Since 2011

ACE

GATE | PSUs

Source Program

Lexical

Analysis
Syntax
Analysis
Intermn

Table nediate

Code f
Management Generation I Handling
Code
Optimization
Code

Generation

Error

Target Program

COMPUTER SCIENCE &
INFORMATION TECHNOLOGY

COMPILER DESIGN

Volume-1 : Study Material with Classroom Practice Questions

Compiler Design

(Solutions for Vol-1_Classroom Practice Questions)

01.

Sol:

02.

Sol:

03.

Sol:

04.

Sol:

0s.

Sol:

06.

Sol:

07.

Sol:

2. Lexical Analysis

Ans: (a)

Comments are deleted during lexical

analysis, by ignoring comments.

Ans: (a)
The expansion of macro is done as the input
tokens are generated during the lexical

analysis phase.

Ans: (a)
As soon as an identifier identifies as
lexemes the scanner checks whether it is a

reserved word.

Ans: (¢)

Type checking is a semantic feature.

Ans: (a)

Compiler identifies only Grammatical

errors, but not logical & runtime errors.

Ans: (d)
A compiler that runs on one machine and
generates code for another machine is called

cross compiler.

Ans: (b)
The object code which is obtained from
Assembler is in Hexadecimal, which is not

executable, but it is relocated.

08.

Sol:

09.

Sol:

10.

Sol:

11.

Sol:

12.

Sol:

13.

Sol:

14.

16.

Sol:

Ans: (b)

Syntax analysis can be expanded but the
CFG describes the syntax becomes
cumbersome.

Ans: (a)

The identifiers are entered into the symbol

table during lexical analysis phase.

Ans: (a)
As 1/0O to an external device is involved

most of the time is spent in lexical analysis

Ans: (a)
The lex utility creates a DFA from the

regular definition.

Ans: (b)

The specifications of lexical analysis we
write in lex language, when it run through
lex compiler it generates an output called

lex.yy.c.

Ans: (a)
Parenthesis matching cannot be done at the

lexical analysis phase.

Ans: 20 15. Ans: 7

Ans: (b)

if,(,X,>:, Y,)a{a X, = X, +a Y7;7}:
elsev {: X, = X, - Y7 ;a }a ;:

| ACE Engineering Publications >Hydembad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow | Paina | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally| Kolkata |

‘.:: E.:Enginé}ﬁncgubﬁcaﬁom 12 Compiler Design
17. Ans: (d) 03. Ans: (a)
Sol: All are tokens only. Sol: The grammar which is both left and right

recursive is always ambiguous grammar.
18. Ans: (¢)

Sol: Syntax tree is input to semantic analyzer. | 04- Ans:(d)

Character stream is input to lexical analyzer. | SOl

Intermediate representation is input to code

generation. Token stream is input to syntax

[ox

o
c* _t/ﬁ 9] 95}
o o

analyzer.

19. Ans: 18

20. Ans: (b) Hence the option (d) is correct.

3. Parsing Techniques 05. Ans:2

Sol:

01. Ans: (b) A\
& E +
Sol: As + is left associative the left most + T /R A\ T

should be reduced first id E +

02. Ans: (d)
Sol:

or g

O — e
v 4_(04—@4—(/)
?UJ

5
|

S
|
£ /NN e /N
> bT a T a S b S
S > SKSSkSSk | Sgk e € | |
€ €

” k
—g"aghaga
So the sentence has an infinite number of

derivations. 07. Ans: (a)

Sol: S >Ad — Sad is indirect left recursion.

| ACE Engineering Publications >Hydembad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow | Paina | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally| Kolkata

(1T

T
9

08.

Sol:

09.

Sol:

10.

Sol:

11.

Sol:

12.

Sol:

13.

Sol:

14.

Sol:

(4

>
)
L
W

ACE .
¥ Engineering Publications PO

CSIT-Postal Coaching Solutions

Ans: (¢)

The production of the form A — A o/f is
left recursive, and can be eliminated by
replacing with

A — BA'

A' > aAlle

Ans: (d)
1 is least precedence and left associative

+ is higher precedence and right associative

Ans: (¢)
Precedence from low to high is 1, +, id.

Ans: (b)

—_>%

Ans: 144
3-2%4$2%382
1*4$2%382
1*16*9

16*9

=144

Ans: (b)
Rule ‘a’ evaluates to 4096
Rule ‘b’ evaluates to 65536

Rule ‘¢’ evaluates to 32

Ans: (¢)
A bottom up parsing technique builds the
derivation tree in bottom up and simulates a

rightmost derivation in reverse

15.

Sol:

16.

Sol:

17.

Sol:

18.

Sol:

19.

Sol:

20.

Sol:

Ans: (d)
Operator precedence parser is a shift reduce

parser.

Ans: (¢)
first(s) = first(A) L first(a) U first (Bb)
={d} U {f, a} U{e, b}={a,b,d.e,f}

Ans: (d)
{$, s} both follow additional.

Ans: (¢)
first(A) = {a, c}, follow(A) = {b, c}
first(A) N follow(A) = {c}

Ans: (d)

Follow(B) = First(C)UFirst(x) U Follow (D)
= {y, m}uU {x} U Follow(A) UFirst(B)
~ {y,m,x} U {$} U {w, x}
={w, x,y, m, $}

Ans: (a)

Follow (S) = {$}
Consider S — [SX]
Follow (S) = First (X)

= {+,_a b} o {]}
= {+a) b:]}
Consider X — + SY

Follow(S) = First (Y)
= {—} U Follow(X)
={-tvicl}
={=c 1}

| ACE Engineering Publications >Hydembad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow | Paina | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally| Kolkata

(1T

b{' ‘}\I
W L
L'} W
w e

21.

Sol:

22,

Sol:

23.

Sol:

(2

ACE "
Engineering Publications il

Compiler Design

ConsiderY - —-S X ¢
Follow(S) = First(X)
= {+, —, b} U First(c)
= {+,—,b,c}
. Follow(S) = {+,—,b,c,], $}

Ans: (¢)

Follow (T) = {+, $}

First (S) = {a, +, €}

<. Follow (T) N First (S) = {+}

Ans: (d)
Follow(A)=first(B)UFollow(S) U Follow(B)
={e} U {f} U {c, d}={c,d,e.$}.

Ans: (d)

Follow (S)={ $, a,d}
Follow (A) = {a}
Follow (B) = {a,d}
Follow (C) = {$, a, d}

24. Ans: (¢)
Sol: The predictive parsing table.
identifier * $
<expression> | <expression>—
<factor><rest>
<rest> <rest>— <rest>—e
*<expression>
<factor> <factor>
— identifier
25. Ans: (¢)
Sol: The grammar is not LL(1), as on input

symbol a there is a choice.
The grammar is not LL(2), as input ab there
is a choice.

26.

Sol:

27.

Sol:

28.

Sol:

29.

Sol:

30.

Sol:

31.

Sol:

The grammar is LL(3) as on input abc there

1s not choice.

Ans: (¢)

To distinguish between

S — if expr then stmt

& S — if expr then stmt else stmt

We need a look ahead of 5 symbols.

Ans: (¢)
* has a higher precedence than +.
Consider
E
}
E+T
e,
T T*F
bl
F fF i
b
id id
Ans: (a)

A left recursive grammar cannot be LL(1).

Ans: (¢)
A — ¢ production is added in ‘A’ row and

Follow(A) column.

Ans: (d)
S—aSbs and S—e¢ both appear in ‘S’ row

and ‘a’ column.

Ans: (b)
The first 2 symbols of ‘S’ production is

distinct hence the grammar is LL(2).

| ACE Engineering Publications >Hydembad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow | Paina | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally| Kolkata |

(1T

‘.:: :::Enginé}rixclg%ublimﬁons :5: CSIT-Postal Coaching Solutions
32. Ans: (d) 40. Ans: (d)
Sol: The rightmost derivation is Sol: Possible relations with ‘¢’ are d>c and
<accumulated sum>—<accumulated sum> c>$ only.
*<number>
—<accumulated sum>+<number>* number
- 41. Ans: (b)
— number + number * number
Sol: The grammar E — E + E/a can have an
33. Ans: (d) operator precedence parser but not an LR
Sol: An operator grammar is e-free grammar and parser.
no two non terminals are adjacent.
42. Ans: (a)
34. Ans: (c) Sol: The grammar
Sol: An operator grammar is ‘€’ free grammar E->E+T|T.T—i
and 1o two non-terminals are adjacent is left recursive. So it is not LL(1) but is
LR(0). So (a) is true & (b) is false.
35. Ans: () The grammar
Sol: An operator grammar is ‘e¢’-free grammar D] e
and has no two adjacent non-terminals. A=l
has the LR(0) machine
36. Ans: (d)
. .. S > .a S — a.
Sol: és per norr.na.l HLL rules exponentiation is S s aA a_ S aA
right associative where as —, +, * are left A— b
associative.
37. Ans: (d) Hence not LR(1) but is SLR(1).
Sol: Lead (S) = {a} U {c} U Lead (B) U {d}
43. Ans: (d)
= { aﬂc9d’e}
Sol: The grammar
38. Ans: (b) E—-E+E|E*E |i
Sol: Trail (E) = {+} U Trail(T) Can have a shift reduce parser if we use the
= i+ ¥} Trail(F) precedence and associativity of operations.
= % 1
%), id} The operator precedence technique works
39. Ans: (b) with some ambiguous grammars.
. Ans:
Sol: Lead (E) >+ and lead (E) contains {+, 1, id}

| ACE Engineering Publications >Hydembad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow | Paina | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally| Kolkata

S, ACE
v VEngineeri cati :6: Compiler Design
"\l Engineering Publications p 8
44. Ans: (d) 49. Ans: (a)
Sol: The grammar Sol: The LR(0) machine for the grammar
S—alA, A—a . .
A, <life> — . <session> <session> <session>— play. <session>
is neither LL(1) nor LR(0) & is ambiguous. <session> — . play <session> <sesslon> — .<sesslon> <session=>
) — <session> — . rest <session> — .play <session>
No ambiguous grammar can be LL or LR. <session> — .rest
<session>
45. Ans: (d) play Acsesgion>| <session> U
A 4 v
. . - - X play
Sol: No ambiguous grammar can be LR(1). <life> — <session> <session> life> — <session> <session>.
<session> — . play <session>
<session> — . rest
46. Ans: (¢)

rest
. rest rest
Sol: The grammar lqessiop \
S— Aa|Bb session> — rest.

<life> — <session> <session>.

A—c¢
B — g is LL(1) but not LR(0)
The LR(0) machine has a conflict. 50. Ans: (b)
S — .Aa ﬁ,| S Aa l_a,| S - Aa. | Sol: The LR(0) machine
S — .Bb E — FR
Tla-.e E'|S—>B.b l—b>|S—>Bb.| R — +F/e
SR S . B id
Boe. conflict N
E—FR E — FR.
The grammar is] II;Z: leR F E: '*SE]
S—alab : P
Is LR(2) & not LR(1). id - .
F —>;;i "R N *
47. Ans: (d) . E— FR T
Sol: Every LR(0) grammar is SLR(1) v/ F—.d

Every SLR(1) grammar is LALR(1)
Every LALR(1) grammar is LR(1)
The grammar S — a is both LL(2) & LR(0) | S51. Ans: (b)

trivially. Sol:
S'—.8
S—.SB
48. Ans:(b) S— A
Sol: Every LL(1) is LR (1) A—.a

| ACE Engineering Publications >Hydembad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow | Paina | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally| Kolkata

(1T

‘.:: E':Enginé%rixclg%ublimﬁons 17 CSIT-Postal Coaching Solutions
52. Ans:7 56. Ans: (d)
Sol: Sol: The grammar is ambiguous.
) A A
(1) | |
S'>.S
S A+A Or A+A
Sls 3) (6) b l }
S—.AA SoAA S—AA. A+TA T 1 A+A
A—>.aA A AsaA | a b b
A—>Db Asb @ i i 11
i(s) There are two derivation trees for the
a
(4)A) sentence i + 1 + i. As the grammar is
|b (5) i:aaﬁ) A—aA. ambiguous it cannot be LL or LR. So, (a),
A—b. A—>b T(“) (b), (c), are ruled out. The answer is (d).
&)

53. Ans: (¢)
Sol: The given grammar is LR(0) and every
LR(0) is LR(1).

54. Ans:2
Sol:
TIE-T
1
EoBl IromsfeS°R
E—.E F conflict
T
E—.T
T—.TH
F
E|g! +
T—.F E' —E.
Fo idl|E—E+T |EERT
: T—.T*F T
T_>'.F E—E+T. S_R
Foid b paple> R
conflict

55. Ans: (a)
Sol: The grammar is LL(1), LR(0), SLR(1),
LALR(1) & LR(1).

57. Ans: 2
Sol: The LR(0) items of the grammar is
s'—.s d A —dl
S — . AaAb B —d.
S — . BbBa
A—.d
B—.d
Reduce — Reduce conflict.
58. Ans: (a)
Sol: S5 S8
S—.aAd,$|p | S—aAdS$
S — bBd,$ ["]S—aBe$
T 'S— .aBe, $ A—.cd
S — bAe, B—.ce
VYC ®
b A—c.,d
S—bBd,$ B—c,e
S —b.Ae,$
B — .C, d c A —C., e @
A—.ce » B—c.,d

Consider the partial LR(1) machine shown
above. The states X & () have a common

core. However if we merge the sates to

| ACE Engineering Publications >Hydembad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow | Paina | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally| Kolkata

Enginé}ﬁncgubﬁmﬁom :8: Compiler Design

obtain the LALR(1) machine we will end up 61. Ans:(d)
with conflicts. So the grammar is LR(1) but Sol: g,

I Iy
not LALR(T). $—>.8,8 | b| SobAcS |d] S—>bd.a$
S— .Aa, $ S—b.da, $ A—d.c
S — bAc, $ A—>.dc a
59. Ans: (a) S —.dc,$ Is
Sol: S — .bda, $ L R
Asda 9] ssdes - S—bda. 3
A—d.,a y I
S— .Aa, $ S—dc,$
S—.bAc,$ | b |S—DbACS
S — Bc, $ S—bBa$ =
~’| S— .bBa,$ A—.dc
g — ((11 a B _d) d.a As there is no conflicts the grammar is in
—.d,c ! "
d ® A—d,c LALR(I)
A ;1 B—d,a
B—d,c 62. Ans: (¢)
Sol: S—.A.$ S—. A,$
Consider the partial LR(1) machine above. A—. AB, $/ Follow (A) = A—. AB, $/b
The states X&) have a common core but A—., §/ Follow (A) A—., $/b

different look ahead sets. If we merge

63. Ans: (d
®&Y) So obtain the LALR(1) a conflict @

Sol:
arise. g
S' S,
1 s
$'—> 8,8 S>S.a,$
60. Ans: (b) S —.a8, § Reduce-Conlict
. . S —>.Sa, $ -Reduce-Contlic S-R Conflict
Sol: LR(1) items of the grammar is Soa$ a
i S—as,$ S S—>aS.$
S—a,$
> S—S.a,
@ @ o) S—.a, s, S—Sa.$, S—.a,$ —S.a3
A'—> A5 A —>a ASb No. of conflicts=2
A—.aA,8/b 3| A > aA, $b |A]A > aA. $b
A— Ab,Sb[1A > .Ab,$b | |A—> Ad, $b
A — .d,$/b A— d, $/b _lb
64. Ans: (¢)
A > Ab., $/b I:
Sol: s'5 8.8
S—>.L=R,$
Item 3 has Shift-Reduce conflict. S>.R,$
L—. *R,=/$
L—.id,=/$
R—L,$

| ACE Engineering Publications >Hydembad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow | Paina | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally| Kolkata

-,
L5 4‘}

T
s

v ACE 9.
_‘:EnglneenngPublm,uons s

CSIT-Postal Coaching Solutions

65. Ans: (¢)
Sol: The grammar is only LR(1)

66. Ans: (d)
Sol: The grammar is LL(1)

S'—> S
S - .(S)
S —>.

Every LL(1) is LR (1)
67. Ans: (b)

68. Ans: (b)
Sol: SLR(1) & LALR(1) have the same number
of states. LR(1) may have more.

69. Ans: 10
Sol: The number of states in both SLR(1) and
LALR(1) are same.

70. Ans: (¢)

Sol: YACC uses LALR (1) parse table as it uses
less number of states requires less space and
takes less time for the construction of parse

tree.

4. Syntax Directed Translation Schema

01. Ans: (¢)
Sol: SDT is part of semantic Analysis

02. Ans: (¢)
Sol: The attribute ‘val’ is synthesized and the
SDD is S-attributed and every ‘S’-attributed

1s L-attributed definition

03. Ans: (¢)
Sol: Given SDT counting the number of a’s and

b’s in a given string.

04. Ans: (¢)
Sol: Forinput:a+b—c

E=—-+abc
PN
E=+ab _ TTC
.Y
|

05. Ans: (¢)
Sol:

S
|ﬂ\
b/‘\

S S c
|

a b

Bottom up traversal of the parse tree results
the output: 10.

| ACE Engineering Publications >Hydembad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow | Paina | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally| Kolkata |

‘.:: ::Mn%bﬁcaﬁom :10: Compiler Design
06. Ans: (b) 09. Ans: (a)
Sol: S— S; S, ¢{ S.val =S;.val * S;.val — 4} Sol: The leftmost derivation for aaaais s
S > a {S.val = 6} S —aS VAN
- — aaS v
S — b {S.val =2} 3%\3
The rightmost derivation of ‘abc’ is — aaasS 5y
S= SSc > aaaa %\2
— Sbe The dependency graph a g
=abc lrl
In S; S, ¢, Si.val = 6, S,.val = 2. So answer
P 10. Ans: (a)
Sol: The rightmost derivation is
07. Ans: (c) S — aB — aa BB —aa Bb — aa bb

Sol: —(A A(A=B))
G —» Neg(AND(A, OR(NOT(A),B)))

F——» Neg(AND(A, OR(NOT(A),B)))

F, — AND(A, OR(NOT(A),B))

(F), AND(A, OR(NOT(A),B))

08.
Sol:

Ans: (¢)

The rightmost derivation is
E—-E+E—-E+E+E
—-E+E+E+E
—-E+E+E+E+E
=at+b+c+d+e

11. Ans: (¢)
Sol: S — aA {print 1}
S — a {print 2}
A — Sb {print 3} g
Input: aab
a A
A 231
S b
l
12. Ans: (¢)
Sol: a;bjasbybs
S = a;S S — a;S
= a;b;S S — b;S
= abja,S S —aS

- a1b1a2b28 S—> bzs
= a1b1a2b2b3 S—> b3

Above is rightmost derivation

@ @ ®

S—)b3 S—)bzs S—)aZS
z zy ZyX

S@) b]S S @) als

ZyXy ZyXyX

| ACE Engineering Publications >Hydembad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow | Paina | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally| Kolkata

(1T

L ~
‘.::" E':Engmé%mclgg"ubhmuons :11: CSIT-Postal Coaching Solutions
13. Ans: (a) Sol: According to the action of shift reduce
Sol parser, the parse tree constructed is

/\/\
AN N

A+ AMa @) a4 @ A+ A

/\ /\

a a (2 a (2)a (2
2)
14. Ans: (¢)
Sol: As the grammar is ambiguous & we do not

specify the precedence of operators either
postfix form may result depending on the

parser implementation.

15. Ans: (d)

Sol: /s\

A /B\\\

(|:\ * A (print *} B\

5 {print 5 \\\ :

PrET ¢+ N gprint +)
6 {print 6}
7 {pri\nt 7}

The depth first traversal of above tree prints
567+*

16. Ans: (a)

print (1)
R

E * E print (*)C print (C)

N N
N N
N N
N N
N N

a print(a) b print (b)

The Depth First Traversal of the above parse
treeisab*c 1

5. Intermediate Code Generation

01. Ans: (¢)
Sol: The purpose of using intermediate codes in
compilers is to reuse machine independent

code for other compilers.

02. Ans: (d)
Sol: The final result is the machine language
The

intermediate forms.

code. others are all standard

03. Ans: (d)
Sol: TAC is a statement that contains atmost

three memory references.

04. Ans: (d)

Sol: TAC can be implemented as a record
structure with fields for operator, and
arguments as Quadruples, triples and

indirect triples.

| ACE Engineering Publications >Hydembad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow | Paina | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally| Kolkata |

ACE 2.
‘EngmeenngPubhcanons . .

Compiler Design

05. Ans: (b)
Sol: The Quadruples is record structure with four
fields.
1.(*,b,c, T))
2.(+,a, Ty, Ty)
3.(= T, d, T3)

06. Ans: (¢)

Sol: (1) (and, b, ¢, T))
(2) (or, a, Ty, Tz, c, T3)
(3) (or, Ta, ¢, T3)

07. Ans: (a)

Sol: 1. (+,b,¢)
2. (NEG, (1))
3.(*a,(2)

08. Ans: 10
Sol: Rewriting the given assignments
X1 = u; — t;; — needs two new variables
y2 = X * vi; — needs three new variables
X3 =y, + wy; — needs four new variables
y4 = t; — z1; — needs five new variables
ys = y2 + wi + yas; — needs 10 new

variables atmost

09. Ans: (b)
Sol: All assignments in SSA are to variables with

distinct names

ps=a-—b
qs=P3*c
psa=u*v
Qs =Ps+tqa

10. Ans: (d)
Sol: Peephole optimization expression is the final

code.

11. Ans: (d)
Sol: DAG for the expression a*b*b is

%
/3
/*\
a b

12. Ans: (b)
Sol: DAG is constructed based on precedence
and associativity of operators, and option (b)

is the correct representation.

13. Ans:

4
Sol: e
&%
© @

Number of nodes = 4

14. Ans: (b)
Sol:

Nodes =8

a=b+tc e = Edges =10
c=a+d
d=b+c
e=d-Db
a=e+d

| ACE Engineering Publications >Hydembad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow | Paina | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally| Kolkata

(1T

g@?m{oémclg%ubhcauons :13: CSIT-Postal Coaching Solutions
Number of nodes = 8 for a variation of index i by 1, 1024 bytes
Number of edges = 10 must be skipped. So the answer must be (a)
15. Ans: (a) 16. Ans: (b)
Sol: In C the storage for array is row major order. Sol: (1) (+,¢,d)
Between X[I] [32] [8] & X [I+1] [32] [8] 2) (= Db, (1))
there must be 32 x 8 integer of type int i.e (3)(*, e, 1)
32 x 8 x 4 = 1024 bytes. So in X[i] [j] [K] 4) (+,(2), 3))
(5) (= a,(4)

| ACE Engineering Publications >Hydembad|Delhi|Bhopal|Pune|Bhubaneswar| Lucknow | Paina | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally| Kolkata

	CD
	CD postal - 2019

