, OG = $\frac{75}{90}$ = 0.833m
$$BM = \frac{I}{\forall} = \frac{\pi}{64} \times 1^4 \times \frac{4}{\pi \times 1^2 \times h}$$
= $\frac{1}{16 \times 0.1117}$ = 0.5595 m

Thus,
$$GM = BM - (OG - OB)$$

= $0.5595 - (0.833 - 0.05585)$
= -0.21765 m

Or, GM < 0

Thus, the buoy floats in unstable condition.



01. Ans: (b)

Sol:

- Constant flow rate signifies that the flow is steady.
- For conically tapered pipe, the fluid velocity at different sections will be different. This corresponds to non-uniform flow.

Common Data for Questions 02 & 03

02. Ans: 0.94

Sol:
$$a_{Local} = \frac{\partial V}{\partial t}$$

$$= \frac{\partial}{\partial t} \left(2t \left(1 - \frac{x}{2L} \right)^2 \right)$$

$$= \left(1 - \frac{x}{2L} \right)^2 \times 2$$

$$(a_{Local})_{at x = 0.5, L = 0.8} = 2\left(1 - \frac{0.5}{2 \times 0.8}\right)^2$$

= $2(1 - 0.3125)^2 = 0.945 \text{ m/sec}^2$

03. Ans: -13.68

Sol:
$$a_{\text{convective}} = v \cdot \frac{\partial v}{\partial x} = \left[2t \left[1 - \frac{x}{2L} \right]^2 \right] \frac{\partial}{\partial x} \left[2t \left(1 - \frac{x}{2L} \right)^2 \right]$$

$$= \left[2t \left[1 - \frac{x}{2L} \right]^2 \right] 2t \left[2\left(1 - \frac{x}{2L} \right) \left(-\frac{1}{2L} \right) \right]$$
At $t = 3$ sec; $x = 0.5$ m; $L = 0.8$ m

$$a_{convective} = 2 \times 3 \left[1 - \frac{0.5}{2 \times 0.8} \right]^{2} \times 2 \times 3 \left[2 \left(1 - \frac{0.5}{2 \times 0.8} \right) \right] \left[\frac{-1}{2 \times 0.8} \right]$$

$$a_{convective} = -14.62 \text{ m/sec}^2$$

$$a_{total} = a_{local} + a_{convective} = 0.94 - 14.62$$

= -13.68 m/sec²

04. Ans: (d)

Sol:
$$u = 6xy - 2x^2$$

Continuity equation for 2D flow

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = 6\mathbf{y} - 4\mathbf{x}$$

$$(6y - 4x) + \frac{\partial v}{\partial y} = 0$$

$$\frac{\partial \mathbf{v}}{\partial \mathbf{y}} = (4\mathbf{x} - 6\mathbf{y}) = 0$$

$$\partial v = (4x-6y) dy$$

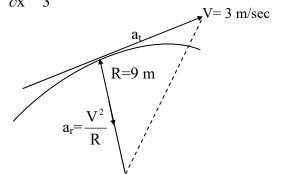
$$v = \int 4x dy - \int 6y dy$$

$$=4xy-3y^2+c$$

$$=4xy-3y^2+f(x)$$

05. Ans:
$$\sqrt{2} = 1.414$$

Sol:
$$\frac{\partial V}{\partial x} = \frac{1}{3} (m / \sec/m)$$



$$a_r = \frac{V^2}{R} = \frac{(3)^2}{9} = \frac{9}{9} = 1 \text{ m/s}^2$$

$$a_t = V \frac{\partial V}{\partial x} = 3 \times \frac{1}{3} = 1 \text{ m/s}^2$$

$$a = \sqrt{(a_r)^2 + (a_t)^2} = \sqrt{(1)^2 + (1)^2} = \sqrt{2} \text{ m/sec}^2$$

06. Ans: 13.75

Sol:
$$a_{t \text{ (conv)}} = V_{avg} \times \frac{dV}{dx}$$

$$a_{t \text{ (conv)}} = \left(\frac{2.5+3}{2}\right)\left(\frac{3-2.5}{0.1}\right) = 2.75 \times 5$$

$$a_{t \text{ (conv)}} = 13.75 \text{ m/s}^2$$

07. Ans: 0.3

Sol:
$$Q = Au$$

$$a_{Local} = \frac{\partial u}{\partial t} = \frac{\partial}{\partial t} \left(\frac{Q}{A} \right)$$

$$a_{local} = \frac{1}{A} \frac{\partial Q}{\partial t}$$

$$a_{Local} = \left(\frac{1}{0.4 - 0.1x}\right) \frac{\partial Q}{\partial t}$$

$$(a_{Local})_{at x = 0} = \frac{1}{0.4} \times 0.12 \quad (\because \frac{\partial Q}{\partial t} = 0.12)$$
$$= 0.3 \text{ m/sec}^2$$

08. Ans: (b)

Sol:
$$\psi = x^2 - y^2$$

$$\mathbf{a}_{Total} = (\mathbf{a}_{x}) \hat{\mathbf{i}} + (\mathbf{a}_{y}) \hat{\mathbf{j}}$$

$$u = -\frac{\partial \psi}{\partial y} = -\frac{\partial}{\partial y} (x^2 - y^2) = 2y$$

$$v = \frac{\partial \psi}{\partial x} = \frac{\partial}{\partial x} (x^2 - y^2) = 2x$$

$$a_{x} = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}$$

$$= (2y)(0) + (2x)(2)$$

$$\therefore a_{x} = 4x$$

$$a_{y} = u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y}$$

$$= (2y) \times (2) + (2x) \times (0)$$

$$a_{y} = 4y$$

$$\therefore a = (4x)\hat{i} + (4y)\hat{j}$$

09. Ans: (b)

Sol: Given, The stream function for a potential flow field is $\psi = x^2 - y^2$

$$\begin{split} & \varphi = ? \\ & u = \frac{-\partial \varphi}{\partial x} = -\frac{\partial \psi}{\partial y} \\ & u = -\frac{\partial \psi}{\partial y} = -\frac{\partial \left(x^2 - y^2\right)}{\partial y} \end{split}$$

$$u = -\frac{\partial \phi}{\partial x} = 2y$$

u = 2v

$$\int \partial \phi = -\int 2y \partial x$$

$$\phi = -2 xy + c_1$$

Given, ϕ is zero at (0,0)

$$\therefore c_1 = 0$$

$$\therefore \phi = -2xy$$

10. Ans: 4

Sol: Given,
$$2D - \text{flow field}$$

Velocity, $V = 3xi + 4xyj$
 $u = 3x$, $v = 4xy$

$$\begin{aligned} \omega_z &= \frac{1}{2} \left(\frac{dv}{dx} - \frac{du}{dy} \right) \\ \omega_z &= \frac{1}{2} (4y - 0) \\ (\omega_z)_{at(2,2)} &= \frac{1}{2} \times 4(2) = 4 \text{ rad/sec} \end{aligned}$$

11. Ans: 0

Sol: Given,
$$u = 3x$$
, $v = Cy$, $w = 2$

The shear stress, τ_{xy} is given by

$$\tau_{xy} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = \mu \left[\frac{\partial}{\partial y} (3x) + \frac{\partial}{\partial x} (Cy) \right]$$
$$= \mu (0+0) = 0$$

12. Ans: (d)

Sol:

Since

• The total acceleration is given as

$$\frac{D\vec{V}}{Dt} = \frac{\partial \vec{V}}{\partial t} + (\vec{V}.\nabla)\vec{V}$$

where the first term on the R.H.S is the local acceleration and the second term is the convective acceleration.

- If the flow is steady, then local acceleration will be zero, not the convective acceleration.
- The convective acceleration arises due to the fact that a fluid element experiences different velocities at different locations. Thus, statement (I) is wrong whereas statement (II) is correct.

Conventional Practice Solutions

01. Ans: (ii)
$$y = \pm x$$
 (ii) $(0, 0)$

Sol: Given:
$$u = c(x^2 - y^2)$$
 and $v = -2cxy$

The equation of a streamline is given by

$$\frac{\mathrm{d}x}{\mathrm{u}} = \frac{\mathrm{d}y}{\mathrm{v}}$$

Or,
$$\frac{dy}{dx} = \frac{v}{u} = -\frac{2Cxy}{C(x^2 - y^2)} = -\frac{2xy}{x^2 - y^2}$$

(ii) For flow to be parallel to y-axis, u = 0

Or,
$$\frac{dy}{dx} = \frac{v}{x^2 - y^2} = \infty$$

This is possible when $x = \pm y$

(iii) The fluid is stationary when u & v both are zero.

From the velocity components given, it is possible when (x, y) = (0, 0)

(i) From the equation of streamline

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{-2\mathrm{xy}}{\mathrm{x}^2 - \mathrm{y}^2}$$

Or,
$$\frac{dx}{dy} = -\frac{x^2 - y^2}{2xy}$$
 ----(1)

Let
$$x = fy$$
 or $dx = fdy + ydf$

Or,
$$\frac{dx}{dy} = f + y \frac{df}{dy} - ----(2)$$

Equating (1) with (2),

$$f + y \frac{df}{dv} = -\frac{f^2y^2 - y^2}{2fv \times v} = -\frac{f^2 - 1}{2f} = \frac{1 - f^2}{2f}$$

Or,
$$y \frac{df}{dy} = \frac{1 - f^2}{2f} - f = \frac{1 - 3f^2}{2f}$$

Or,
$$\frac{2f}{1-3f^2} df = \frac{dy}{y}$$
$$\frac{6f}{3f^2 - 1} df = -\frac{3dy}{y}$$

Integrating

$$\ln(3f^2 - 1) + 3 \ln y = \ln C$$

Or,
$$(3f^2 - 1) \times y^3 = C$$

Or,
$$\left(3\frac{x^2}{y^2} - 1\right)y^3 = C$$

Or,
$$3x^2y - y^3 = C$$

Or,
$$x^2y - y^3/3 = constant$$
, proved

Chapter- 5 Energy Equation and its Applications

01. Ans: (c)

Sol: Applying Bernoulli's equation for ideal fluid

$$\frac{P_1}{\rho g} + Z_1 + \frac{V_1^2}{2g} = \frac{P_2}{\rho g} + Z_2 + \frac{V_2^2}{2g}$$

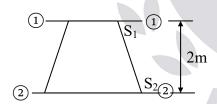
$$\frac{P_1}{\rho g} + \frac{(2)^2}{2g} = \frac{P_2}{\rho g} + \frac{(1)^2}{2g}$$

$$\frac{P_2}{\rho g} - \frac{P_1}{\rho g} = \frac{4}{2g} - \frac{1}{2g}$$

$$\frac{P_2 - P_1}{\rho g} = \frac{3}{2g} = \frac{1.5}{g}$$

02. Ans: (c)

Sol:



$$\frac{V_1^2}{2g} = 1.27 \text{m}$$
, $\frac{P_1}{\rho g} = 2.5 \text{m}$

$$\frac{V_2^2}{2g} = 0.203 \text{m}$$
, $\frac{P_2}{\rho g} = 5.407 \text{m}$

$$Z_1 = 2 \text{ m}$$
 , $Z_2 = 0 \text{ m}$

Total head at (1) - (1)

$$= \frac{V_1^2}{2g} + \frac{P_1}{\rho g} + Z_1$$
$$= 1.27 + 2.5 + 2 = 5.77 \text{ m}$$

Total head at (2) - (2)

$$= \frac{V_2^2}{2g} + \frac{P_2}{\rho g} + Z_2$$
$$= 0.203 + 5.407 + 0 = 5.61 \text{ m}$$

Loss of head = 5.77 - 5.61 = 0.16 m

- \therefore Energy at (1) (1) > Energy at (2) (2)
- :. Flow takes from higher energy to lower energy

i.e. from (S_1) to (S_2)

Flow takes place from top to bottom.

03. Ans: 1.5

Sol:
$$A_1 = \frac{\pi}{4}d_1^2 = \frac{\pi}{4}(0.1)^2 = 7.85 \times 10^{-3} \text{ mm}^2$$

$$A_2 = \frac{\pi}{4} d_2^2 = \frac{\pi}{4} (0.05)^2 = 1.96 \times 10^{-3} \text{ mm}^2$$

$$\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + Z_2 + h_L$$

 $Z_1 = Z_2$, it is in horizontal position

Since, at outlet, pressure is atmospheric

$$P_2 = 0$$

$$Q = 100 \text{ lit/sec} = 0.1 \text{ m}^3/\text{sec}$$

$$V_1 = \frac{Q}{A_1} = \frac{0.1}{7.85 \times 10^{-3}} = 12.73 \,\text{m/sec}$$

$$V_2 = \frac{Q}{A_2} = \frac{0.1}{1.96 \times 10^{-3}} = 51.02 \,\text{m/sec}$$

$$\frac{P_{1\text{gauge}}}{\rho_{\text{air}} \times g} + \frac{(12.73)^2}{2 \times 10} = 0 + \frac{(51.02)^2}{2 \times 10}$$

$$\frac{P_1}{\rho_{air} \cdot g} = 121.53$$

$$P_1 = 121.53 \times \rho_{air} \times g$$
$$= 1.51 \text{ kPa}$$

04. Ans: 395

Sol:
$$Q = 100 \text{ litre/sec} = 0.1 \text{ m}^3/\text{sec}$$

$$V_1 = 100 \text{ m/sec}$$
:

$$V_1 = 100 \text{ m/sec}; P_1 = 3 \times 10^5 \text{ N/m}^2$$

$$V_2 = 50 \text{ m/sec}$$
:

$$V_2 = 50 \text{ m/sec};$$
 $P_2 = 1 \times 10^5 \text{ N/m}^2$

Power
$$(P) = ?$$

Bernoulli's equation

$$\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + Z_2 + h_L$$

$$\frac{3 \times 10^5}{1000 \times 10} + \frac{100^2}{2 \times 10} + 0 = \frac{1 \times 10^5}{1000 \times 10} + \frac{50^2}{2 \times 10} + 0 + h_L$$

$$\Rightarrow$$
 h_L = 395 m

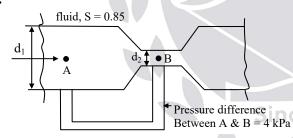
$$P = \rho g Q.h_L$$

$$P = 1000 \times 10 \times 0.10 \times 395$$

$$P = 395 \text{ kW}$$

05. Ans: 35

Sol:



$$d_1 = 300 \text{ mm}, \ d_2 = 120 \text{ mm}$$

$$Q_{Th} = \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \sqrt{2gh}$$
$$= \frac{A_1 A_2}{\sqrt{A^2 - A_2^2}} \sqrt{2g\left(\frac{\Delta P}{W}\right)}$$

$$A_1 = \frac{\pi}{4} d_1^2 = \frac{\pi}{4} (0.30)^2 = 0.07 \,\text{m}^2$$

$$A_2 = \frac{\pi}{4}d_2^2 = \frac{\pi}{4}(0.12)^2 = 0.011m^2$$

$$h = \frac{\Delta P}{w} = \frac{\Delta P}{\rho_f \cdot g}$$

$$= \frac{\Delta P}{s_f \rho_w g} = \frac{4 \times 10^3}{0.85 \times 1000 \times 9.81}$$

$$Q_{Th} = \frac{0.07 \times 0.011}{\sqrt{1000 \times 9.81 \times 4 \times 10^3}}$$

$$Q_{Th} = \frac{0.07 \times 0.011}{\sqrt{(0.07)^2 - (0.011)^2}} \sqrt{\frac{2 \times 9.81 \times 4 \times 10^3}{0.85 \times 1000 \times 9.81}}$$
$$= 0.035 \text{ m}^3/\text{sec} = 35.15 \text{ ltr/sec}$$

06. Ans: 65

Sol:
$$h_{stag} = 0.30 \text{ m}$$

 $\Delta P = 4 \text{ kPa}.$

$$h_{\text{stat}} = 0.24 \text{ m}$$

$$V = c \sqrt{2gh_{dyna}}$$

$$V = 1\sqrt{2g(h_{stag} - h_{stat})}$$

$$= \sqrt{2(9.81)(0.30 - 0.24)} = 1.085 \text{ m/s}$$

$$= 1.085 \times 60 = 65.1$$
 m/min

07. Ans: 81.5

Sol:
$$x = 30 \text{ mm}, g = 10 \text{ m/s}^2$$

$$\rho_{air} = 1.23 \text{ kg/m}^3; \quad \rho_{Hg} = 13600 \text{ kg/m}^3$$

$$C = 1$$

$$V = \sqrt{2gh_D}$$

$$h_D = x \left(\frac{S_m}{S} - 1 \right)$$

$$h_D = 30 \times 10^{-3} \left(\frac{13600}{1.23} - 1 \right)$$

$$h_D = 331.67 \text{ m}$$

$$V = 1 \times \sqrt{2 \times 10 \times 331.67} = 81.5 \text{ m/sec}$$

08. Ans: 140

Sol:
$$Q_a = C_d \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \sqrt{2gh}$$

$$C_{_d} \propto \frac{1}{\sqrt{h}}$$

$$\frac{C_{d_{venturi}}}{C_{d_{originary}}} = \frac{0.95}{0.65} = \sqrt{\frac{h_{orifice}}{h_{venturi}}}$$

$$h_{venturi} = 140 \text{ mm}$$

09. Ans: (d)

Sol:

- For an orifice meter, the fluid re-establishes its flow pattern downstream of the orifice plate. However, the fluid pressure downstream of the orifice plate is not the same as that at upstream of the orifice plate. Thus, statement (I) is not correct.
- Bernoulli's equation when applied to any two points (for irrotational, steady and incompressible flow) can be written as

$$\frac{P_1}{\gamma} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2$$

If $V_1 = V_2 \& Z_1 = Z_2$, we get $P_1 = P_2$.

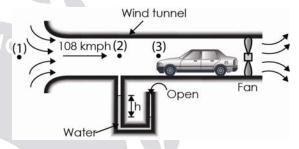
Thus, statement (II) is correct.

Conventional Practice Solutions

01. Ans: 5.4 cm, 540 Pa

Sol: Air enters into the wind tunnel at P_{atm} and $V \approx 0$. It attains a velocity V in the test section and the pressure there is P.

Applying Bernoulli's equation for points (1) and (2) as shown in the figure.



$$\frac{P_{1}}{\gamma_{air}} + \frac{V_{1}^{2}}{2g} + Z_{1} = \frac{P_{2}}{\gamma_{air}} + \frac{V_{2}^{2}}{2g} + Z_{2}$$

But
$$P_1 = P_{atm}$$
, $V_1 \approx 0$ and $Z_1 = Z_2$

Thus,
$$\frac{P_{atm} - P_2}{\gamma_{air}} = \frac{V_2^2}{2g}$$

$$= \frac{\left(108 \times \frac{5}{18}\right)^2}{2 \times 10} = 45 - --- (1)$$

From manometer,

$$P_2 + \gamma_{water} \times h = P_{atm}$$

or,
$$P_{atm} - P_2 = \gamma_{water} \times h$$
 -----(2)

Hence, equation (1) becomes,

$$\frac{\gamma_{\text{water}}h}{\gamma_{\text{air}}} = 45$$
 (from (2))

$$h = \frac{45 \times \gamma_{air}}{\gamma_{water}} = \frac{45 \times 1.2 \times g}{10^3 \times g} = 0.054 \text{ m}$$

$$\Rightarrow$$
 h = 5.4 cm

1995

Applying Bernoulli's equation for points (2) and (3)

$$\frac{P_2}{\gamma_{air}} + \frac{V_2^2}{2g} = \frac{P_3}{\gamma_{air}} + \frac{V_3^2}{2g}$$

But point (3) is stagnation point where

$$P_3 = P_{stag} \& V_3 = 0$$

Thus,
$$\frac{P_{stag} - P_2}{\gamma_{air}} = \frac{V_2^2}{2g} = 45$$

Or,
$$P_{\text{stag}} - P_2 = 45 \times 1.2 \times 10 = 540 \text{ Pa}$$

Chapter- 6 Momentum equation and its Applications

Ans: 1600

Sol: S = 0.80

$$A = 0.02 \text{ m}^2$$

$$V = 10 \text{ m/sec}$$

$$F = \rho.A.V^2$$

$$F = 0.80 \times 1000 \times 0.02 \times 10^2$$

$$F = 1600 \text{ N}$$

02. Ans: 6000

Sol: $A = 0.015 \text{ m}^2$

V = 15 m/sec (Jet velocity)

U = 5 m/sec (Plate velocity)

$$F = \rho A (V + U)^2$$

$$F = 1000 \times 0.015 (15 + 5)^2$$

$$F = 6000 \text{ N}$$

03. Ans: 19.6

Since

Sol: V = 100 m/sec (Jet velocity)

U = 50 m/sec (Plate velocity)

d = 0.1 m

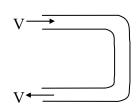
$$F = \rho A (V - U)^2$$

$$F = 1000 \times \frac{\pi}{4} \times 0.1^{2} \times (100 - 50)^{2}$$

$$F = 19.6 \text{ kN}$$

04. Ans: (a)

Sol:



$$F_x = \rho a V(V_{1x} - V_{2x})$$
= $\rho a V(V - (-V))$
= $2 \rho a V^2$
= $2 \times 1000 \times 10^{-4} \times 5^2 = 5 N$

05. Ans: (d)

Sol: Given, V = 20 m/s,

$$u = 5 \text{ m/s}$$
$$F_1 = \rho A(V - u)^2$$

Power $(P_1) = F_1 \times u = \rho A(V - u)^2 \times u$

$$F_2 = \rho.A.V \times V_r$$
$$= \rho.A(V).(V-u)$$

Power $(P_2) = F_2 \times u = \rho AV(V-u)u$

$$\frac{P_1}{P_2} = \frac{\rho A(V - u)^2 \times u}{\rho AV(V - u) \times u}$$
$$= \frac{V - u}{V} = 1 - \frac{u}{V}$$
$$= 1 - \frac{5}{20} = 0.75$$

06. Ans: 2035

$$\begin{split} \text{Sol:} & \text{ Given, } \theta = 30^\circ, & \text{ } \dot{m} = 14 \text{ kg/s} \\ & (P_i)_g = 200 \text{ kPa,} & (P_e)_g = 0 \\ & A_i = 113 \times 10^{-4} \text{ m}^2 \text{ ,} & A_e = 7 \times 10^{-4} \text{ m}^2 \\ & \rho = 10^3 \text{ kg/m}^3, & g = 10 \text{ m/s}^2 \end{split}$$

From the continuity equation:

$$\rho A_i \ V_i = 14$$
 or
$$V_i = \frac{14}{10^3 \times 113 \times 10^{-4}} = 1.24 \, \text{m/s}$$
 Similarly,
$$V_e = \frac{14}{10^3 \times 7 \times 10^{-4}} = 20 \, \text{m/s}$$

Let F_x be the force exerted by elbow on water in the +ve x-direction. Applying the linear momentum equation to the C.V. enclosing the elbow, we write :

$$(P_i)_g A_i + F_x = \dot{m} (V_e \cos 30^\circ - V_i)$$

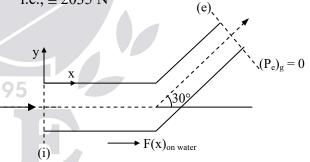
$$F_{x} = \dot{m} \left(V_{c} \cos 30^{\circ} - V_{i} \right) - \left(P_{i} \right)_{g} A_{i}$$

$$= 14 (20 \times \cos 30^{\circ} - 1.24) - 200 \times 10^{3} \times 113 \times 10^{-4}$$

$$= 225.13 - 2260$$

$$= -2034.87 \text{ N} \approx -2035 \text{ N}$$

The x-component of water force on elbow is $-F_x$ (as per Newton's third law), i.e., $\approx 2035 \text{ N}$



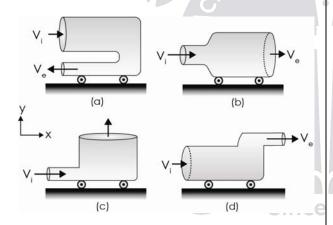
07. Ans: (a)

Sol: In a convergent nozzle, as the area decreases in the direction of flow, the flow velocity will increase (AV = Constant) in the direction of flow. This will result in increase in its momentum. Thus, statement (I) is correct and statement (II) is the correct explanation of statement (I).

Conventional Practice Solutions

01. Ans: Right: a, b, c; Left: d

Sol: Let F_x be the force exerted by the fluid on the device which will be different for different devices. Since inlet and outlet sections of the devices are at atmospheric pressure, there will be no contribution of pressure forces at these sections. Let V_i and V_e be the velocities at inlet and outlet of the devices in x-direction.



Applying linear momentum equation to each of the devices, we write

(a)
$$F_x = \dot{m}_a [V_i - (-V_e)] = \dot{m}_a [V_i + V_e]$$

 F_x is acting in +ve x direction.

Therefore, the device (b) will move to the right.

(b)
$$F_x = \dot{m}_b (V_i - V_e)$$

Since $V_i > V_e$, F_x is acting in +ve x direction.

Therefore, the device (a) will move to the right.

(c)
$$F_x = \dot{m}_c (V_i - 0) = \dot{m} V_i$$

 F_x is acting in +ve x direction.

Therefore, the device (c) will move to the right.

(d)
$$F_x = \dot{m}_d (V_i - V_e)$$

Since $V_e > V_i$

 F_x is acting in -ve x direction. Therefore, the device (d) will move to the left.

02.

Sol: Given data:

$$A_i = 0.009 \text{ m}^2$$

$$V_i = 30.5 \text{ m/s}$$

$$V_s = 3 \text{ m/s}$$

$$A_s + A_j = 0.07 \text{ m}^2 = A_T$$

$$A_s = (0.07 - 0.009) = 0.061 \text{ m}^2$$

$$A_j V_j + A_s V_s = (A_s + A_s) V_e$$

(From continuity equation)

$$0.009 \times 30.5 + 0.061 \times 3 = 0.07 \times V_e$$

Or,
$$V_e = 6.536 \text{ m/s} \approx 6.54 \text{ m/s}$$

Applying linear momentum equation:

$$P_{1}(A_{s} + A_{j}) - P_{2}(A_{s} + A_{j})$$

$$= \rho A_{T} \times V_{e}[V_{e}] - \rho A_{s}V_{s}^{2} - \rho A_{i}V_{i}^{2}$$

$$\begin{split} (P_1 - P_2)A_T &= \rho A_T V_e^2 - \rho A_s V_s^2 - \rho A_j V_j^2 \\ &= \rho \Big[0.07 \times 6.536^2 - 0.061 \times 9 - 0.009 \times 30.5^2 \Big] \\ &= -10^3 (5.931) \ \mathrm{N} \end{split}$$

Or,
$$P_2 - P_1 = \frac{5.931}{0.07} = 84.73 \text{ kPa}$$

Chapter- 7 Laminar Flow

01. Ans: (d)

Sol: In a pipe, the flow changes from laminar flow to transition flow at Re = 2000. Let V be the average velocity of flow. Then

$$2000 = \frac{V \times 8 \times 10^{-2}}{0.4 \times 10^{-4}} \Rightarrow V = 1 \text{m/s}$$

In laminar flow through a pipe,

$$V_{\text{max}} = 2 \times V = 2 \text{ m/s}$$

02. Ans: (d)

Sol: The equation $\tau = \left(-\frac{\partial P}{\partial x}\right)\left(\frac{r}{2}\right)$ is valid for laminar as well as turbulent flow through a circular tube.

03. Ans: (d)

Sol:
$$Q = A.V_{avg}$$

$$Q = A. \frac{V_{max}}{2} \qquad (\because V_{max} = 2 \ V_{avg})$$

$$Q = \frac{\pi}{4} \left(\frac{40}{1000}\right)^2 \times \frac{1.5}{2}$$

$$= \frac{\pi}{4} \times (0.04)^2 \times 0.75$$

$$= \frac{\pi}{4} \times \frac{4}{100} \times \frac{4}{100} \times \frac{3}{4} = \frac{3\pi}{10000} \text{ m}^3/\text{sec}$$

04. Ans: 1.92

Sol: $\rho = 1000 \text{ kg/m}^3$

$$Q = 800 \text{ mm}^3/\text{sec} = 800 \times (10^{-3})^3 \text{ m}^3/\text{sec}$$

$$L = 2 m$$

$$D = 0.5 \text{ mm}$$

$$\Delta P = 2 \text{ MPa} = 2 \times 10^6 \text{Pa}$$

$$\mu = ?$$

$$\Delta P = \frac{128.\mu QL}{\pi D^4}$$

$$2 \times 10^6 = \frac{128 \times \mu \times 800 \times (10^{-3})^3 \times 2}{\pi (0.5 \times 10^{-3})^4}$$

$$\mu = 1.917$$
 milli Pa – sec

05. Ans: 0.75

Sol:
$$U_r = U_{max} \left(1 - \left(\frac{r}{R} \right)^2 \right)$$

$$\left[\because \frac{\mathbf{U}}{\mathbf{U}_{\text{max}}} = 1 - \left(\frac{\mathbf{r}}{\mathbf{R}} \right)^2 \right]$$

$$=1\left(1-\left(\frac{50}{200}\right)^2\right)$$

$$= 1\left(1 - \frac{1}{4}\right) = \frac{3}{4} = 0.75 \text{ m/s}$$

06. Ans: 0.08

Sol: Given,

$$\rho = 0.8 \times 1000 = 800 \text{ kg/m}^3$$

$$\mu=1\ Poise=10^{-1}\ N\text{-s/m}$$

$$d = 50 \text{ mm} = 0.05 \text{ m}$$

Velocity =
$$2 \text{ m/s}$$

Reynold's Number,
$$Re = \frac{\rho VD}{\mu}$$

$$=\frac{800\times2\times0.05}{10^{-1}}=800$$

(:: Re < 2000)

∴ Flow is laminar,

For laminar, Darcy friction factor

$$f = \frac{64}{Re} = \frac{64}{800} = 0.08$$

07. Ans: 16

Sol: For fully developed laminar flow,

$$h_f = \frac{32\mu VL}{\rho gD^2}$$
 (:: Q = AV)

$$h_{f} = \frac{32\mu \left(\frac{Q}{A}\right)L}{\rho g D^{2}} = \frac{32\mu Q L}{A D^{2} \times \rho g}$$

$$h_{\rm f} = \frac{32\mu QL}{\frac{\pi}{4}D^2 \times D^2 \times \rho g}$$

$$h_f \propto \frac{1}{D^4}$$

$$h_{f1} D_1^4 = h_{f2} D_2^4$$

Given,
$$D_2 = \frac{D_1}{2}$$

$$\mathbf{h}_{\mathrm{fl}} \times \mathbf{D}_{1}^{4} = \mathbf{h}_{\mathrm{f2}} \times \left(\frac{\mathbf{D}_{1}}{2}\right)^{4}$$

$$h_{f_2} = 16h_{f_1}$$

:. Head loss, increase by 16 times if diameter halved.

Sol: Oil viscosity,
$$\mu = 10$$
 poise = 10×0.1
= 1 N-s/m^2

$$y = 50 \times 10^{-3} \text{m}$$

$$L = 120 \text{ cm} = 1.20 \text{ m}$$

$$\Delta P = 3 \times 10^3 Pa$$

Width of plate = 0.2 m

$$O = ?$$

$$Q = A.V_{avg} = (width of plate \times y)V$$

$$\Delta P = \frac{12\mu VL}{B^2}$$

$$3 \times 10^3 = \frac{12 \times 1 \times V \times 1.20}{\left(50 \times 10^{-3}\right)^2}$$

$$V = 0.52 \text{ m/sec}$$

Q = AV_{avg} =
$$(0.2 \times 50 \times 10^{-3})$$
 (0.52)
= 5.2 lit/sec

Sol: Wall shear stress for flow in a pipe is given by,

1995
$$\tau_o = -\frac{\partial P}{\partial x} \times \frac{R}{2} = \frac{\Delta P}{L} \times \frac{D}{4}$$

$$= \frac{\Delta P D}{4 I}$$

Sol: Given,
$$\rho = 800 \text{ kg/m}^3$$
,

$$\mu = 0.1 \text{ Pa.s}$$

Flow is through an inclined pipe.

$$d = 1 \times 10^{-2} \text{ m},$$

$$V_{av} = 0.1 \text{ m/s},$$

$$\theta = 30^{\circ}$$

$$Re = \frac{\rho V_{av} d}{\mu} = \frac{800 \times 0.1 \times 1 \times 10^{-2}}{0.1} = 8$$

 \Rightarrow flow is laminar.

Applying energy equation for the two sections of the inclined pipe separated by 10 m along the pipe,

$$\begin{split} \frac{P_1}{\gamma} + \frac{V_1^2}{2g} + Z_1 &= \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2 + h_f \\ \text{But } V_1 &= V_2 \;, \\ (Z_2 - Z_1) &= 10 \; \text{sin} 30^\circ = 5 \; \text{m} \\ \text{and} \quad h_f &= \frac{32\mu V_{av} L}{\rho g d^2} \\ \frac{\left(P_1 - P_2\right)}{\gamma} &= \left(Z_2 - Z_1\right) + \frac{32\mu V_{av} L}{\rho g d^2} \\ \left(P_1 - P_2\right) &= \rho g \left(Z_2 - Z_1\right) + \frac{32\mu V_{av} L}{d^2} \\ &= 800 \times 10 \times 5 + \frac{32 \times 0.1 \times 0.1 \times 10}{\left(1 \times 10^{-2}\right)^2} \end{split}$$

 $=40 \times 10^3 + 32 \times 10^3 = 72 \text{ kPa}$

11. Ans: (d)

Sol:

- In hydrodynamic entrance region of the pipe of uniform diameter, the average velocity remains constant in the direction of flow. Thus, statement I is wrong.
- However, in the above region the centreline velocity increases in the direction of flow as boundary layers grow on the solid surfaces.
 Thus, statement (II) is correct.

Conventional Practice Solutions

01.

Sol: The velocity profile for fully developed laminar flow between two stationary parallel plates is given by

$$u = \frac{1}{2\mu} \left(\frac{-\partial P}{\partial x} \right) \left(By - y^2 \right)$$

(i)
$$\frac{\partial u}{\partial y} = \frac{1}{2\mu} \left(\frac{-\partial P}{\partial x} \right) (B - 2y)$$

At the upper surface

$$\frac{\partial \mathbf{u}}{\partial \mathbf{y}}\Big|_{\mathbf{y}=\mathbf{B}} = \frac{1}{2\mu} \left(\frac{-\partial \mathbf{P}}{\partial \mathbf{x}} \right) (\mathbf{B} - 2 \times \mathbf{B})$$

$$= -\frac{1}{2\mu} \left(\frac{-\partial \mathbf{P}}{\partial \mathbf{x}} \right) \mathbf{B}$$

$$\tau_{\mathbf{y}=\mathbf{B}} = \mu \frac{\partial \mathbf{u}}{\partial \mathbf{y}}\Big|_{\mathbf{y}=\mathbf{B}} = -\frac{1}{2} \left(\frac{-\partial \mathbf{P}}{\partial \mathbf{x}} \right) \mathbf{B}$$

$$= \frac{-1}{2} \times 1000 \times 5 \times 10^{-3} = -2.5 \text{ Pa}$$

Thus, the magnitude of the shear stress on the upper plate is 2.5 Pa and its direction is opposite to the direction of flow.

(ii) Discharge per unit length

$$= \int_{0}^{B} u(y)(dy \times 1)$$

$$= \frac{1}{2\mu} \left(\frac{-\partial P}{\partial x} \right) \int_{0}^{B} (By - y^{2}) dy$$

$$= \frac{1}{2\mu} \left(\frac{-\partial P}{\partial x} \right) \left[B \frac{y^{2}}{2} - \frac{y^{3}}{3} \right]_{0}^{B}$$

$$\begin{split} &=\frac{1}{2\mu}\bigg(\frac{-\partial P}{\partial x}\bigg)\!\bigg(\frac{B^3}{2}\!-\!\frac{B^3}{3}\bigg)\\ &=\frac{B^3}{12\mu}\bigg(\frac{-\partial P}{\partial x}\bigg)\\ &q=\frac{\left(5\!\times\!10^{-3}\right)^{\!3}}{12}\!\times\!1000\\ &=20.83\!\times\!10^{-6}~m^3/s \end{split}$$

02.

Sol: This is a problem of Couette flow with pressure gradient. In this case the velocity profile is given by

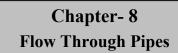
$$\begin{split} u &= \frac{V}{h}y + \frac{1}{2\mu} \left(-\frac{\partial P}{\partial x} \right) \! \left(hy - y^2 \right) \\ &= \frac{0.1}{0.01} y + \frac{1}{2 \times 0.1} (1200) \! \left(0.01 y - y^2 \right) \\ &= 10 y + 6000 (0.01 y - y^2) \\ &= 10 y + 60 y - 6000 y^2 \\ &= 70 y - 6000 y^2 \end{split}$$

For maximum velocity

$$\frac{\partial u}{\partial y} = 0 = 70 - 12000y$$
Or, $y = \frac{70 \times 1000}{12000} \text{ mm} = 5.833 \text{ mm}$

and

$$V_{\text{max}} = 70 \times 5.833 \times 10^{-3} - 6000 \times (5.833 \times 10^{-3})^{2}$$
$$= 0.204 \text{ m/s}$$



01. Ans: (d)

Sol:

• The Darcy-Weisbash equation for head loss in written as:

$$h_f = \frac{f L V^2}{2g d}$$

where V is the average velocity, f is friction factor, L is the length of pipe and d is the diameter of the pipe.

- This equation is used for laminar as well as turbulent flow through the pipe.
- The friction factor depends on the type of flow (laminar or turbulent) as well as the nature of pipe surface (smooth or rough)
- For laminar flow, friction factor is a function of Reynolds number.

02. Ans: 481

Since

Sol: Given data,

$$\begin{split} \dot{m} &= \pi \ kg/s, & d = 5 \times 10^{-2} \ m, \\ \mu &= 0.001 \ Pa.s \ , & \rho = 1000 \ kg/m^3 \\ V_{av} &= \frac{\dot{m}}{\rho A} = \frac{4 \dot{m}}{\rho \pi d^2} = \frac{4 \times \pi}{\rho \pi d^2} = \frac{4}{\rho d^2} \\ Re &= \frac{\rho V_{av} d}{\mu} = \rho \times \frac{4}{\rho d^2} \times \frac{d}{\mu} = \frac{4}{\mu d} \\ &= \frac{4}{0.001 \times 5 \times 10^{-2}} = 8 \times 10^4 \end{split}$$

⇒ Flow is turbulent

$$f = \frac{0.316}{Re^{0.25}} = \frac{0.316}{\left(8 \times 10^4\right)^{0.25}} = 0.0188$$

$$\Delta P = \rho g \frac{f \, L \, V_{av}^2}{2g d} = f \, \rho \, L \, \times \left(\frac{4}{\rho d^2}\right)^2 \times \frac{1}{2d}$$

$$\frac{\Delta P}{L} = f \times \frac{16}{\rho d^5} \times \frac{1}{2} = \frac{8f}{\rho d^5} = \frac{8 \times 0.0188}{10^3 \times (5 \times 10^{-2})^5}$$
$$= 481.28 \text{ Pa/m}$$

03. Ans: (a)

Sol: In pipes Net work, series arrangement

$$\therefore h_f = \frac{f J V^2}{2gd} = \frac{f J Q^2}{12.1 \times d^5}$$

$$\frac{h_{f_A}}{h_{f_B}} = \frac{f_A l_A . Q_a^2}{12.1 \times d_A^2} \times \frac{12.1 \times d_B^5}{f_B l_B . Q_B^2}$$

Given $l_A = l_B$, $f_A = f_B$, $Q_A = Q_B$

$$\frac{h_{f_A}}{h_{f_B}} = \left(\frac{d_B}{d_A}\right)^5 = \left(\frac{d_B}{1.2d_B}\right)^5$$

$$= \left(\frac{1}{1.2}\right)^5 = 0.4018 \approx 0.402$$

04. Ans: (a)

Sol: Given, $d_1 = 10$ cm; $d_2 = 20$ cm

$$f_1 = f_2 ;$$

$$l_1 = l_2 = l$$

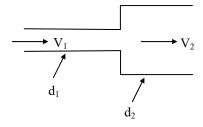
$$l_{\rm e} = l_1 + l_2 = 2l$$

$$\frac{l_{\rm e}}{d_{\rm e}^5} = \frac{l_1}{d_1^5} + \frac{l_2}{d_2^5} \implies \frac{2l}{d_e^5} = \frac{l}{10^5} + \frac{l}{20^5}$$

$$d_e = 11.4 \text{ cm}$$

05. Ans: (c)

Sol:



Given $d_2 = 2d_1$

Losses due to sudden expansion,

$$h_{L} = \frac{(V_{1} - V_{2})^{2}}{2g}$$

$$= \frac{V_{1}^{2}}{2g} \left(1 - \frac{V_{2}}{V_{1}}\right)^{2}$$

By continuity equation,

$$Q = A_1 V_1 = A_2 V_2$$

$$\therefore \frac{V_2}{V} = \frac{A_1}{A} = \left(\frac{d_1}{d_1}\right)^2 = \left(\frac{1}{2}\right)^2$$

$$h_{L} = \frac{V_{1}^{2}}{2g} \left(1 - \frac{1}{4} \right)^{2}$$

$$h_L = \frac{9}{16} \times \frac{V_1^2}{2g}$$

$$\frac{h_L}{\frac{V_1^2}{2g}} = \frac{9}{16}$$

06. Ans: (b)

Sol: Pipes are in parallel

$$Q_e = Q_A + Q_B$$
 ----- (i)
 $h_{Le} = h_{L_A} = h_{L_B}$
 $L_e = 175 \text{ m}$
 $f_e = 0.015$

$$\frac{f_e L_e Q_e^2}{12.1D_e^5} = \frac{f_A . L_A Q_A^2}{12.1D_A^5} = \frac{f_B L_B Q_B^2}{12.1D_B^5}$$

$$\frac{0.020 \times 150 \times Q_A^2}{12.1 \times (0.1)^5} = \frac{0.015 \times 200 \times Q_B^2}{12.1 \times (0.08)^5}$$

$$Q_A = 1.747 Q_B$$
 ----(ii)

From (i)
$$Q_e = 1.747 Q_B + Q_B$$

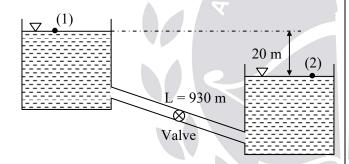
 $Q_e = 2.747 Q_B$ -----(iii)

$$\frac{0.015 \times 175 \left(2.747 Q_{B}\right)^{2}}{12.1 \times D_{e}^{5}} = \frac{0.015 \times 200 \times Q_{B}^{2}}{12.1 \times \left(0.08\right)^{5}}$$

 $D_e = 116.6 \text{ mm} \simeq 117 \text{ mm}$

07. Ans: 0.141

Sol:



Given data,

$$L = 930 \text{ m}$$
, $k_{valve} = 5.5$

$$k_{entry} = 0.5$$
, $d = 0.3 \text{ m}$

$$f = 0.03$$
, $g = 10 \text{ m/s}^2$

Applying energy equation for points (1) and (2), we write:

$$\frac{P_{1}}{\gamma_{w}} + \frac{V_{1}^{2}}{2g} + Z_{1} = \frac{P_{2}}{\gamma_{w}} + \frac{V_{2}^{2}}{2g} + Z_{2} + h_{L,entry} + h_{L,valve} + h_{L,exit} + h_{f,pipe}$$

But
$$P_1 = P_2 = P_{atm} = 0$$

 $V_1 = 0 = V_2$
 $Z_1 - Z_2 = 20 \text{ m}$, $k_{exit} = 1$

$$Z_{1} - Z_{2} = 0.5 \frac{V^{2}}{2g} + 5.5 \frac{V^{2}}{2g} + 1 \times \frac{V^{2}}{2g} + \frac{f L V^{2}}{2gd}$$

$$= 7 \frac{V^{2}}{2g} + \frac{f L V^{2}}{2gd} = \frac{V^{2}}{2g} \left(7 + \frac{f L}{d} \right)$$
or
$$20 = \frac{V^{2}}{2g} \left[7 + \frac{0.03 \times 930}{0.3} \right] = 100 \frac{V^{2}}{2g}$$
or
$$V^{2} = \frac{20 \times 2g}{100} = \frac{20 \times 2 \times 10}{100}$$

$$\Rightarrow V = 2 \text{ m/s}$$

Thus, discharge, $Q = \frac{\pi}{4} \times 0.3^2 \times 2$ = 0.1414 m³/s

08. Ans: (c)

Sol: Given data:

Fanning friction factor, $f = m Re^{-0.2}$ For turbulent flow through a smooth pipe.

$$\Delta P = \frac{\rho f_{Darcy} L V^2}{2d} = \frac{\rho (4f) L V^2}{2d}$$
$$= \frac{2\rho m Re^{-0.2} L V^2}{d}$$

or $\Delta P \propto V^{-0.2}V^2 \propto V^{1.8}$ (as all other parameters remain constant)

We may thus write:

$$\frac{\Delta P_2}{\Delta P_1} = \left(\frac{V_2}{V_1}\right)^{1.8} = \left(\frac{2}{1}\right)^{1.8} = 3.4822$$

or
$$\Delta P_2 = 3.4822 \times 10 = 34.82 \text{ kPa}$$

09. Ans: (b)

Sol: Given data:

Rectangular duct, L = 10 m,

X-section of duct = $15 \text{ cm} \times 20 \text{ cm}$

Material of duct - Commercial steel,

 $\varepsilon = 0.045 \text{ mm}$

Fluid is air ($\rho = 1.145 \text{ kg/m}^3$,

$$v = 1.655 \times 10^{-5} \text{ m}^2/\text{s}$$

$$V_{av} = 7 \text{ m/s}$$

$$Re = \frac{V_{av} \times D_h}{v}$$

where, $D_h = Hydraulic diameter$

$$= \frac{4 \times \text{Cross sectional area}}{\text{Perimeter}}$$

$$= \frac{4 \times 0.15 \times 0.2}{2(0.15 + 0.2)} = 0.1714 \,\mathrm{m}$$

$$Re = \frac{7 \times 0.1714}{1.655 \times 10^{-5}} = 72495.5$$

 \Rightarrow Flow is turbulent.

Using Haaland equation to find friction factor,

$$\frac{1}{\sqrt{f}} \simeq -1.8 \log \left[\frac{6.9}{\text{Re}} + \left(\frac{\epsilon/D_h}{3.7} \right)^{1.11} \right]$$

$$\frac{1}{\sqrt{f}} = -1.8 \log \left[\frac{6.9}{72495.5} + \left(\frac{0.045 \times 10^{-3}}{0.1714 \times 3.7} \right)^{1.11} \right]$$

$$= -1.8 \log[9.518 \times 10^{-5} + 2.48 \times 10^{-5}]$$

$$= -1.8 \log(11.998 \times 10^{-5})$$

$$\frac{1}{\sqrt{f}} = 7.058$$

$$f = 0.02$$

The pressure drop in the duct is,

$$\Delta P = \frac{\rho f L V^2}{2D_h}$$

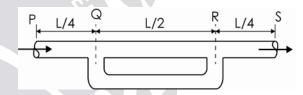
$$= \frac{1.145 \times 0.02 \times 10 \times 7^2}{2 \times 0.1714} = 32.73 \text{ Pa}$$

The required pumping power will be

$$P_{pumping} = Q \Delta P = A V_{av} \times \Delta P$$
$$= (0.15 \times 0.2) \times 7 \times (32.73)$$
$$= 6.87 W \sim 7 W$$

10. Ans: 26.5

Sol:



Case I: Without additional pipe,

Let Q be the discharge through the pipe.

$$\frac{P_{P}}{\gamma} + \frac{V_{P}^{2}}{2g} + Z_{P} = \frac{P_{S}}{\gamma} + \frac{V_{S}^{2}}{2g} + Z_{S} + \frac{f L Q^{2}}{12.1 d^{5}}$$

But
$$V_P = V_S$$
 and $Z_P = Z_S$

 P_P and P_S are the pressures at sections P and S, respectively.

Thus,

$$\frac{P_{P}}{\gamma} - \frac{P_{S}}{\gamma} = \frac{f L Q^2}{12.1 d^5}$$
 -----(1)

Case II: When a pipe (L/2) is connected in parallel.

In this case, let Q' be the total discharge.

$$Q_{Q-R} = \frac{Q'}{2}$$
 and $Q_{R-S} = Q'$

Then,

$$\frac{P_P'}{\gamma} + \frac{{V_P'}^2}{2g} + Z_P' = \frac{P_S'}{\gamma} + \frac{{V_S'}^2}{2g} + Z_S' + \frac{f(L/4)Q'^2}{12.1 d^5} + \frac{f(L/2)(Q'/2)^2}{12.1 d^5} + \frac{f(L/4)Q'^2}{12.1 d^5}$$

 $P_{P'}$ and $P_{S'}$ are the pressures at sections P and S in the second case.

But
$$V_{P'} = V_{S'}$$
; $Z_{P'} = Z_{S'}$
So, $\frac{P'_{P}}{\gamma} - \frac{P'_{S}}{\gamma} = \frac{f L Q'^{2}}{12.1 d^{5}} \left[\frac{1}{4} + \frac{1}{8} + \frac{1}{4} \right]$
 $= \frac{5}{8} \times \frac{f L Q'^{2}}{12.1 d^{5}}$ -----(2)

Given that end conditions remain same.

i.e.,
$$\frac{P_P}{\gamma} - \frac{P_S}{\gamma} = \frac{P_P'}{\gamma} - \frac{P_S'}{\gamma}$$

Hence, equation (2) becomes,

$$\frac{f L Q^2}{12.1 d^5} = \frac{5}{8} \frac{f L Q'^2}{12.1 d^5}$$
 from eq.(1)

or
$$\left(\frac{Q'}{Q}\right)^2 = \frac{8}{5}$$

or
$$\frac{Q'}{Q} = 1.265$$

Hence, percentage increase in discharge is

$$= \frac{Q' - Q}{Q} \times 100$$
$$= (1.265 - 1) \times 100$$
$$= 26.5 \%$$

11. Ans: 20%

Sol: Since, discharge decrease is associated with increase in friction.

$$\frac{df}{f} = -2 \times \frac{dQ}{Q} = 2 \left[-\frac{dQ}{Q} \right]$$
$$= 2 \times 10 = 20\%$$

12. Ans: (c)

Sol: As compared to sharp entrance, the rounded entrance will give less energy loss in flow through a pipe. For sharp entrance, the flow gets separated and there will be recirculation zone till the fluid stream gets attached to the surface. Thus, the rounded entrance increases the flow rate when everything else remains constant. Hence, statement (I) is correct. However, statement (II) is wrong as discussed above.

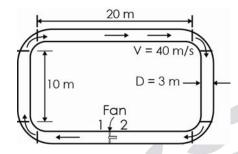
13. Ans: (d)

Sol: The surge tanks are provided on upstream side of the valve in order to offset the effect of water hammer mainly due to the pressure rise which may damage the pipe. Thus, statement (I) is wrong. However, statement (II) is correct.

Conventional Practice Solutions

01.

Sol:



Applying Energy equation for two points, just upstream and downstream of the fan in the pipe loop.

$$\frac{P_{1}}{\gamma_{air}} + \frac{V_{1}^{2}}{2g} + Z_{1} = \frac{P_{2}}{\gamma_{air}} + \frac{V_{2}^{2}}{2g} + Z_{2} + \frac{fL_{total}V^{2}}{2gD} + 4 \times \frac{K_{elbow}V^{2}}{2g}$$

where
$$V_1 = V_2 = V$$
; $Z_1 = Z_2$
 $f = 0.01$, $D = 3m$,

$$V = 40 \text{ m/s}$$
, $L = 60 \text{ m}$.

 $K_{elbow} = 0.3$ (Given)

$$\frac{P_1 - P_2}{\gamma_{air}} = \frac{V^2}{2g} \left[\frac{fL}{D} + 4 \times K_{elbow} \right]$$
$$= \frac{40^2}{2g} \left[\frac{0.01 \times 60}{3} + 4 \times 0.3 \right]$$
$$= \frac{40^2}{2g} \times 1.4$$

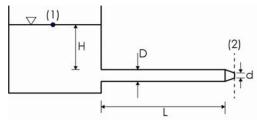
$$\begin{split} \Delta P &= \rho_{air} \times \frac{40^2}{2} \times 1.4 \\ &= 1.2 \times \frac{40^2}{2} \times 1.4 = 1,344 \; Pa \end{split}$$

Power added to air by fan, $P = Q\Delta P$

$$= \frac{\pi}{4} \times 3^2 \times 40 \times 1{,}344 = 380 \text{ kW}$$

02.

Sol:



Applying energy equation between points (1) and (2)

$$\frac{P_{1}}{\gamma_{f}} + \frac{V_{1}^{2}}{2g} + Z_{1} = \frac{P_{2}}{\gamma_{f}} + \frac{V_{2}^{2}}{2g} + Z_{2} + \left(h_{f}\right)_{pipe}$$

But $P_1 = P_2 = P_{atm}$, $Z_1 = H$, $Z_2 = 0$, $V_1 = 0$ Thus,

$$H = \frac{V_2^2}{2g} + (h_f)_{pipe} = \frac{V_2^2}{2g} + \frac{fLV_p^2}{2gD}$$

For maximum power transmission, $H = 3h_f$

Or,
$$3 \times \frac{\text{fLV}_p^2}{2\text{gD}} = \frac{V_2^2}{2\text{g}} + \frac{\text{fLV}_p^2}{2\text{gD}}$$

Or,
$$\frac{2fLV_{p}^{2}}{2gD} = \frac{V_{2}^{2}}{2g}$$

Or,
$$\left(\frac{V_2}{V_p}\right)^2 = \frac{2fL}{D}$$
 ----(1)

From equation of continuity,

$$\frac{\pi}{4}D^2V_p = \frac{\pi}{4}d^2V_2$$

Or
$$\frac{V_2}{V_p} = \frac{D^2}{d^2}$$

Thus, substituting in equation (1), we get

$$\left(\frac{D^2}{d^2}\right)^2 = \frac{2fL}{D}$$

$$\Rightarrow \qquad d = \left(\frac{D^5}{2fL}\right)^{\frac{1}{4}} \dots Proved$$

Chapter-9 **Elementary Turbulent Flow**

01. Ans: (b)

Sol: The velocity distribution in laminar sublayer of the turbulent boundary layer for flow through a pipe is linear and is given by

$$\frac{u}{V^*} = \frac{yV^*}{v}$$

where V* is the shear velocity.

02. Ans: (d)

Sol:
$$\Delta P = \rho g h_f$$

$$= \frac{\rho f L V^2}{2D} = \frac{\rho g f L Q^2}{12.1D^5}$$

For Q = constant

$$\Delta P \propto \frac{1}{D^5}$$

or
$$\frac{\Delta P_2}{\Delta P_1} = \frac{D_1^5}{D_2^5} = \left(\frac{D_1}{2D_1}\right)^5 = \frac{1}{32}$$

03. Ans: 2.4

Sol: Given: V = 2 m/s

$$f = 0.02$$

$$V_{max} = ?$$

$$V_{\text{max}} = V(1 + 1.43 \sqrt{f})$$
$$= 2(1 + 1.43 \sqrt{0.02})$$
$$= 2 \times 1.2 = 2.4 \text{ m/s}$$

04. Ans: (c)

Sol: Given data:

$$D = 30 \text{ cm} = 0.3 \text{ m}$$

$$Re = 10^6$$

$$f = 0.025$$

Thickness of laminar sub layer, $\delta' = ?$

$$\delta' = \frac{11.6\nu}{V^*}$$

Where $V^* = \text{shear velocity} = V_{\sqrt{\frac{f}{\varrho}}}$

v = Kinematic viscosity

$$Re = \frac{V.D}{v}$$

$$\therefore v = \frac{V.D}{Re}$$

$$\delta' = \frac{11.6 \times \frac{\text{VD}}{\text{Re}}}{\text{V}\sqrt{\frac{\text{f}}{8}}}$$

$$\delta' = \frac{11.6 \times D}{\text{Re}\sqrt{\frac{f}{8}}}$$
Since 1995

$$=\frac{11.6\times0.3}{10^6\times\sqrt{\frac{0.025}{8}}}$$

$$= 6.22 \times 10^{-5} \text{ m} = 0.0622 \text{ mm}$$

05. Ans: 25

Sol: Given:

$$L = 100 \text{ m}$$

$$D = 0.1 \text{ m}$$

$$h_L = 10 \text{ m}$$

$$\tau = ?$$

For any type of flow, the shear stress at

$$wall/surface \ \tau = \frac{-\,dP}{dx} \times \frac{R}{2}$$

$$\begin{split} \tau &= \frac{\rho g h_L}{L} \times \frac{R}{2} \\ \tau &= \frac{\rho g h_L}{L} \times \frac{D}{4} \\ &= \frac{1000 \times 9.81 \times 10}{100} \times \frac{0.1}{4} \\ &= 24.525 \text{ N/m}^2 = 25 \text{ Pa} \end{split}$$

06. Ans: 0.905

Sol: k = 0.15 mm

$$\tau = 4.9 \text{ N/m}^2$$

v = 1 centi-stoke

$$V^* = \sqrt{\frac{\tau_o}{\rho}} = \sqrt{\frac{4.9}{1000}} = 0.07 \text{ m/sec}$$

v = 1 centi-stoke

$$=\frac{1}{100}$$
 stoke $=\frac{10^{-4}}{100}$ $=10^{-6}$ m²/sec

$$\frac{R}{\delta'} = \frac{0.13 \times 10}{\left(\frac{11.6 \times v}{V^*}\right)}$$
$$= \frac{0.15 \times 10^{-3}}{\frac{11.6 \times 10^{-6}}{0.07}} = 0.905$$

07. Ans: (a)

Sol: The velocity profile in the laminar sublayer is given as

$$\frac{u}{V^*} = \frac{yV^*}{v}$$

or
$$v = \frac{y(V^*)^2}{u}$$

where, V* is the shear velocity.

Thus,
$$v = \frac{0.5 \times 10^{-3} \times (0.05)^2}{1.25}$$

= $1 \times 10^{-6} \text{ m}^2/\text{s}$
= $1 \times 10^{-2} \text{ cm}^2/\text{s}$

08. Ans: 47.74 N/m^2

Sol: Given data:

$$d = 100 \text{ mm} = 0.1 \text{ m}$$

$$u_{r=0} = u_{max} = 2 \text{ m/s}$$

Velocity at r = 30 mm = 1.5 m/s

Flow is turbulent.

The velocity profile in turbulent flow is

$$\frac{u_{\text{max}} - u}{V^*} = 5.75 \log \left(\frac{R}{y}\right)$$

where u is the velocity at y and V* is the shear velocity.

For pipe, y = R - r

$$= (50 - 30) \text{ mm} = 20 \text{ mm}$$

Thus,

$$\frac{2-1.5}{V*} = 5.75 \log \left(\frac{50}{20}\right) = 2.288$$

or
$$V^* = \frac{0.5}{2.288} = 0.2185 \,\text{m/s}$$

Using the relation,

$$V^* = \sqrt{\frac{\tau_w}{\rho}} \quad or \ \tau_w = \rho \ (V^*)^2$$

$$\tau_{\rm w} = 10^3 \times (0.2185)^2 = 47.74 \text{ N/m}^2$$

Since

09. Ans: (a)

Sol:

In turbulent flow, shear stress is given by

$$\tau = \mu\!\!\left(\frac{d\overline{u}}{dy}\right) \!\!+ \eta\!\!\left(\frac{d\overline{u}}{dy}\right)$$

- = Viscous stress + Reynolds stress where μ is dynamic viscosity and η is the eddy viscosity which is not a fluid properly but it is a flow property which depends upon turbulence condition of the flow.
- From the above expression we say that the shear stress in turbulent flow is more than that predicted by Newton's law of viscosity. Thus, statement - I is correct.
- Statement (II) is also correct statement and it is the correct explanation of statement (I).

Conventional Practice Solutions

01.

Sol: Given data:

$$r = 0$$
, $u = 1.5$ m/s at $y = R - 0 = R$
 $r = \frac{R}{2}$, $u = 1.35$ m/s at $y = R - \frac{R}{2} = \frac{R}{2}$

D = 0.2 m or R = 0.1 m

Centreline velocity 1.5 m/s = u_{max}

Using the logarithmic velocity profile as:

$$\frac{u_{\text{max}} - u}{V^*} = 5.75 \log \left(\frac{R}{y}\right)$$

where V* is the shear velocity, we can find V^* .

$$\frac{1.5 - 1.35}{V^*} = 5.75 \log \left(\frac{R}{R/2}\right) = 5.75 \log(2)$$

$$\Rightarrow$$
 V* = 0.0867 m/s.

Similarly using the logarithmic velocity profile in terms of u, V and V* (where V is the average velocity) we can find V as:

$$\frac{u-V}{V^*} = 5.75 \log \left(\frac{y}{R}\right) + 3.75$$

at y = R,

 $u = u_{max}$

$$\frac{1.5 - V}{0.0867} = 5.75 \log \left(\frac{R}{R}\right) + 3.75 = 0 + 3.75$$

$$\Rightarrow$$
 V = 1.5 - 0.0867×3.75 = 1.175 m/s

(i) Thus, discharge =
$$\frac{\pi}{4} \times 0.2^2 \times 1.175$$

= 0.0369 m³/s

(ii) We know that
$$V^* = V \sqrt{\frac{f'}{2}}$$

where, f' is the coefficient of friction.

Thus,
$$f' = 2 \times \left(\frac{V^*}{V}\right)^2$$
$$= 2 \times \left(\frac{0.0867}{1.175}\right)^2$$
$$= 0.011$$

The friction factor, f = 4f' = 0.044

(iii) The relationship between height of roughness projections, K and friction factor is given by

$$\frac{1}{\sqrt{f}} = 2.0 \log \left(\frac{R}{K}\right) + 1.74$$

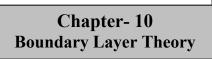
Substituting the values, we get

$$\frac{1}{\sqrt{0.044}} = 2.0 \log \left(\frac{R}{K}\right) + 1.74$$

$$\log\left(\frac{R}{K}\right) = 1.5136$$

$$\frac{R}{K} = 32.629$$

$$K = \frac{R}{32.629} = \frac{0.1 \times 10^3}{32.629} \text{mm}$$
$$= 3.065 \text{ mm}$$



01. Ans: (c)

Sol: Re _{Critical} =
$$\frac{U_{\infty} x_{critical}}{v_{critical}}$$

Assume water properties

$$5 \times 10^5 = \frac{6 \times x_{critical}}{1 \times 10^{-6}}$$

$$x_{critical} = 0.08333 \text{ m} = 83.33 \text{ mm}$$

02. Ans: 1.6

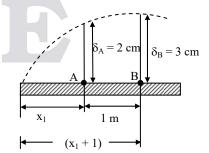
Sol:
$$\delta \propto \frac{1}{\sqrt{\text{Re}}}$$
 (At given distance 'x')

$$\frac{\delta_1}{\delta_2} = \sqrt{\frac{Re_2}{Re_1}}$$

$$\frac{\delta_1}{\delta_2} = \sqrt{\frac{256}{100}} = \frac{16}{10} = 1.6$$

03. Ans: 80

Sol:



$$\delta \propto \sqrt{x}$$

$$\frac{\delta_{A}}{\delta_{A}} = \sqrt{x_{1}}$$

$$x = \frac{2}{3} = \sqrt{\frac{x_1}{x_1 + 1}}$$

$$\frac{4}{9} = \frac{x_1}{x_1 + 1}$$

$$5x_1 = 4 \Rightarrow x_1 = 80 \text{ cm}$$

04. Ans: 2

Sol:
$$\tau \propto \frac{1}{\delta}$$

$$\tau \propto \frac{1}{\sqrt{x}} : \delta \propto \sqrt{x}$$

$$\frac{\tau_1}{\tau_2} = \sqrt{\frac{x_2}{x_1}}$$

$$\frac{\tau_1}{\tau_2} = \sqrt{4} = 2$$

Ans: 3 05.

Sol:
$$\frac{U}{U_{\infty}} = \frac{y}{\delta}$$

$$\frac{\delta^*}{\theta}$$
 = Shape factor = ?

$$\delta^* = \int_0^{\delta} \left(1 - \frac{u}{u_{\infty}} \right) dy$$

$$= \int_0^{\delta} \left(1 - \frac{y}{8} \right) dy$$

$$= y - \frac{y^2}{2\delta} \Big|_{0}^{\delta}$$

$$=\delta-\frac{\delta}{2}=\frac{\delta}{2}$$

$$\theta = \int_0^\delta \frac{u}{u_\infty} \left(1 - \frac{u}{u_\infty} \right) dy$$

$$= \int_0^\delta \frac{y}{8} \left(1 - \frac{y}{\delta} \right) dy$$

$$= \frac{y^2}{2\delta} - \frac{y^3}{3\delta} \Big|_0^\delta$$

$$= \frac{\delta}{2} - \frac{\delta}{3} = \frac{\delta}{6}$$

Shape factor = $\frac{\delta^*}{\theta} = \frac{\delta/2}{\delta/6} = 3$

06. Ans: 22.6

Sol: Drag force,

$$F_D = \frac{1}{2} C_D.\rho.A_{Proj}.U_{\infty}^2$$

$$B = 1.5 \text{ m}, \qquad \rho = 1.2 \text{ kg/m}^3$$

$$L = 3.0 \text{ m}, \quad v = 0.15 \text{ stokes}$$

$$U_{\infty} = 2 \text{ m/sec}$$

Re =
$$\frac{U_{\infty}L}{v}$$
 = $\frac{2\times3}{0.15\times10^{-4}}$ = 4×10^5

$$9.5C_D = \frac{1.328}{\sqrt{Re}} = \frac{1.328}{\sqrt{4 \times 10^5}} = 2.09 \times 10^{-3}$$

Drag force,

Since

$$F_D = \frac{1}{2} \times 2.09 \times 10^{-3} \times 1.2 \times (1.5 \times 3) \times 2^2$$

= 22.57 milli-Newton

07. Ans: 1.62

Sol: Given data,

$$U_{\infty} = 30 \text{ m/s},$$

 $\rho = 1.2 \text{ kg/m}^3$

Velocity profile at a distance x from leading edge,

$$\frac{\mathbf{u}}{\mathbf{U}_{\infty}} = \frac{\mathbf{y}}{\delta}$$

$$\delta = 1.5 \text{ mm}$$

Mass flow rate of air entering section ab,

$$(\dot{m}_{in})_{ab} = \rho U_{\infty}(\delta \times 1) = \rho U_{\infty}\delta \, kg/s$$

Mass flow rate of air leaving section cd,

$$(\dot{m}_{out})_{cd} = \rho \int_{0}^{\delta} u(dy \times 1) = \rho \int_{0}^{\delta} U_{\infty} \left(\frac{y}{\delta}\right) dy$$

$$= \frac{\rho U_{\infty}}{\delta} \left[\frac{y^{2}}{2}\right]_{0}^{\delta} = \frac{\rho U_{\infty} \delta}{2}$$

From the law of conservation of mass:

$$(\dot{m}_{in})_{ab} = (\dot{m}_{out})_{cd} + (\dot{m}_{out})_{bc}$$
Hence, $(\dot{m}_{out})_{bc} = (\dot{m}_{in})_{ab} - (\dot{m}_{out})_{cd}$

$$= \rho U_{\infty} \delta - \frac{\rho U_{\infty} \delta}{2}$$

$$= \frac{\rho U_{\infty} \delta}{2}$$

$$= \frac{1.2 \times 30 \times 1.5 \times 10^{-3}}{2}$$

$$= 27 \times 10^{-3} \text{ kg/s}$$

$$= 27 \times 10^{-3} \times 60 \text{ kg/min}$$

$$= 1.62 \text{ kg/min}$$

08. Ans: (b)

Sol: For 2-D, steady, fully developed laminar boundary layer over a flat plate, there is velocity gradient in y-direction, $\frac{\partial u}{\partial y}$ only.

The correct option is (b).

09. Ans: 28.5

Sol: Given data,

Flow is over a flat plate.

$$L = 1 m$$

$$U_{\infty} = 6 \text{ m/s}$$

$$v = 0.15 \text{ stoke} = 0.15 \times 10^{-4} \text{ m}^2/\text{s}$$

$$\rho = 1.226 \text{ kg/m}^3$$

$$\delta(x) = \frac{3.46x}{\sqrt{Re_x}}$$

Velocity profile is linear.

Using von-Karman momentum integral equation for flat plate.

$$\frac{d\theta}{dx} = \frac{\tau_{\rm w}}{\rho U_{\infty}^2} - - - - (1)$$

we can find out $\tau_{\rm w}$.

From linear velocity profile, $\frac{u}{U_{\infty}} = \frac{y}{\delta}$, we

evaluate first θ , momentum thickness as

$$\theta = \int_{0}^{\delta} \frac{u}{U_{\infty}} \left(1 - \frac{u}{U_{\infty}} \right) dy$$

$$= \int_{0}^{\delta} \frac{y}{\delta} \left(1 - \frac{y}{\delta} \right) dy = \int_{0}^{\delta} \left(\frac{y}{\delta} - \frac{y^{2}}{\delta^{2}} \right) dy$$

$$= \left(\frac{y^{2}}{2\delta} - \frac{y^{3}}{3\delta^{2}} \right)_{0}^{\delta} = \frac{\delta}{2} - \frac{\delta}{3} = \frac{\delta}{6}$$

$$\Rightarrow \theta = \frac{\delta}{6} = \frac{1}{6} \times \frac{3.46 \, x}{\sqrt{Re_{x}}}$$

$$= \frac{3.46}{6} \frac{x^{1/2}}{\left(\frac{U_{\infty}}{v} \right)^{1/2}}$$

Differentiating θ w.r.t x, we get :

$$\frac{d\theta}{dx} = \frac{3.46}{6 \times 2} \frac{x^{-1/2}}{\left(\frac{U_{\infty}}{v}\right)^{1/2}} = 0.2883 \frac{1}{\sqrt{\frac{U_{\infty} x}{v}}}$$

$$\frac{d\theta}{dx}\bigg|_{x=0.5\,\mathrm{m}} = 0.2883 \times \frac{1}{\sqrt{\frac{6 \times 0.5}{0.15 \times 10^{-4}}}} = \frac{0.2883}{447.2}$$

----(2)

From equation (1)

$$\begin{split} \tau_{\rm w}\big|_{x=0.5{\rm m}} &= \frac{d\theta}{dx}\bigg|_{x=0.5{\rm m}} \times \rho \, U_{\infty}^2 \\ &= \frac{0.2883}{447.2} \times 1.226 \times 6^2 \\ &= 0.02845 \; \text{N/m}^2 \; \simeq \; 28.5 \; \text{mN/m}^2 \end{split}$$

10. Ans: (c)

Sol:

- For laminar boundary layer over a flat plate, the velocity gradient at the surface decreases in the direction of flow.
- This results in the decrease in shear stress and hence, the decrease in skin friction coefficient in the direction of flow.
- Thus, statement (I) is correct but the statement (II) is wrong.

11. Ans: (b)

Sol:

 The velocity gradients at the wall, and thus the wall shear stress, are much larger for turbulent flow than they are for laminar flow, even though the turbulent boundary layer is thicker than the laminar one for the same value of free stream velocity. This results in higher skin friction drag in turbulent boundary layer. Thus, statement (I) is correct.

• The separation of turbulent boundary is late as compared to laminar boundary layer. Thus, statement (II) is also correct but it is not the correct explanation of statement (I).

Conventional Practice Solutions

01.

Sol: Given data:

Test section dia = 40 cm

Test section length = 60 cm

Velocity of air at inlet = 2 m/s

and
$$\delta^* = \frac{1.72 \text{ x}}{\sqrt{\text{Re}_x}}$$

$$Re_L = \frac{2 \times 0.6}{10^{-5}} = 1.2 \times 10^5$$

So,
$$\delta^*$$
 at $x = 0.6m = \frac{1.72 \times 0.6}{\sqrt{1.2 \times 10^5}}$
= 2.979×10^{-3} m

From equation of continuity

$$A_{in}V_{in} = A_{exit}V_{exit}$$

But $d_{exit} = 0.4 - 2\delta^*$
= $(0.4 - 2 \times 2.979 \times 10^{-3})$ m

Thus,
$$V_{exit} = \left(\frac{0.4}{0.4 - 2 \times 2.979 \times 10^{-3}}\right)^2 \times 2$$

= 2.061 m/s

02.

Sol: Given data:

Flow over a flat plate

Fluid is water.

$$U_{\infty} = 1 \text{ m/s}$$

$$L = 1 \text{ m}$$

Case I: Flow is turbulent

At
$$x = 1 \text{ m}$$

$$Re_x = \frac{U_{\infty}x}{v_{\text{water}}} = \frac{1 \times 1}{10^{-6}} = 10^6$$

$$\frac{\delta_{\text{tur}}}{X} = \frac{0.376}{(\text{Re}_x)^{\frac{1}{5}}} = \frac{0.376}{(10^6)^{\frac{1}{5}}}$$

$$\delta_{\text{tur}} = \frac{0.376 \times 1}{\left(10^6\right)^{\frac{1}{5}}} = 0.0237 \,\text{m} \approx 24 \,\text{mm}$$

$$\frac{\tau_{w}}{\frac{1}{2}\rho U_{\infty}^{2}} = C_{f,x} = \frac{0.059}{\left(Re_{x}\right)^{\frac{1}{5}}}$$

$$\tau_{\rm w} = \frac{0.059}{\left(10^6\right)^{\frac{1}{5}}} \times \frac{1}{2} \times 10^3 \times 1^2 = 1.86 \text{ N/m}^2$$

Case 2: If the flow is laminar

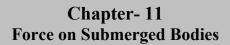
For the comparison purpose, consider the same Reynolds number.

$$\frac{\delta_{lam}}{x} = \frac{5}{\sqrt{Re_x}}$$

$$\delta_{lam} = \frac{5 \times 1}{\sqrt{10^6}} = 5 \text{ mm}$$

and
$$\tau_w = \frac{0.664}{\sqrt{Re_x}} \times \frac{1}{2} \rho U_\infty^2$$

= $\frac{0.664}{\sqrt{10^6}} \times \frac{1}{2} \times 10^3 \times 1^2 = 0.332 \text{ N/m}^2$



01. Ans: 8

Sol: Drag power = Drag Force \times Velocity

$$P = F_D \times V$$

$$P = C_D \times \frac{\rho A V^2}{2} \times V$$

$$P \propto V^3$$

$$\frac{\mathbf{P}_1}{\mathbf{P}_2} = \left(\frac{\mathbf{V}_1}{\mathbf{V}_2}\right)^3$$

$$\frac{P_1}{P_2} = \left(\frac{V}{2V}\right)^3$$

$$P_2 = 8P_1$$

Comparing the above relation with XP,

We get,
$$X = 8$$

02. Ans: 4.56 m

Sol:
$$F_D = C_D \cdot \frac{\rho A V^2}{2}$$

W =
$$0.8 \times 1.2 \times \frac{\frac{\pi}{4}(D)^2 \times V^2}{2}$$

(Note: A = Normal (or)

projected Area =
$$\frac{\pi}{4}$$
D²)

$$784.8 = 0.8 \times 1.2 \times \frac{\pi}{4} (D)^2 \times \frac{10^2}{2}$$

$$\therefore$$
 D = 4.56 m

Since

03. Ans: 4

Sol: Given data:

$$l = 0.5 \text{ km} = 500 \text{ m}$$

$$d = 1.25 \text{ cm}$$

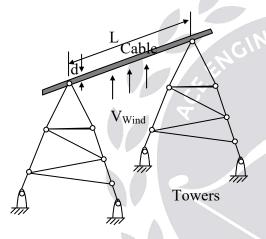
$$V_{Wind} = 100 \text{ km/hr}$$

$$\gamma_{Air} = 1.36 \times 9.81 = 13.4 \text{ N/m}^3$$

$$v = 1.4 \times 10^{-5} \text{ m}^2/\text{s}$$

$$C_D = 1.2 \text{ for } R_e > 10000$$

$$C_D = 1.3 \text{ for R}_e < 10000$$



$$Re = \frac{V.L}{v} = \frac{\left(\frac{100 \times 5}{18}\right)(500)}{1.4 \times 10^{-5}}$$

Note: The characteristic dimension for electric power transmission tower wire is "L"

$$Re = 992 \times 10^6 > 10,000$$

$$\therefore$$
 C_D = 1.2

$$F_D = C_D \times \frac{\rho A V^2}{2}$$

$$= 1.2 \times \frac{\left(\frac{13.4}{9.81}\right)(L \times d)V^2}{2}$$

$$= \frac{1.2 \times \left(\frac{13.4}{9.81}\right) \left(500 \times 0.0125\right) \left(100 \times \frac{5}{18}\right)^{2}}{2}$$

$$= 3952.4 \text{ N}$$

$$= 4 \text{ kN}$$

Ans: 0.144 & 0.126 04.

Sol: Given data:

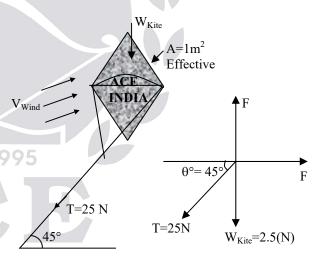
$$W_{Kite} = 2.5 \text{ N}$$
$$A = 1 \text{ m}^2$$

$$\theta = 45^{\circ}$$

$$T = 25 \text{ N}$$

$$V_{Wind} = 54 \text{ km/hr}$$

$$= 54 \times \frac{5}{18} = 15 \text{ m/s}$$



Resolving forces horizontally

$$F_D = T\cos 45^{\circ}$$

$$C_D \times \frac{\rho A V^2}{2} = 25 \times \cos 45^{\circ}$$

$$\frac{C_D \times \left(\frac{12.2}{9.81}\right)(1)(15)^2}{2} = 25 \times \frac{1}{\sqrt{2}}$$

$$C_D = 0.126$$

Resolving forces vertically

$$F_L = W_{Kite} + T \sin 45^{\circ}$$

$$\frac{C_L \rho A V^2}{2} = 2.5 + 25 sin 45^{o}$$

$$\frac{C_L\left(\frac{12.2}{9.81}\right)(1)(15)^2}{2} = 2.5 + \frac{25}{\sqrt{2}}$$

$$\therefore C_L = 0.144$$

05. Ans: (a)

Sol: Given data:

$$C_{D_2} = 0.75 C_{D_1}$$
 (25% reduced)

Drag power = Drag force \times Velocity

$$P = F_D \times V = \frac{C_D \rho A V^2}{2} \times V$$

$$P = C_D \times \frac{\rho A V^3}{2}$$

Keeping ρ , A and power constant

$$C_DV^3 = constant = C$$

$$\frac{\mathbf{C}_{\mathbf{D}_1}}{\mathbf{C}_{\mathbf{D}_2}} = \left(\frac{\mathbf{V}_2}{\mathbf{V}_1}\right)^3$$

$$\left(\frac{C_{D_1}}{0.75C_{D_1}}\right)^{\frac{1}{3}} = \frac{V_2}{V_1}$$

$$\therefore V_2 = 1.10064V_1$$

% Increase in speed = 10.064%

06. Ans: (c)

Sol: When a solid sphere falls under gravity at its terminal velocity in a fluid, the following relation is valid:

Weight of sphere = Buoyant force + Drag force

07. Ans: 0.62

Sol: Given data,

Diameter of dust particle, d = 0.1 mm

Density of dust particle,

$$\rho = 2.1 \text{ g/cm}^3 = 2100 \text{ kg/m}^3$$

$$\mu_{air} = 1.849 \times 10^{-5} \text{ Pa.s},$$

At suspended position of the dust particle,

$$W_{particle} = F_D + F_B$$

where F_D is the drag force on the particle and F_B is the buoyancy force.

From Stokes law:

$$F_D = 3\pi\mu V d$$

Thus,

$$\frac{4}{3} \times \pi r^3 \times \rho \times g = 3\pi \mu V d + \frac{4}{3} \pi r^3 \rho_{air} g$$

or,
$$\frac{4}{3}\pi r^3 g(\rho - \rho_{air}) = 3\pi \mu_{air} V(2r)$$

or
$$V = \frac{2}{9}r^2g\left(\frac{\rho - \rho_{air}}{\mu_{air}}\right)$$

= $\frac{2}{9} \times \left(0.05 \times 10^{-3}\right)^2 \times 9.81 \times \frac{\left(2100 - 1.2\right)}{1.849 \times 10^{-5}}$
= 0.619 m/s ≈ 0.62 m/s

08. Ans: (b)

Sol: Since the two models M₁ and M₂ have equal volumes and are made of the same material, their weights will be equal and the buoyancy forces acting on them will also be equal. However, the drag forces acting on them will be different.

From their shapes, we can say that M_2 reaches the bottom earlier than M_1 .

09. Ans: (a)

Sol:

- Drag of object A₁ will be less than that on A₂. There are chances of flow separation on A₂ due to which drag will increase as compared to that on A₁.
- Drag of object B₁ will be more than that of object B₂. Because of rough surface of B₂, the boundary layer becomes turbulent, the separation of boundary layer will be delayed that results in reduction in drag.
- Both the objects are streamlined but C₂ is rough as well. There will be no pressure drag on both the objects. However, the skin friction drag on C₂ will be more than that on C₁ because of flow becoming turbulent due to roughness. Hence, drag of object C₂ will be more than that of object C₁.
- Thus, the correct answer is option (a).

10. Ans: (a)

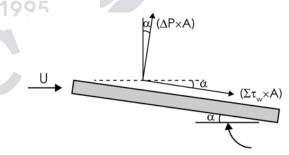
Sol:

- Dimples on a golf ball are intentionally provided to make its surface rough so that flow becomes turbulent.
- A turbulent boundary layer, having more momentum than a laminar boundary layer, can better resist an adverse pressure gradient, thus avoiding early separation.
- Thus, both statements are correct and statement (II) is the correct explanation of statement (I).

Conventional Practice Solutions

01.

Sol: The lift force on the given plate is $F_L = (\Delta P \times A)\cos\alpha - (\Sigma \tau_w \times A)\sin\alpha$



 $F_D = (\Delta P \times A) sin\alpha + (\Sigma \tau_w \times A) cos\alpha$

Substituting the values given:

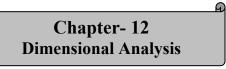
$$F_D = [2.3 - (-1.2)](1)\sin 7^{\circ} + (7.6 \times 10^{-2} + 5.8 \times 10^{-2}) \times 1 \times \cos 7^{\circ}$$
$$= 426.5 \text{ N} + 133 \text{ N} = 559.5 \text{ N} \approx 560 \text{ N}$$

$$F_{L} = [2.3 - (-1.2)] \times 1 \times \cos 7^{\circ} - (7.6 \times 10^{-2} + 5.8 \times 10^{-2}) \times 1 \times \sin 7^{\circ}$$
$$= 3474 \text{ N} - 16.3 \text{ N}$$
$$= 3457.7 \text{ N} \approx 3458 \text{ N}$$

When the shear stress is neglected, then

$$F_D = (\Delta P \times A)\cos\alpha = 426.5 \text{ N} \approx 427 \text{ N}$$

and
$$F_L = (\Delta P \times A) \sin \alpha = 3474 \text{ N}$$



01. Ans: (c)

Sol: Total number of variables,

n = 8 and m = 3 (M, L & T)

Therefore, number of π 's are = 8 - 3 = 5

02. Ans: (b)

Sol:

1.
$$\frac{T}{\rho D^2 V^2} = \frac{MLT^2}{ML^{-3} \times L^2 \times L^2 \times T^{-2}} = 1$$

 \rightarrow It is a non-dimensional parameter.

2.
$$\frac{\text{VD}}{\mu} = \frac{\text{LT}^{-1} \times \text{L}}{\text{ML}^{-1}\text{T}^{-1}} \neq 1.$$

 \rightarrow It is a dimensional parameter.

3.
$$\frac{D\omega}{V} = 1$$
.

→ It is a non-dimensional parameter.

Since 1995
4.
$$\frac{\rho VD}{\mu} = Re$$
.

 \rightarrow It is a non-dimensional parameter.

03. Ans: (b)

Sol: T = f(l, g)

Total number of variable,

n = 3, m = 2 (L & T only)

Hence, no. of π terms = 3 - 2 = 1

Ans: (c)

Sol:

- Mach Number → Launching of rockets
- Thomas Number → Cavitation flow in soil
- Reynolds Number Motion of a submarine
- Weber Number → Capillary flow in soil

05. Ans: (b)

Sol: According to Froude's law

$$T_r = \sqrt{L_r}$$

$$\frac{t_{\rm m}}{t_{\rm p}} = \sqrt{L_{\rm r}}$$

$$t_{p} = \frac{t_{m}}{\sqrt{L_{r}}} = \frac{10}{\sqrt{1/25}}$$

$$t_p = 50 \text{ min}$$

06. Ans: (a)

Sol: L = 100 m

$$V_p = 10 \,\mathrm{m/s}$$
,

$$L_{r} = \frac{1}{25}$$

As viscous parameters are not discussed follow Froude's law

Acc to Froude

$$V_r = \sqrt{L_r}$$

$$\frac{V_{m}}{V_{p}} = \sqrt{\frac{1}{25}}$$

$$V_{\rm m} = \frac{1}{5} \times 10 = 2 \text{ m/s}$$

07. Ans: (d)

Sol: Froude number = Reynolds number.

$$v_r = 0.0894$$

If both gravity & viscous forces are important then

$$v_{\rm r} = \left(L_{\rm r}\right)^{3/2}$$

$$\sqrt{\frac{v_{\rm m}}{v_{\rm p}}}^3 = L_{\rm r}$$

$$L_r = 1:5$$

08. Ans: (c)

Sol: For distorted model according to Froude's

$$Q_r = L_H L_V^{3/2}$$

$$L_{\rm H} = 1:1000$$
,

$$L_V = 1:100$$

$$Q_{\rm m} = 0.1 \, {\rm m}^3/{\rm s}$$

$$Qr = \frac{1}{1000} \times \left(\frac{1}{100}\right)^{3/2} = \frac{0.1}{Q_p}$$

$$Q_P = 10^5 \,\mathrm{m}^3/\mathrm{s}$$

Ans: (c) 09.

Since

Sol: For dynamic similarity, Reynolds number should be same for model testing in water and the prototype testing in air. Thus,

$$\frac{\rho_{\rm w} \times V_{\rm w} \times d_{\rm w}}{\mu_{\rm w}} = \frac{\rho_{\rm a} \times V_{\rm a} \times d_{\rm a}}{\mu_{\rm a}}$$

or
$$V_w = \frac{\rho_a}{\rho_w} \times \frac{d_a}{d_w} \times \frac{\mu_w}{\mu_a} \times V_a$$

(where suffixes w and a stand for water and air respectively)

Substituting the values given, we get

$$V_{\rm w} = \frac{1.2}{10^3} \times \frac{4}{0.1} \times \frac{10^{-3}}{1.8 \times 10^{-5}} \times 1 = \frac{8}{3} \, \text{m/s}$$

To calculate the drag force on prototype, we equate the drag coefficient of model to that of prototype.

i.e,
$$\left(\frac{F_D}{\rho A V^2}\right)_P = \left(\frac{F_D}{\rho A V^2}\right)_m$$

Hence,
$$(F_D)_p = (F_D)_m \times \frac{\rho_a}{\rho_w} \times \frac{A_a}{A_w} \times \left(\frac{V_a}{V_w}\right)^2$$

= $4 \times \frac{1.2}{10^3} \times \left(\frac{4}{0.1}\right)^2 \times \left(\frac{1}{8/3}\right)^2$
= 1.08 N

10. Ans: 47.9

Sol: Given data,

	Sea water	Fresh water
	(Prototype testing)	(model testing)
V	0.5	?
ρ	1025 kg/m ³	10^3 kg/m^3
μ	$1.07 \times 10^{-3} \text{ Pa.s}$	$1 \times 10^{-3} \text{ Pa.s}$

For dynamic similarity, Re should be same in both testing.

i.e.,
$$\frac{\rho_{m}V_{m}d_{m}}{\mu_{m}} = \frac{\rho_{p}V_{p}d_{p}}{\mu_{p}}$$

$$V_{m} = V_{p} \times \frac{\rho_{p}}{\rho_{m}} \times \frac{d_{p}}{d_{m}} \times \frac{\mu_{m}}{\mu_{p}}$$

$$= 0.5 \times \frac{1025}{10^{3}} \times 100 \times \frac{10^{-3}}{1.07 \times 10^{-3}}$$

$$= 47.9 \text{ m/s}$$

