

ELECTRONICS & TELECOMMUNICATION ENGINEERING DIGITAL CIRCUITS & MICROPROCESSORS

Volume - 1 : Study Material with Classroom Practice Questions

Number Systems

(Solutions for Vol-1_Classroom Practice Questions)

01.	Ans: (d)	03.	Ans: (c)
Sol:	$135_{x} + 144_{x} = 323_{x}$ $(1 \times x^{2} + 3 \times x^{1} + 5 \times x^{0}) + (1 \times x^{2} + 4 \times x^{1} + 4 \times x^{0})$ $= 3x^{2} + 2x^{1} + 3x^{0}$	Sol:	In 2's complement representation the sign bit can be extended towards left any number of times without changing the value. In given number the sign bit is ' X_3 ', hence it
	$\Rightarrow x^{2}+3x+5+x^{2}+4x+4 = 3x^{2}+2x+3$ $x^{2}-5x-6 = 0$		can be extended left any number of times.
	(x-6) (x+1) = 0 (Base cannot be negative) Hence x = 6. (OR) As per the given number x must be greater than 5. Let consider x = 6 $(135)_6 = (59)_{10}$ $(144)_6 = (64)_{10}$ $(323)_6 = (123)_{10}$ $(59)_{10} + (64)_{10} = (123)_{10}$	04. Sol:	Ans: (c) Binary representation of $+(539)_{10}$: $2 \frac{539}{2 269 - 1}$ $2 \frac{134 - 1}{2 67 - 0}$ $2 \frac{33 - 1}{2 16 - 1}$ $2 \frac{16 - 1}{2 \frac{8 - 0}{2 2 - 0}}$ 1 - 0
	So that $x = 6$	(+5	$(539)_{10} = (10000\ 11\ 0\ 11)_2 = (00100\ 0011011)_2$
02.	Ans: (a)	2	'S complement $\rightarrow 110111100101$
Sol:	8-bit representation of		Hexadecimal equivalent \rightarrow (DE5) _H
	$+127_{10} = 01111111_{(2)}$	199	5
	1's complement representation of	us. Sol:	Ans: 5 Symbols used in this equation are 0,1,2,3 Hence base or radix can be 4 or higher
	2's complement representation of		$(312)_{x} = (20)_{x} (13.1)_{x}$ $3x^{2} + 1x + 2x^{0} = (2x+0) (x+3x^{0}+x^{-1})$
	- 127 = 10000001.No. of 1's in 2's complement of		$3x^2+x+2 = (2x)\left(x+3+\frac{1}{x}\right)$
	-127 = m = 2		$3x^2 + x + 2 = 2x^2 + 6x + 2$
	No. of 1's in 1's complement of		$x^2 - 5x = 0$
	-127 = n = 1		x(x-5) = 0 x = 0(or) x = 5
_	\therefore m: n = 2:1		x must be $x > 3$, So $x = 5$
ACE	Engg. Publications Hyderabad Delhi Bhopal Pune Bhubaneswar Ber	ngaluru Luo	cknow Patna Chennai Vijayawada Vizag Tirupati Kukatpally Kolkata

Chapter

06.	Ans: 3	09.	Ans: (b)
Sol:	$123_5 = x8_y$	Sol:	A.7 5 B.6 5
	$1 \times 5^{2} + 2 \times 5^{1} + 3 \times 5^{0} = x.y^{1} + 8 \times y^{0}$		
	25 + 10 + 3 = xy+8 : $xy = 30$		
	Possible solutions:		C. 3 7 D. 2 6
	i. $x = 1, y = 30$		(011111) (010110)
	ii. $x = 2, y = 15$		
	iii. $x = 3, y = 10$	10.	Ans: (a)
	\therefore 3 possible solutions exists.	Sol:	2's complement arithmetic is preferred in
~-			digital computers because it is efficient and
07.	Ans: 1	INC	one representation for zero.
Sol:	The range (or) distinct values		Ac
	For 2's complement $\Rightarrow -(2^{n-1})$ to $+(2^{n-1}-1)$	11.	Ans: (a)
	Fan sing an antitude	Sol:	$(11X1Y)_8 = (12C9)_{16}$
	For sign magnitude		$8^4 + 8^3 + 64X + 8 + Y$
	$\Rightarrow -(2^{n-1}-1)$ to $+(2^{n-1}-1)$		$= 16^{3} + (2 \times 16^{2}) + (12 \times 16) + 9$
	Let $n = 2 \Rightarrow$ in 2's complement		$10^{-1} (2 \times 10^{-1}) + (12 \times 10^{-1})^{-1}$
	$-(2^{2^{-1}})$ to $+(2^{2^{-1}}-1)$ 2 to $+1 \rightarrow 2^{-1}$ 1 0 $+1 \rightarrow X - 4$		4096 + 512 + 64X + 8 + Y
	-2 to $+1 \rightarrow -2$, -1 , 0 , $+1 \rightarrow A - 4$ n = 2 in sign magnitude $\rightarrow -1$ to $+1 \rightarrow Y = 3$		=4096+512+192+9
	X - Y = 1		$\therefore 4616 + 64X + Y = 4809$
			64X + Y = 193
08.	Ans: (c)		By verification option (a) is correct
Sal	(2) (68) = (001 101 000) Since	199	By verification option (a) is correct
501.	$(a) (03)_{16} = (001 101 000)_2$		
	$= (1 5 0)_8$	12.	Ans: (d)
		Sol:	2's comp no: a a a a
	(b) $(8C)_{16} = (010 \ 001 \ 100)_2$		$a_3 a_2 a_1 a_0$
	$= (2 \ 1 \ 4)_8$		
			2's comp no. using 6 bits
	(c) $(4F)_{16} = (001\ 001\ 111\ 1)_2$		\rightarrow $a_3 a_3 a_3 a_2 a_1 a_0$
	ے لیے لیے = (1 1 7)،		
	(')6		(2's comp no)×2+1
	(d) $(5D)_{16} = (001\ 011\ 101\)_2$		
	$= \begin{pmatrix} 1 & 3 & -5 \end{pmatrix}_{2}$		\rightarrow $a_3 a_3 a_2 a_1 a_0 1$
	$-(1 5 5)_8$		

Logic Gates & Boolean Algebra

01. Ans: (c)

Chapter

Sol: Given 2's complement numbers of sign bits are x & y. z is the sign bit obtained by adding above two numbers. \therefore Overflow is indicated by = $\overline{x} \overline{y} z + x y \overline{z}$ Stage 2: <u>X</u> X o/p <u>0 1 1</u>

ACE Engineering Publications	:6:	Digital & Microprocessors
13. Ans: (b)	15.	Ans: (a)
Sol: (A) $ab + bc + ca + abc$	Sol:	When all inputs of a NAND-gate are
bc $(1 + a) + ca + ab$		shorted to get a one input, one output gate, it becomes an inverter
bc + ca + ab		When all inputs of a NAND – gate are at
Inverse function $\overline{(ab+bc+ca)}$		logic '0' level, the output is at logic '1' level
$=\overline{a}\ \overline{b}+\overline{b}\ \overline{c}\ +\overline{c}\ \overline{a}$		Both statements are true and statement-II is the correct explanation of statement-I
(B) $ab + \overline{a} \overline{b} + \overline{c}$	16	Ans: (c)
Inverse function = $\overline{ab + \overline{a}\overline{b} + \overline{c}}$	Sol:	A NAND gate represents a universal logic family.
$=(\overline{a}+\overline{b})(a+b)c$	EFRINC	Only two NAND gates are sufficient to
$=(\overline{a}b+a\overline{b})c$		Statement-I is true but statement-II is false.
$= (a \oplus b) c$		
(C) (a+bc)		32
Inverse function = $\overline{a + bc}$		
$=\overline{a}(\overline{b}+\overline{c})$		
(D) $(\overline{a} + \overline{b} + \overline{c})(a + \overline{b} + \overline{c})(\overline{a} + \overline{b} + c)$		
Inverse function		
$\overline{(\overline{a}+\overline{b}+\overline{c})(a+\overline{b}+\overline{c})(\overline{a}+\overline{b}+c)}$		
$= abc + \overline{a}bc + ab\overline{c}$	Since 199	5
 14. Ans: (c) Sol: AND gate : Boolean multiplication OR gate : Boolean addition 	U	
NOT gate : Boolean complementation		

Combinational Circuits

Chapter

Δ

01.	Ans: (d)	03.	Ans: (a)
Sol:	Let the output of first MUX is "F ₁ "	Sol:	The given circuit is binary parallel
	$F_1 = AI_0 + AI_1$		adder/subtractor circuit. It performs $A+B$, A B but not $A + 1$ operations
	Where A is selection line, I_0 , $I_1 = MUX$ Inputs		K C ₀ Operation
	$F_{i} = \overline{S} W + S_{i} \overline{W} = S_{i} \oplus W$		0 0 A+B (addition)
	Output of second MUX is		0 1 A+B+1(addition with carry)
			$\frac{1}{1} = 0$ A+B(1's complement addition)
	$\mathbf{F} = \mathbf{A} \cdot \mathbf{I}_0 + \mathbf{A} \cdot \mathbf{I}_1$	INC	1 1 A+B+1(2's complement subtraction)
	$\mathbf{F} = \overline{\mathbf{S}}_2 \cdot \mathbf{F}_1 + \mathbf{S}_2 \cdot \overline{\mathbf{F}}_1$	04	Ans: (d)
	$F = S_2 \oplus F_1$	Sol:	It is expansion of 2:4 decoders to 1:8
	But $F_1 = S_1 \oplus W$		demultiplexer A_1 , A_0 must be connected to
	$F = S_2 \oplus S_1 \oplus W$		S_1, S_0 i.e., $A = S_0, S = S_1$ O must be connected to S_2 i.e. $O = S_2$
	i.e., $\mathbf{F} = \mathbf{W} \oplus \mathbf{S}_1 \oplus \mathbf{S}_2$		P is serial input must be connected to D_{in}
02.	Ans: 19.2	05. Sol:	Ans: 6 T = 0 \rightarrow NOR \rightarrow MUX 1 \rightarrow MUX 2
Sol:	One AND/OR gate delay = $1.2 \ \mu s$	Soli	2ns 1.5ns 1.5ns
	One XOR gate delay $= 2.4 \ \mu s$		Delay = 2ns + 1.5ns + 1.5ns = 5ns
	Full Adder with 2 Half Adder Since	199	$T = 1 \rightarrow NOT \rightarrow MUX 1 \rightarrow NOR \rightarrow MUX 2$
<u>A</u> C	HA1 HA2 Sum Carry		1ns 1.5ns 2ns 1.5ns Delay = $1ns + 1.5ns + 2ns + 1.5ns = 6ns$ Hence, the maximum delay of the circuit is 6ns
	In one F.A; Sum delay = $4.8 \ \mu s$	06.	Ans: -1
	Carry delay = $2.4 + 1.2 + 1.2 \mu s = 4.8 \mu s$	Sol:	When all bits in 'B' register is '1', then only
∴ RippleCar	∴ RippleCarry waiting time		it gives highest delay.
	$= 4.8 \times 3 = 14.4 \ \mu s$		\therefore '-1' in 8 bit notation of 2's complement
	Final Result time = $14.4 + 4.8 = 19.2 \ \mu sec$		is 1111 1111

07. Ans: (d)

Sol: The race hazard problem does not occur in combinational circuits.

The output of a combinational circuit depends upon present inputs only.

Statement-I is false but Statement-II is true.

08. Ans: (b)

Sol: A de-multiplexer can be used as a decoder. A decoder with enable input acts as a demutiplexer, while using Enable input as a data input line. De-multiplexer is realized using AND gates.

09. Ans: (b) Sol: Half Adder

D-Flipflop

T-Flipflop

Exclusive - OR

10. Ans: (b)

 \rightarrow A 6-variable function can be implemented using 6-input MUX

11. Ans: 195

Sol: In a 16 bit parallel binary adder, the carry has to propagate 15 stages plus the maximum of time taken for producing sum and carry worst case Delay, $T = 15 \times 12 + 15$ T = 180 + 15

T = 195 ns

12. Ans: (b)

Sol: Any Boolean function can be realized by using a suitable multiplexer.

A multiplexer can be realized using NAND and NOR gates, which are universal gates.

Both statements are correct but statement-II is not a correct explanation for statement-I.

Sequential Circuits

01. Ans: (c)

Chapter

02. Ans: 4

Sol: In the given first loop of states, zero has repeated 3 times. So, minimum 4 number of Flip-flops are needed.

03. Ans: 7

Sol: The counter is cleared when $Q_D Q_C Q_B Q_A = 0110$

Clk	QD	Qc	QB	QA
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	0	0	0

As the clear input is given to be synchronous so it waits upto the next clock pulse to clear the counter & hence the counter get's cleared during the 7th clock pulse.

 \therefore mod of counter = 7

04. Ans: (b)

 $2\Delta t$.

Sol: The given circuit is a mod 4 ripple down counter. Q_1 is coming to 1 after the delay of

Outputs of counter is connected to inputs of decoder

Count	ter outputs	Deco	oder inputs	De	codei	outp	outs
Q_1	\mathbf{Q}_0	а	b	d ₃	d_2	d_1	d_0
0	0	0	0	0	0	0	1
0	1	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	1	1	1	1	0	0	0

The overall circuit acts as 4-bit ring counter n = 2

 \therefore k = 2² = 4, k-bit ring counter

06. Sol:	Ans: (b)			07.	Ans	:: (b))			
501.	CLK	Serial in= $\mathbf{D} \oplus \mathbf{C} \oplus \mathbf{D}$	ABCD	501:	I	K	0	ō	T - (I + O)	O_{n+1}
	0	B⊕C⊕D	1 0 1 0				×	×n	$\left(\begin{array}{c} \mathbf{I} = (\mathbf{J} + \mathbf{Q}_{n}) \\ (\mathbf{K} + \mathbf{O}) \end{array} \right)$	×II+I
	1	$1 \longrightarrow$	1 1 0 1		0	0	0	1	$(11 + Q_n)$ 0.1 = 0	ר 0
	$\frac{2}{3}$	$\begin{array}{c} 0 \longrightarrow \\ 0 \longrightarrow \end{array}$	$ \begin{array}{c} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{array} $		0	0	1	0	1.0 = 0	$1^{\int}Q_n$
	4	0	0 0 0 1		0	1	0	1	0.1 = 0 1 1 = 1	$-\begin{bmatrix} 0\\ 0 \end{bmatrix}_0$
	5	$\begin{array}{c} 1 \longrightarrow \\ 0 \longrightarrow \end{array}$	1 0 0 0 0 0 1 0 0		1	0	0	1	1.1 = 1	1
	7	$1 \longrightarrow$	1010		1	0	1	0	1.0 = 0	1 1
					1	1	1	0	1.1 - 1 1.1 = 1	$-\begin{bmatrix} 1\\0\end{bmatrix}_{\overline{Q}_n}$
	∴ After register be	7 clock pulses ecome 1010 agai	content of shi	ft ERING	K	$Q_n 0$	0	01	11	10
			ENGINE		0	40			$\langle \hat{1} \rangle$	
			<u>v</u>	•		·, 1	3			
			x			_ <u> </u>				(_1
					T =	$J \overline{Q}_1$	+	$\zeta Q_n =$	$(J+Q_n)(K+\overline{\zeta})$	$\overline{\underline{p}_n}$)
08.	Ans: 1.5			1			\geq			
Sol:		Clk Q_1 Q_2	Q ₃ Q ₄ Q	5 $Y = Q_3$	$+ Q_5$					
		0 0 1	0 1 0	0						
		1 0 0		1		1				
		$\begin{vmatrix} 2 \\ 2 \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$		ce0199	5					
		$\begin{vmatrix} 3 \\ 4 \end{vmatrix} \begin{vmatrix} 0 \\ 1 \end{vmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$								
		$\begin{bmatrix} 4 & 1 & 0 \\ 5 & 0 & 1 \end{bmatrix}$	$\mathbf{A}_{0}^{1} \mathbf{A}_{1}^{0} \mathbf{A}_{0}^{0}$				7			
	T1									
	The wave		output, Y is [A =	= +3 V]						
		0 T 2T 3T	4T 5T	,						
	Average r	$T_1 = 5T$								
	$P = \frac{V_{Ao}^2}{R}$	$ = \frac{1}{R} \left[{{_{T_1 \to \infty} \frac{1}{T_1} \int_{o}^{T_1} } \right]_{o}^{T_1} $	$y^{2}(t) dt = \frac{1}{RT_{1}} \left[$	$\int_{T}^{2T} A^2 dt +$	$\int_{3T}^{5T} A$	dt_{-}^{2}]			
	$=\frac{A^2}{RT_1}$	$\left[(2T - T) + (5T - T)\right]$	$-3T)] = \frac{A^2.3T}{R(5T)} =$	$=\frac{5^2.3}{10\times 5}=1$.5 m	N				
ACE	Engg. Publicatio	ons Hyderabad Delhi	Bhopal Pune Bhubaneswa	r Bengaluru Luc	know]	Patna C	Chennai	Vijayawa	da Vizag Tirupati K	ukatpally Kolkata

09. Ans: (b)

Sol:

Present	Next State		Outp	ut (Y)
State	$\mathbf{X} = 0$	X = 1	$\mathbf{X} = 0$	X = 1
А	Α	Е	0	0
В	С	Α	1	0
С	В	Α	1	0
D	Α	В	0	1
E	Α	С	0	1

Step (1):

By replacing state B as state C then state

B, C are equal.

Reducing stat	e table	ک		
Present state	Next state			
	X = 0	X = 1		
А	Α	Е		
В	В	Α		
В	В	А		
D	A	В		
Е	Α	В		

Step (2):

Reducing state table					
Present state	Next state				
	X = 0	X = 1			
А	А	Е			
В	В	А			
D	А	В			
E	А	В			

State D, E are equal, remove state E and replace E with D in next state.

Reducing state table				
Present state	Next state			
	X = 0 X = 1			
А	А	D		
В	В	А		
D	A B			
D	А	В		

Finally reduced state table is

	Reduced state table Present state					
Ş	4	X = 0	X = 1			
	A	А	D			
	В	В	А			
	D	A B				

 \therefore 3 states are present in the reduced state table

10. Ans: (c)

Sol: State table for the given state diagram

	State	Input	Output
5	S ₀	0	1
	S ₀	1	0
	S_1	0	1
	S ₁	1	0

Output is 1's complement of input.

11. Ans: (c)

Sol: In state (C), when XYZ = 111, then Ambiguity occurs Because, from state (C) \Rightarrow When X = 1, Z = 1 \Rightarrow N.S is (A) When Y = 1, Z = 1 \Rightarrow N.S is (B)

ACE Engg, Publications Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Bengaluru | Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata

Since 199

	ACE Engineering Publications	:14:	Digital & Microprocessors
12. Sol:	Ans: (c) For Asynchronous sequential circuits cloc is applied at one flip flop and the next stag receives clock from previous stage output.	se 13. Sol:	Ans: (d) Master slave JK flip flop is a edge triggered flip flop.
14. Sol:	Ans: (b) Divider Clips input voltage at Two predetermined 1 Square wave generator Narrow current pulse generator	: Bi s evels : Sch : Ast : Blo	stable multivibrator mitt trigger able multivibrator cking oscillator
15. Sol:	Ans: (a) A flip-flop is a bistable multivibrator. A flip-flop remains in one stable stat indefinitely until it is directed by an inpu signal to switch over to the other stabl state. Both statements are correct an statement - II is correct explanation of statement-I	16. Sol: at le dof	Ans: (a) The collection of all state variables (memory element stored values) at any time, contain all the information about the past, necessary to account for the circuit's future behaviour. A change in the stored values in memory elements changes the sequential circuit from one state to another. Both statements are correct and statement - II is correct explanation of statement-I.

14

Since 1995

Logic Gate Families

Chapter

01. Ans: (b)

Sol: V_{OH}(min):-

(High level output voltage)

The minimum voltage level at a Logic circuit output in the logic '1' state under defined load conditions.

Vol(max):-

(Low level output voltage)

The maximum voltage level at a logic circuit output in the Logical '0' state under defined load conditions.

V_{IL}(max):- (Low level input voltage)

The maximum voltage level required for a logic '0' at an input. Any voltage above this level will not be accepted as a Low by the logic circuit.

V_{IH}(min) :- (High level Input voltage)

The minimum voltage level required for logic '1' at an input. Any voltage below this level will not be accepted as a HIGH by the Logic circuit.

Fig: currents and voltages in the two logic states.

02. Ans: (b)

Sol: Fan out is minimum in DTL

(High Fan-out = CMOS)

Power consumption is minimum in CMOS. Propagation delay is minimum in ECL (fastest = ECL)

03. Ans: (b)

Sol: When $V_i = 2.5V$,

 Q_1 is in reverse active region

- Q₂ is in saturation region
- Q₃ is in saturation region
- Q₄ is in cut-off region

04. Ans: (d)

Sol: The given circuit can be redrawn as below:

05. Ans: (b)

Sol: As per the description of the question, when the transistor Q_1 and diode both are OFF then only output z = 1.

Χ	Y	Ζ	Remarks
0	0	0	Q_1 is OFF, Diode is ON
0	1	1	Q ₁ is OFF, Diode is OFF
1	0	0	Q_1 is ON, Diode is OFF
1	1	0	Q ₁ is ON, Diode is OFF

Hence $Z = \overline{X}Y$

06. Ans: (c)

Sol: Propagation delay time is less in Schottky transistor because it is not entering in to saturation region. Schottky transistors operate in active region whenever it is ON.

07. Ans: (b)

Sol: To obtain high Switching speed BJT operated in active region. In the active region BJT works as a linear element.

08. Ans: (a)

Sol: When transistor switches are to be used in an application where speed is a premium, it is better to reduce the storage time.

It is comparatively easy to reduce storage time rather than the rise time and fall time of a transistor switch. Both statements are true and statement-II is the correct explanation of statement-I.

09. Ans: (a)

Sol: The TTL NAND gate in tri-state output configuration can be used for a bus arrangement with more than one gate output connected to a common line.

The tri-state configuration has a control input, which control the bus line.

Both statements are true and statement-II is the correct explanation of statement-I.

Since 1995

Semiconductor Memories

Chapter

- 01. Ans: (b) Sol: Square of a 4 - bit number can be at most 8 - bit number. $\{ i.e (1111)_2 = (15)_{10} \}$
 - $[(15)_{10}]^2 = (225)_{10}\}.$

Therefore ROM requires 8 data lines.

Data is with size of 4 bits

ROM must require 4 address lines and 8 data lines

 $ROM = 2^n \times m$

n = inputs (address lines), m = output linesn = 4, m = 8.

02. Ans: (a)

Sol: ROM is used to design a combinational circuit. The number of address lines of the ROM is equal to the number of input variables in the truth table.

ROM is represented as $2^n \times m$ where 2^n inputs and m output lines.

[Where n = address bits]

03. Ans: (b)

Sol:

	8	4	2	1	2	4	2	1	2421
		i/p	S			0/1	p s		Outputs
	X3	X_2	X_1	X_0	Y ₃	Y ₂	Y_1	Y ₀	
	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	0	0	1	1
	0	0	1	0	0	0	1	0	2
	0	0	1	1	0	0	1	1	3
	0	1	0	0	0	1	0	0	4
	0	1	0	1	1	0	1	1	5
	0	1	1	0	1	1	0	0	6
	0	1	1	1	1	1	0	1	7
	1	0	0	0	1	1	1	0	8
	1	0	0	1	1	1	1	1	9
	1	0	1	0	×	×	×	×	-
	1	0	1	1	×	×	×	×	
	1	1	0	0	×	×	×	×	
	1	1	0	1	×	×	×	×	
	1	1	1	0	×	×	×	×	
	1	1	1	1	×	×	×	×	
Γ	he o	utpu	ts ar	e in	242	21	BCE) nur	nber
	na Dal			Tuda		Julia: D	lh amal	Dune	Dhuhamaanna I

At the rising edge of the First clock pulse the content of location $(0110)_2 = 6 \Rightarrow 1010$ appears on the data bus, at the rising of the second clock pulse the content of location $(1010)_2 = 10_2 \Rightarrow 1000$ appears on the data bus.

05. Ans: (b) Sol: 1-bit SRAM memory cell is

In 2 Inverters, output of the 1^{st} Inverter is connected to Gate Input of 2^{nd} Inverter and vice versa.

06. Ans: (c)

Sol: SRAM is relatively high speed memory that stores the most recently used instructions
∴ It is preferred when the requirement is of lower access time.

07. Ans: (b)

- Sol: SRAM : This contains conventional storage like latches (BJT or MOSFET) and has both Read and Write operation.
 - ROM : This contains conventional storage like latches (BJT or MOSFET) and it is non volatile.
 - PLA : This contains a set of AND, OR and INVERT logic gates and can be programmed.
 - DRAM : This contains only MOSFET's and needs periodic refreshing.

08. Ans: (d)

09. Ans: (a)

- Sol: SRAM is more expensive and less dense than DRAM and is therefore not used for high capacity, low - cost applications such as main memory in personal computers.
- Sol: In DRAM the bit is stored as a charge in capacitor, and it is made up of MOS transistors.

A/D & D/A Converters

Chapter

01. Ans: (b)

Sol:

CLK	Counter	Decoder	V ₀
	$Q_2 \ Q_1 Q_0$	$D_3 D_2 D_1 D_0$	
1	0 0 0	0 0 0 0	0
2	0 0 1	0 0 0 1	1
3	0 1 0	0 0 1 0	2
4	0 1 1	0 0 1 1	3
5	1 0 0	$1 \ 0 \ 0 \ 0$	8
6	1 0 1	1 0 0 1	0
7	1 1 0	1 0 1 0	10
8	1 1 1	1 0 1 1	10

Sol: $V_R \bullet_{\neg}$

$$\begin{split} R_{equ} &= (((((2R||2R) + R)||2R) + R)||2R) + R)||2R) \\ R_{equ} &= R = 10 k \, \Omega \, . \end{split}$$

 $I = \frac{V_R}{R} = \frac{10V}{10k} = 1mA.$

R

Current division at $\frac{I}{16}$

$$=\frac{1\times10^{-3}}{16}=62.5\,\mu\,A$$

03. Ans: (c)

Sol: Net current at inverting terminal,

 $I_i = \frac{I}{4} + \frac{I}{16} = \frac{5I}{16}$

$$V_0 = -I_i R = -\frac{5I}{16} \times 10k\Omega$$
$$= \frac{-5 \times 1 \times 10^{-3} \times 10 \times 10^3}{16} = -3.125V$$

04. Ans: (d)

Sol: Given that
$$V_{DAC} = \sum_{n=0}^{3} 2^{n-1} b_n$$
 Volts
 $V_{DAC} = 2^{-1} b_0 + 2^0 b_1 + 2^1 b_2 + 2^2 b_3$
 $\Rightarrow V_{DAC} = 0.5b_0 + b_1 + 2b_2 + 4b_3$

Initially counter is in 0000 state

	Up	V _{DAC} (V)	o/p of
	counter o/p		comparator
	b ₃ b ₂ b ₁ b ₀		
	0 0 0 0	0	1
	0 0 0 1	0.5	1
	0 0 1 0	1	1
	0 0 1 1	1.5	1
	0 1 0 0	2	1
	0 1 0 1	2.5	1
5	0 1 1 0	3	1
	0 1 1 1	3.5	1
	$1 \ 0 \ 0 \ 0$	4	1
	1 0 0 1	4.5	1
	$1 \ 0 \ 1 \ 0$	5	1
	1 0 1 1	5.5	1
	$1 \ 1 \ 0 \ 0$	6	1
	1 1 0 1	6.5	0

When $V_{DAC} = 6.5$ V, the o/p of comparator is '0'. At this instant, the clock pulses to the counter are stopped and the counter remains in 1101 state.

 \therefore The stable reading of the LED display is 13.

10. Sol:	Ans: (a) Dual-slope A/D converter is the most preferred A/D conversion approach in digital multimeters. Dual-slope A/D converter provides high accuracy in A/D conversion, while at the same time suppressing the hum effect on the input signal.	 13. Ans: (a) Sol: The output of an 8-bit A to D converter is 40H for an input of 2.5V. ADC has an output range of 00 to FFH for an input range of -5V to +5V. Both Statements are true and statement-II is the correct explanation of statement-I.
11	Both Statements are true and statement-II is the correct explanation of statement-I.	 14. Ans: (c) Sol: Digital ramp converter is the slowest ADC. Conversion time for digital ramp ADC is not N²T.
Sol:	SAR type ADC : Settling time for n-bits is (n+2) T clock pulses Flash ADC : (2^n-1) comparators required for n bit dual	15. Ans: (b)Sol: Resolution for n-bit A/D converter in percentage.
	Dual slope ADC : Works well even in noisy environment	$=\frac{1}{2^{n}-1}\times 100$
	Counter DAD : Settling time dependent on the input	$=\frac{1}{2^{12}-1}\times 100$
12.	Ans: (c)	$= 2.443 \times 10^{-4} \times 100$
Sol:	Dual slope ADC : Hum rejection approximation	=0.02441
	Counter-ramp ADC : Conversion time dependent on single amplitude	
	Successive ADC : Fixed conversion time, depends on the number of bits	1995
	Simultaneous ADC: High speed operation	
	A	

Architecture, Pin Details of 8085 & Interfacing with 8085

Chapter

To provide \overline{cs} as low, The condition is

 $A_{15} = A_{14} = 0$ and $A_{13} A_{12} = 01$ (or) (10)

i.e $A_{15} = A_{14} = 0$ and $A_{13} A_{12}$ shouldn't be 00, 11.

Thus it is $A_{15} + A_{14} + [A_{13}A_{12} + \overline{A_{13}}, \overline{A_{12}}]$

07. Ans: (a) Sol:

 A_{15} , A_{14} are used for chip selection

A13, A12, A11 are used for input of decoder

A ₁₅ A ₁₄	A ₁₃ A ₁₂ A ₁₁	A ₁₀ A ₀
Enable of	Input of decoder	Address of
decoder		chip

Size of each memory block = $2^{11} = 2K$

~~~

08.	Ans: (a)	10.	Ans: (a)
Sol:	The data path contains all the circuits to	Sol:	A processor can reference a memory stack
	process data within the CPU with the help of		without specifying an address.
	which data is suitably transformed. It is the responsibility of the control path to	199	The address is always available and automatically updated in the stack pointer.
	generate control and timing signals as required by the opcode.		Both Statements are true and statement-II is the correct explanation of statement-I.
	Both Statements are true and statement-II is		
	the correct explanation of statement-1.	-11.	Ans: (c)
		Sol:	The programmer has to initialize the stack
09.	Ans: (b)		pointer based on design requirements.
Sol:	Program counter is a register that contains	12.	Ans: (b)
	the address of the next instruction to be executed.	Sol:	The DMA technique is more efficient than the Interrupt-driven technique for high
	ID (Instanction Desister) is not seen it is to		volume I/O data transfer.
	programmer.		The DMA technique does not make use of the Interrupt mechanism.
	Both Statements are true but statement-II is not correct explanation of statement-I.]	Both Statements are true but statement-II is not correct explanation of statement-I.

13. Ans: (c)

Sol: A microcontroller has onchip (inbuilt) memory, where as a microprocessor has no such internal memory.

The program to be run by microprocessor is to be store in separate memory (E^2PROM) chip and to be interfaced microprocessor.

14. Ans: (d)

Sol: INTR is a non vectored interrupt. As such external hardware is required to supply vector address. SIM is not used with respect to INTR. The SIM is used for selective local masking of three hardware maskable vectored interrupts (RST 7.5, RST 6.5, RST 5.5)

Chapter **10** Instruction set of 8085 & Programming with 8085

- → In further remaining 254 iterations, the value in L is decremented from 0 to 0 i.e., 256 times
 ∴ 'DCRL' instruction gets executed for
 - $\Rightarrow [255 + (254 \times 256)]$

 \Rightarrow 65279 times

07. Ans: (a)

Sol: "STA 1234H" is a 3-Byte Instruction and it requires 4 Machine cycles (Opcode fetch, Operand1 Read, Operand2 Read, Memory write). The Higher order Address (A₁₅ – A₈) sent in 4 machine cycles is as follows Given "STA 1234" is stored at 1FFEH

٠						
1	•	e	•	,		

Instruction

1FFE, 1FFF, 2000 : STA 1234H

Address

Machine cycle	Address (A ₁₅ -A ₀)	Higher order address (A ₁₅ -A ₈)
1. Opcode fetch	1FFEH	1FH
2. Operand1 Read	1FFFH	1FH Sinc
3. Operand2 Read	2000H	20Н
4. Memory Write	1234H	12H

i.e. Higher order Address sent on A₁₅-A₈ for4 Machine Cycles are 1FH, 1FH, 20H, 12H.

08. Ans: (d)

Sol: The operation SBI BE_H indicates A-BE \rightarrow A where A indicates accumulator Thus the result of the subtraction operation is stored in the accumulator and the contents of accumulator are changed.

09. Ans: (c)

Sol: If the content in register B is to be multiplied with the content in register C, the contents of register B is added to the accumulator (initial value of accumulator is 0) for C times.

10. Ans: (c)

- **Sol:** Push takes 12T states due to pre decrement and pop takes 10T states.
- 11. Ans: (d)

Sol:

Given

- $A = A7_{H} = 10100111 0$
- After executing RLC \Rightarrow A = 01001111 1

```
A = 4F_H and cy = 1
```

CY

12. Ans: (b)

Sol: OUT: output data from accumulator to a port with 8-bit addresses. The contents of the accumulator are copied into the I/O ports specified by the operand.

IN: Input data to accumulator from a port with 8-bit address. The contents of the input port designated in the operand are read and loaded into the accumulator.

13. Ans: (a)

Sol: When RET instruction is executed by any subroutine then the top of the stack will be popped out and assigned to the PC.

14. Ans: (b)

Sol:

PUSH PSW \Rightarrow 1 Byte instruction

 $\Rightarrow OPFC + 2T + MW1C + MW2C$

 \Rightarrow Special OPFC + MW1C + MW2C

 \Rightarrow 3 Machine cycles

Since 1995

15. Ans: (c)

Sol: Flags are not affected for execution of data transfer instructions since there is no involvement of ALU

16. Ans: (a)

Sol: Immediate addressing : LXI H, 2050H Implied addressing : RRC Register addressing : MOV A.B Direct addressing : LDA 30FF

17. Ans: (c)

Sol: 'DAD' instruction adds contents of HL register pair with specified register pair contents and stored in HL register pair.

18. Ans: (a)

Sol: Format of instruction Template:-

Label Mnemonics operand comments

19. Ans: (b)

Sol: Implicit addressing mode : RAL

> Register-indirect addressing mode : MOV A, M

Immediate addressing mode : JMP 3FAOH

Direct addressing mode : LDA 03FCH

20. Ans: (a)

- Sol: Total no. of machine cycles in CALL instruction is 18.
 - 1. Opcode fetch=6T
 - 2. Two memory READ machine cycles to read subroutine address = 3T + 3T = 6T
 - 3. Two memory WRITE machine cycles on the stack = 3T + 3T = 6T
 - : I/O was not used in CALL instruction

21. Ans: (d)

- Sol: PCHL : Transfer the contents of HL to the program counter.
 - SPHL : Transfer the contents of HL to the stack pointer
 - XTHL : Exchange the top of the stack with the contents of HL pair
 - XCHG : Exchange the contains of HL with those of DE pair

Chapter **11** 8086 Microprocessor

01. Ans: (c)

Sol: 16-bit microprocessor has more speed and more data handling capability compared to 8-bit microprocessor.

02. Ans: (c)

Sol: In case of a 16-bit processor, a single instruction is enough to process a function. For processing the same function a long sequence of instructions will be required for a 8-bit processor.

03. Ans: (c)

Sol:

- 8086 μp has 20 Address output lines. As such, a total of about 2²⁰ i.e., 1MB memory can be directly addressed by 8086 μP
- The programming model of 8086 µP has the following registers AX, BX, CX, DX CS, DS, SS, ES Flag registers: SP, IP, BP, SI, DI i.e., a total no. of 14 registers
- There are total 9 flags in 8086 µp and the flag register is divided into two types.
 - (a) Status flags: The six status flags are
 - 1. Sign flag (S)
 - 2. Zero flag (Z)
 - 3. Auxiliary carry flag (AC)
 - 4. Parity flag (P)
 - 5. Carry flag (CY)
 - 6. Overflow flag (O)
 - (b) Control flags: The three control flags are
 - 1. Directional flag (D)
 - 2. Interrupt flag (I)
 - 3. Trap flag (T)

D ₁₅	D ₁₄	D ₁₃	D ₁₂	D ₁₁	D ₁₀	D ₉	D_8	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0
				0	D	Ι	Т	S	Z		AC		Р		CY

Fig: Format of flag register

Since 1995

04. Ans: (c)

Sol: Setting Trap flag puts the processor into single mode for debugging. In single stepping microprocessor executes an instruction and enters into single step ISR. If TF = 1, the CPU automatically generates an internal interrupt after each instruction, allowing a program to be inspected as it executes instruction by instruction.

05. Ans: (b)

Sol: For 8086 μ P, the jump distance in bytes for short jump range is forward 127 and backward 128.

06. Ans: (a)

Sol: Number of address lines in 8086 is 20.Address space is $2^{20} = 1$ MB

15	ACE
	Engineering Academy
VALUE V	

07. Ans: (d)

Sol: The instruction queue length in 8086 is 6 bytes and in 8088 is 4 bytes.

08. Ans: (d)

Sol: 8086 microprocessor can be operated in multiprocessor configuration when MN/\overline{MX} input connected to ground.

09. Ans: (d)

Sol: A 16 bit μ P completes access of a word starting from even address in one bus cycle.

10. Ans: (b)

Sol: In relative base indexed Addressing mode, the 20 bit physical address of Data segment location is calculated as followed.

P.A = (D.S register)×10H + (B× register) + (DI register) + 16 bit displacement = 2100H×10H + 0158H + 1045H + 1B57H = 21000H + 2CF4H

= 23CF4H

11. Ans: (a)

Sol: Effective Address =
$$(C.S \text{ reg}) \times 10H$$

+ $(IP \text{ reg})$
= $1FABH \times 10H + 10A1H$
= $20B51H$

12. Ans: (c)

Sol: SI is the source index, used as a pointer to the current character being read in a string instruction. It is also available as an offset to add to BX or BP when doing indirect addressing.

DI is the destination index, used as a pointer to the current character being written or compared in a string instruction. It is also available as an offset.

13. Ans: (b)

Sol: The intermediate wait states are always, inserted between the clock cycles T_2 and T_3 .

14. Ans: (a)

Sol: For a type 0 interrupt, the 8086 pushes the flag register on the stack, resets IF and TF and pushes the return addresses on the stack.

15. Ans: (c)

Sol: The interrupt vector table IVT of 8086 contains the starting CS and IP values of the interrupt service routine.

16. Ans: (d)

Sol: The 8086 arithmetic instructions work on Signed and unsigned numbers Unpacked BCD data

17. Ans: (c)

Sol: LOOP and ROTATE instructions of an 8086 µp uses the contents of a CX register as a counter.

18. Ans: (c)

Sol: In a multi-processor configuration, the two co-processor instruction sets must be disjoint.

19. Ans: (b)

Sol: MOV [1234 H], AX

Move the contests of register AX to memory offset 1234 H and 1235 H.

Chapter **12** *Microcontroller*

01. Ans: (c)

Sol: Out of the 128-byte internal RAM of the 8051, only 16 bytes are bit-addressable. The bit-addressable RAM locations are 20H to 2FH

02. Ans: (a)

Sol: The internal RAM size is 128 bytes and internal ROM size is 4KB.

03. Ans: (a)

Sol: In the 8051, the stack pointer points to the last used location of the stack. As we push data onto the stack, the stack pointer is incremented by one.

04. Ans: (c)

Sol:

 $(A) = 9CH = 1001 \ 1100$ $+64H = 0110 \ 0100$ $0000 \ 0000$

AC = 1 since there is a carry from bit D3 to bit D4

CY = 1 since there is a carry from bit D7

P = 0 since there are zero 1s in result i.e., Even Parity.

05. Ans: (c)

Sol: ORG is a Assembler directive that directs the assembler to store the program code from 2000H. This will not be converted into machine

This will not be converted into machine code.

06. Ans: (c)

Sol: RAM memory space allocation in the 8051

Sol: The given question is in incorrect format. The question is: On power UP, the 8051 uses
RAM location ______ for register R0. The answer is 08H.

Chapter **13** *Embedded Systems*

01. Ans: (b)

Sol: A real time embedded system is defined as, a system which gives a required output in a particular time. These types of embedded systems follow the time deadlines for completion of a task.

So, Microwave oven is a real time embedded system.

02. Ans: (b)

Sol: A system on chip (SOC) is an integrated circuit commonly applied in the area of embedded system.

03. Ans: (d)

Sol: When selecting a processor in an embedded system one should take instruction set, processor ability and max bits in the operand into consideration.

04. Ans: (a)

Sol: The Inter-integrated circuit (I2C) is a protocol intended to allow multiple slave digital integrated circuits (chips) to communicate with one or more master chips.

