ELECTRICAL ENGINEERING

ELECTRICAL MACHINES

Volume - 1: Study Material with Classroom Practice Questions
1. Transformers

01. Ans: (b)
Sol: Given data: 400/200 V 50 Hz
\[B_{\text{max}} = 1.2 \text{ T} \]
800V, 50 Hz linear dimension all double
\[N_{12} = \frac{N_{11}}{2}, \quad N_{22} = \frac{N_{21}}{2} \]
\[B_{\text{max}2} = ? \]
\[l_2 = 2l_1 \text{ and } b_2 = 2b_1 \]
\[A_1 = l_1b_1, \quad A_2 = 4A_1 \]
\[E_{12} = \sqrt{2}\pi B_{\text{max}}, A_2N_{12} \times f \]
\[E_{11} = \sqrt{2}\pi B_{\text{max}}, A_1N_{11} \times f \]
\[800 = \frac{B_{\text{max}2}}{1.2} \times \frac{4A_1}{A_1} \times \frac{N_{12}}{N_{11}} \]
\[B_{\text{max}2} = \frac{2 \times 1.2}{4} \times 2 = 1.2 \text{ T} \]

02. Ans: (c)
Sol: Given data: \(\ell = b = \frac{40}{\sqrt{2}} \) c.m
\[A_{\text{net}} = 0.9 \times \left(\frac{40}{\sqrt{2}} \right)^2 \times 10^{-4} \]
\[= 7.2 \times 10^{-2} \text{ m}^2 \]
\[\text{EMF/TURN} = 4.44 \times 1 \times 7.2 \times 10^{-2} \times 50 = 16 \text{ V} \]

03. Ans: (d)
Sol: Induced emf \(E_2 = M \frac{di}{dt} \)
(Where, \(\frac{di}{dt} \) is slope of the waveform)
\[= \frac{400}{\pi} \times 10^{-3} \times \frac{10}{5 \times 10^{-3}} = \frac{800}{\pi} \text{ V} \]
As the slope is uniform, the induced voltage is a square waveform.
\[\therefore \text{Peak voltage} = \frac{800}{\pi} \text{ V} \]
Note: As given transformer is a 1:1 transformer, the induced voltage on both primary and secondary is same.

04. Ans: (a)
Sol: \(i(t) = 10 \sin (100\pi t) \) A
Induced emf on secondary \(E_2 = M \frac{di}{dt} \)
\[E_2 = \frac{400}{\pi} \times 10^{-3} \times 10 \times 100\pi \cos(100\pi t) \]
\[= 400 \cos (100\pi t) \]
\[E_2 = 400 \sin (100\pi t + \frac{\pi}{2}) \]
When S is closed, the same induced voltage appears across the Resistive load
\[\therefore \text{Peak voltage across A & B} = 400 \text{V} \]

05. Ans: (a)
Sol: \(E_1 = -N_1 \frac{d\phi}{dt} \) (where \(E_1 = -e_{pq} \))
\[E_1 = -200 \times \left(\frac{0.009}{0.06} \right) \]
\[e_{pq} = 30 \text{ V (Between 0 & 0.06)} \]
\[E_1 = 200 \times \left(-\frac{0.009}{0.12 - 0.1} \right) \]
\[e_{pq} = -90 \text{ V (Between 0.1 & 0.12)} \]
06. Ans: (c)
Sol: Core loss \(\propto \) core volume
\[
W_2 \propto \left(\sqrt{2}\right)^3 \times 2400
\]
\[W_2 = 6788 \text{ W}\]
\[I_0 = 3.2 \text{ A}\]
So \[I_{w1} = \left(\sqrt{2}\right)^3 \times I_{w1}\]
\[I_{w1} = \frac{W_0}{V} = \frac{2400}{11000} = 0.218\]
\[I_{w2} = \left(\sqrt{2}\right)^3 \times 0.218 = 0.617 \text{ A}\]
(\(\therefore\) \(I_w\) is core loss component)

Reluctance \[R_l = \frac{\ell}{\mu A}\]
\[
R_{\ell 2} = \frac{R_{\ell 1}}{\sqrt{2}}
\]
\[
\phi_{m1} = \frac{11000}{4.44N_1f} \quad \phi_{m2} = \frac{22000}{4.44N_1f}
\]
\(\therefore\) \(N_1\) is constant; \(f\) = constant
\[
\phi_{m2} = 2 \phi_{m1}
\]
\[
\phi_{m1} = \frac{\text{mmf}}{\text{Reluctance}} = \frac{N_1I_{N1}}{R_{\ell 1}}
\]
\[
\phi_{m2} = \frac{N_2I_{N2}}{R_{\ell 1}} \frac{1}{\sqrt{2}}
\]
\[
\frac{N_1I_{N2}}{R_{\ell 1}} = \frac{2 \times N_1I_{N1}}{R_{\ell 1}} \frac{1}{\sqrt{2}}
\]
\[I_{N2} = \sqrt{2}I_{N1} \quad (\therefore \text{ \(I_{N1}\) is the magnetizing current of the transformer})
\]
\[
I_{N1} = \sqrt{I_0^2 - I_w^2} = \sqrt{(3.2)^2 - (0.218)^2} = 3.192 \text{ A}
\]
\[I_{N2} = 4.51 \text{ A}\]
\[I_0 = \sqrt{I_{w}^2 + I_{N}^2}\]

07. Ans: (b)
Sol:
\[
E_1 = kI_2
\]
\[
W_0 = V_1I_0\cos\phi_0
\]
\[I_w = \frac{W_0}{V_1} = \frac{700}{2400} = 0.291 \text{ A}\]
\[
I_w = I_0 \cos\phi_0
\]
\[
\cos\phi_0 = \frac{0.291}{0.64} = 0.455
\]
\[\phi_0 = 62.88, \text{ and } \sin\phi_0 = 0.89
\]
\[I_1 = \sqrt{I_0^2 + I_2^2 + 2I_0I_2\cos\theta}
\]
(\(\because\) \(\theta = 62.88 - 36.86 = 26.02^\circ\))
\[I_1 = \sqrt{(0.64)^2 + 4^2 + (2 \times 0.64 \times 4 \times \cos(26.02))}
\]
\[\therefore I_2 = KI_2 = 0.1 \times 40 = 4 \text{ A}
\]
\[I_1 = 4.58 \text{ A}\]

Power factor:
\[4.58 \cos\phi_1 = 0.29 + I_1 I_2 \cos 36.86
\]
\[\text{p.f} = \cos\phi_1 = 0.761 \text{ lag}\]
08. Ans: (c)
Sol:
\[Z_T = (0.18+j0.24)\Omega \text{ and } Z_L = (4+j3)\Omega \]
\[I_{line} = \frac{480\angle0^\circ}{Z_T + Z_L} = \frac{480\angle0^\circ}{0.3\angle53.13^\circ + 5\angle36.86^\circ} = 90.76\angle-37.77^\circ \]

Voltage at the load,
\[V_{load} = (90.76\angle-37.77^\circ) \times (5\angle36.86^\circ) = 453.8\angle-0.91^\circ \ V \]

And power loss in tr.line = \((I_{line})^2 \times 0.18 \)
\[= (90.76)^2 \times 0.18 = 1482 \ W \]

09. Ans: (b)
Sol:
200V, 60Hz, \(W_{h1} = 250W \), \(W_{h2} = ? \)

\[W_{c1} = 90W \]
\[\frac{V_1}{f_1} \neq \frac{V_2}{f_2} \]
\[\frac{W_{b2}}{W_{h1}} = \left(\frac{V_2}{V_1} \right)^{1.6} \times \left(\frac{f_1}{f_2} \right)^{-0.6} \]
\[\frac{W_{b2}}{250} = \left(\frac{230}{200} \right)^{1.6} \times \left(\frac{60}{50} \right)^{-0.6} \]
\[W_{h2} = 348.79 \]

When \(\frac{V}{f} \) ratio is not constant

\[W_e \propto V^2 \]
\[\frac{W_{e2}}{W_{e1}} = \left(\frac{V_2}{V_1} \right)^2 \]
\[W_{e2} = \left(\frac{230}{200} \right)^2 \times 90 = 119.02W \]
\[W_i = W_{h2} + W_{e2} = 467.81 \ W \]

10. Ans: (a)
Sol:
\[V_1 = 440 V \; ; \; f_1 = 50Hz \; ; \; W_i = 2500 \ W \]
\[V_2 = 220 V \; ; \; f_2 = 25Hz \; ; \; W_i = 850 \ W \]
\[\frac{V_2}{V_1} = \frac{f_2}{f_1} = \text{Constant} \]
\[W_i = Af + Bf^2 \]
\[2500 = A \times 50 + B \times 50^2 \] \hspace{1cm} (1)
\[850 = A \times 25 + B \times 25^2 \] \hspace{1cm} (2)

By solving (1) & (2)
\[A = 18; \; B = 0.64 \]
\[W_e = Bf^2 = 0.64 \times 50^2 = 1600 \ W \]
\[W_h = Af = 18 \times 50 = 900 \ W \]

11. Ans: (b)
Sol:
Given data: \(W_{h1} = \frac{W_i}{2} \; ; \; W_{e1} = \frac{W_i}{2} \)

\[\frac{W_{h2}}{W_{h1}} = \left(\frac{V_2}{V_1} \right)^{1.6} \]
\[\frac{W_{h2}}{W_{h1}} = \left(\frac{0.9V_1}{V_1} \right)^{1.6} \times W_{h1} \]
\[W_{h2} = 0.844 \; W_{h1} = 0.422 \; W_i \]

\[\frac{W_{e2}}{W_{e1}} = \left(\frac{V_2}{V_1} \right)^2 \]
\[W_{e2} = 0.81 \; W_{e1} = 0.81 \times \frac{W_i}{2} \]
\[W_{e2} = 0.40 \; W_i \]
\[W_{i2} = W_{h2} + W_{e2} = 0.422 \; W_i + 0.40 \; W_i \]
\[W_{i2} = 0.822 \; W_i \]

Reduction in iron loss is \(= 1 - 0.822 = 0.178 \approx 0.173 \)
i.e., 17.3% reduction

12. Ans: (a)
Sol:
At 50 Hz;

Given, \(P_{cu} = 1.6\% \), \(P_h = 0.9\% \), \(P_e = 0.6\% \)
We know that, \(P_h \propto f^{-0.6} \)

\[
\frac{P_{h_1}}{P_{h_2}} = \left(\frac{f_2^2}{f_1^2} \right)^{0.6} = \left(\frac{60}{50} \right)^{0.6} = 1.115
\]

\[
\therefore P_{h_2} = \frac{0.009}{1.115} = 0.806 \%
\]

Eddy current loss = constant, (since \(P_e \propto V^2 \)) and given total losses remains some.

\[
\therefore P_{h_1} + P_{cu_1} + P_{e_1} = P_{h_2} + P_{cu_2} + P_{e_2}
\]

3.1\% = 0.806\% + \(P_{cu_2} + 0.6\% \)

\[
\therefore P_{cu_2} = 1.694 \%
\]

\(P_{cu_2} \) is directly proportional to \(I^2 \)

\[
\frac{P_{cu_1}}{P_{cu_2}} = \left(\frac{I_1}{I_2} \right)^2
\]

\[
\Rightarrow I_2 = 1.028I_1
\]

Output kVA = \(VI_2 = 1.028 VI_1 \)

13. Ans: (d)

Sol: Given data: 20 kVA, 3300/220V, 50Hz

No load at rated voltage i.e \(W_0 = 160\) Watt
\(\cos \theta_0 = 0.15 \)

% \(R = 1\% \) \% \(X = 3\% \)

Input power

\[= \text{output Power} + \text{Total loss of power} \]

\[\% R = \% \text{FL cu loss} = \frac{\text{FL cu loss}}{\text{VARating}} \times 100 \]

\[\text{FL cu loss} = \% R \times \text{VA rating} \]

\[= 0.01 \times 20,000 = 200 \text{ Watt} \]

\[I_{F2} = \frac{\text{VARating}}{E_2} = \frac{20,000}{220} = 90.9 \text{A} \]

\[I_{load} = \frac{14.96k}{220 \times 0.8} = 85A \]

At 90.9A \(\Rightarrow \) Cu loss = 200 W

85A \(\Rightarrow \) Cu loss = ?

Cu loss at

\[85A = \left(\frac{85}{90.9} \right)^2 \times 200 = 174.8\text{Watt} \]

Total loss when 14.96 kW o/p

\[= \text{Iron loss} + \text{cu loss at 85A} \]

\[= 160 + 174.8 \]

\[= 334.8 \text{W} \]

Input power = 14.96 kW+334.8W

\[= 15294.8\text{W} \]

14. Ans: (a)

Sol: Given data:

At 50Hz: 16 V, 30 A, 0.2 lag
At 25 Hz, 16 V, \(I_{sc} = ? \) and p.f = ?

\[Z = \frac{V}{I} \]

\[Z = \frac{16}{30} = 0.533 \]

\[R = \frac{Z \cos \phi}{3} \]

\[R = 0.533 \times 0.2 \]

\[R_1 = 0.106 \Omega \]

\[X_1 = Z \sin \phi = 0.533 \times 0.979 = 0.522 \Omega \]

Reactance at \(f = 25 \text{ Hz} \)

\[X_2 = \frac{25}{50} \]

\[X_2 = 0.2611 \Omega \]

\[Z = \sqrt{R^2 + X^2} \]

\[= \sqrt{(0.106)^2 + (0.2611)^2} \]

\[Z = 0.281\Omega \]

\[I = \frac{V}{Z} = \frac{16}{0.281} = 56.78 \text{A} \approx 56.65 \text{A} \]

\[\text{p.f} = \cos \phi = \frac{R}{Z} = \frac{0.106}{0.2817} = 0.376 \text{ lag} \]
15. Ans: (a)
Sol: Given data: 10 kVA, 400/200 V,
$W_0 = 100 \text{ watt and } M = 2\text{H}$.
$a = \frac{\text{HV voltage}}{\text{LV voltage}} = \frac{400}{200} = 2$,
$R_c = \frac{400^2}{100} = 1600 \Omega$,
$X_m = 2\pi f (aM)$
$\Rightarrow 2\pi \times 50 \times 4 = 400\pi \Omega$
$I_0 = \frac{400}{1600} + \frac{400}{j400\pi}$
$|I_0| = \sqrt{\left(\frac{1}{4}\right)^2 + \left(\frac{1}{\pi}\right)^2} = 0.41 \text{ A}$

16. Ans: (d)
Sol: Given that, no load loss components are equally divided
$W_h = W_c = 10W$
Initially test is conducted on LV side
Now $\frac{V}{f}$ ratio is $\frac{100}{50} = 2$
In HV side, applied voltage is 160V; this voltage on LV side is equal to 80V.
Now $\frac{V}{f}$ ratio is constant, $W_h \propto f$ and $W_c \propto f^2$.
$W_{h_2} = W_{h_1} \times \frac{f_2}{f_1} = 10 \times \frac{40}{50} = 8W$
$W_{c_2} = W_{c_1} \times \left(\frac{f_2}{f_1}\right)^2 = 10 \times \left(\frac{40}{50}\right)^2 = 6.4 W$
Therefore,
$W_1 = W_{h_2} + W_{c_2} \Rightarrow 8 + 6.4 = 14.4 W$

17. Ans: (b)
Sol: Given data, 4 kVA, 200/400 V and 50 Hz
$\text{OC}: 200V, 0.7A \& 60W$
$\text{SC}: 9V, 6A \& 21.6W$
$\eta = \frac{\text{kVA} \times \cos \phi}{\text{kVA} \times \cos \phi + W_i + W_{Cu}}$
$W_i = 60W$
$W_{Cu} \propto I^2$
$I_1 = \frac{4000}{400} = 10A$
$W_{Cu} = \left(\frac{10}{6}\right)^2 \times 21.6 = 60W$
$W_i + W_{Cu} = 120W$
$\%\eta = \frac{4k \times 1 \times 100}{4k \times 1 + 120} = 97.08\%$

18. Ans: (c)
Sol: Given data: $\eta = 98\%$
Lets take kVA = 1p.u and p.f = 1
η at full load : $0.98 = \frac{1 \times 1}{1 \times 1 + W_i + W_{Cu}}$
$W_i + W_{Cu} = 0.0204$ \hspace{1cm} (1)
For 1/2 full load
$0.98 = \frac{1 \times 1 \times 0.5}{0.5 \times 1 \times 1 + W_i + 0.25W_{Cu}}$
W_i + 0.25 W_{Cu} = 0.0102 \quad \ldots \ldots (2)

By solving equation (1) & (2)
W_i = 6.8 \times 10^{-3} \; ; \; W_{Cu} = 0.0136
\eta_{3/4} = \frac{0.75 \times 1 \times 1}{0.75 \times 1 \times 1 + 6.8 \times 10^{-7} + (0.75)^2 \times 0.0136}
= 98.1\%

19. Ans: (a)
Sol: Percentage of load at which maximum efficiency possible is
\eta_{\text{max}} = \sqrt{\frac{W_i}{W_{Cu}}}
= \sqrt{\frac{6.8 \times 10^{-3}}{0.0136}} = 0.707
\eta_{\text{max}} = \frac{0.707 \times 1 \times 1}{0.707 \times 1 \times 1 + (2 \times 6.8 \times 10^{-3})} \times 100
= 98.1 \%

20. Ans: (d)
Sol: Given data: 10 kVA, 2500/250 V
OC: 250V, 0.8A, 50W
SC: 60V, 3A, 45W
Iron losses = 50 W = W_i
I_{(HV)} = \frac{10000}{2500} = 4A \; \text{(Rated current)}
Copper loss at 3A = 45W
Copper loss at 4A = ?
\Rightarrow \left(\frac{4}{3}\right)^2 \times 45 = \frac{16}{9} \times 45 \Rightarrow 80W
kVA at \eta_{\text{max}} = \sqrt{\frac{\text{Iron loss}}{\text{cu loss}}} \times \text{kVA_{FL}}
= \sqrt{\frac{50}{80}} \times 10kVA = 7.9kVA

21. Ans: (c)
Sol: \eta_{\text{max}} = \frac{7.9 \times 0.8 \times 10^3}{7.9 \times 0.8 \times 10^3 + (2 \times 50)} \times 100
= 98.44\%

22. Ans: (c)
Sol: Given data: 1000/200 V, R_1 = 0.25 \Omega ; R_2 = 0.014 \Omega, \text{Iron loss} = 240W
R_{02} = R_1^2 + R_2 = K^2R_1 + R_2
= \left(\frac{200}{1000}\right)^2 \times 0.25 + 0.014
= 0.024
I_{2_{\text{max}}} = \sqrt{\frac{\text{Iron loss}}{R_{02}}}
= \sqrt{\frac{240}{0.024}} = 100A

23. Ans: (c)
Sol: Given data: Max. \eta = 98 \%, at 15 kVA, full load kVA = 20, UPF for 12 hours
0.98 = \frac{15k \times 0.1}{15k \times 1 + 2W_i}
W_i = 153.06W
\eta_{\text{all day}} = \frac{\text{output in kWh}}{\text{output kwh losses}}
kW = \text{kVA} \times \cos \phi
kW = 20 \times 1 = 20 kW
kWh output = 20 \times 12 = 240 kWh
W_i = 153.06 \times 24 = 3.673 kWh
W_{Cu} \propto S^2
W_{Cu2} = \left(\frac{20}{15}\right)^2 \times 153.06
\(W_{Cu2} = 272.106 \)

Transformer is ON load for 0 to 12 hrs.

So, \(W_{Cu2} = 272.106 \times 12 = 3.265 \text{ kWh} \)

\[\eta_{all\ day} = \frac{240 \times 10^3}{240 \times 10^3 + 3.673 \times 10^3 + 3.265 \times 10^3} \]

\[\% \eta_{all\ day} = 97.19\% \approx 97.2\% \]

24. Ans: (*)

Sol: Given Iron loss = 1.25 kW, \(\cos \phi = 0.85 \)

Find equivalent resistance \(R_{01} \) on H.V side

\[k = \frac{231}{11000} = 0.021 \]

\[R_{01} = 8.51 + \frac{0.0038}{k^2} \Rightarrow 17.126 \Omega \]

Full load current on H.V side = \(\frac{100 \times 10^3}{11000} = 9.09 \text{ A} \)

Full load Cu loss = \((9.09)^2 \times 17.126 = 1.415 \text{ kW} \)

Efficiency = \(\frac{100 \times 0.85}{100 \times 0.85 + 1.415 + 1.25} \times 100 \)

\[= 96.95\% \]

25. Ans: (c)

Sol: Given data:

1100/400 V, 500 kVA, \(\eta_{max} = 98\% \)

80\% of full load UPF

\% \(Z = 4.5\% \) PF \(\Rightarrow \) \(\max \) V.R = \(\frac{\% R}{\% Z} \)

For min. secondary 10\%

\[0.98 = \frac{0.8 \times 500 \times 10^3}{0.8 \times 500 \times 10^3 + 2 \text{Iron Loss}} \]

Iron loss = 4081.63 W

\(\Rightarrow \) Cu loss at 80\% of FL = 4081.63

26. Ans: (b)

Sol: Terminal voltage = ?

\[\% X = \sqrt{\% Z^2 - \% R^2} \]

\[= \sqrt{(4.5)^2 - (1.27)^2} = 4.317\% \]

\% VR = \% R \cos \phi_2 + \% X \sin \phi_2

\[= (1.27 \times 0.283) + (4.317 \times 0.959) \]

\% VR = 4.49\% = 0.0449 Pu

Total voltage drop on secondary side

\[= \text{PU VR \times E}_2 \]

\[= 0.0449 \times 400 = 18\text{V} \]

\(V_2 = E_2 \). Voltage drop

\[= 400 - 18 = 382\text{V} \]

27. Ans: (a)

Sol: \(R_{02} = R_1' + R_2 \)

\[X_{02} = X_1' + X_2 \]

\[R_1' = K^2 R_1 \rightarrow (\text{Resistance referred to secondary side}) \]

\[R_1' = \left(\frac{1}{10} \right)^2 \times 3.4 \]

\[= 0.034 \]

\[X_1' = k^2 X_1 \]

\[= (0.01 \times 7.2) \]
= 0.072
R_{02} = 0.034 + 0.028 = 0.062\Omega
X_{02} = 0.072 + 0.060 = 0.132\Omega
\% \text{Reg} = \frac{I_2 R_{02} \cos \phi_2 \pm 1 X_2 \sin \phi_2}{V_2}
I_2 = 22.72 \text{ A}
\text{Reg} = \frac{22.72 \times 0.062 \times 0.8 + 22.72 \times 0.132 \times 0.6}{220}
\% \text{Reg} = 0.0133
\% \text{Reg} = 1.33\% \text{ is same on both sides}
\frac{V_{\text{full voltage}} - V}{V} = 0.0133
V_{\text{full Load}} = 2229.26\text{ V}
The voltage applied across terminals.

28. Ans: (b)
Sol: 6600/440\text{ V} \text{ p.u.} R = 0.02 \text{ pu}
pu \text{ X} = 0.05 \text{ pu}
V_1 = 6600 \text{ V}
pu \text{ VR} = \% \text{R} \cos \theta_2 + \% \text{X} \sin \theta_2
= 2 \times 0.8 + 5 \times 0.6 = 4.6\%
= 0.046 \text{ pu}
Voltage drop when with respect to secondary
= pu. \text{ VR} \times \text{ secondary Voltage}
= 0.046 \times 440 = 20.2 \text{ V}
Terminal voltage
V_2 = 440 - 20.2 = 419.75 \text{ V}

29. Ans: (b)
Sol: If voltages are not nominal values \% \text{Reg}
will be zero
R_{\text{pu}} \cos \phi - X_{\text{pu}} \sin \phi = 0
\phi = \tan^{-1}(R/X) = 21.801
p.f = \cos \phi = \cos (21.80) = 0.928 \text{ lead}

30. Ans: (c)
Sol: R_{\text{pu}} = 0.01
X_{\text{pu}} = 0.05
V_1 = 600\text{ V}
V_2 = 230\text{ V} \text{, 0.8 lag}
Take rated current as 1pu
Drop (Iz) = 1\angle -36.86 \times (0.01 + j0.05)
= 0.0509\angle 41.83\text{ pu}
Convert this in volts
= 0.0509\angle 41.83 \times 230
= 11.707\angle 41.83 \text{ V}
E_2 = V + Iz
= 230\angle 0 + 11.707\angle 41.83
= 238.85\angle 1.87
\text{Turns ratio} = \frac{E_1}{E_2} = \frac{600}{238.85} = 2.5

31. Ans: (c)
Sol: P = VI\cos \phi
5 \times 10^3 = 400 \times 16 \cos \phi
\Rightarrow \phi = 38.624
From given data,
-400 + (0.25 + j5)16\angle -38.624 + V_i = 0
\Rightarrow V_i = 352.08\angle -9.81
\text{Refer LV side} V_i = \frac{352.08}{5}
= 70.4 \text{ V}
32. Ans: (*)
Sol:
The equivalent circuit refer to L.V side is
\[I_2 = \frac{90 \times 10^3}{2300} = 48.91 \text{A} \]
Where \(V_1 \) = voltage applied across the transformer.
\[V_1 = V_2 + I_2 (0.12 \cos \phi + 0.5 \sin \phi) \]
\[= 2300 + 48.91 \times (0.12 \times 0.8 + 0.5 \times 0.6) \]
\[= 2300 + 19.36 \]
\[V_1 = 2319.36 \text{V} \]
% Regulation = \[\frac{2319.36 - 2300}{2400} \times 100 \]
\[= 0.807\% \]

33. Ans: 96.7%
Sol: copper losses = \(I_2^2 (1.18 + 0.12) \)
\[= (48.91)^2 \times 1.3 \]
\[= 3109.8 \text{ W} \]
% \(\eta \) = \[\frac{90 \times 10^3 \times 100}{90 \times 10^3 + 3109.8} \]
\[= 96.67\% \]

34. Ans: 218.8
Sol:
Equivalent circuit refer to H.V side is
\[z_L^1 = 4275.6 \angle 25.11 \]
Transformer impedance = \(R_{01} + jX_{01} \)
\[= 310.48 \angle 75.06 \]
\[I_2^1 = \frac{310.48 \angle 75.06 + 4275.6 \angle 25.11}{7967} \]
\[= 1.78 \angle -28.15 \text{A} \]
\[V_i' = I_2^1 \times Z_L^1 \]
\[= (1.78 \angle -28.15) \times (4275.6 \angle 25.11) \]
\[= 7600.6 \angle -3.04 \]
Now \(V_i = \frac{7600.6 \times 230}{8000} \]
\[= 218.52 \angle -3.04 \]

35. Ans: 4.9%
Sol: Voltage regulation = \[\frac{E_2 - V_i}{E_2} \times 100 \]
\[= \frac{230 - 218.52}{230} \times 100 \]
\[= 4.9\% \]
36. Ans: (*)
Sol: Given data, \(f = 60 \text{ Hz}, 30 \text{ kVA}, \)
\(4000 \text{ V}/120 \text{ V}, Z_{\text{pu}} = 0.0324 \text{ pu}, \)
\(I_0 = 0.0046 \text{ pu}, W_0 = 100 \text{ W}, W_{\text{cu}} = 180 \text{ W} \)
\(P_0 = 20 \text{ kW} & \cos\phi = 0.8\text{lag} \)
Load current \(I_2 = \frac{20 \times 10^3}{120 \times 0.8} = 208.33 \text{ A} \)
Rated load current \(= \frac{30 \times 10^3}{120} = 250 \text{ A} \)
The copper losses for 208.33 A is
\[\left(\frac{208.33}{250} \right)^2 \times 180 = 124.99 \text{ watt} \]
Efficiency \(= \frac{20 \times 10^3}{20 \times 10^3 + 124.99 + 100} \times 100 = 98.88\% \)
The equivalent circuit wrt primary is

![Equivalent Circuit](image)

Primary rated current
\(I_P = \frac{30 \times 10^3}{4000} = 7.5 \text{ A} \)
Given cu losses = 180 W
\(\Rightarrow R_1 = \frac{180}{I_P^2} = \frac{180}{(7.5)^2} = 3.2 \Omega \)
Given, \(Z_{\text{pu}} = 0.0324 \)
\(\therefore Z_1 = 0.0324 \times \frac{(\text{kV})^2}{\text{MVA}} = 0.0324 \times \frac{4^2}{0.03} = 17.28 \Omega \)
\(X_1 = \sqrt{Z_1^2 - R_1^2} = \sqrt{17.28^2 - 3.2^2} = 16.98 \Omega \)

37. Ans: (b)
Sol:
\(\therefore \) The Possible Connection is Yd1

38. Ans: (a)
Sol: \(R = 0.012 \times \left(\frac{0.4^2}{0.1} \right) = 0.0192 \Omega \)
\(X = 0.05 \times \left(\frac{0.4^2}{0.1} \right) = 0.08 \Omega \)
E₂ = 392∠2.75 V
E₁ = \(\left(\frac{6.6}{0.4} \right) \times 392 = 6468 V = 6.46 \text{ kV} \)

40. Ans: (d)
Sol: The induced voltages in primary winding are
V₆₈ = E\angle 0^°
V₇₆ = E\angle 120^°
V₆₈ = E\angle -120^°
By observing two phasor diagrams, the phase shift between primary and secondary is 180°
The induced voltages in secondary are
V₆₈ = E\angle 180^°
V₇₆ = E\angle 300^°
V₆₈ = E\angle 60^°
If any one terminal X₁ and X₂ are interchanged, the polarity will be changed.
Let V₆₈ windings is interchanged.
Resultant voltage
= -E\angle 180^° + E\angle 300^° + E\angle 60^°
= 2E\angle 0^°
This voltage can burn out the transformer

41. Ans: (b)
Sol: Turns ratio = \(\frac{\text{primary induced voltage}}{\text{secondary induced voltage}} \)
secondary induced phase voltage
= \(\frac{\text{terminal phase voltage}}{(1 - \% \text{Reg})} \)
% Reg = % R cosφ + % X sinφ
[∃ Lagging Load]
= 1 x 0.8 + 5 x 0.6

\[E₂ = \frac{V₂(\text{phase})}{1-0.038} = \frac{415}{\sqrt{3 \times 0.962}} = 249.06 \]
\[\therefore \text{Turns ratio} = \frac{V_{1ph}}{V_{2ph}} = \frac{6000}{249.06} = 24 \]

42. Ans: (a)
Sol: \(P_{\text{o/p}} = 50 \text{ hp} \)
\(= 50 \times 735.5 = 36.775 \text{ kW} \)
\(P_{\text{o/p}} \) of induction motor = 36.77 kW
\(P_{\text{i/p}} \) to induction motor (or) power output of transformer = \(\frac{P_{\text{o/p}}}{\eta} = \frac{36.77}{0.85} = 40.85 \text{ kW} \)
\(I_L = \frac{P}{\sqrt{3 \times V_L \times \cos \phi}} = \frac{40.85 \times 10^3}{\sqrt{3 \times 440 \times 0.85}} \)
\(= 63.06 \angle 31.78^° \approx 64 \text{ A} \)

43. Ans: (c)
Sol:
\(I_{ph} = \frac{440}{\sqrt{3 \times 6600}} \times 64 = 2.46 \text{ A} \)

R
Y
E\angle 0^°
E\angle -120^°
E\angle -120^°
N/2
N/2
7N
N/2
B
44. Ans: (d)
Sol: The flux linkages in phase ‘b’ and ‘c’ windings is $\frac{\phi}{2}$. Therefore induce voltage is also becomes half.

\[E \angle 0^\circ = \frac{E}{2} \angle -120^\circ \]
\[\Rightarrow V_{Rs} = E \angle 0^\circ + \frac{E}{2} \angle -120^\circ \]
\[= \frac{\sqrt{3}}{2} E \angle -30^\circ \]

KVL:
\[V \angle 0^\circ + \frac{V}{2} \angle 0^\circ = E \]
\[\Rightarrow \vec{E} = \frac{3}{2} V \angle 0^\circ \]

45. Ans: (b)
Sol:

\[I_Y \text{ is } -120^\circ \text{ lagging w.r.t } I \angle -\theta (\text{from 3}\phi \text{ system}) \]
\[\therefore I_Y = I \angle -\theta - 120^\circ \]

\[V \angle 0^\circ = \frac{E}{2} \angle -120^\circ \]
\[\Rightarrow \vec{V}_{Rs} = E \angle 0^\circ + \frac{E}{2} \angle -120^\circ \]
\[= \frac{\sqrt{3}}{2} E \angle -30^\circ \]

\[T = I \angle -\theta + 120^\circ - 180^\circ \]
\[= I \angle -\theta - 60^\circ \]

46. Ans: (a)
Sol: $I_{\text{rated}} = I_{\text{base}} = 1.00$
\[V_{\text{rated}} = V_{\text{base}} = 1.00 \]
Under short circuit, $I_{sc}Z_{e1} = V_{sc}$
Since $I_{sc} = I_{\text{rated}}$; $1Z_{e1} = (0.03)(1)$
Or $Z_{e1} = 0.03$
Short circuit pf = $\cos\theta_{sc} = 0.25$,
\[\therefore \sin\theta_{sc} = 0.968 \]
In complex notation,
\[Z_{e1} = 0.03(0.25 + j0.968) = (0.0075 + j0.029) \text{ pu} \]
Similarly $Z_{e2} = 0.04(0.3 + j0.953) = 0.012 + j0.0381 \text{ pu}$
(a) When using pu system, the values of Z_{e1} and Z_{e2} should be referred to the common base kVA. Here the common base kVA may be 200 kVA. 500 kVA or any other suitable base kVA. Choosing 500 kVA base arbitrarily, we get
\[Z_{e1} = \frac{500}{200}(0.0075 + j0.029) \]
\[= 0.01875 + j0.0725 \]
\[= 0.075 \angle 75.52^\circ \]
\[Z_{e2} = \frac{500}{500}(0.012 + j0.0381) \]
\[= 0.04 \angle 72.54^\circ \]
\[S = \frac{560}{0.8} = 700 \text{ kVA} \]
\[\therefore S = 700 \angle -\cos^{-1}0.8 \]
\[= 700 \angle -36.9^\circ \]
From Eq. $S_1 = \frac{S}{Z_{e1} + Z_{e2}}$
14. \[S_2 = (460 \cos 36.1^\circ) \text{ at pf } \cos 36.1^\circ \text{ lag} \]

\[= 372 \text{ kW at pf of 0.808 lag} \]

(Check. Total power = 190 + 372 = 562 kW, almost equal to 560 kW)

47. Ans: (d)

Sol: Current shared by transformer 1 = \[\frac{245}{200} \]

\[= 1.225 \text{ pu} \]

Transformer 1 is, therefore, overloaded by 22.5%, i.e., 45 kVA

Current shared by transformer 2 = \[\frac{460}{500} \]

\[= 0.92 \text{ pu} \]

Transformer 2 is, therefore, under loaded by 8%, i.e. 40 kVA.

Voltage regulation, from Eq. (1.40), is given by \(\varepsilon_r \cos \theta_2 + \varepsilon_x \sin \theta_2 \)

For transformer 1, the voltage regulation at 1.225 pu current is

\[= 1.225 (\varepsilon_r \cos \theta_2 + \varepsilon_x \cos \theta_2) \]

\[= 1.225 (0.0075 \times 0.76 + 0.0290 \times 0.631) \]

\[= 1.225(0.024119) = 0.029546 \]

Or \[\frac{E_2 - V_2}{E_2} = 0.029546 \]

Or \[V_2 = (0.970454)(400) \]

\[= 388.182 \text{ V} \]

48. And: (c)

Sol: Here \((I_{z_1})_{\text{r1}} = 360 \text{ V} \)

\((I_{z_2})_{\text{r2}} = 400 \text{ V} \)

and \((I_{z_3})_{\text{r3}} = 480 \text{ V} \)

Transformer 1 is loaded first to its rated capacity, because \((I_{z_1})_{\text{r1}} \) has lowest magnitude. Thus the greatest load that can be put on these transformers without overloading any one of them is,

\[(I_{z_1})_{\text{r1}} = (kVA) + \frac{(I_{z_1})_{\text{r1}} (kVA)}{(I_{z_1})_{\text{r1}}} + \frac{(I_{z_1})_{\text{r1}} (kVA)}{(I_{z_1})_{\text{r1}}} + \ldots. \]

\[= 400 + \frac{360}{400} \times 400 + \frac{360}{480} \times 400 \]

\[= 1060 \text{ kVA} \]

The total load operates at unity p.f. and it is nearly true to say that transformer 1 is also operating at unity p.f.

49. Ans: (c)

Sol: Secondary rated current

\[\frac{400}{6.6} = 60.6 \text{ Amp} \]

Since transformer 1 is fully loaded, its secondary carries the rated current of 60.6 A.

For transformer 1, \[r_2 = \frac{3025}{(60.6)^2} = 0.825 \Omega \]

Full-load voltage drop for transformer 1,

\[E_2 - V_2 = I_2 r_2 \cos \theta_2 + I_2 x_2 \sin \theta_2 \]

\[= (60.6) (0.825) (1) + 0 \]

\[= 50 \text{ V} \]

\[\therefore \text{ Secondary terminal voltage} \]

\[V_2 = 6600 - 50 = 6550 \text{ V} \]

50. Ans: (a)

Sol: Voltage rating of two winding transformer = \(600 / 120 \text{V} \), 15 KVA voltage rating of auto
transformer = 600 V / 720 V from the auto transformer ratings, can say windings connected in “series additive polarity”.

From two winding transformer

\[I_{1\text{rated}} = \frac{15000}{600} = 25 \text{ A} \]

\[I_{2\text{rated}} = \frac{15000}{120} = 125 \text{ A} \]

In AT, due to series additive polarity

\[I_{\text{pry}} = 125 + 25 = 150 \text{ A} \]

\[\therefore \text{Rating of AT} = E_{\text{pry}} \times I_{\text{pry}} \]

\[= 600 \times 150 \]

\[= 90 \text{ kVA} \]

51. **Ans: (b)**

Sol:

![Diagram](image)

The current through the load of 1050 kVA at 3500 V is \[\frac{1050000}{3500} = 300 \text{ A} \]

The current through the load of 180 kVA at 1500 V is \[\frac{180000}{1500} = 120 \text{ A} \]

The kVA supplied = 1050 + 180

\[= 1230 \text{ kVA} \]

The total current taken from the supply main

\[\text{is} = \frac{1230000}{3000} = 410 \text{A} \]

52. **Ans: (b)**

Sol: From above solution, current taken by 180 kVA load is 120A

53. **Ans: (c)**

Sol: The two parts of the l.v. winding are first connected in parallel and then in series with the h.v. winding, so that the output voltage is 2500 + 125 = 2625 V.

![Diagram](image)

The rated current of l.v. winding is

\[40 = \frac{10000}{250} \]

\[\therefore \text{Total output current is} 40 + 40 = 80 \text{A} \]

\[\text{Auto -transformer kVA rating} \]

\[= \frac{80 \times 2625}{1000} = 210 \text{kVA} \]

54. **Ans: (a)**

Sol: The rated current of h.v winding is 4 A. Therefore, the current drawn from the supply is 84A.
kVA transformed = (1 – K) kVA_{AT} and
kVA conducted = 210 – 10
= 200 kVA.

55. Ans: (d)
Sol:

Current through 480 V winding is
I_2 = \frac{480 \times 10^3}{480} = 1000 A

kVA rating of auto transformer
= 8400 \times 1000 = 8.4 MVA

For two winding transformer
= 0.978 = \frac{480 \times 10^3 + W}{480 \times 10^3}

W = 10.79 kW

Efficiency = \frac{8.4 \times 10^6 + 10.79 \times 10^3}{8.4 \times 10^6 + 10.79 \times 10^3} \times 100

= 99.87%

56. Ans: (a)
Sol:

I_2 = \frac{610 \times 0.745 \times 10^3}{\sqrt{3} \times 500 \times 0.8 \times 0.882}
= 743.69 A

By equation
\frac{500 \times 743.6}{\sqrt{3}} = 440 \times I_1

I_1 = 845.11 A

I_1 - I_2 = \approx 100 A

57. Ans: (a)
Sol:

The voltage per turn = \frac{400}{100} = 4 V

For 80 turns = 80 \times 4 = 1320 V

For 60 turns = 60 \times 4 = 240 V

I_d = \frac{320}{60} = 5.33 A

I_c = \frac{240}{20} = 12 A

VA rating for 200 load is 240 \times I_c = 240 \times 12 = 2880 VA

VA rating for 60 \Omega load is 320 \times I_d
\Rightarrow 320 \times 5.33 = 1705.6 VA

Primary current I_1 = \frac{\text{Total load VA}}{400}
= \frac{2880 + 1705.6}{400}
I_1 = 11.464 A
For resistive load power factor is at unity.

58. Ans: (c)
Sol:

\[
\text{Load current} = 4 \angle -45 + 1 \angle 0
\]
\[
= 4.75 \angle -36.55
\]

\[
\text{mmf} = 400 \times 4.75 \angle -36.55 + 200 \angle 0
\]
\[
= 1900 \angle -36.55 + 200
\]
\[
= 1726.3 - j 1131.5
\]

Total secondary mmf = 2064.07 \angle -33.24

Primary current = \[
\frac{2064}{100} = 20.64 \text{ A}
\]

59. Ans: (b)
Sol:

\[
\text{Sec. mmf} = 2000 \angle 0 + 20 \sqrt{2} (500) \angle -45
\]
\[
= 2000\angle 0 + 10000 \angle -45
\]
\[
= 1000 [2\angle 0 + 10 \sqrt{2} \angle -45]
\]
\[
= 1000 [2 + 10 - j 10]
\]
\[
= 1000 [2 - j 10]
\]

\[
\text{mmf} = 15620.4 \angle -39.8
\]

Primary current = \[
\frac{15620.4 \angle -39.8}{400} = 39 \text{ A at 0.76 lag}
\]

60. Ans: (b)
Sol: From power balance

\[
V_1 I_1 \cos \phi_1 = V_2 I_2 \cos \phi_2 + V_3 I_3 \cos \phi_3
\]
\[
10 : 2 : 1
\]
\[
\frac{N_2}{N_1} = 1, \quad \frac{N_3}{N_1} = \frac{1}{10}
\]
\[
\cos \phi_2 = 0.8 \Rightarrow \phi_2 = 36.86
\]
\[
\cos \phi_3 = 0.71 \Rightarrow \phi_3 = 44.76
\]

\[
V_1 I_1 \cos \phi_1 = \frac{1}{5} V_1 I_2 \cos \phi_2 + \frac{1}{10} V_1 I_3 \cos \phi_3
\]
\[
I_1 \cos \phi_1 = 9 \angle -36.86 + 5 \angle -44.76
\]
\[
= 13.969 \angle -39.6^\circ
\]

\[
I_1 = 14 \text{ A}
\]
\[
p.f = \cos (39.6) = 0.77 \text{ lag}
\]

61. Ans: (a)
Sol: Given \(R_1 = 1.6 \Omega, L_1 = 21 \text{ mH}, R_2 = 1.44 \text{ m\Omega}, f = 60 \text{ Hz}, L_2 = 19 \mu \text{H}, R_c = 160 \text{ k\Omega}, \)
\(L_m = 450 \text{ H}, P = 20 \text{ kW}, V_2 = 120 \text{ V} \) and \(\cos \phi = 0.85 \text{ lag}. \)

\[
X_1 = 2 \pi f L_1 = 2 \pi \times 60 \times 21 \times 10^{-3} = 7.91 \Omega
\]
\[
X_2 = 2 \pi f L_2 = 2 \pi \times 60 \times 19 \times 10^{-6} = 9.55 \text{ m\Omega}
\]

The equivalent circuit is,
 Equivalent circuit referred to H.V side.

\[I'_l = \frac{20 \times 10^3}{4000 \times 0.95} = 5.88 \text{A} \]

\[V_s = V_z + I'_l \left[2 \times 1.6 \cos \phi + (7.91 + 7.95) \sin \phi \right] \]

\[= 4000 + 5.88 \left[2 \times 1.6 \times 0.85 + 15.86 \times 0.526 \right] \]

\[= 4000 + 65.12 \]

\[= 4065.12 \text{V} \]

\[V_s \approx 4066 \text{V} \]

Input power can be calculated by adding losses to the output power.

Cu losses:

\[= \left(I'_l \right)^2 \times 2 \times 1.6 \]

\[\Rightarrow 5.88 \times 2 \times 1.6 = 110.63 \text{W} \]

Core losses:

\[P_c = \frac{V_s^2}{160 \times 10^3} = \frac{(4066)^2}{160 \times 10^3} = 103.32 \text{W} \]

\[\% \text{ efficiency} = \frac{P_o}{P_o + \text{losses}} \times 100 \]

\[= \frac{20 \times 10^3}{20 \times 10^3 + 110.6 + 103.32} \times 100 \]

\[= 98.94\% \]

62. **Ans:** (b)

Sol: Given \(N = 500, A = 100 \text{ cm}^2 = 100 \times 10^{-4} \text{ m}^2 \)

\[l = 40 \pi \ \text{c.m} = 40 \pi \times 10^{-2} \text{m} \]

and \(\mu_r = 1000 \)

\[\text{Inductance} \ L = \frac{\mu N^2 A}{\ell} \]

\[= \frac{\mu_o \mu_r N^2 A}{\ell} \]

\[= \frac{4 \pi \times 10^{-7} \times 1000 \times 500^2 \times 100 \times 10^{-4}}{40 \pi \times 10^{-2}} \]

\[= 500^2 \times 100 \times 10^{-7} \]

\[= 2.5 \text{H} \]

2 DC Machines

01. Ans: 1609 (Range: 1600 to 1610)

Sol: Given data:

- \(P = 8, A = 8 \) (\(\therefore \) lap wound)
- No. of conductors, \(Z = 60 \times 22 \)
- Pole arc \(\frac{\text{Pole arc}}{\text{pole pitch}} = 0.64 \text{ m} \)
- Bore diameter (D) = 0.6 m
- Length of the pole shoe (l) = 0.3 m
- Flux density (B) = 0.25 Wb/m²
- \(E_g = 400 \text{ V} \)
- Speed \(N = ? \)

\[\text{Pole pitch} = \frac{2 \pi}{P} = \frac{\pi D}{P} = \frac{\pi \times 0.6}{8} \]

\[\text{Pole arc} = 0.64 \times \text{pole pitch} \]

\[\text{Area of pole shoe} A = \text{pole arc} \times l \]

\[= 0.64 \times \frac{\pi \times 0.6 \times 0.3}{8} \]

\[= 0.0452 \text{ m}^2 \]

\[\text{Generated emf} \ (E_g) = \frac{\phi \times Z N_p}{60A} \]

\[E_g = \frac{B A Z N P}{60A} \]

\[400 = \frac{0.25 \times 0.0452 \times 60 \times 22 \times N \times 8}{60 \times 8} \]
02. Ans: 6.9 (Range: 6 to 7)
Sol: Given data:
- $V_t = 250 \text{ V}$, ϕ = constant
- $R_a = 0.1 \Omega$
- $P_1 = 100 \text{ kW}$ and $P_2 = 150 \text{ kW}$
Case (i):
- $P_1 = V_t I_{a1}$

 $100 \times 10^3 = 250 \times I_{a1}$

 $\Rightarrow I_{a1} = 0.4 \times 10^3 \text{ A}$
- $E_{g1} = V_t + I_{a1} \times R_a$

 $= 250 + 400 \times 0.1$

 $= 290 \text{ V}$
Case (ii):
- $P_2 = V_t I_{a2}$

 $150 \times 10^3 = 250 \times I_{a2}$

 $\Rightarrow I_{a2} = 600 \text{ A}$
- $E_{g2} = V_t + I_{a2} \times R_a$

 $= 250 + 600 \times 0.1$

 $= 310 \text{ V}$

From emf equation of generator, $E_g \propto N$

$\Rightarrow \frac{N_2}{N_1} = \frac{E_{g2}}{E_{g1}} = \frac{310}{290}$

% Increase in speed $= \frac{N_2 - N_1}{N_1} \times 100$

$= \left(\frac{N_2}{N_1} - 1 \right) \times 100$

$= \left(\frac{310}{290} - 1 \right) \times 100$

$= 6.9\%$

03. Ans: (a)
Sol: Given data: Load current = 250 A

 Generator (A): 50 kW, 500 V, % drop = 6%

 Generator (B): 100 kW, 500 V, % drop = 4%

The no-load voltage of generator (A)

$= 500 + \left(\frac{6 \times 500}{100} \right)$

$= 530 \text{ V}$

Generator (B) $= 500 + \left(\frac{4 \times 500}{100} \right)$

$= 520 \text{ V}$

$\frac{P_1}{50k} = \frac{6 - x}{6}$

$\Rightarrow P_1 = \frac{50 \times 10^3}{6} (6 - x)$

$\frac{P_2}{100k} = \frac{4 - x}{4}$

$\Rightarrow P_2 = \frac{100 \times 10^3}{4} (4 - x)$

Total load power,

$250 \times 500 = \frac{50 \times 10^3}{6} (6 - x) + \frac{100 \times 10^3}{4} (4 - x)$

$\Rightarrow 125 = \frac{50}{6} (6 - x) + \frac{100}{4} (4 - x)$

$\Rightarrow 5 = \frac{(6 - x) + (4 - x)}{3}$
\[
x = \frac{3}{4}
\]

Load shared by generator (A),
\[
P_1 = \frac{50 \times 10^3}{6} \left(6 - \frac{3}{4} \right)
\]
\[= 43.75 \text{ kW} \]
∴ Current \(I = \frac{43.75}{500} = 87.5 \text{ A} \)

Load shared by generator (B),
\[
P_1 = \frac{100 \times 10^3}{6} \left(4 - \frac{3}{4} \right)
\]
\[= 81.25 \text{ kW} \]
∴ Current \(I = \frac{81.25}{500} = 162.5 \text{ A} \)

04. Ans: (d)
Sol: Terminal voltage = 500 + \(x \)% of 500
\[= 500 + \frac{3}{4} \text{ } 500 \]
\[= 503.75 \text{ V} \]

05. Ans: (b)
Sol: \(\omega_m = \frac{V_t}{\sqrt{K_a C T_e}} + \frac{r_g + r_e}{K_a C} \)
Speed is directly proportional to applied voltage.

06. Ans: 100 Ω
Sol: Given data:
\[V_t = 200 \text{ V}, \quad R_f = 100 \text{ Ω} \text{ and } \phi \propto \frac{I_f}{1 + 0.5I_f} \]
\[N_0 = 1000 \text{ rpm} \text{ and } N_1 = 1500 \text{ rpm} \]
\[R_e = ? \]

We know that \(\phi \propto \frac{1}{\text{speed(N)}} \)
\[\frac{\phi_0}{\phi_1} = \frac{N_1}{N_0} \]
\[\Rightarrow \frac{\phi_0}{\phi_1} = \frac{1500}{1000} = 1.5 \]
Field current \(I_f = \frac{V_t}{R_f} = \frac{200}{100} = 2 \text{ A} \)
\[\phi \propto \frac{I_f}{1 + 0.5I_f} \]
\[\frac{\phi_0}{\phi_1} = \left(\frac{I_{f0}}{I_{f1}} \right) \frac{1 + 0.5I_{f0}}{1 + 0.5I_{f1}} \]
\[1.5 = \frac{2}{\frac{I_{f1}}{1 + 0.5I_{f1}}} \]
\[1.5I_{f1} = 1 + 0.5I_{f1} \]
∴ \(I_{f1} = 1 \text{ A} \)
Field current \(I_f \propto \frac{1}{R_f} \)
\[I_{f0} = \frac{R_f + R_e}{R_f} \]
\[I_{f1} = \frac{R_e}{R_f} \]
\[R_f + R_e = 2R_f \]
\[R_e = 100 \text{ Ω} \]

07. Ans: 32.95 Nm
Sol: Given data: 500 V, 60 hp, 600 rpm
\[R_a = 0.2 \text{ Ω} \text{ and } R_{sh} = 250 \text{ Ω} \]
Losses = \(\left(\frac{1}{\eta} - 1 \right) \) output power
\[= \left(\frac{1}{0.9} - 1 \right) \times 60 \times 746 \]
\[= 4973.33 \text{ watt} \]
Input power = \(\frac{\text{Output power}}{\text{efficiency}} = \frac{60 \times 746}{0.9} \)
Power $= \frac{2\pi NT}{60} = \frac{2\pi \times 1000}{60} \times \frac{54.98}{1000}$
$= 5757.49$ watt

Armature copper loss = $(I_a)^2R_a$
$= (97.46)^2 \times 0.2$
$= 1900$ watt

Now, field current $I_f = \frac{V}{R_{sh} + R_e}$
$= \frac{500}{250 + 166.67} = 1.2$ A

Field copper loss = $I_f^2R_e$ (total)
$= (1.2)^2 \times 416.67$
$= 600$ watt

Total power loss in the machine
$= 5757 + 1900 + 600 = 8257$ watt

Input power = $[97.46 + 1.2] \times 500$
$= 49330$ W

$\% \eta = \frac{\text{Input power} - \text{losses}}{\text{Input power}} \times 100$
$= \frac{49330 - 8257}{49330} \times 100 = 83.26\%$

10. Ans: -0.062 Ω (update key)

Sol: Given data: 500 V DC, $R_a = 0.05$, $R_{se} = 0.05$

(i) 1800 Nm, 800 rpm, 90%
(ii) 900 Nm, 1200 rpm, 80%

Case (i):

![Diagram]
Shaft torque = 1800 Nm/rad
Speed = $800 \times \frac{2\pi}{60} \text{ rad/sec}$
Output = $1800 \times \frac{800 \times 2\pi}{60} \text{ watt}$
= 48000π
Input power = $\frac{48000\pi}{0.9}$ = 167551.6 watt
Total losses = 167551.6 – 150796.4
= 16755.15 watt
Input current $I_1 = \frac{167551.6}{500}$ = 335.1 A
$E_b = V - I(R_a + R_{se})$
= 500 – 335.1(0.1)
= 466.49 V
Copper losses = $(335.1)^2 \times 0.1$
= 11229.2 watt
Other losses = 5526 watt
Loss torque = $\left(\frac{5526}{1800 \times \frac{2\pi}{60}}\right)$
………… (1)
Case (ii)
Shaft torque = 900 Nm/rad
Speed = $1200 \times \frac{2\pi}{60}$ rad/sec
Output = $900 \times 1200 \times \frac{2\pi}{60}$
= $900 \times 40\pi$
Input power = $\frac{36000\pi}{0.8}$ = 141371.7 watt
New total loss = 141371.7 – $(36000 \times \pi)$
= 28274.33 watt
$I = \frac{141371.7}{500}$ = 282.7
New copper loss
= $(282.7)^3 \left[\frac{0.05R}{0.05 + R} + 0.05\right]$
Other losses (W_l)
$= 28274.3 - (282.7)^3 \left[\frac{0.05R}{0.05 + R} + 0.05\right]$
Loss torque = $\frac{W_l}{1200 \times \frac{2\pi}{60}}$ Nm/rad ……..(2)
Given, loss torque unchanged.
From (1) and (2)
$\frac{5526}{1800 \times \frac{2\pi}{60}} = \frac{W_l}{1200 \times \frac{2\pi}{60}}$
$3W_l = 2 \times 5526$
$W_l = 3684$
$28274.3 - (282.7)^3 \left[\frac{0.05R}{0.05 + R} + 0.05\right] = 3684$
$24590 = (282.7)^3 \left[\frac{0.05R}{0.05 + R} + 0.05\right]$
$0.05 + R = 0.194 R$
$R = -0.062 \Omega$
11. Ans: (a)
Sol: Given data: $N_1 = 1500\text{rpm} \quad I_L = V0A$
Before modification:
$E_{bl} = V - I_L (R_a + R_{se})$
= 200 – 40 (0.1 + 0.15)
= 190 V

\[I_L = 40A \]
\[R_s = 1\Omega \]
\[R_{se} = 0.15\Omega \]
\[V = 200V \]
\[R_a = 0.1\Omega \]

After modification, shown in figure:

\[I_r = \frac{V_{sh}}{10} \]

Where \(V_{sh} = 200 – I_L (R_s + R_{se}) \)
= 200 – 40 (0.1 + 0.15) = 154V

Therefore, \(I_r = 15.4A \)

Now \(E_{b_2} = V – I_L R_s – I_r (R_s + R_a) \)
= 200 – (40 – 15.4)0.1 – 40(1.15)
= 151.54V

We know that,
\[\frac{E_{b_2}}{E_{b_1}} = \frac{N_1}{N_2} \]
\[\Rightarrow N_2 = \frac{151.54 \times 1500}{190} \]
= 1196.3 rpm

12. Ans: 3
Sol: Given data:
\[V_i = 250V, I_{a_1} = 700A, I_{a_2} = 350A, \]
\[r_a = 0.05\Omega \]

We know that, \(\alpha^n = \frac{r_a}{R_i} \)

\[\Rightarrow \text{Where, } \alpha = \frac{I_{a_2}}{I_{a_1}} = \frac{350}{700} \]
\[R_i = \frac{V_i}{I_{a_1}} = \frac{250}{700} \]
\[\left(\frac{350}{700} \right)^n = \left(\frac{0.05 \times 700}{250} \right) \]

Take logarithm on both sides,
\[n \log_{10} = \log_{10} \]
\[n = 2.83 \approx 3 \]

The number of resistance elements, \(n = 3 \)

13(a). Ans: 532.85 rpm
Sol: \(V_i = 250V, N_r = 500rpm, R_a = 0.13\Omega \) and \(I_a = 60A \)

In motoring mode,
\[E_b = V – I_a R_a = 250 – 60(0.13) = 242.2V \]

Full load torque = \(\frac{E_a I_a}{\omega_r} \)
= \(\frac{E_b I_a \times 60}{2\pi N_r} \)
= \(\frac{242.2 \times 60 \times 60}{2\pi \times 500} \)
= 277.5 Nm

In regenerative braking mode,
\[E_g = V + I_a R_a = 250 + 60(0.13) = 257.8V \]

Given, \(\tau_b = \tau_{fr} \)
\[\Rightarrow 277.5 = \frac{(E_g I_a) \times 60}{2\pi N_r} \]
\[\Rightarrow N_r = \frac{257.8 \times 60 \times 60}{277.5 \times 2\pi} \]
= 532.28 rpm
13(b). Ans: 2.6 Ω
Sol: Plugging current limited to 3pu
\[I_a = \frac{V_i + E_b}{R_a + R_{ext}} \]
\[3 \times 60 = \frac{250 + 242.2}{0.13 + R_{ext}} \]
\[\Rightarrow R_{ext} = 2.604\Omega \]

13(c). Ans: – 177 rpm
Sol: \[\tau_{br} = \tau_{f.L} \cdot \tau \cdot I_a \]
\[\Rightarrow I_{br} = I_{max} = 60A \]
\[I_{br} = \frac{V_i + E_{br}^1}{R_a + R_{ext}} \]
\[60 = \frac{250 + E_{br}^1}{(0.13 + 2.604)} \]
\[\Rightarrow E_{br}^1 = -85.96V \]
\[\frac{E_b}{E_{br}^1} = \frac{N_b}{N_{br}} \]
\[\Rightarrow N_{br} = \frac{-85.96 \times 500}{242.2} = -177.95rpm \]

13(d). Ans: –129 V
Sol: Rated torque and half the rated speed i.e
250rpm
\[E_b \propto speed \]
\[\frac{E_{b1}}{E_{b2}} = \frac{N_1}{N_2} \]
\[\Rightarrow E_{b2} = \frac{250}{500} \times 242.2 \]
\[= 121.1V \]
\[E_{b2} = V - I_a R_a \]
\[\Rightarrow V = 121.1 + 60(0.13) \]
\[= 128.9V \]

To run the motor in reverse direction, the polarity of supply voltage must be change i.e –129V

14. Ans: (c)
Sol: In region (1), Power (+ve) = Te \times Speed
In region (3), Power (+ve) = –Te \times –Speed
Therefore, region (1) and (3) comes under motering mode.
In region (2), Power (-ve) = Te \times (-Speed)
In region (4), Power (-ve) = –Te \times Speed
Therefore, region (2) and (4) comes under regenerating mode.

15. Ans: (b)
Sol: Given data, 250V, I_L = 190A, R_{sh} = 125\Omega and
Stray loss = constant loss = 800W
At \(\eta = 90\% \):

\[\text{Losses in machine} = \left(\frac{1}{\eta} - 1 \right) \times \text{Out put power} \]
\[= \left(\frac{1}{0.9} - 1 \right) \times 190 \times 250 \]
\[= 5277.7 \text{ Watt} \]

Stray loss + Shunt Copper loss + Armature
Copper loss = 5277.7
Shunt copper loss = \(\frac{V^2}{R_{sh}} = \frac{250^2}{125} = 500 \text{W} \)

\(\therefore \) Armature copper loss,

\(I_a^2 R_a = 5277.7 - 800 - 500 \)

\(I_a^2 R_a = 3977.7 \)

Where, \(I_a = I_L + I_r \)

\[I_a = 190 + \left(\frac{250}{125} \right) = 192 \text{A} \]

\(\therefore R_a = \frac{3977.7}{192^2} = 0.1079 \Omega \)

16. Ans: (a)

Sol: At maximum efficiency,

Variables losses = Constant losses

\(I_a^2 R_a = \text{Stray loss + shunt copper loss} \)

\(= 800 + 500 \)

\(I_a^2 = \frac{1300}{0.107} \Rightarrow I_a = 110.2 \text{A} \)

Errata in DC machines Volume-1 (study material with classroom practice questions)

Page: 110, Example- 2.9

Ans: 12.5 mWb , 125 cm²

Solution: Given, \(P = 10, N = 1000 \text{ rpm}, Z = 2000, \)

\(A = 10, V = 400 \text{V} \) and \(B = 1 \text{T} \)

Armature copper loss = 400 W

\(I_a = \frac{10 \times 10^3}{400} = 25 \text{ A} \)

\(I_a^2 R_a = 400 \)

\(\Rightarrow R_a = 16/25 \Omega \)

\(E = V + I_a R_a \)

\(= 400 + 25 (16/25) \)

\(= 416 \text{ V} \)

\(E = \frac{\phi ZNP}{60 \text{A}} \)

\[416 = \frac{\phi \times 2000 \times 1000 \times 10}{60 \times 10} \]

\(\Rightarrow \phi/\text{pole} = 12.5 \text{ mWb} \)

We know that, \(B = \frac{\phi}{A} \)

\(\Rightarrow \text{Area of pole shoe} = \frac{12.5 \times 10^{-3}}{1} \text{ m²} \)

\(\therefore \) Area = 125 cm²

3. Synchronous Machines

01. Ans: (a)

Sol: The direction of rotation of conductor is opposite to direction of rotation of rotor. So by applying Fleming’s right hand rule at conductor ‘1’ we can get the direction of current as \(\times \).

02. Ans: (c)

Sol: As the two alternators are mechanically coupled, both rotors should run with same speed. \(\Rightarrow NS_1 = NS_2 \)

\(\Rightarrow \frac{f_1}{p_1} = \frac{f_2}{p_2} \)

\(\Rightarrow \frac{p_1}{f_1} = \frac{p_2}{f_2} \)

\(\Rightarrow \frac{p_1}{p_2} = \frac{50}{60} = \frac{5}{6} = \frac{10}{12} \)

\(\Rightarrow p_1:p_2 = 10:12 \)
Every individual magnet should contain two poles, such that number of poles of any magnet always even number.

G_1: p = 10, f = 50 Hz
\[\Rightarrow N_s = 600 \text{ rpm} \quad \text{(or)} \]
G_2: p = 12, f = 60 Hz
\[\Rightarrow N_s = 600 \text{ rpm} \]

03. Ans: (c)
Sol: \(m = 3 \) slots/pole/phase

Slot angle \(\gamma = \frac{P \times 180}{s} = 20^\circ \)

\[K_d = \frac{\sin \frac{m \gamma}{2}}{m \sin \frac{n \gamma}{2}} \]

\[K_{d3} = \frac{3 \times 3 \times 20^\circ}{3 \times \sin 3 \times 20^\circ} = 0.67 \]

04. Ans: (b)
Sol: Total Number of conductor = \(6 \times 180 \)
\[= 1080 \]

\[f = \frac{NP}{120} = \frac{300 \times 20}{120} = 50 \text{Hz} \]

Number of turns = \(\frac{1080}{2} = 540 \)

\(N_{ph} \) (Number of turns (series) (Phase))
\[= \frac{540}{3} = 180 \]

Slot angle, \(\gamma = \frac{180 \times P}{S} = \frac{180 \times 20}{180} = 20^\circ \)

and slots/pole/phase, \(m = \frac{180}{3 \times 20} = 3 \)

Then, breadth factor \(K_b = \frac{\sin \frac{m \gamma}{2}}{m \sin \frac{\gamma}{2}} \)

\[= \frac{\sin 3 \times 20^\circ}{3 \sin 10^\circ} = \frac{\sin 30^\circ}{3 \sin 10^\circ} = 0.95 \]

Hence \(E_{ph} = 4.44 k_B \cdot f N_{ph} \phi \)
\[= 4.44 \times 0.95 \times 50 \times 180 \times 25 \times 10^{-3} \]
\[= 949.05 \text{V} \approx 960 \text{V} \]

05. Ans: (d)
Sol: For a uniformly distributed 1-phase alternator the distribution factor

\[(K_{du}) = \frac{\sin \left(\frac{m \gamma}{2} \right)}{\left(\frac{m \gamma}{2} \right) \times \frac{\pi}{180}} \]

Where phase spread \(m \gamma = 180^\circ \) for 1-\(\phi \) alternator

\[\therefore K_{du} = \frac{\sin 90^\circ}{\frac{180}{\pi} \times \frac{\pi}{2}} = \frac{2}{180} = 0.111 \]

The total induced emf \(E \)
\[= \text{No of turns} \times \text{Emf in each turn} \times k_p \times K_{du} \]
\[= T \times 2 \times k_p \times K_{du} \]

For fullpitched winding \(k_p = 1 \).
\[\therefore E = 2T \times 1 \times \frac{2}{180} = 1.273T \text{ volts} \]

06. Ans: (b)
Sol: \(s = \frac{48}{p} = 12 \);
\[m = \text{slots} / \text{pole} / \text{phase} = \frac{48}{3 \times 4} = 4 \]
Slot angle \(\gamma = \frac{180^\circ}{12} = 15^\circ; \)

Phase spread \(m\gamma = 15 \times 4 = 60^\circ \)

Winding factor \(\Rightarrow K_w = K_p \cdot K_d \) (1)

\[\alpha = 1 \text{ slot pitch} = 1 \times 15^\circ = 15^\circ \]

\[K_d = \frac{\sin \left(\frac{m\gamma}{2} \right)}{m \sin \left(\frac{\gamma}{2} \right)} = \frac{\sin \left(\frac{60^\circ}{2} \right)}{4 \sin \left(\frac{15^\circ}{2} \right)} = \frac{1}{8 \sin 7.5^\circ} \]

\[K_p = \cos \frac{\alpha}{2} = \cos \left(\frac{15^\circ}{2} \right) = \cos (7.5^\circ) \]

\[\therefore \text{From eq (1),} \]

\[K_w = \cos (7.5^\circ) \times \frac{1}{8} \times \frac{1}{\sin (7.5^\circ)} \]

\[= \frac{1}{8} \cot (7.5^\circ) \]

07. Ans: (b)

Sol: \(\text{emf/conductor} = 2V \)

emf / turn = 4V

Total turns = NT

Total turns / phase = \(\frac{NT}{3} \)

For 3 – \(\phi \) system \(m\gamma = 60^\circ \)

\[K_d = \frac{\sin \left(\frac{m\gamma}{2} \right)}{\frac{m\gamma}{2} \times \frac{\pi}{180}} = \frac{\sin \left(\frac{60^\circ}{2} \right)}{\frac{60^\circ}{2} \times \frac{\pi}{180}} = \frac{3}{\pi} \]

Total induced Emf ‘E’

= No.of turns \(\times \) Emf in each turn per phase

\[= K_d \times 4 \times \frac{NT}{3} \]

\[E = \frac{NT}{3} \times 4 \times \frac{3}{\pi} \]

08. Ans: (a)

Sol: 4 pole, 50 Hz, synchronous generator, 48 slots.

For double layer winding No. of coils

= No. of slots = 48

Total number of turns = 48 \(\times \) 10 = 480

For 3-phase winding

Turns/phase = \(\frac{480}{3} \) = 160

\[K_p = \cos \left(\frac{\alpha}{2} \right) = \cos \left(\frac{36^\circ}{2} \right) = 0.951 \]

\[K_d = \frac{\sin \left(\frac{m\gamma}{2} \right)}{m \sin \left(\frac{\gamma}{2} \right)} = \frac{\sin \left(\frac{60^\circ}{2} \right)}{4 \sin \left(\frac{15^\circ}{2} \right)} = 0.9576. \]

\[E_{ph} = 4.44K_pK_d\phi fT_{ph} \]

\[E_{ph} = 4.44 \times 0.951 \times 0.9576 \times 0.025 \times 50 \times 160 \]

\[E_{ph} = 808.68 \text{ V} \]

\[E_{LL} = 1400.67 \text{ V} \]

09. Ans: (c)

Sol: \(E_{ph} \propto k_d T_{ph} \).

\[E_{ph(3-\phi)} = K_d(3-\phi) \cdot T_{ph(3-\phi)} \]

\[E_{ph(2-\phi)} = K_d(2-\phi) \cdot T_{ph(2-\phi)} \]
10. Ans: (a)
Sol: To eliminate n^{th} harmonic the winding could be short pitched by $(180^0/n)$. As the winding is short pitched by 36^0 fifth harmonic is eliminated.

11. Ans: (1616)
Sol: EMF inductor 1 - Φ connection
\[
\frac{E_{3-\Phi}}{E_{1-\Phi}} = \frac{K_{d-\Phi} \times Tp_{n_s}}{0.95} = 0.5
\]
\[
E_{1-\Phi} = \frac{E_{3-\Phi}}{0.5} = \frac{808.68}{0.5} = 1617.36
\]

12. Ans: (404 V, 700 V)
Sol: If turns are connected in two parallel paths then
Turns/ph = 160
Turns/Ph/Path = \[\frac{160}{2} = 80\]

13. Ans: (571 V, 808 V)
Sol: If the turns are connected among two parallel paths for two phase connection
\[
E_{ph} = 4.44 \times 0.951 \times 0.957 \times 0.025 \times 50 \times 80 = 404 \text{ V}
\]
\[
E_L = \sqrt{3} \times E_{ph} = 700 \text{ V}
\]
E_{\text{Phase}} = \text{Turns/Ph} = \frac{480}{2} = 240

\text{Turns/Phase/Path} = \frac{240}{2} = 120

E_{\text{Phase}} = 4.44 \times 0.957 \times 0.951 \times 0.025 \times 50 \times 120
= 571.77 \text{ V}

E_{L - L} = \sqrt{2} \times E_{\text{Phase}}
= \sqrt{2} \times 571.77

E_{L - L} = 808.611 \text{ V}

14. Ans: (b)
Sol: Main field is produced by stator so it’s stationary w.r.t stator.
For production of torque two fields (Main field & armature field) must be stationary w.r.t. each other. So rotor (armature) is rotating at N_s. But as per torque production principle two fields must be stationary w.r.t each other. So the armature field will rotate in opposite direction to rotor to make. It speed zero w.r.t stator flux.

15. Ans: (d)
Sol: Field winding is an rotor, so main field so produced will rotate at ‘N_s’ w.r.t stator.
Field winding is rotating, field so produced due to this also rotates in the direction of rotor.
Field produced is stationary w.r.t. rotor.

16. Ans: (a)
Sol: In figure (a), rotor field axis is in leading position w.r.t stator filed axis at some load angle, therefore the machine is operating as Alternator.

In figure (b), rotor field axis is in lagging position w.r.t stator fileld axis at some load angle, therefore the machine is operating as synchronous motor.
In figure (c), rotor field axis is aligned with stator field axis with zero load angle, therefore the machine is operating either as Alternator or as synchronous motor.

17. Ans: (b)
Sol: When state or disconnected from the supply
I_a = 0, \phi_a = 0
Without armature flux, the air gap flux
\phi_r = \phi_m \pm \phi_a = 25 \text{mwb}
With armature flux, the air gap flux
\phi_r = \phi_m \pm \phi_a = 20 \text{mwb}
So the armature flux is causing demagnetizing effect in motor. Hence the motor is operating with Leading power factor.

18. Ans: (b)
Sol: BD is the field current required to compensate drop due to leakage reactance.

19. Ans: (a)
Sol: Voltage regulation in descending order is
EMF method > Saturated Synchronous impedance method > ASA > ZPF > MMF

20. Ans: (a)
Sol: load angle \(\delta \)
\[
\tan \psi = \frac{V \sin \phi + I_a X_a}{V \cos \phi + I_a R_a}
\]
\[
\begin{align*}
\tan \psi &= \frac{\sin \phi + I_a X_q}{\cos \phi + I_a R_a} \\
&= \frac{3810 \times 0.6 + 273.36 \times 6}{3810 \times 0.8 + 273.36 \times 0} \\
&= 1.288 \\
\psi &= 52.175^\circ \\
\delta &= \psi - \phi = 52.175^\circ - 36.86^\circ = 15.32^\circ.
\end{align*}
\]

21. Ans: (b)
Sol:
\[
\begin{align*}
I_q &= I_a \cos \psi = 1 \cos (53.97) = 0.588 \\
I_d &= I_a \sin \psi = 1 \sin (53.97) = 0.808 \\
E &= V \cos \delta + I_q R_a + I_d X_d \\
&= 1 \cos (17.1) + 0.588(0) + 0.808(0.8) \\
&= 1.603 \text{pu}
\end{align*}
\]

22. Ans: (b)
Sol:
\[
\begin{align*}
X_d &= 1.2 \text{ PU}, X_q = 1.0 \text{ PU}, R_a = 0 \\
V &= 1 \text{ PU}, I_a = 1 \text{ PU} \\
\tan \psi &= \frac{V \sin \phi + I_a X_q}{V \cos \phi + I_a R_a} \\
&= \frac{1 \times 0 + 1 \times 1}{1 \times 1 + 1 \times 0} \\
&= 1.288 \\
\therefore \Psi &= 45^\circ \\
\delta &= \Psi - \phi = 45 - 0 = 45^\circ
\end{align*}
\]

23. Ans: (a)
Sol:
Given, \(P = 2.5 \text{ MW}, \cos \phi = 0.8, \)
\(V_L = 6.6 \text{ kV} \) \text{ and } \(R_a = 0. \)
\[
\begin{align*}
X_d &= \frac{V_{\text{max}}}{I_{\text{min}}} = \frac{96}{10} = 9.6 \Omega \\
X_q &= \frac{V_{\text{min}}}{I_{\text{max}}} = \frac{90}{15} = 6 \Omega \\
V_{\text{ph}} &= \frac{V_L}{\sqrt{3}} = \frac{6.6 \times 10^3}{\sqrt{3}} = 3810 \text{V} \\
I_L &= \frac{P}{\sqrt{3} V_L \cos \phi} = \frac{2.5 \times 10^6}{\sqrt{3} \times 6.6 \times 10^3 \times 0.8} \\
I_L &= 273.36 \text{A} = I_{\text{ph}}
\end{align*}
\]
\[E_0 = \sqrt{(239.06 \times 0.08 + 13.912 \times 0.4)^2 + (239.06 \times 0.996 + 13.912 \times 3)^2} \]
\[E_0 = 309.38 \text{ V} \]
\[\% \text{ Regulation} = \frac{E_0 - V}{V} \times 100 \]
\[= \frac{309.38 - 239.06}{239.06} \times 100 \]
\[= 29.41\% \]

\[\text{Ans: – 6.97\%} \]

\[\text{Sol: Regulation at 0.9 p.f lead at half rated condition is when } I_2 = \frac{I_a}{2} = 6.95 \]
\[E = \sqrt{(239.06 \times 0.8 + 6.9562 \times 0.4)^2 + (239.06 \times 0.6 - 6.956 \times 5)^2} \]
\[E = 222.38 \text{ V} \]
\[\% \text{ Regulation} = \frac{E_0 - V}{V} \times 100 \]
\[= \frac{222.38 - 239.06}{239.06} \times 100 \]
\[= -6.97\% \]

\[\text{Ans: 75} \]

\[\text{Sol: Given data, } V_L = 200\sqrt{3}, S = 3 \text{ kVA, } X_s = 30 \Omega \text{ and } R_a = 0 \Omega. \]
\[V_{ph} = \frac{V_L}{\sqrt{3}} = \frac{200\times\sqrt{3}}{\sqrt{3}} = 200 \text{ V} \]
\[S = 3V_{ph}I_{ph} = 3000 \]
\[\Rightarrow I_{ph} = I_a = \frac{1000}{200} = 5 \text{ A} \]
\[\text{Internal angle, } \theta = \tan^{-1} \left(\frac{X_s}{R_a} \right) = 90^\circ \]

At maximum voltage regulation, \(\theta = \phi \).
Therefore, \(\phi = 90^\circ \) and \(\cos \phi = 0 \).

Excitation voltage is
\[E_0^2 = (V \cos \phi + I_s R_a)^2 + (V \sin \phi + I_s X_s)^2 \]
\[E_0 = \sqrt{(200 \times 0 \times 5 \times 0)^2 + (200 \times 1 \times 5 \times 30)^2} \]
\[E_0 = 350 \text{ V} \]
\[\% \text{ Regulation} = \frac{E_0 - V}{V} \times 100 \]
\[= \frac{350 - 200}{200} \times 100 = 75\% \]

\[\text{Ans: –14.56} \]

\[\text{Sol: Given data: 25 kVA, 400V, } \Delta \text{-connected} \]
\[\therefore I_L = \frac{25 \times 1000}{\sqrt{3} \times 400} = 36.08 \text{ A} \]
\[\Rightarrow I_{ph} = \frac{36.08}{\sqrt{3}} = 20.83 \text{ A} \]
\[I_{sc} = 20.83 \text{A when } I_f = 5 \text{A} \]
\[V_{oc(line)} = 360 \text{V when } I_f = 5 \text{A} \]
\[X_s = \frac{V_{oc}}{I_{sc}} \mid I_{f=\text{given}} \]
\[= \frac{360(\text{phase voltage})}{20.83(\text{phase current})} = 17.28 \Omega \]

For a given leading pf load \([\cos \phi = 0.8 \text{ lead}]\)
\[\Rightarrow E_0 = \sqrt{[V \cos \phi + I_s R_a]^2 + [V \sin \phi - I_s X_s]^2} \]
\[= \sqrt{[400 \times 0.8]^2 + [400 \times 0.6 - 20.83 \times 17.28]^2} \]
\[= 341. \text{ volts/ph} \]
\[\text{Voltage Regulation} = \frac{|E| - |V|}{|V|} \times 100 \]
\[= \frac{341 - 400}{400} \times 100 \]
\[= -14.56\% \]
30. Ans: (a)
Sol: That synchrozing current will produce synchronizing power. Which will demagnetize the M/C M₂ and Magnetize the M/C M₁.

31. Ans: (a)
Sol: Excitation of ‘M₁’ is increased, its nothing but magnetizing the M₁.
So synchronizing power will come into picture, it will magnetize the M/C M₂ means alternator operating under lead p.f. and demagnetize the M/C M₁ means alternator operating under lagging p.f.

32. Ans: (b)
Sol: Effect of change in steam input (Excitation is kept const):
- Effect of change in steam input causes only change in its active power sharing but no change in its reactive power sharing. Because the synchronizing power is only the active power.
- If the steam input of machine 1 increases

\[
\begin{align*}
\text{Machine 1} & \quad \text{Machine 2} \\
\text{kVAR}_1 & = \text{kVAR}_2 \\
\text{kW}_1 & \uparrow \quad \text{kW}_2 \downarrow \\
\text{kVA}_1 & \uparrow \quad \text{kVA}_2 \downarrow \\
\text{I}_1 & \uparrow \quad \text{I}_2 \downarrow \\
\text{P.f.}_1 & \uparrow \quad \text{P.f.}_2 \downarrow
\end{align*}
\]

Active power sharing is depends on the Steam input and also depends on the turbine characteristics.

33. Ans: (b)
Sol: Excitation of machine 1 is increased (Steam input is kept constant):
- Effect of change in excitation causes only change in it’s reactive power sharing but no charge in it’s active power sharing, because the synchronizing power is only the reactive power.
- If the excitation of machine 1 increases

34. Ans: (d)
Sol: At perfect synchronization means both systems has all the characteristics similar at that point. No unstability factor so there is no need for production of synchronizing power.

35. Ans: (e)
Sol: For any change in field current there will be a change in reactive power of the machine so there will be change in p.f of the machine.

36. Ans: (a)
Sol: To increase the load share of the alternator, steam input of the machine to be increase by keeping field excitation constant.
39. Ans: (d)
Sol: Rate of flickering = beat frequency

\[f = f_1 - f_2 \]

\[= 50.2 - 50 \]

\[= 0.2 \text{Hz} \]

\[\Rightarrow \text{0.2 Flickers/sec} = 0.2 \times 60 \]

\[= 12 \text{ flickers/min} \]

40. Ans: (b)
Sol:

Without over loading any one machine. So here 300 kW is maximum capacity of machine 1.

\[\Rightarrow \text{For M/C 2 maximum load. It can bear is} \]

\[\frac{P}{400} = \frac{4}{5} \]

\[P_1 = 320 \text{ kW} \]

Total load = \[P_1 + P_2 \]

\[= 300 + 320 \leq 620 \text{ kW} \]

41. Ans: (a)
Sol: M/C’s are working at UPF now. For increased ‘I_f’ from V, inverted V curves. We can find that there will be change in p.f of alternator ‘A’ from lead to lag. Alternator and lagging p.f is over-excited. So it will deliver lagging VAR to the system.

43. Ans: (c)
Sol: For synchronizing an alternator, the speed of alternator need not be same as already existing alternator.

44. Ans: (a)
Sol: Synchronizing current per phase

\[I_{sy} = \frac{|E_1 - E_2|}{Z_1 + Z_2} \]

\[\text{given } Z_{s1} = Z_{s2} \]

\[\therefore I_{sy} = \frac{3300 - 3200}{\sqrt{3} + \sqrt{3}} \]

\[I_{sy} = 16.98 \text{A.} \]

45. Sol:

\[y = -mx + c \]

(a) \[f = -1 \times x_1 + 51.8 = -1 \times x_2 + 51 \]

\[x_1 - x_2 = 0.8 \]

\[............... (1) \]

\[x_1 + x_2 = 2.8 \]

\[............... (2) \]

From equation (1) \& (2)

\[2x_1 = 3.6 \]

\[x_1 = 1.8 \text{ MW} \]

\[x_2 = 1 \text{ MW} \]

set frequency (f) = \[-x_1 + 51.8 \]

\[= -1.8 + 51.8 \]
$f = 50\text{Hz}$

(b) If load is increased to 1 MW

$x_1 + x_2 = 3.8 \text{ MW} \quad \ldots \ldots (3)$

$x_1 - x_2 = 0.8 \text{ MW} \quad \ldots \ldots (4)$

From equation (3) & (4)

$2x_1 = 4.6$

$x_1 = 2.3 \text{ MW}$

$x_2 = 1.5 \text{ MW}$

$f = -x_1 + 51.8$

$= -2.3 + 51.8 = 49.5 \text{ Hz}$

d) As in part(b)

Total load = $x_1 + x_2 = 3.8 \quad \ldots \ldots (1)$

At $f = 50 \text{ Hz}$

Load shared by machine(1)

$f = -1 \times x_1 + 51.8 = 50$

$-x_1 + 51.8 = 50 \Rightarrow x_1 = 1.8 \text{ MW}$

$\therefore x_2 = 3.8 - x_1 = 3.8 - 1.8 = 2.0 \text{ MW}$

For machine (2)

$f = -x_2 + c_2 = 50$

$-20 + c_2 = 50$

$c_2 = 70$

46.

Sol: (i) Given data: G_1: 200 MW, 4%

G_2: 400 MW, 5%

$\Rightarrow \frac{P_1}{200} = \frac{x}{4} \Rightarrow P_1 = 50x$

$\Rightarrow \frac{P_2}{400} = \frac{x}{5} \Rightarrow P_2 = 80x$

But, total load = $P_1 + P_2 = 600 \text{ MW} \ldots \ldots (1)$

From (1)

$50x + 80x = 600$

$\Rightarrow x = \frac{600}{130} = 4.615$

Given, no-load frequency = 50 Hz

Present system frequency

$\Rightarrow f = 50 - (50 \times x \%)$

$= 50 - 50 \times \frac{4.615}{100} = 47.69 \approx 47.7 \text{ Hz}$

(ii) Load shared by M/C 1 is ____ and M/C 2 is ____.

From above solution, we got

$x = 4.615$

$P_1 = 50x = 50 \times 4.615 = 230.75 \text{ MW}$

$P_2 = 80x = 80 \times 4.615 = 369.2 \text{ MW}$

Here ‘P_1’ violates the unit.

(iii) Maximum load the set can supply without overloading any Machine is ____.

From above solution, ‘P_1’ violated the limit, so take ‘P_1’ value as reference

$P_1 = 200 \text{ MW}$

From % Regugraph find P_2

$\frac{P_2}{400} = \frac{4}{5}$

$P_2 = 320 \text{ MW}$
47. Ans: (c)
Sol: Let power factor is unity, M/C-A = 40 MW and M/C-B = 60 MW

\[
\begin{align*}
P_1 &= \frac{5-x}{5} \\
P_2 &= \frac{5-x}{60} \\
8(5-x) + 12(5-x) &= 80 \\
x &= 1 \\
\therefore P_1 &= 8(5-1) = 32 MW \\
P_2 &= 12(5-1) = 48 MW
\end{align*}
\]

48. Ans: 0.74
Sol: Two parallel connected 3-ϕ, 50 Hz, 11 kV, star-connected synchronous machines A & B are operating as synchronous condensers.

\[
\begin{align*}
\frac{P_2}{60} &= \frac{5-x}{5} \\
\frac{P_1}{40} &= \frac{5-x}{5} \\
P_1 + P_2 &= 80 \\
\Rightarrow 8(5-x) + 12(5-x) &= 80 \\
\Rightarrow x &= 1 \\
\therefore P_1 &= 8(5-1) = 32 MW \\
P_2 &= 12(5-1) = 48 MW
\end{align*}
\]

49. Ans: (b)
Sol: \(V_L = 11 kV \)

\[
\begin{align*}
V_{ph} &= \frac{111 kV}{\sqrt{3}} = 6350.8 = 6351 V \\
\text{at } 100A, \text{ UPF, } E &= V \angle 0 + I_x \angle \pm \phi \cdot Z_s \angle \theta \\
&= 6350 \angle 0 + 100 \angle 0 \times 10 \angle 90^\circ \\
&= 6429.1 \angle 8.94^\circ \\
\therefore \delta &= 8.94^\circ \\
\text{Excitation increased by 25%} \\
E^1 &= 1.25E
\end{align*}
\]
36. Electical Machines

∴ Turbine input kept constant

\[P^1 = P = \frac{E^1 V}{X_s} \sin \delta^1 = \frac{EV}{X_s} \sin \delta \]

\[\frac{8036.3}{10} \sin \delta^1 = \frac{6350}{10} \sin(8.94) = 7.14^\circ \]

50. Ans: (a)

Sol: \[I_a = \frac{E^1 \sin \delta^1 - V \angle 0}{Z_a \angle 0} \]

\[= \frac{8036.3 \angle 7.14 - 6350 \angle 0}{10 \angle 90} \]

\[= 190.6 \angle -58.4^\circ \]

\[I_a = 190.4 \text{ A} \]

51. Ans: (0.523 lag)

Sol: \[p.f = \cos(58.4) = 0.523 \text{ lag} \]

52. Ans: (d)

Sol: ‘X’ is in % P.U = 25%; \[V_{ph} \leq \frac{6600}{\sqrt{3}} \leq 3810 \]

‘X’ in \(\Omega \) is \[\frac{0.25 \times Z_b}{0.25 \times \frac{(KV)^2}{MVA_b}} \]

\[= \frac{0.25 \times (6.6)^2}{1.2} = 9.07 \]

\[E = V + j I_a X_s \rightarrow \text{In alternator} \]

By substituting the values

\[I = \frac{P}{\sqrt{3} V} = \frac{1200 \times 10^3}{\sqrt{3} \times 6600} = 104.97 \]

\[E = 3810 + 104.97 \angle -36.86 \times 9.07 \angle 90 \]

\[E = 4447 \angle 9.876 \]

The current \(I_a \) at which the p.f is unity

\(\therefore R_0 = 0 \)

\[E = \sqrt{\left(V \cos \phi + I_a R_a \right)^2 + (V \sin \phi + I_a X_a)^2} \]

\[4447 = \sqrt{\left(63810 \times 1 + 0\right)^2 + (3810 \times 0 + 9.07)^2} \]

\[I_a = 252.716 \text{ A} \]

53. Ans: (5360.9 V)

Sol: \[E = V + j I_a X_s \]

\[V_{ph} = 3810 \frac{6.6 \times 10^3}{\sqrt{3}}; I_a = \frac{P}{\sqrt{3} \times V} = \frac{1000 \times 10^3}{\sqrt{3} \times 3.6 \times 10^3} \]

\[= 87.47 \text{ A} \]

\[E_{ph} = 3810 + 82.47 \angle 36.86 \times 20 \angle 90 \]

\[E_{ph} = 3095.17 \angle 26.88 \]

\[E_L = \sqrt{3} E_{ph} = 5360.99 \text{ V} \]

54. Ans: (26.88°)

Sol: Power angle (or) \(\delta = 26.88^\circ \)

55. Ans: (b)

Sol: \[P = \frac{EV}{X_s} \sin \delta \]

\[\Rightarrow 0.5 = \frac{1.3 \times 1}{0.8} \sin \delta \]

\[\Rightarrow \delta = 17.92^\circ \]

\[E = V + j I_a X_s \]

\[I_a = \frac{E \angle \delta - V \angle 0}{X_s \angle 90} \]

\[= \frac{1.3 \angle 17.92 - 1 \angle 0}{0.8 \angle 90} \]

\[= 0.581 \angle -30.639^\circ \]

56. Ans: (a)

Sol: From above solution Answer is 0.581
57. Ans: (0.860 lag)
Sol: From above solution power factor is
p.f = cosφ = cos(30.639) = 0.860 lag

58. Ans: (0.296 PU)
Sol: Reactive power (Q) = \(\frac{V}{X_s} [E \cos \delta - V] \)
= \(\frac{1}{0.8} [1.3 \times \cos(17.92) - 1] \)
= 0.296 P.U

59. Ans: (2.05 PU)
Sol: The current at which maximum power output is _______
Under maximum output conditions δ = 0
Here θ = 90 (· R_a = 0)
I = \(\frac{E \sin \delta - V \sin 0}{Z_s \sin \theta} \)
I_a = \(\frac{1.3 \times \sin 90 - 0}{0.8 \times 90} \)
I_a = 2.05 \(\cos 37.56^\circ \)
= 2.05 PU

60. Ans: (0.792 lead)
Sol: Power factor at maximum power output is
p.f = cos(37.56) = 0.792 lead

61. Ans: (–1.25 PU)
Sol: reactive power at maximum
Q = \(\frac{V}{X_s} [E \cos \delta - V] \)
Substitute δ = θ = 90
Q = \(\frac{1}{0.8} [1.3 \cos(90) - 1] \)
= -1.25 P.U

62. Ans: 32.4 to 34.0
Sol: A non – salient pole synchronous generator
X_s = 0.8 pu, P = 1.0 pu, UPF
V = 1.1pu, R_a = 0
P = V I_a cos φ \Rightarrow I_a = \frac{P}{V} \times \sin \delta = \frac{1.1 \times 1}{1.1} \times \sin \delta = 1.0 \times \sin \delta
\Rightarrow \delta = 30.53^\circ
Q = \frac{V}{X_s} [E \cos \delta - V]
= \frac{1}{1.1} [(1.3 \times \cos 30.53 - 1] = 0.1088 pu

63. Ans: 0.1088
Sol: \(E_f = 1.3pu, X_s = 1.1pu, P =0.6pu, V=1.0pu \)
P = \(\frac{EV}{X_s} \sin \delta \Rightarrow 0.6 = \frac{1.3 \times 1}{1.1} \sin \delta \)
\Rightarrow \delta = 30.53^\circ
Q = \frac{V}{X_s} [E \cos \delta - V]
= \frac{1}{1.1} [(1.3 \times \cos 30.53 - 1] = 0.1088 pu

64. Ans: (a)
Sol: Motor input = \(\sqrt{3} V_L I_L \cos \phi \)
= \(\sqrt{3} \times 480 \times 50 \times 1 = 41569.2 \) W
given motor is loss less
Electrical power converted to mechanical power = Motor input –output
= 41569.2 – 0 = 41569.2 W
\(N_s = \frac{120f}{P} = \frac{120 \times 60}{4} = 1800 \) rpm
\(T = \frac{P}{\omega} = \frac{41569.2}{2 \pi \times \frac{1800}{60}} = 220.53 N \cdot m \)
65. Ans: (a)
Sol: From phasor diagram, ‘E’ leads the ‘V’, hence called “Generator”.
Here, E cos δ > V called over excited generator.
An under excited generator always operates at “lagging power factor”.

66. Ans: (a)
Sol: We know that, synchronous motor always rotates only at synchronous speed but induction motors can rotate at more or less than the synchronous speed.
∴ Consider speed of Induction motor, N_r = 750 rpm.
slip = \(\frac{N_s - N_r}{N_s} = \frac{1000 - 750}{1000} = \frac{1}{4} \)
f_r = sf = \(\frac{1}{4} \times 50 = 12.5 \) Hz

67. Ans: (b)
Sol:
Total kW of load = kV × cosϕ
P_1 = 100 × 0.6 = 60 kW
kVAR Requirement of load
\(= P \times \tan \phi = 60 \times \tan 53.13 = 80 \) kVAR
KW requirement of synchronous motor
(P_2) = 10 kW
Operating p.f of load = 0.5 leads
Phase angle ϕ = \(\cos^{-1}(0.5) = 60 \)°
Q = P tan ϕ = \(10 \times 10^3 \times \tan 60 = 17.32 \) kVAR
(KVAR supplied by synchronous motor)
Total load P_1 + P_2 = 70 kW
Total KVAR requirement = 80 – 17.32 = 62.68 kVAR
Overall power factor
\(\tan \phi = \frac{Q}{P} = \frac{62.68}{70} = 0.895 \)
ϕ = 41.842
p.f = cos ϕ = 0.74 lag

68. Ans: 24 A
Sol:
69. Ans: (b)
Sol: \[V_1 = 400V \quad E = 400V \]
\[
V_{ph} = \frac{400}{\sqrt{3}} = 230.9V, \\
E_{ph} = \frac{400}{\sqrt{3}} = 230.9V \\
P_{in} = \frac{EV}{X_s} \sin \delta \\
\frac{5 \times 10^3}{3} = \frac{230.9 \times 230.9 \times \sin \delta}{10} \\
\Rightarrow \delta = 18.21^o \\
70. Ans: (c)
Sol: From the armature current \(7.3 \angle -9.1^o \)
\[9.1^o \] is the angle difference between \(V \) and \(I \).
\[\therefore \cos \phi = \cos(-9.1^o) \]
PF = 0.987 Lag
71. Ans: (d)
Sol: \[I_a = \frac{V \angle 0 - E \angle \delta}{Z_s \angle \theta} \]
\[= \frac{230.9 \angle 0 - 2309 \angle 18.21}{10 \angle 90} = 7.3 \angle -9.1^o \]
\[I_a = 7.3A \]
72. Ans: (a)
Sol: \[E_{ph} = \frac{2500}{\sqrt{3}} = 1443.37V \]
\[V_{ph} = \frac{2000}{\sqrt{3}} = 1154.7V \]
\[Z_s = 0.2 + j2.2 = 2.2 \angle 84.8^o \Rightarrow \theta = 84.8^o \]
\[P_{in} = \frac{V^2}{Z_s} \cos \theta - \frac{EV}{Z_s} \cos(\theta + \delta) \]
\[= \frac{800 \times 10^3}{2} = \frac{(1154.7)^2}{2.2 \angle 84.8^o} \cos(84.8^o) \\
\]
\[\Rightarrow \delta = 21.43 \]
\[I_a = \frac{V \angle 0 - E \angle \delta}{Z_s \angle \theta} \\
\[= \frac{1154.7 \angle 0 - 1443.37 \angle 21.43}{2.2 \angle 84.8^o} \]
\[= 254.59 \angle 24.9^o \\
73. Ans: (b)
Sol: PF = \cos(24.9) = 0.907 lead
74. Ans: (760.9 kW)
Sol: Mechanical power developed
\[P = \frac{E_a I_a^*}{Z_s} \cos(\theta - \delta) - \frac{E^2}{Z_s} \cos \theta \]
\[= \frac{2500 \times 2000}{\sqrt{3}} \cos(84.80 - 21.51) - \frac{(2500)^2}{2.209} \cos(84.80) \]
\[P_{phase} = 253.364 kW \]
\[P_{mech} = P - 3 I_a^2 R_a \]
\[= 800 \times 10^3 - (3 \times 254^2 \times 0.2) \]
\[P_{mech} = 761 kW \]
75. Ans: (4.84 Nm)
Sol: (In question poles and frequency not given
let take P = 4, F = 50)
\[N_s = 1500 \]
\[T = \frac{P}{2\pi \omega} = \frac{760.94 \times 60}{2 \times 1500} = 4.84 \text{ Nm} \]

76. Ans: (b)
Sol: \[V_L = 230V \]
\[V_{ph} = \frac{230}{\sqrt{3}} = 132.8V \]
\[Z_s = 0.6 + j3 = 3.06 \angle 78.69^\circ \]
\[\theta = 78.69^\circ \]
at \[I_a = 10A, \text{ UPF} \],
\[E = V \angle 0 - I_a \angle \pm \phi Z_s \angle \theta \]
\[= 132.8 \angle 0 - 10 \angle 3.06 \angle 78.69 \]
\[= 130.29 \angle -13.31^\circ \]
\[\therefore \text{ Excitation is kept constant } E = 130.29, \]
\[V = \text{constant} \]
Load on the motor is \[\uparrow, \delta \uparrow, I_a \uparrow \] to 40A (given)
\[|I_a Z_s| = \overline{V}(0) - \overline{E} \angle - \delta \]
\[= \sqrt{V^2 + E^2 - 2VE \cos \delta} \]
\[40 \times 3.06 \]
\[= \sqrt{132.8^2 + 130.29^2 - 2 \times 132.8 \times 130.29 \cos \delta} \]
\[\delta = 55.4^\circ \]
\[I_a = \frac{V \angle 0 - E \angle - \delta}{Z_s \angle \theta} \]
\[I_a = \frac{132.8 \angle 0 - 130.29 \angle - 55.4}{3.06 \angle 78.69^\circ} \]
\[I_a = 40 \angle -17.3 \]
PF = \cos (17.3) = 0.954 lag

77. Ans: (c)
Sol: \[P_{\text{Mech}} = P_{\text{in}} - \text{Copper loss} \]
\[= \sqrt{3} V_{L1L} \cos \phi - 3I_a^2 R_a \]
\[= (\sqrt{3} \times 230 \times 40 \times 0.953) - (3 \times 40^2 \times 0.6) \]
\[= 12.035 \text{ kW} \]
\[T = \frac{P_{\text{mech}}}{\omega} = \frac{12.035 \times 10^3}{2 \times 3.14 \times 1000} = 78.34 \text{ N} \cdot \text{m} \]

78. Ans: (b)
Sol: \[V_{ph} = \frac{6.6}{\sqrt{3}} = 3810.5V \]
\[P_{\text{in}} = \sqrt{3} V_{L1L} \cos \phi \Rightarrow I_L \]
\[= \frac{1000 \times 10^3}{\sqrt{3} \times 6.6 \times 10^3 \times 0.8} = 109.3A = I_{\text{ph}} \]
\[E = V \angle 0 -(I_a \angle \pm \phi z \angle \theta) \]
\[= 3810.5 \angle 0 - 109.3 \angle 36.86 \times 12 \angle 90^\circ \]
\[= 4715.5 \angle -12.85^\circ \]
Excitation is constant, \[V \] is constant
\[P = \frac{E \times V}{X_s \sin \delta} = \frac{1500 \times 10^3}{3} \]
\[= \frac{4715.5 \times 3810.5}{12} \sin \delta \]
\[\Rightarrow \delta = 19.5^\circ \]

79. Ans: (a)
Sol: \[I_a = \frac{V \angle 0 - E \angle - \delta}{Z_s \angle \theta} \]
\[= \frac{3810.5 \angle 0 - 4715.5 \angle - 19.5}{12 \angle 90} \]
\[= 141.4 \angle 21.95 \]
PF = \cos (21.95^\circ)
\[= 0.92 \text{ lead} \]
02. Ans: (d)
Sol: General requirement for the production of rotating magnetic fields with three phase winding and three phase currents
(a) The three-phase winding must be physically displaced by 120° electrical in space
(b) The three phase currents allowed to flow through the above three windings must be time displaced by 120° electrical
Option (d) satisfies both the conditions

03. Ans: (d)
Sol: For motoring, the stator poles and rotor poles must be equal. In the above case, the stator windings are wound for 4 poles, whereas the rotor windings are wound for 6 poles. As the stator poles and rotor poles are unequal, the torque developed is zero and speed is zero.

04. Ans: (c)
Sol: An inductin motor stator is replaced by a 6-pole stator, then the rotor poles will also be 6 poles, because in squirrel cage rotor, the rotor poles are induced pole. Then, the synchronous speed with 6 poles for 50 Hz supply is 1000 rpm Therefore, the rotor speed will be less than 1000 rpm

05. Ans: (c)
Sol: With the increase in the air gap, the reluctance of the magnetic circuit will be increase; because of this the motor draws more magnetizing current. Hence the power factor decreases.

06. Ans: (b)
Sol: 1. It helps in reduction of magnetic hum, thus keeping the motor quiet,
2. It also helps to avoid “Cogging”, i.e. locking tendency of the rotor. The tendency of rotor teeth remaining under the stator teeth due to the direct magnetic attraction between the two,
3. Increase in effective ratio of transformation between stator & rotor,
4. Increased rotor resistance due to comparatively lengthier rotor conductor bars, to improve the starting torque & starting power factor
5. Increased slip for a given torque.

07. Ans: (a)
Sol: Advantages of open slots
1. Easy access of the winding without any problem, i.e. the windings are reasonably accessible when individual coils must be replaced or serviced in the field.
2. Access to the former coils is easy, and winding procedure becomes easy.
3. Former coils are the winding coils formed and insulated completely before they are inserted in the slots.
 They have less leakage reactance. Leakage reactance is less as leakage flux is less, as a result the power transferred to rotor will be more and the maximum torque which depends on this power is also more.

08. Ans: 4%
Sol: The frequency of generated emf by the alternator is given as
\[f = \frac{PN_{pm}}{120} = \frac{4 \times 1500}{120} = 50 \text{ Hz} \]
The synchronous speed of Induction motor
\[N_s = \frac{120f}{P} = \frac{120 \times 50}{4} = 1500 \text{ rpm} \]
% Slip = \[\frac{N_s - N_r}{N_s} \times 100 \]
\[= \frac{1500 - 1440}{1500} \times 100 \]
\[= 4\% \]

09. Ans: (a)
Sol: Given data: \(P = 4 \), \(N_r = 1440 \text{ rpm} \) and \(f = 50 \text{ Hz} \)

\[N_s = \frac{120f}{P} = \frac{120 \times 50}{4} = 1500 \text{ rpm} \]

\[\text{Slip} = \frac{N_s - N_r}{N_s} = \frac{1500 - 1440}{1500} = \frac{6}{150} \]

The frequency in the rotor of induction motor is slip frequency (sf).
\[\therefore \text{ Frequency of emf is, } \frac{6}{150} \times 50 = 2 \text{ Hz.} \]

10. Ans: (c)
Sol: If the rotor is assumed to run at synchronous speed \(N_s \) in the direction of rotating magnetic fields, then there would be no flux cutting action, no emf in the rotor conductors, no currents in the rotor bars and therefore no developed torque. Thus, the rotor of 3-phase induction motor can never attain synchronous speed.

11. Ans: (d)
Sol: For 50 Hz, supply the possible synchronous speeds with different poles
2 poles \(\rightarrow \) 3000 rpm
4 poles \(\rightarrow \) 1500 rpm
6 poles \(\rightarrow \) 1000 rpm
8 poles \(\rightarrow \) 750 rpm
10 poles \(\rightarrow \) 600 rpm
12 poles \(\rightarrow \) 500 rpm
20 poles \(\rightarrow \) 300 rpm

We know that, the rotor of an induction motor always tries to rotate with speed closer to synchronous speed, therefore the synchronous speed closer to 285 rpm for 50 Hz supply is 300 rpm and poles are 20 poles. So its 20 poles induction motor.

12. Ans: (d)
Sol: Synchronous speed of field is, \(N_s = \frac{120f}{P} \)
\[\Rightarrow N_s = \frac{120 \times 50}{6} = 1000 \text{ rpm} \]
When the rotor is rotating in the field direction,
\[\text{Slip} = \frac{N_s - N_r}{N_s} = \frac{1000 - 500}{1000} = 0.5 \]
Rotor frequency \(sf = 0.5 \times 50 = 25 \text{ Hz} \).

13. Ans: (d)
Sol: Synchronous speed of field is,
\[N_s = \frac{120f}{P} \]
\[\Rightarrow N_s = \frac{120 \times 50}{4} = 1500 \text{ rpm} \]

Case (i):
When the rotor is rotating in the field direction,
\[\text{Slip} = \frac{N_s - N_r}{N_s} = \frac{1500 - 750}{1500} = 0.5 \]
Rotor frequency \(sf = 0.5 \times 50 = 25 \text{ Hz} \).

Case (ii):
When the rotor is rotating in opposite direction of field.
\[\text{Slip} = \frac{N_s + N_r}{N_s} = \frac{1500 + 750}{1500} = 1.5 \]
Rotor frequency \(sf = 1.5 \times 50 = 75 \text{ Hz} \).

14. Ans: (d)
Sol: Synchronous Machine:
Prime mover speed,
\[N_{pm} = \frac{120f}{P} = \frac{120 \times 50}{4} = 1500 \text{ rpm} \]
The rotor speed of induction motor is fixed at 1500 rpm.

Induction Machine:
For obtaining a frequency of 150 Hz at induction motor rotor terminals the rotating field and rotor must run in opposite directions.

\[150 = \frac{120 \times 50}{P_{in}} \times 50 \]
\[150 = \frac{6000 + 1500 \times P_{in}}{6000} \]
\[\Rightarrow P_{in} = 8 \]

For obtaining a frequency of 150 Hz at induction motor rotor terminals the rotating field and rotor must run in same directions.
The induction machine is in generating mode.

\[150 = \frac{1500 - 120 \times 50}{120 \times 50} \times 50 \]
\[150 = \frac{24000}{6000} = 1500 \times P_{in} \]
\[\Rightarrow P_{in} = 16 \]

15. Ans: (c)
Sol: We can run with two phases but the motor winding will get heated up, because of over loading the motor with power on two phases and with third phase completely absent.

16. Ans: (c)
Sol: Synchronous speed of field is,
\[N_s = \frac{120f}{P} = \frac{120 \times 50}{6} = 1000 \text{ rpm} \]
When the rotor is rotating in opposite direction of field.
\[\text{Slip} = \frac{N_s + N_r}{N_s} = \frac{1000 + 1000}{1000} = 2 \]
Slip frequency, \(sf = 2 \times 50 = 100 \text{ Hz} \).
17. Ans: (c)
Sol: If any two leads from slip rings are interchanged in a 3-phase induction motor, the motor will run in a direction opposite to previous one.
The direction of rotation in a 3-phase motor depends upon the sequence in which the magnetic poles are created by the respective phase lines. This in turn creates a rotating magnetic field. By interchanging any two phases (lines) the sequence of pole formation is being changed i.e., the direction of the rotating magnetic field is reversed. Hence the direction of rotation of the motor also changes accordingly.

18. Ans: (a)
Sol: \(P = 4, f = 50 \text{ Hz}, R_1 = 0.4 \Omega, I_L = 20 \text{ A} \) and \(P_m = 550 \text{ W} \)
Stator copper losses = \(3I_r^2 R_1/\text{phase} \)
= \(3 \times \left(\frac{20}{\sqrt{3}} \right)^2 \times 0.4 \)
= 160 W
Airgap power \(P_r = 4000 - 160 \)
= 3840 W
Internal torque developed = \(\frac{60}{2\pi N_s} P_r \)
= \(\frac{60}{2\pi \times 1500} \times 3840 = 24.45 \text{ Nm} \)

19. Ans: (c)
Sol: Slip frequency \(sf = 3 \) Hz
\[s = \frac{3}{50} \]
Gross mechanical power output
\[P_G = (1 - s)P_r \]
= \(\left(1 - \frac{3}{50} \right) \times 3840 = 3609.6 \text{ W} \)
Net mechanical power output,
\[P_{net} = 3609.6 - 550 = 3059.6 \text{ W} \]
\% efficiency = \(\frac{P_{net}}{P_{input}} \times 100 = \frac{3059.6 \times 100}{4000} \)
= 76.49%

20. Ans: 0.154
Sol: \(I/\text{phase} = 45 \text{ A}, s = 3\% \)
\[P_{net} = 40 \times 746 = 29.840 \text{ kW} \]
\[P_{stator} = 0.05 \times (\text{input power}) \]
\[P_m = 0.015 \times 29.840 = 0.4476 \text{ kW} \]
Gross mechanical power output \(P_G \)
= 29.840 + 0.4476
= 30.2876 kW
Rotor copper loss = \(\frac{s}{1 - s} \times P_G \)
= \(\frac{0.03}{1 - 0.03} \times 30.2876 = 0.9376 \text{ kW} \)
\[R_2/\text{phase} = \frac{0.9367 \times 10^3}{3 \times 45 \times 45} = 0.154 \Omega \]

21. Ans: 86.97 %
Sol: \(P = 6, f = 60 \text{ Hz}, P_{input} = 48 \text{ kW}, \)
\(N_r = 1140 \text{ rpm} \)
\(P_s = 1.4 \text{ kW}, P_i = 1.6 \text{ kW}, P_m = 1 \text{ kW} \)
Airgap power \(P_i = P_{input} - P_s - P_i \)
= 48 - 1.4 - 1.6
= 45 kW
Slip \(s = \frac{N_s - N}{N_s} = \frac{1200 - 1140}{1200} = 0.05 \)
Gross mechanical power output,
\[P_G = (1 - s)P_r \]
= \((1 - 0.05) \times 45 \)
= 42.75 kW
Net mechanical power output,
45

Postal Coaching Solutions

\[P_{\text{net}} = P_G - P_m \]

\[= 42.75 - 1 \]

\[= 41.75 \text{ kW} \]

\[\text{% efficiency} = \frac{P_{\text{net}}}{P_{\text{input}}} \times 100 \]

\[= \frac{41.75}{48} \times 100 = 86.97\% \]

22. Ans: 796.5

Sol: \(P = 4, f = 50 \text{ Hz}, P_0 = 48.65 \text{ kW}, \quad P_m \)

\[= 0.025 \times P_0 \quad \text{and} \quad s = 0.04 \]

Gross mechanical power \(P_G = P_0 + P_m \)

\[= 18.65 + (0.025 \times 18.65) \]

\[= 19.11625 \text{ kW} \]

Rotor copper losses = \(s \times P_G \)

\[= \frac{0.04}{1 - 0.04} \times 19.11625 \]

\[= 0.7965 \text{ kW} = 796.5 \text{ Watt} \]

23 ans: 46.18

Sol: \(f = 50 \text{ Hz}, P = 6, P_r = 40 \text{ kW}, \quad N_r = 960 \)

rpm, \(R_2/\text{Phase} = 0.25 \Omega \)

\[I_r/\text{Phase} = ? \]

Slip \(s = \frac{1000 - 960}{1000} = 0.04 \]

Rotor copper losses = \(s \times \text{ Rotor input} \)

\[= 0.04 \times 40 \times 10^3 \]

\[= 1600 \text{ Watt} \]

\[3l^2R_2/\text{Phase} = 1600 \]

\[\Rightarrow I_1/\text{Phase} = \sqrt{\frac{1600}{3 \times 0.25}} = 46.18 \text{ A} \]

24. Ans: (b)

Sol: \(\tau_{\text{em}} = 500 \text{ Nm}, V_2 = 0.5 V_1 \)

\[\tau_{\text{em}} \propto V^2 \]

\[\Rightarrow \frac{\tau_{\text{em}1}}{\tau_{\text{em}2}} = \left(\frac{V_1}{V_2} \right)^2 \]

\[\Rightarrow \tau_{\text{em}2} = (0.5)^2 \times 500 = 125 \text{ Nm} \]

25. Ans: (c)

Sol: Given induced emf between the slip ring of an induction motor at stand still (Line voltage), \(V_{\text{slirings}} = 100 \text{ V} \)

For star connected rotor windings, the induced emf per phase when the rotor is at stand still is given by

\[E_20 = \frac{V_{\text{slirings}}}{\sqrt{3}} = \frac{100}{\sqrt{3}} = 57.7 \text{ V} \]

In general, rotor current, neglecting stator impedance is

\[I_2 = \frac{E_20}{\sqrt{\left(\frac{R_2}{s} \right)^2 + X_{20}^2}} \]

For smaller values of slip, \(s = \frac{R_2}{s} >>> X_{20} \)

Then the equation for rotor current

\[I_2 = \frac{E_20}{s} \frac{R_2}{R_2} = \frac{0.04 \times 57.7}{0.4} = 5.77 \text{ A} \]

26. Ans: 1.66

Sol: The synchronous speed of the motor is

\[N_s = \frac{120f}{P} = \frac{120 \times 50}{6} = 1000 \text{ rpm} \]

Given, the rotor speed of induction motor, at maximum torque

\[N_{rT_{\text{max}}} = 940 \text{ rpm} \]

Therefore, per unit slip at maximum torque,

\[s_{T_{\text{max}}} = \frac{N_s - N_{rT_{\text{max}}}}{N_s} = \frac{1000 - 940}{1000} = 0.06 \]

We have, slip at maximum torque is given by

\[s_{T_{\text{max}}} = \frac{R_2}{x_{20}} \]

From this,

\[x_{20} = \frac{R_2}{s_{T_{\text{max}}}} = \frac{0.1}{0.06} = 1.66 \text{ \Omega} \]
27. Ans: (a)
Sol: Given rotor resistance per phase \(R_2 = 0.21 \, \Omega \)
Stand still rotor reactance per phase \(X_{20} = 7 \, \Omega \)
We have slip at maximum torque given by
\[
s_{T_{max}} = \frac{R_2}{X_{20}} = \frac{0.21}{7} = 0.03
\]
The synchronous speed of the motor is
\[
N_s = \frac{120f}{P} = \frac{120 \times 50}{4} = 1500 \, \text{rpm}
\]
Rotor speed at maximum torque is given by
\[
N_{r_{T_{max}}} = N_s(1 - s_{T_{max}}) = 1500(1 - 0.03) = 1455 \, \text{rpm}
\]

28. Ans: (c)
Sol: Synchronous speed, \(N_s = 1200 \, \text{rpm} \), Rotor speed \(N_{r1} = 1140 \, \text{rpm} \)
Slip \(s_1 = \frac{N_{s1} - N_{r1}}{N_{s1}} = \frac{1200 - 1140}{1200} = 0.05 \)
Applied voltage \(V_1 = 215 \, \text{V} \)
We have \(T = k \frac{s_v^2}{R_2} \); From \(s_v^2 = \text{constant} \)
\[
s_1v_1^2 = s_2v_2^2
\]
\[
s_2 = \frac{s_1v_1^2}{v_2^2} = \frac{0.05 \times 215^2}{240^2} = 0.04
\]
\[
N_{r2} = N_s(1 - s_2) = 1200(1 - 0.04) = 1152 \, \text{rpm}
\]

29. Ans: 90 Nm
Sol: \(T_{max} = 150 \, \text{N-m} \)
Rotor speed at maximum torque,
\[
N_{r_{T_{max}}} = 660 \, \text{rpm}
\]
The synchronous speed of the motor is
\[
N_s = \frac{120f}{P} = \frac{120 \times 50}{8} = 750 \, \text{rpm}
\]
Slip at maximum torque,
\[
s_{T_{max}} = \frac{N_s - N_{r_{T_{max}}}}{N_s} = \frac{750 - 660}{660} = 0.12
\]

30. Ans: (d)
Sol: Power factor of an induction motor on no-load is very low because of the high value of magnetizing current. With load the power factor increases because the power component of the current is increased and a stage comes after which as load further increase the over all power factor starts slowly decreasing. Low power factor operation is one of the disadvantages of an induction motor. An induction motor draws a heavy amount of magnetizing current due to presence of air gap between the stator and rotor (unlike a transformer). The reduced the magnetizing current in an induction motor, the air gap is kept as small as possible. It is therefore usual to find the air gap of induction motor smaller than any other type of electrical machine.

31. Ans: 192
Sol: The synchronous speed of the motor is
\[
N_s = \frac{120}{P} = \frac{120 \times 50}{4} = 1500 \, \text{rpm}
\]
Given \(T_{max} = 200 \, \text{N-m} \)
Rotor speed at maximum torque,
\[
N_{r_{T_{max}}} = 1400 \, \text{rpm}
\]
Slip at maximum torque
\[s_{T_{\text{max}}} = \frac{N_s - N_{r_{\text{max}}}}{N_s} = \frac{1500 - 1400}{1400} = 0.06667 \]
Operatin slip \(s = 0.05 \)
We have \(\frac{T}{T_{\text{max}}} = \frac{2 \times s \times s_{T_{\text{max}}}}{s^2 + s_{T_{\text{max}}}^2} \)
\[= \frac{2 \times 0.06667 \times 0.05}{0.05^2 + 0.06667^2} = 0.96 \]
\(T = 0.96 \times 200 = 192 \text{ N-m} \)

32. Ans: 0.029
Sol: Given rotor resistance per \(R_2 = 0.025 \Omega \)
Stand still rotor reactance per phase, \(X_{20} = 0.12 \Omega \)
We have slip at maximum torque given by
Let \(s_{T_{\text{max}}} = \frac{R_2 + R_{\text{ext}}}{X_{20}} \), for \(T_{st} = \frac{3}{4} T_{\text{max}} \)
\[\frac{T_{st}}{T_{\text{max}}} = \frac{2 \times s_{T_{\text{max}}}}{s^2_{T_{\text{max}}} + 1} = \frac{3}{4} \]
\[s_{T_{\text{max}}}^2 - \frac{8}{3} s_{T_{\text{max}}} + 1 = 0 \]
Solving for \(s_{T_{\text{max}}} \) we have \(s_{T_{\text{max}}} = 0.45 \)
\[0.45 = \frac{0.025 + R_{\text{ext}}}{0.12} \]
\(R_{\text{ext}} = 0.029 \Omega \)

33. Ans: (b)
Sol: The synchronous speed of the motor is
\[N_s = \frac{120f}{P} = \frac{120 \times 50}{6} = 1000 \text{ rpm} \]
Given \(T_{\text{max}} = 520 \text{ N-m} \), slip at maximum torque \(s_{T_{\text{max}}} = 0.2 \)
Given, \(T_{\text{max}} \propto s_{T_{\text{max}}} \)
Therefore, \(T_{\text{max}} = k s_{T_{\text{max}}} \)

\[k = \frac{T_{\text{max}}}{s_{T_{\text{max}}} = \frac{520}{0.2} = 2600 \]
and also, \(T_{\text{fl}} \propto s_{\text{fl}}, T_{\text{fl}} = k s_{\text{fl}} \)
Full load net mechanical power
\(P_{\text{net}} = 10 \text{ kW} \)
Mechanical losses \(P_{\text{ml}} = 600 \text{ W} = 0.6 \text{ kW} \)
\(P_{\text{gmd}} = P_{\text{net}} + P_{\text{ml}} = 10 + 0.6 = 10.6 \text{ kW} \)
Rotor input, \(P_{\text{r}} = \frac{P_{\text{gmd}}}{(1-s_{\text{fl}})} = \frac{10.6 \times 10^3}{(1-s_{\text{fl}})} \)
\[T_{\text{fl}} = \frac{P_{\text{r}}}{\omega_s} = \frac{60}{2\pi N_s} \frac{10.6 \times 10^3}{(1-s_{\text{fl}})} \]
\[= \frac{101.27}{(1-s_{\text{fl}})} = \frac{101.27}{(1-s_{\text{fl}})} = 2600 s_{\text{fl}} \]
Solving for \(s_{\text{fl}} \), we have \(s_{\text{fl}} = 0.0405 \)
\(N_{\text{fl}} = N_s (1-s_{\text{fl}}) = 1000 (1-0.00405) = 959.5 \text{ rpm} \)

34. Ans: (a)
Sol: Given Line voltage (supply), \(V_L = 420 \text{ V} \)
Stator impedance \(Z_1 = R_1 + jX_1 = 0.07 + j0.3 \)
From this \(R_1 = 0.07 \Omega, X_1 = 0.3 \)
Standstill rotor impedance referred to stator, \(Z_{20} = R_2 + jX_{20} = 0.08 + j0.37 \)
From this \(R_2^1 = 0.08 \Omega & X_2^1 = 0.37 \Omega \)
Phase voltage (assuming stator windings are connected in star)
\[V_{1ph} = \frac{420}{\sqrt{3}} = 242.5 \text{ V} \]
\[s_{\text{mm}} = \frac{R_2}{R_2^1 + \sqrt{R_2^1 + R_{\text{th}}^2 + (X_{\text{th}} + X_2^1)^2}} \]
Where \(s_{\text{mm}} \) is slip corresponding to maximum internal mechanical power developed. As magnetizing current is neglected there is no need to find
out R_2 and X_2, in place we can use, R_1 and X_1, therefore, slip for maximum internal mechanical power developed is

$$s_{mm} = \frac{R_2'}{R_2' + \sqrt{R_2' + R_1^2} + (X_1 + X_2')^2}$$

$$= \frac{0.08}{0.08 + \sqrt{(0.07 + 0.08)^2 + (0.3 + 0.37)^2}}$$

$$= 0.1044$$

35. Ans: (a)

Sol: $P_{gmdmax} = 3I_{2mm}^2R_2^2 \left(\frac{1}{s_{mm}} - 1 \right)$

$$= 242.5 \left(\frac{0.08 + 0.07}{0.1044} \right)^2 + (0.3 + 0.37)^2$$

$$= 242.2 \text{ A}$$

$$T_{max} = \frac{180}{2\pi N_s} \frac{I_{2Tmax}^2 R_2'}{s_{Tmax}}$$

$$= \frac{180}{2 \times 3.14 \times 1000} \times 242.2^2 \times \frac{0.08}{0.1187}$$

$$= 1133 \text{ N-m}$$

36. Ans: (c)

Sol: Slip at maximum internal torque developed

$$s_{Tmax} = \frac{R_2'}{\sqrt{R_1^2 + (X_1 + X_2')^2}}$$

$$= \frac{0.08}{\sqrt{(0.07)^2 + (0.3 + 0.37)^2}}$$

$$= 0.1187$$

37. Ans: (e)

Sol: $I_{2Tmax}^2 = \frac{V_1}{\sqrt{\left(\frac{R_1 + R_2'}{s_{Tmax}}\right)^2 + (X_1 + X_2')^2}}$

$$= 3 \times 226.25^2 \times 0.08$$

$$= 360 \times 30 \times 10^3 \times \frac{2}{2 \times 1500}$$

$$= 95.49 \text{ Nm}$$

38. Ans: (c)

Sol: Given data $P = 4$, $I_{BR} = 100 \text{ A}$, $W_{BR} = 3I_{BR}^2R_{01} = 30 \text{ kW}$

At starting, Rotor input = Rotor copper losses.

$$\tau_{st} = \frac{60}{2\pi N_s} \left(3I_{BR}^2 R_2' \right)$$

Here R_2 us rotor resistance refer to primary side of machine

Given $R_1 = R_2 = \frac{R_{01}}{2}$

$$\tau_{st} = \frac{60}{2\pi \times 1500} \times \left(\frac{3I_{BR}^2 R_{01}}{2} \right)$$

$$= \frac{60}{2\pi \times 1500} \times 30 \times 10^3 \times \frac{2}{2}$$

$$= 95.49 \text{ Nm}$$

39. Ans: (c)

Sol: This method is used in the case of motors, which are built to run normally with a delta connected stator winding. It consists of a two-way switch, which connects the motor in star for starting and then in delta for normal running. When star connected, the applied voltage over each phase is reduced by factor $\frac{1}{\sqrt{3}}$ and hence the torque developed becomes $1/3$ of that which would have been developed if motor were...
directly connected in delta. The line current is reduced to 1/3. Hence during starting period when motor is star connected, it takes 1/3rd as much starting current and develops 1/3 rd as much torque as would have been developed if it directly connected in delta.

40. Ans: (c)
Sol: \(I_{sc} = 400A; k = 0.7 \)
\(I_{st, supply} = k^2 I_{sc} = 0.7^2 \times 400 = 196A \)

41. Ans: (a)
Sol: Starting line current with stator winding in star \(I_{s1} = \frac{1}{3} \)
Starting line current with stator winding in delta \(I_{s3} = 3 \times I_{s1} \)
Starting line current with stator winding in delta (DOL) = \(3 \times I_{st,s} \)
\(I_{st,s} = 2 \times I_{s1} \)
\(\text{But we know that,} \)
\(I_{st,s} = k^2 \times I_{sc}; 2 \times I_{s1} = k^2 \times 5.431 I_{s1} \)
\(K = 60.7\% \)

42. Ans: (a)
Sol: \(N_{set} = \frac{120f}{P_1 + P_2} = \frac{120 \times 50}{10} = 600 \text{ rpm} \)

43. Ans: 559.3
Sol: Given full load net mechanical power output, \(P_{net} = 500kW \)
Stator Input at full load, \(P_s = \frac{P_{net}}{\eta} \)
\(= \frac{500}{0.92} = 543.478kW \)
\(P_s = \sqrt{3}V_L I_f \cos \phi \)
\(I_f = \frac{P_{si}}{\sqrt{3}V_L \cos \phi} \)
\(= \frac{543.478 \times 10^3}{\sqrt{3} \times 66 \times 10^3 \times 0.85} = 55.93A \)
Short circuit current \(I_{sc} = 10 \times 55.93 = 559.3A \)

44. Ans: 60.7%
Sol: Let \(I_f \) be the full load current,
\(I_f = \frac{70}{Z_{r1}} \)
Short circuit current with rated voltage is
\(I_{sc} = \frac{380}{70} I_f = 5.431 I_f \)
Starting current drawn from the line
\(I_{st,s} = 2 \times I_f \)
\(\text{But we know that,} \)
\(I_{st,s} = k^2 \times I_{sc}; 2 \times I_f = k^2 \times 5.431 I_f \)
\(K = 60.7\% \)

45. Ans: (a)
Sol: \(T_{st} = \frac{1}{4} T_{st} \)
\(I_{sc} = 4I_f \)
we have for auto transformer starting
\(\frac{T_{st}}{T_{st}} = k^2 \left(\frac{I_{sc}}{I_f} \right)^2 \)
\(\frac{1}{4} = k^2 \times 4^2 \times 0.03 \)
\(K = 72.2\% \)

46. Ans: 2.256
Sol: Given full load net mechanical power output, \(P_{net} = 12kW \)
Stator Input at full load,
\(P_s = \frac{P_{net}}{\eta} = \frac{12}{0.85} = 14.1176kW \)
\(P_s = \sqrt{3}V_L I_f \cos \phi \)
\(I_f = \frac{P_{si}}{\sqrt{3}V_L \cos \phi} \)
\(= \frac{14.1176 \times 10^3}{\sqrt{3} \times 440 \times 0.8} = 23.14A \)
Short circuit current,
\(I_{sc} = \frac{45 \times 440}{220} = 90A \)
In star delta starter, $I_{st} = \frac{90}{\sqrt{3}} = 52\text{A}$

The ratio of starting to full load current

$$\frac{I_{st}}{I_{fl}} = 2.256$$

47. Ans: (d)
Sol: Starting current with rated voltage,

$I_{sc} = 300\text{ A}$

Full load current, $I_{fl} = 60\text{ A}$

The synchronous speed of the motor is

$$N_s = \frac{120f}{P} = \frac{120 \times 50}{6} = 1000\text{ rpm}$$

Given, the rotor speed of induction motor at full load $N_{rl} = 940\text{ rpm}$

Therefore, per unit slip at full load,

$$S_{T,max} = N_s - N_{rl} = \frac{1000 - 940}{1000} = 0.06$$

Full load torque, $T_{fl} = 150\text{ N} - \text{m}$

For DOL starter, we have

$$\frac{T_{st}}{T_{fl}} = \left(\frac{I_{sc}}{I_{fl}}\right)^2 S_{T} = \left(\frac{300}{60}\right)^2 \times 0.06 = 1.5$$

$T_{st} = 1.5 \times 150 = 225\text{ N} - \text{m}$

When star delta starter is used,

$$T_{st} = \frac{1}{3}\text{ times starting torque with}$$

DOL starter $= \frac{1}{3} \times 225 = 75\text{ N} - \text{m}$

$I_{st} = \frac{1}{3}\text{ time starting current with}$

DOL starter $= \frac{1}{3} \times 300 = 100\text{A}$

49. Ans: (c)
Sol: Application of Capacitor Start IM and Capacitor Start Capacitor Run IM

These motors have high starting torque hence they are used in conveyors, grinder, air conditioners, compressor, etc. They are available up to 6 KW.

Application Permanent Split Capacitor (PSC) Motor:
It finds applications in fans and blowers in heaters and air conditioners. It is also used to drive office machinery.

Applications of Shaded Pole Motor:
Due to their low starting torques and reasonable cost these motors are mostly employed in small instruments, hair dryers, toys, record players, small fans, electric clocks etc. These motors are usually available in a range of 1/300 to 1/20 kW.

50. Ans: (d)
Sol: Phase shift between capacitor current and inductor current is 180 degrees.

51. Ans: (b)
Sol: when an induction motor refuses to start even if voltage is applied to it, this is called as cogging. This happens when the rotor slots and stator slots are same in number or they are integer multiples of each other. Due to this the opposite poles of stator and rotor come opposite to each other and get locked and motor refuses to start. The is particularly observed in squirrel cage induction motor, when started with low voltages
On the other hand when an induction motor runs at a very low speed (1/7th of synchronous speed) even if full rated voltage is applied to it, then it is called at crawling. This happens due to harmonic induction torques. in which torques due to 7th harmonic overpower the driving Torque(fundamental component torque

52. Ans: (b)
Sol: The synchronous speed of the motor is

$$N_s = \frac{120f}{P} = \frac{120 \times 50}{4} = 1500\text{ rpm}$$

Given, the rotor speed of induction motor $N_r = 1440\text{ rpm}$.

ACE Engineering Publications
Since 1988
ACE Engineering Publications
Since 1988
ACE Engineering Publications
Since 1988
ACE Engineering Publications
Therefore, per unit slip,
\[S = \frac{N_s - N_r}{N_s} = \frac{1500 - 1440}{1500} = 0.04 \]

The frequency of induced emf in the rotor winding due to negative sequence component is
\[f_{2ns} = (2 - s)f = (2 - 0.04) \times 50 = 98 \text{ Hz} \]

53. Ans: (c)

Sol: Single phasing is a condition in three phase motors and transformers wherein the supply to one of the phases is cut off. Single phasing causes negative phase sequence components in the voltage. Since, motors generally have low impedances for negative phase sequence voltage. The distortion in terms of negative phase sequence current will be substantial. Because of negative sequence component current, negative sequence current torque develops, which reduces the total torque and speed.

Example 4.54:
A 200W, 230V, 50Hz capacitor – start motor has the following constants
Main winding: \(R_m = 4.5 \Omega, X_m = 3.7 \Omega \)
Starting winding: \(R_s = 9.5 \Omega, X_s = 3.5 \Omega \)
Find the value of starting capacitance that will place main and start winding currents in quadrature at starting.